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Summary 

Nitrogen oxide (NO), nitrogen dioxide (NO2) and ozone (O3) constitute a reactive trace gas 

triad, which is highly important for the oxidizing capacity of the atmosphere, the functioning 

of ecosystems and climate change. Terrestrial ecosystems, such as grasslands, represent con-

siderable sources and sinks for the NO-NO2-O3 triad and, thus, are crucial for atmospheric 

budgets of these species. The experimental quantification of surface-atmosphere exchange of 

the NO-NO2-O3 triad is difficult, and permanent flux monitoring networks are still at their 

infancy. Due to their fast reactivity, vertical gradients and fluxes of these species differ signif-

icantly from the respective theoretical descriptions for non-reactive trace gases. This effect is 

referred to as “chemical flux divergence”. Compared to the layer above, plant canopies exhib-

it an increased aerodynamic resistance, resulting in prolonged transport times of air within the 

canopy. This may provide sufficient time for in-canopy flux divergence and for interactions of 

trace gases such as the NO-NO2-O3 triad with plants. A prominent example is the fate of soil-

emitted NO that undergoes chemical reaction with O3 within the canopy and is subsequently 

recaptured by the surrounding vegetation in the form of NO2. This process is referred to as 

“NOx canopy reduction” (NOx = NO+NO2). NOx canopy reduction is commonly applied in 

global atmospheric chemistry and transport models, but was never investigated for grassland 

canopies, which cover vast terrestrial areas. 

This thesis focusses on the following topics investigated for a natural grassland canopy: (i) the 

quantification of in-canopy transport characteristics such as aerodynamic resistances and 

transport times, (ii) validation of the dynamic chamber technique for routine O3 flux meas-

urements at low canopy ecosystems and (iii) the analysis of chemical flux divergence and 

NOx canopy reduction. 

The quantification of in-canopy transport characteristics is of a major importance for the in-

vestigation of sources, sinks and net fluxes of reactive trace gases within plant canopies. A 

novel automated measurement system for selective vertical Thoron (Tn) profiles near the 

earth’s surface has been presented and evaluated, and its suitability for the direct and reliable 

determination of transport times within a natural grassland canopy has been demonstrated. 

For the first time, a rigorous determination of systematic and random error of Tn concentra-

tions was performed under field conditions for this type of measurement system. In-canopy 

transport times were calculated and their uncertainty from the individual errors of the Tn con-

centration measurements was propagated. The directly measured in-canopy transport times 

were compared with two empirical parameterizations that are frequently used in modeling 

studies. The disability of the parameterizations to reproduce the entire diurnal course of the 

in-canopy transport has been proven. An agreement with the measured transport times was 
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either found during daytime or during nighttime, depending on the parameterization. The in-

canopy transport characteristics constituted as base for the investigation of chemical flux di-

vergence and NOx canopy reduction. 

Nowadays, eddy covariance (ܥܧ) is the state of the art method to quantify turbulent exchange 

fluxes. ܥܧ requires high-frequency trace gas instruments that are not always available. In the 

absence of such instruments, fluxes can also be determined using e.g., chamber techniques. 

However, up to date fluxes of depositing compounds have been rarely determined using 

chamber techniques, mainly due to a modification of the aerodynamic conditions for the trace 

gas transport within the chamber. O3 deposition fluxes measured at a natural grassland site by 

the dynamic chamber technique are presented and, for the first time, validated against the ܥܧ 

method. The raw O3 fluxes of the dynamic chamber method were corrected for gas-phase 

chemistry and for the modification of the aerodynamic resistances. Simultaneously measured 

carbon dioxide and water vapor fluxes by both methods were comparable during daytime, 

documenting an equal vegetation activity inside and outside the chambers. The final corrected 

O3 deposition fluxes of both methods deviated on average by only 11 % during daytime. This 

demonstrates the capability of the dynamic chamber method to capture representative O3 dep-

osition fluxes for low canopy ecosystems. The canopy resistance to O3, an important parame-

ter in modeling studies, was assessed by both methods and showed a characteristic diurnal 

cycle with minimum hourly median values of 180 s m-1 (chambers) and 150 s m-1 (ܥܧ) before 

noon. By using the O3 fluxes resulting from the ܥܧ method, it could be shown that the non-

stomatal pathway dominated the total O3 deposition to the natural grassland canopy. 

For the first time, transport times, aerodynamic resistances, vertical profiles of NO-NO2-O3 

mixing ratios and micrometeorological quantities were simultaneously measured within and 

above a natural grassland canopy, and delivered insights on potential NOx canopy reduction 

and flux divergence. A canopy decoupling was observed during day and nighttime from verti-

cal temperature profiles resulting in inverse stability conditions in the lower and upper grass-

land canopy. For the lower canopy this interestingly implied a daytime stable stratification 

and a nighttime unstable stratification. The diurnal courses of in-canopy transport characteris-

tics reflected the stratification. The grassland showed parallels with Amazonian rainforest 

canopies from the literature. Unfortunately, NOx canopy reduction could not be quantified due 

to insignificant NO soil emissions at the site. Nevertheless, the obtained results clearly al-

lowed the conclusion that NOx canopy reduction in grassland canopies of similar structure is 

generally very efficient during daytime at sites where NO is emitted. In addition, a chemical 

flux divergence for O3 was determined between the ܥܧ measurement height and the canopy 

top. In contrast to previous studies, the chemical flux divergence resulted in a net chemical O3 

production during daytime, leading to 10 % underestimation of the O3 flux by the ܥܧ method. 



ZUSAMMENFASSUNG  IX 
 

 

Zusammenfassung 

Stickstoffmonoxid (NO), Stickstoffdioxid (NO2) und Ozon (O3) stellen eine reaktive Spuren-

gas-Triade dar, welche von größter Bedeutung für die Oxidierungskapazität der Atmosphäre, 

die Funktionsfähigkeit von Ökosystemen und den Klimawandel ist. Terrestrische Ökosyste-

me, wie z.B. Grasland, repräsentieren bedeutende Quellen und Senken für die NO-NO2-O3-

Triade und sind damit von entscheidender Bedeutung für atmosphärische Budgets dieser Stof-

fe. Die experimentelle Quantifizierung des Austausches der NO-NO2-O3-Triade zwischen 

Erdoberfläche und Atmosphäre ist diffizil und permanente Fluss Monitoring Netzwerke ste-

cken noch immer im Anfangsstadium. Aufgrund der schnellen Reaktivität dieser Spezies wei-

chen die dazugehörigen vertikalen Gradienten und Flüsse in erheblichem Maße von der theo-

retischen Beschreibung für nicht-reaktive Spurengase ab. Dieser Effekt wird als „chemische 

Flussdivergenz“ bezeichnet. Im Vergleich zu der darüber liegenden Schicht weisen Pflanzen-

bestände einen erhöhten aerodynamischen Widerstand auf, was zu einer Verlängerung von 

Transportzeiten der Luft in Pflanzenbeständen führt. Dieses kann zur Folge haben, dass sich 

innerhalb von Pflanzenbeständen ausreichend Zeit für Flussdivergenzen und Interaktionen 

von Spurengasen wie z.B. der NO-NO2-O3-Triade mit Pflanzen bietet. Ein bekanntes Beispiel 

ist der Verbleib von bodenemittiertem NO im Pflanzenbestand, welches nach chemischer Re-

aktion mit O3 in Form von NO2 von der umgebenden Vegetation wiederaufgenommen wird. 

Dieser Vorgang wird als „NOx-Verringerung im Bestand“ (NOx = NO+NO2) bezeichnet. At-

mosphärenchemie- und Transportmodelle wenden für globale Berechnung die NOx-

Verringerung im Bestand an. Diese wurde jedoch niemals explizit für Graslandbestände un-

tersucht, ein Ökosystemtyp, welche erhebliche terrestrische Flächen bedeckt. 

Diese Arbeit konzentriert sich auf die folgenden ein natürliches Grasland betreffenden The-

men: (i) die Quantifizierung von Transporteigenschaften wie aerodynamischen Widerständen 

und Transportzeiten innerhalb des Bestandes, (ii) die Validierung eines dynamischen Kam-

mersystems für routinemäßige Messungen von O3 Flüssen in Ökosystemen mit geringer Be-

standshöhe und (iii) die Analyse von chemischer Flussdivergenz und NOx-Verringerung im 

Bestand. 

Die Quantifizierung von innerbestandlichen Transporteigenschaften ist von grundlegender 

Bedeutung für die Untersuchung von Quellen, Senken und netto Flüssen von reaktiven Spu-

rengasspezies in Pflanzenbeständen. Ein neuartiges und automatisiertes Messsystem für selek-

tive Thoron (Tn) Vertikalprofile in Bodennähe ist präsentiert und evaluiert worden. Seine 

Eignung für die direkte und verlässliche Bestimmung von Transportzeiten innerhalb von 

Graslandbeständen konnte demonstriert werden. Erstmalig wurde eine rigorose Bestimmung 

von systematischen und zufälligen Messfehlern für Tn-Konzentrationen unter Feldbedingun-
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gen für diese Art von Messsystem durchgeführt. Innerbestandliche Transportzeiten wurden 

berechnet und deren Unsicherheit ausgehend von den individuellen Messfehlern der Tn-

Konzentrationen fortgepflanzt. Die direkt gemessenen innerbestandlichen Transportzeiten 

wurden mit zwei häufig in Modelluntersuchungen benutzten empirischen Parametrisierungen 

verglichen. Dabei wurde die Unzulänglichkeit beider Parametrisierungen zur Reproduktion 

des gesamten Tagesganges der innerbestandlichen Transportzeiten belegt. Eine Übereinstim-

mung mit den gemessenen Transportzeiten wurde dabei je nach Parametrisierung entweder 

nur für am Tag oder nur in der Nacht gefunden. Die innerbestandlichen Transporteigenschaf-

ten dienten als Basis für die Untersuchung von Flussdivergenzen und die NOx-Verringerung. 

Eddy Kovarianz (ܥܧ) ist die dem aktuellen Stand der Technik entsprechende Methode zur 

Quantifizierung von turbulenten Austauschflüssen. ܥܧ erfordert Messinstrumente mit hoch-

frequenter zeitlicher Auflösung, die nicht immer zur Verfügung stehen. In einem solchen Fall 

können Flüsse z.B. auch mit Kammermethoden bestimmt werden. Allerdings wurden Flüsse 

von deponierenden Komponenten bislang nur selten mit Kammermethoden bestimmt, was 

hauptsächlich an der Problematik der Veränderung von aerodynamischen Bedingungen für 

die Spurengase durch die Kammer selbst liegt. An einem Standort mit natürlichem Grasland-

bestand mit der dynamischen Kammermethode gemessene O3-Depositionsflüsse werden prä-

sentiert und erstmalig gegen die ܥܧ-Methode validiert. Die O3-Rohflüsse der dynamischen 

Kammermethode wurden für Gasphasenchemie und die Modifikation der aerodynamischen 

Widerstände korrigiert. Eine gute Übereinstimmung der simultan mit beiden Methoden ge-

messenen Kohlenstoffdioxid- und Wasserdampfdampfflüsse belegten eine gleichwertige Ve-

getationsaktivität inner- und außerhalb der Kammern. Nach der finalen Korrektur wichen die 

O3-Depsositionsflüsse beider Methoden am Tag nur um 11 % voneinander ab, was die Fähig-

keit der dynamischen Kammermethode zur Messung repräsentativer Depositionsflüsse für 

Ökosysteme mit niedriger Vegetation belegt. Der Widerstand des Graslandbestandes für O3, 

ein wichtiger Parameter in Modellierungsstudien, wurde mit beiden Methoden erfasst. Dieser 

war einem charakteristischen Tagesgang unterworfen mit dem spätmorgendlichen Minimum 

der stündlichen Medianwerte von 180 s m-1 (Kammern) und 150 s m-1 (ܥܧ). Des Weiteren 

konnte durch Nutzung der ܥܧ-O3-Flüsse gezeigt werden, dass die totale O3-Deposition vor-

rangig nicht-stomatär erfolgt. 

Erstmalig wurden Transportzeiten, aerodynamische Widerstände, Vertikalprofile der NO-

NO2-O3-Triade und mikrometeorologische Größen simultan innerhalb und oberhalb eines 

natürlichen Grasbestandes gemessen. Die Messungen lieferten Einblicke in Themen, wie po-

tentieller NOx-Verringerung im Bestand und chemischer Flussdivergenz. Eine Entkoppelung 

verbunden mit umgekehrten Stabilitätsbedingungen des oberen und unteren Teils des Grasbe-

standes wurde während des gesamten Tages durch Vertikalprofile der Temperatur beobachtet. 
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Interessanterweise beinhaltet dies für den unteren Teil des Grasbestandes am Tag eine stabile 

und in der Nacht eine instabile Schichtung, was auch im Tagesgang der innerbestandlichen 

Transporteigenschaften zu sehen war. Literaturvergleiche ergaben, dass einige Parallelen zwi-

schen dem untersuchten Grasland und Regenwaldbeständen im Amazonasgebiet bestehen. 

Aufgrund nicht-signifikanter NO-Bodenemissionen am untersuchten Standort konnte leider 

die NOx-Verringerung im Bestand nicht quantifiziert werden. Trotzdem ließen die Ergebnisse 

dieser Studie die generelle Schlussfolgerung zu, dass am Tag die NOx-Verringerung in Gras-

beständen ähnlicher Struktur mit signifikanten NO-Bodenemissionen äußerst effektiv ist. Au-

ßerdem wurde eine O3-Flussdivergenz zwischen der ܥܧ-Messhöhe und der Bestandshöhe 

bestimmt. Diese stellte tagsüber eine O3-Produktion dar und steht damit im Widerspruch zu 

bisherigen Veröffentlichungen zu diesem Thema. Die O3 Flussdivergenz sorgte für eine zehn-

prozentige Unterschätzung des O3 Flusses durch die ܥܧ-Methode. 
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1 Introduction 

Besides nitrogen, oxygen and argon, the major constituents of the Earth´s atmosphere, a large 

number of gases exist, which are characterized by concentrations far below 1 %; the trace 

gases. The low atmospheric abundance of trace gases strictly contrasts their importance. On 

the one hand, the natural greenhouse effect is provided by atmospheric trace gases such as 

carbon dioxide (CO2) or methane (CH4), allowing humans to live on Earth (e.g., MITCHELL, 

1989). On the other hand, the industrialization resulted in increased anthropogenic emissions 

and, subsequently, led to a substantial rise of atmospheric trace gas levels (e.g., IPPC, 2007). 

That is why besides atmospheric aerosols, many trace gases are considered as air pollutants, 

as they can cause hazardous environmental and health damages at global and local levels. An 

exemplary and uncompleted list comprises (i) the anthropogenic greenhouse effect among 

others caused by increased CO2, CH4, nitrous oxide (N2O) or ozone (O3) levels (e.g., IPPC, 

2007); (ii) acidic rain by emissions of precursor substances such as sulfur dioxide (SO2) or 

nitrogen dioxide (NO2) (e.g., DUYZER and FOWLER, 1994; KHEMANI et al., 1994); (iii) damag-

ing effects on human health in locations with elevated O3, NO2 or SO2 concentrations (e.g., 

GILLILAND et al., 2004; KIM et al., 2013); (iv) ecosystem eutrophication by deposition of an-

thropogenic emitted trace gases such as NO2 or ammonia (NH3) (e.g., DUYZER and FOWLER, 

1994; NEMITZ et al., 2000); (iv) direct damage to plants resulting from stomatal uptake of O3 

or NO2 (e.g., BIGNAL et al., 2007; GREITNER et al., 1994). 

Investigative explorations of such effects require knowledge on the atmospheric composition, 

the underlying transport and the respective source-sink distribution of respective trace gases, 

all of which are variable in space and time. Depending on the respective scientific question, 

different spatial and temporal scales might be addressed. For investigations at a global scale, 

such as future climate predictions, global atmospheric models are the methods of choice (cf., 

IPPC, 2007). Exhaust plumes of cities can be studied by using regional observations and/or 

models (e.g., ZHENG et al., 2013). Nevertheless, current and future global models, as well as 

those on a regional or ecosystem scale (e.g., BALDOCCHI, 1988), rely on results of small scale 

field measurements as crucial input parameters such as micrometeorological trace gas fluxes 

(MONCRIEFF et al., 1997). 

Eddy covariance (e.g., FOKEN et al., 2012a) is the state-of-the-art micrometeorological meas-

urement technique to derive net ecosystem fluxes e.g., for CO2. Huge efforts have been car-

ried out to install flux measurement networks (e.g., CarboEurope in DOLMAN et al. (2006)), as 

these data have a great value e.g., for climate change research. In cases when instruments 

SYNTHESIS



2 
INTRODUCTION 
 

 

suitable for eddy covariance are not available, also profile methods can be used for flux 

measurements. Enclosure methods such as static or dynamic chambers, however, can be oper-

ated to identify and quantify sources and sinks of trace gases in ecosystem compartments such 

as soils (e.g., GUT et al., 2002b) or branches (e.g., BOURTSOUKIDIS et al., 2012). While static 

chambers are used for non-reactive species, dynamic chambers are additionally suitable to 

determine fluxes of fast reacting compounds. Furthermore, the dynamic chamber technique is 

able to yield net ecosystem exchange fluxes of trace gases (e.g., HIROTA et al., 2010), in cases 

where the canopy of the ecosystem under consideration is up to approximately the same 

height as the used chamber. 

However, respective investigations using either numerical models or field measurements be-

come substantially more complicated when chemical reactive species are investigated. Reac-

tive trace gases such as nitric oxide (NO) and NO2 play a crucial role in atmospheric chemis-

try since they act as key catalysts for the production of O3 and, thus, are linked to the genera-

tion of hydroxyl radicals (OH) (CRUTZEN, 1973), the major oxidant of the atmosphere. The 

most significant tropospheric source for O3 is initiated by NO2 photolysis and subsequent re-

action of the resulting ground state oxygen atom (OሺଷPሻ) with molecular oxygen: 

NOଶ	 ൅ 	h	ሺ	 ൏ 	420	nmሻ				NO	 ൅ 	OሺଷPሻ	      (R1) 

OሺଷPሻ 	൅	Oଶ 	൅ 	M				Oଷ 	൅ 	M	        (R2) 

When O3 is present, it may oxidize NO and re-form NO2: 

Oଷ ൅ NO
୩య
→ NOଶ ൅ Oଶ         (R3) 

In the absence of additional reactions, R1–R3 constitute a null cycle, which led to the term 

NO-NO2-O3 triad. Beside R1–R3, NO is oxidized by peroxy radicals representing an addi-

tional important net O3 production pathway in the troposphere (WARNECK, 2000). 

Terrestrial ecosystems play a key role for the emission and removal of trace gases such as the 

NO-NO2-O3 triad, which strongly impact atmospheric chemistry and climate (ARNETH et al., 

2010). That is why several previous studies investigated the corresponding source-sink distri-

butions. NO is known to be mainly net emitted from nearly all soil types (e.g., FOWLER et al., 

2009). These emissions contribute with ~20 % to the global NOx (NO+NO2) emissions (IPPC, 

2007). Dry-deposition to terrestrial ecosystems, especially to plant canopies, is an important 

sink for tropospheric O3 and NO2 (e.g., FOWLER et al., 2009). While the net ecosystem ex-

change of NO2 can be bi-directional depending on the ambient NO2 levels and the magnitude 

of simultaneous NO soil emissions (e.g., PILEGAARD et al., 1998), O3 is exclusively deposited 

to ecosystem elements such as plants or soils (e.g, FOWLER et al., 2009). MASSMAN et al. 

(2000) nicely summarized results of conducted O3 flux experiments. Certainly, additional 
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field campaigns on O3 fluxes have been carried out to date (e.g., STELLA et al., 2013a) and 

knowledge on O3 deposition has slightly improved. But nevertheless, permanent flux meas-

urement networks for the members of the NO-NO2-O3 are, in contrast to CO2, not yet estab-

lished. Thus, any further step leading towards continuous NO-NO2-O3 flux measurements 

represents a highly important contribution for atmospheric research. 

Physical transport of trace gases in air can occur through: (i) pure molecular diffusion, (ii) 

turbulent transport or (iii) convection. While the relatively slow molecular diffusion is only 

important in laminar boundary layers at the millimeter range above surfaces, the approximate-

ly five orders of magnitude faster turbulent transport comes into play with increasing distanc-

es to surfaces. An air parcel is convectively transported when its temperature or moisture dif-

fers from the surrounding air, and the transport efficiency depends on the magnitude of the 

difference. LENSCHOW (1982) pointed out that the fast characteristic chemical timescale of the 

NO-NO2-O3 triad (R1–R3) is in the order of seconds to minutes which is the typical range of 

typical turbulent transport times in the atmospheric boundary layer. This implies that a gradi-

ent or flux of a fast reacting compound measured at a field site can be (i) either due to physi-

cal transport towards or from a sink or source, respectively, as well as (ii) due to chemistry. 

Accordingly, a deviation from the constant flux assumption (e.g., SWINBANK, 1968) due to 

chemical reactions and interconversion of reactive compounds is termed “chemical flux di-

vergence” (e.g., DE ARELLANO et al., 1993). Chemical flux divergences can lead to large dif-

ficulties in the interpretation of experimental data and their implication into models. 

A major challenge for the investigation of surface-atmosphere exchange fluxes of reactive 

trace gases is the presence of plant canopies. Over rough surfaces, such as plant canopies, 

physical transport of matter is dominated by low-frequency turbulence events called “coherent 

structures” (e.g., FINNIGAN, 2000; THOMAS and FOKEN, 2007). These consist of ejection of air 

from, and sweeps into the canopy, promoting the development of a vertical motion that may 

penetrate deep into the canopy. The attenuation of turbulence within canopies is strongly de-

pendent on the canopy structure. Compared to the air layer above, a substantial modification 

of the residence time of the air within the canopy may occur, whose amplitude is a function of 

the height above the ground and the time of the day. This may provide sufficient time for (i) 

promoting in-canopy chemical flux divergence and (ii) recapturing of either the directly emit-

ted compounds such as NH3 in NEMITZ et al. (2000) or reaction products (e.g., NO2) to be 

deposited and taken up by plants and soil (e.g., MEIXNER, 1994). The whole process (with 

respect to the emitted compounds) is typically called “canopy reduction”, which implies that 

the canopy processes result in a decrease in the effective emission flux into the atmosphere 

(e.g., YIENGER and LEVY, 1995). For instance, only a fraction (~20 %) of soil biogenic NO 

emissions typically leave e.g., rain forest canopies, because a large part is oxidized by O3 and 
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the product NO2 is subsequently recaptured mainly through uptake by plant stomata and soil 

(JACOB and WOFSY, 1990). Consequently, sources and sinks of reactive trace gases are influ-

enced by vegetation canopies and canopy interactions provide a main link between surface 

emissions and the atmospheric burden of e.g., NOx. 

Global atmospheric chemistry and transport models account for this by applying NOx canopy 

reduction factors for different canopy types (e.g., YIENGER and LEVY, 1995). However, these 

estimates are based on only one single experiment in the Amazon Basin (BAKWIN et al., 1990) 

and the subsequent model analysis (JACOB and WOFSY, 1990). Thereafter, these were empiri-

cally adapted to other canopies (e.g., YIENGER and LEVY, 1995). As the canopy structure de-

termines the in-canopy turbulence attenuation, a highly critical factor for chemical flux diver-

gence and, thus, the canopy reduction itself, such an adaption to other canopies of substantial 

structural difference might be invalid. For instance, forests hold the bulk leaf area index in the 

upper canopy, which is fundamentally different in grassland canopies, where the bulk leaf 

area index is located near the soil (e.g., JÄGGI et al., 2006; RIPLEY and REDMAN, 1976). Fur-

thermore, mean distances between plant elements of only some millimeters (AYLOR et al., 

1993) reflect the enormous density within the lower part of grassland canopies. The great im-

portance of grasslands as land cover class is demonstrated by the terrestrial land surface cov-

erage of globally 41 % and Europe-wide 19 % (KASANKO et al., 2011; SUTTIE et al., 2005), 

emphasizing the relevance for atmospheric budgets of NOx. In comparison to forests, the 

number of experiments carried out on in-canopy processes of grasslands is very low. Alt-

hough, the lack of experimental data on NOx canopy reduction is known for decades, only 

minor progress has been made to improve measurement methods and experimental strategies. 

Nevertheless, improvements in this topic are crucial to derive also modeling schemes. These 

may help to characterize and quantify turbulence-chemistry interactions and to incorporate in-

canopy processes, the influence of the canopy structure and turbulence in global chemistry 

and transport models (GANZEVELD et al., 2002a; GANZEVELD et al., 2002b). 
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1.1 Objectives of this thesis 

The motivation of this PhD thesis was the investigation of the NO-NO2-O3 exchange at a nat-

ural grassland ecosystem. Certain aspects of this topic were individually addressed before but 

a specific study on exchange and chemistry considering the entire NO-NO2-O3 triad above 

and within a grassland canopy is still lacking. Both, the vast global terrestrial coverage of 

grasslands as well as the importance of the NO-NO2-O3 triad for ozone production, the oxi-

dizing capacity of the atmosphere and the functioning of ecosystems underline the need for an 

experimental investigation on this topic. The investigation of turbulence-chemistry and plant 

canopy interactions such as NOx canopy reduction or chemical flux divergences within and 

above a grassland canopy necessitated the conduction of an intensive field campaign using 

appropriate instrumentation. 

This kind of research requires information on characteristic timescales of processes involved 

for different layers within and above the canopy. Beside knowledge on the chemical time-

scales, which can be addressed by the kinetics of the respective chemical reactions of the par-

ticipating reactants, transport times are crucial to evaluate potential flux divergences. Com-

mon micrometeorological approaches can be used for the quantification of transport times. 

However, experimental difficulties in dense plant canopies such as grasslands can complicate 

associated measurements. For instance, the obstruction of ultra-sonic anemometer pathways 

by grass blades must be avoided (e.g., NEMITZ et al., 2009). An alternative method according 

to LEHMANN et al. (1999) uses vertical profiles of Thoron (Tn), a radioactive isotope of the 

noble gas radon (Rn), for the direct quantification of average transport times. This technique 

was applied in some studies before (e.g., GUT et al., 2002b; HENS, 2009; LEHMANN et al., 

1999; NEMITZ et al., 2009). However, all of these studies derived the vertical Tn profiles from 

non-simultaneous measurements using instruments that were non-selective for Tn, which pre-

sumably caused large measurement errors (NEMITZ et al., 2009). This highlights the need for 

an advanced setup that can be used to derive reliable transport characteristics of grassland 

canopies such as in-canopy transport times and aerodynamic resistances prerequisite to the 

investigation on turbulence-chemistry interactions. 

Eddy covariance requires fast instruments which are not always available. In the absence of 

such instruments, alternative flux measurement techniques are required in order to increase 

the flux data coverage of important trace gases such as the NO-NO2-O3 triad. Chamber based 

methods are typically used for the determination of emission fluxes (e.g., BOURTSOUKIDIS et 

al., 2012; GUT et al., 2002b). Due to experimental difficulties (for details see PAPE et al., 

2009) they have only seldom been used for flux measurements of depositing compounds such 

as O3. Nevertheless, chamber systems that are designed for long-term measurements of NO 
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soil emissions, often operate NO2 and O3 instruments simultaneously for reasons of chemistry 

corrections (e.g., PAPE et al., 2009). Such a system could constitute a flux measurement alter-

native for depositing compounds at low vegetation ecosystems, if these experimental difficul-

ties can be overcome. In this way the O3 flux data coverage could be increased. 
 

Accordingly, the objectives of this thesis can be summarized as follows: 
 

(1) provision of reliable tools for the measurement of required quantities: 

(i) development and evaluation of a selective thoron profile system for the direct 

quantification of in-canopy transport characteristics such as transport times and 

aerodynamic resistances (treated in PLAKE and TREBS (2013, Appendix B)); 

(ii) technical advancement and validation of a dynamic chamber system for the 

measurement of exchange fluxes of depositing compounds such as O3 on low 

canopy ecosystems (treated in PLAKE et al. (2014b, Appendix C)) 
 

(2) determination of the impact of turbulence-chemistry interactions for the exchange of 

the NO-NO2-O3 triad above and within a natural grassland canopy under different me-

teorological and air pollutant conditions (treated in PLAKE et al. (2014a, Appendix D)) 
 

(3) quantification and characterization of NOx canopy reduction and chemical flux diver-

gence of O3 at a natural grassland site (treated in PLAKE et al. (2014a, Appendix D)) 
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restructured based on response time tests, and the automation of the entire system was 

achieved by programming flexible and reliable software. 

The novel Tn profile system was designed to attain information on in-canopy transport, such 

as transport times. Gaseous Tn is an isotope of the noble gas radon (Rn) and is known to be 

soil-emitted and not to be taken up by plants. The only atmospheric removal process of Tn is 

radioactive decay at a half-life time of 55.6 s (decay rate λ ൌ 0.0125 s-1). This implies that 

under the assumption of homogeneous soil emissions the vertical profile of Tn contains in-

formation on the average characteristic time of transport. Thus, bulk average transport times 

(߬௧௥ in s) between a lower (ݖ௟) and an upper measurement height (ݖ௨) can be directly derived 

by the vertical Tn concentration (்ܥ௡ in Bq m-3) profile (LEHMANN et al., 1999) as: 

߬௧௥ ൌ 	 ln ൤
஼೅೙೥೗
஼೅೙೥ೠ

൨	/	(1)          ߣ 

The technique is henceforth abbreviated as Tn tracer technique. The novel Tn profile system 

was operated during the experiment by using simultaneously three Tn analyzers at three 

heights (ݖଵ–  ଷ). Further details on the Tn tracer technique and the measurement setup areݖ

given in PLAKE and TREBS (2013, Appendix B). 

The near surface profile and the dynamic chamber system were combined in order to deter-

mine fluxes of the NO-NO2-O3 triad and additionally of CO2 and H2O through the soil-

atmosphere interface and to simultaneously yield information on the corresponding vertical 

distribution. A dynamic chamber covers a specific soil area (ܣ in m2). A flow of ambient air 

through the dynamic chamber headspace (ܳ in m3 s-1) allows the achievement of a steady 

state between the corresponding mixing ratios in- (μூே) and outside of the chamber (μை௎் 

both e.g., in ppb). The flux (ܨ஼ு e.g., in nmol m-2 s-1) is basically a function of the mixing 

ratio difference (PAPE et al., 2009): 

஼ுܨ ൌ
ொ

஺
∙ ௗߩ ∙ ሾߤை௎் െ  ூேሿ         (2)ߤ

with ߩௗ being the molar density of dry air (in mol m-3). During the experiment three dynamic 

chambers and three inlet heights of the near surface profile system were operated simultane-

ously. One set of analyzers measured NO, NO2, O3, CO2 and H2O mixing ratios. The use of 

switching vales enabled the sequential sampling in- and outside the three chambers and at the 

three near surface profile inlets. Further details on the setup, flux and error calculation as well 

as on chemical corrections are given in PLAKE et al. (2014b, Appendix C). 
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3 Results 

3.1 Technical advancements 

3.1.1 A novel automated thoron profile system 

The concentrations of Tn were measured with three commercially available instruments 

(RAD7, Durridge, Billerica, USA). The RAD7 uses a solid state alpha detector for alpha par-

ticle counting and electronic alpha spectrometry. A special feature of these instruments is 

their ability to distinguish Rn from Tn, which is very rare for currently available commercial 

Rn monitors. Thus, Tn concentrations in previous studies were typically measured using e.g. 

two non-selective Rn and Tn instruments in series. The first instrument measured the sum of 

Tn and Rn, the isotope separation was made by a defined Tn decay volume installed between 

both instruments, and the Tn concentration was then obtained by subtraction of the Rn signal 

(instrument 2) from the sum of Tn and Rn (instrument 1) (e.g., GUT et al., 2002b; HENS, 

2009; LEHMANN et al., 1999; NEMITZ et al., 2009). Furthermore, vertical Tn profiles were 

obtained with such systems by sequential sampling at different heights using switching 

valves, which resulted in additional uncertainties due to potential non-stationarities. In con-

trast, the novel system developed for this study and presented in PLAKE and TREBS (2013, 

Appendix B) provides simultaneously measured vertical Tn profiles using Tn selective in-

struments, thus minimizing potential error sources. In addition, the remaining systematic and 

random errors of the Tn concentration readings were carefully quantified and propagated to 

yield the uncertainty of the determined transport times, which was never reported by any pre-

vious study before. 

The precondition of relative humidity of < 10 % within the Tn instruments was excellently 

achieved throughout the campaign by actively drying each sample-air flow (2 L min-1) using 

Nafion dryers (Perma Pure, Toms River, USA). Each instrument´s Tn sensitivity was verified 

against the world´s first primary standard for Tn activity concentration in air at the 

Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany). For the first time a 

rigorous determination of systematic and random errors of the Tn concentration readings was 

performed for this type of measurement system under field conditions. Beside low systematic 

errors among the three instruments (≤ 3 %), the obtained median precisions for three concen-

tration classes (൐ 100, 100–15 and ൏ 15 Bq m-3) were 8.8, 23.2 and 132.1 % for Tn. The in-

dividual errors of the Tn concentration measurements were propagated to determine the un-

certainty of the transport times (߬௧௥). During 51 measurement days, 44 % of the transport 

times showed a good data quality with relative uncertainties below 50 %. In contrast, only 



12  RESULTS 
 

 

22 % of all determined transport times exhibited uncertainties higher than 100 %, caused by 

absolute Tn gradients lower than 70 Bq m-3 m-1. 

3.1.2 Ozone fluxes measured with the dynamic chamber technique 

The sophisticated dynamic chamber system for the determination of emission fluxes present-

ed in PAPE et al. (2009) was a base for this study. A substantial further optimization of the 

hardware setup and the sampling cycle led to an achievement of the following goals: (i) de-

creasing the likelihood of non-stationary events during a single chamber measurement, (ii) 

improving the time resolution for flux determination, (iii) ensuring representative rainfall 

amounts and soil moisture in the chambers by long open phases during 90 % of the day (iv) 

gaining simultaneous information on the vertical distribution of the investigated trace gases 

and (v) eliminating water vapor interferences on the measurements of NO (MATTHEWS et al., 

1977) and O3 (WILSON and BIRKS, 2006) mixing ratios. Details on the system are given in 

PLAKE et al. (2014b, Appendix C). PAPE et al. (2009) provided the essential correction to ac-

count for gas-phase chemical reactions of the NO-NO2-O3 triad within the dynamic chamber 

 fluxes corrected for gas-phase chemistry are henceforth referred to ܪܥ headspace. The (ܪܥ)

as ܪܥ௚௣. 

The application of a dynamic chamber leads to a modification of the aerodynamic and diffu-

sive transport, which results in altered trace gas mixing ratios within the ܪܥ headspace. This 

is of minor importance for quantifying fluxes of soil-emitted compounds, such as NO, be-

cause the emission flux is hardly influenced by (moderate) changes in the aboveground gas 

concentration and environmental conditions. However, for deposited trace gases, such as O3, 

the modification of the turbulent resistive scheme is highly relevant as the deposition flux 

depends on the mixing ratio and is often limited by the turbulent transport. Thus, for a reliable 

quantification of deposition fluxes using the ܪܥ method, a modified resistive scheme has to 

be quantified and corrected for. In this study, a corresponding correction presented by PAPE et 

al. (2009) was applied. The canopy height ݄௖ at the Mainz-Finthen grassland site slightly ex-

ceeded the ܪܥ height (0.43 m), which did not affect the undisturbed ܪܥ closure as the up-

permost canopy was characterized by sparse grass spandices. However, in contrast to PAPE et 

al. (2009), this resulted in significantly differing O3 mixing ratios at the height of the ܪܥ inlet 

(0.2 m) compared to the above-canopy reference height (3.0 m). Consequently, the correction 

equation given in PAPE et al. (2009) was extended by the ratio of the corresponding O3 mixing 

ratios (for details see PLAKE et al. (2014b, Appendix C)). The finally corrected ܪܥ flux is 

henceforth referred to as ܪܥ௖௢௥. 

Eddy covariance (ܥܧ), the state-of-the-art flux measurement technique, was chosen as refer-

ence to validate the derived O3 deposition fluxes by the ܪܥ method. Prerequisites for a mean-
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The subsequent O3 flux comparison revealed an obvious underestimation of the O3 flux by the 

 as shown in the diurnal (௚௣ܪܥ) method when only corrected for gas-phase chemistry ܪܥ

course and the scatter plot (Fig. 3.1a,b). However, the ܪܥ method´s capability of determining 

representative O3 fluxes could by clearly demonstrated when comparing the finally corrected 

 method. The diurnal courses of both corresponding O3 fluxes ܥܧ with the (௖௢௥ܪܥ) flux ܪܥ

(Fig. 3.1a) are characterized by widely overlapping interquartile boxes. Also, the bivariate fit 

in the corresponding scatter plot (Fig. 3.1c) underlines the good conformity. On average, the 

deviation between both methods was quantified to be only 11 % during daytime. Beside the 

good agreement of the overall O3 flux data set PLAKE et al. (2014b, Appendix C) have also 

shown that the advanced setup of the ܪܥ system enables the determination of reliable O3 

fluxes even for 30 min averaging intervals. Furthermore, they found the relative O3 flux error 

of the ܪܥ method below 25 % with ݑ∗ being higher than 0.22 m s-1. The median O3 flux error 

of the ܪܥ method throughout the campaign was 32 % during daytime and 58 % during 

nighttime. 

 

 

  



RESULTS   15 
 

 

3.2 Scientific advancements 

3.2.1 In‐canopy transport 

Aerodynamic resistances (ܴ௔) are important input parameters for modeling studies on sur-

face-atmosphere exchange fluxes. They represent transport times through a layer, normalized 

by the layer thickness (ܴ௔ ൌ ߬௧௥/Δݖ). When the thicknesses of two layers under consideration 

differ, the effectiveness of transport can be represented by the corresponding aerodynamic 

resistances. On the other hand, transport times are required to evaluate the influence of chem-

ical reactions on fluxes (e.g., Damköhler numbers see Sect. 3.2.2). 

Aerodynamic in-canopy resistances (ܴ௔௖) are typically parameterized as a function of ݑ∗ and 

 These parameterizations are .(e.g., PERSONNE et al., 2009; VAN PUL and JACOBS, 1994) ܫܣܮ

based on experiments above e.g., crops such as maize (VAN PUL and JACOBS, 1994) and con-

sider a vertically homogeneous leaf distribution (PERSONNE et al., 2009). However, this ap-

proximation may differ substantially within grassland canopies, as their structure is character-

ized by high biomass density in the lowest layer (cf. Fig. 2.2b). 

The great advantage of the Tn tracer technique is the direct assessment of measured ܴ௔௖ val-

ues for various layers, which are presented in Fig. 3.2 as diurnal courses. The vertical ܴ௔௖ 

profile indicated a strongly decreasing aerodynamic transport efficiency with height. For in-

stance, during daytime ܴ௔௖ in the lowest canopy layer was found two orders of magnitude and 

during nighttime one order of magnitude higher than ܴ௔ in the layer above the canopy. Fur-

thermore, ܴ௔௖ in the lower canopy exhibited an inversed diurnal course (highest during day-

time, lowest during nighttime) compared to the aerodynamic resistances in the upper canopy 

or above it. The inversed diurnal courses were caused by the analogously inverted stability 

conditions in the corresponding layers. These are visualized by vertical temperature profiles 

in Fig. 3.3, which indicate temperature inversions during both day and nighttime. During day-

time the upper canopy and the above-canopy layer were characterized by unstable stratifica-

tion, as the main turnover of short wave radiation into heat took place around the upper end of 

the lower canopy layer. The lower canopy layer instead showed stable stratification, as the air 

in the lower canopy was cooled by heat dissipation towards the soil. During nighttime 

longwave upwelling radiation cooled the upper canopy yielding lowest temperatures around 

the upper end of the lower canopy layer and a stable stratification above, whereas within the 

lower canopy the release of upward thermal plumes originating from the warmer soil body 

resulted in convective transport and, thus, unstable stratification. Before, the resulting partial 

canopy decoupling was only observed for differently structured canopies such as forests (e.g., 

KRUIJT et al., 2000) or crops (e.g., JACOBS et al., 1994; NEMITZ et al., 2000). The magnitude 

and the diurnal course of ܴ௔௖ in the lower grassland canopy were astonishingly comparable to 
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Contrastingly, winds from the north eastern sector were characterized by low wind speed 

(൏ 3 m s-1) and relatively high NOx levels (൐ 5 ppb). In order to gain insights on transport-

chemistry interactions under contrasting meteorological and air chemical conditions, eleven 

and nine days were identified by specific criteria as low and high NOx periods, respectively. 

These were separately analyzed for the entire data set (for details see PLAKE et al., 2014a, 

Appendix D). 

The higher wind speed prevailing during day and nighttime of the low NOx periods yielded 

low vertical differences in temperature (cf. Fig. 3.3) and trace gases (cf. PLAKE et al., 2014a, 

Appendix D). In contrast, the nighttime of the high NOx periods was characterized by ex-

traordinary stable stratification in the upper canopy and above forming a “canopy lid” (medi-

an temperature difference 4.0െ0.2 m: 6 K). Under these conditions mixing ratios of exclu-

sively depositing compounds such as O3 were as low as 1 ppb in the lower canopy, whereas 

exclusively emitted compounds such as Rn were trapped within the canopy and showed 

strongly enhanced concentrations. In contrast, the simultaneous NO mixing ratios in the lower 

canopy were only weakly enhanced, suggesting rather low NO soil emissions, which was in 

accordance with the results of the dynamic chamber technique that detected insignificant NO 

soil emissions (cf. PLAKE et al., 2014b, Appendix C). The daytime conditions of the high NOx 

periods were characterized by distinctly enhanced NOx mixing ratios during the morning 

hours, a diurnal O3 maximum in the afternoon (for both see PLAKE et al. (2014a, Appendix 

D)) and pronounced unstable stratification during daytime (cf. Fig. 3.3). 

The ratio of the transport time and the chemical timescale (߬௖௛) for the NO-NO2-O3 triad 

(LENSCHOW, 1982), the so-called Damköhler number (ܣܦ ൌ ߬௧௥ ߬௖௛⁄ ), is used as an indicator 

for potential chemical divergence (e.g., STELLA et al., 2013a). Typically, Damköhler numbers 

equal to unity or above indicate a strong potential chemical divergence. When Damköhler 

numbers are smaller than 0.1, chemical reactions are considered of minor importance, where-

as within the critical range between unity and 0.1, a chemical divergence cannot be excluded. 

For the first time PLAKE et al. (2014a, Appendix D) derived transport times, chemical time-

scales and Damköhler numbers from measurements individually for the lower and the upper 

canopy and the above-canopy layer as given in Fig. 3.4. 

During daytime the chemical timescale showed a weak vertical profile with lowest values 

above the canopy and highest values in the lower canopy. The chemical timescales between 

the low and high NOx periods only slightly differed. During daytime the transport times were 

found equally fast as the chemical timescales in the lower canopy, somewhat faster in the up-

per canopy and around two to five times faster in the above-canopy layer. The fastest 

transport above the canopy occurred during the low NOx periods due to the higher wind 

speed, whereas the transport in the lowest canopy layer interestingly showed the opposite 
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Nevertheless, it should be noted that Damköhler numbers within plant canopies are not fully 

representative for all processes, since besides transport and chemistry, additional sources and 

sinks for trace gases exist within plant canopies. These are specific for each trace gas and will 

be discussed in the next sections. 

3.2.3 Canopy reduction of nitric oxides within a natural grassland canopy 

Due to the insignificant NO soil emissions at the Mainz-Finthen experiment site, potential 

NOx canopy reduction could unfortunately not be directly quantified. The unique data set of 

this study was nevertheless used to derive more general conclusions on NOx canopy reduction 

within natural grassland canopies by comparing the derived timescales of transport and chem-

istry with the characteristic timescale of NO2 uptake by the plant canopy. The timescale of 

NO2 plant uptake (߬௨ሺܱܰଶሻ) integrated over the whole canopy was estimated based on a re-

sistance model (BALDOCCHI, 1988) following an approach of RUMMEL (2005) and is present-

ed in Fig. 3.5 (for details see PLAKE et al. (2014a, Appendix D)). 

During daytime the timescale of NO2 plant uptake was typically the shortest amongst all time-

scales relevant for NO2 closely followed by the chemical timescale. Thus, for a similar cano-

py with significant NO soil emissions, this would imply an efficient in-canopy conversion of 

NO to NO2 during daytime, followed by an effective NO2 plant uptake as the transport was 

found to be 2-3 times slower. The high biomass density in the lower canopy (cf. Fig. 2.2b) 

dampens the photolysis of NO2 at the soil-canopy interface. Furthermore, the stable stratifica-

tion during daytime (cf. Fig. 3.3) strongly inhibits the aerodynamic transport at the soil-

canopy interface (cf. Fig. 3.4b). Altogether, this indicates strong NOx canopy reduction occur-

ring during daytime in such grassland ecosystems, if the precondition of significant NO soil 

emissions is fulfilled. 

However, during nighttime the timescale of NO2 plant uptake was found to be very large. 

Hence, the role of turbulence-chemistry interactions (Damköhler number) was dominating 

over biological uptake processes and, thus, determined the fate of potentially soil-emitted NO. 

During rather windy nights (low NOx periods) the Damköhler numbers indicated an efficient 

formation of NO2 within the canopy which is due to (i) the sufficient supply of O3 from above 

and (ii) the slowest transport occurring in the lower canopy under such conditions. Thus, such 

nighttime conditions would most likely favor simultaneous NO2 and NO canopy emission 

fluxes. In contrast, during nights of low wind speed (high NOx periods) the extremely stable 

stratified upper canopy leads to the breakdown of the O3 supply from above (cf. Sect. 3.2.2). 

Within the canopy the reaction of residual O3 and soil-emitted NO would compete with the O3 

surface deposition until the remaining O3 almost entirely disappeared. Subsequently, a mix-

ture of NO and NO2 would be trapped inside the canopy. Besides some minor in-canopy NO2 
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plant stomatal uptake and also non-stomatal pathways, such as cuticular deposition or soil 

deposition. In this study the measured O3 deposition flux by the ܥܧ method was partitioned 

into its stomatal and non-stomatal contribution (for details see PLAKE et al., 2014b, Appendix 

C). Daily averages of the stomatal and non-stomatal O3 deposition fluxes were 27 and 73 %, 

respectively, revealing dominant O3 deposition through the non-stomatal pathway throughout 

the day. Considering daytime only (global radiation ൐ 10 W m-2) the average partitioning to 

the stomatal and non-stomatal pathways was almost equal with 47 and 53 %, respectively. 

Thus, the non-stomatal deposition was found the major O3 deposition pathway at the natural 

grassland canopy, which is in contrast to other studies on intensively managed grassland and 

crop canopies (BASSIN et al., 2004; MESZAROS et al., 2009; STELLA et al., 2013b). However, 

the partitioning results are in line with LAMAUD et al. (2009) who found a strong relative hu-

midity (ܴܪ) dependence of the stomatal and non-stomatal contribution. At a senescent maize 

crop, they found non-stomatal pathway for ܴ60 < ܪ %, but stomatal O3 deposition for 

 to provide the dominating portion of the total O3 deposition flux. They attributed % 60 > ܪܴ

this to (i) a decrease of stomatal conductance under high ܴܪ (e.g., EMBERSON et al., 2000) 

and (ii) to an increase in cuticular deposition with ܴܪ (e.g., ALTIMIR et al., 2006; 2004). 

Throughout the campaign in Mainz-Finthen the median diurnal ܴܪ just above the canopy 

 was only below 60 % for three hours per day, which elucidates the dominating (m 0.8 = ݖ)

non-stomatal O3 deposition flux. In addition, two further arguments underline the non-

stomatal dominance of the O3 deposition: (i) several nights of high wind speeds that exhibited 

relatively high nighttime O3 fluxes contributed entirely to the non-stomatal O3 deposition and 

(ii) in contrast to intensively managed plots, a relative high proportion of biologically inactive 

brown leaf area (൐ 40 %) prevailed at the unmanaged natural grassland, which did not con-

tribute to stomatal O3 uptake but to non-stomatal O3 deposition. Chemical reactions of O3 

with e.g., soil-emitted NO or plant emitted volatile organic compounds (VOCs) that potential-

ly also contribute significantly to the non-stomatal O3 deposition pathway (e.g., KURPIUS and 

GOLDSTEIN, 2003). Nevertheless, at the Mainz-Finthen site these were unimportant due to the 

very low emissions of both NO from the soil and VOCs from the canopy (cf. PLAKE et al., 

2014b, Appendix C). 

3.2.5 Ozone flux divergence 

Similar as for NO2 (cf. Sect. 3.2.3), the application of in-canopy Damköhler numbers for O3 

can be problematic, as plant uptake and deposition to plant and soil surfaces constitute addi-

tional O3 pathways besides chemistry (cf. Sect. 3.2.4). In this context, the timescale of O3 

plant uptake and soil deposition (߬௨ሺܱଷሻ) was estimated similarly as for NO2 (for details see 

PLAKE et al. (2014a, Appendix D)) and compared to the transport times and the chemical 

timescale displayed in Fig. 3.5. The plant uptake and soil deposition of O3 was found signifi-
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cantly faster than chemistry or transport throughout the day. Thus, the comparison of the rele-

vant timescales revealed that in-canopy Damköhler numbers were irrelevant for O3. Neverthe-

less, this should not be taken as a general statement for grassland sites as for sites with strong 

NO soil emissions, such as intensively managed grasslands, the chemical timescale would be 

considerably lower and, thus, most likely partly comparable to the timescale of O3 plant up-

take and soil deposition. 

The above-canopy Damköhler numbers were found within the critical range throughout the 

day and under all conditions (cf. Fig. 3.4c). Thus, a chemical divergence for O3 could not be 

excluded and had to be further investigated in order to validate the measured O3 deposition 

fluxes of the ܥܧ method (Sect. 3.2.4). Following a simplified approach by DUYZER et al. 

(1995), which only considers R1 and R3 and the measured fluxes of NO, NO2 and O3, the O3 

flux divergence was quantified to be less than 1 %. This was mainly due to the insignificant 

NO soil emissions at the site. 

Nevertheless, regularly elevated NO mixing ratios during the morning hours, when the O3 

levels were still relatively low, led to small O3/NO ratios, which raised the suspicion of a po-

tential chemical impact on the O3 fluxes (cf. PLAKE et al. (2014a, Appendix D)). Thus, a net 

chemically induced O3 flux (ܨ௖ሺܱଷሻ) due to the simultaneous O3 production (ܲሺܱଷሻ) by R1–

R2 and O3 loss (ܮሺܱଷሻ) by R3 was quantified as integral over the above-canopy layer accord-

ing to RUMMEL et al. (2007) and is presented in Fig. 3.6. The resulting median net chemically 

induced O3 flux ranged between 0.6 and -0.05 nmol m-2 s-1, representing a net O3 production 

during daytime and a small net loss during nighttime. Thus, in median the O3 flux was under-

estimated by 10 % during daytime and overestimated by 3 % during nighttime. The chemical-

ly induced O3 flux was highly variable and one order of magnitude higher during the high 

NOx than during the low NOx periods. The O3 production was due to a deviation from the 

NO-NO2-O3 photostationary state by a surplus of NO2, based on NO oxidation by e.g. peroxy 

radicals or other oxidants. This finding is interesting as previous studies only reported O3 

losses when dealing with the chemical flux divergence of O3. The net O3 losses were caused 

by the outbalancing of the reactions of O3 with NO (e.g., DORSEY et al., 2004) or VOCs (e.g., 

KURPIUS and GOLDSTEIN, 2003) emitted by soil or plants, respectively. However, the O3 flux-

es presented in Sect. 3.2.4 were not corrected for this process, since the method is prone to 

high uncertainties caused by (i) calculation of the net effect as a difference of two counteract-

ing chemical reactions and (ii) not involving all chemical reactions important for O3. 
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4 Conclusions 

The main findings of this study can be summarized as follows: 

(1) The careful development and thorough characterization of the novel automated Tn 

profile system by PLAKE and TREBS (2013, Appendix B) ensured good system perfor-

mance and reliable results during a field campaign. For the first time vertical Tn pro-

files were measured simultaneously using Tn selective instruments. The Tn tracer 

technique allowed the direct quantification of transport characteristics such as 

transport times and aerodynamic resistances for various layers within a natural grass-

land canopy. Such transport characteristics are typically parameterized due to their dif-

ficult experimental accessibility. The directly measured canopy flushing times from 

the Tn tracer technique helped to discover the insufficiency of two commonly used 

empirical parameterizations in predicting correct values for grassland canopies 

throughout the entire diurnal course. The parameterizations only agreed either during 

day or during nighttime. The vast terrestrial coverage of grasslands underlines the 

need for reliable parameterizations of in-canopy transport characteristics for grass-

lands. The Tn tracer technique is constitutes a powerful tool for this purpose, which 

should be used in future works. 

(2) By applying the Tn tracer technique, PLAKE et al. (2014a, Appendix D) showed the 

aerodynamic resistance in the lower grassland canopy to be two orders of magnitude 

during daytime and by one order of magnitude during nighttime higher, as the accord-

ing above-canopy aerodynamic resistance. The sharp decrease from canopy bottom to 

top is mainly due to the high biomass density within the lower canopy of grasslands, 

leading to an extremely high aerodynamic resistance here. Correspondingly, the aero-

dynamic resistance of the whole grassland canopy was shown to be at least 3–4 times 

higher than corresponding values for forests. Therefore, canopy flushing times can be 

longer by 400 % for grassland canopies than for forests, even if the canopy height of 

grasslands is only around 1–10 % compared to forests. 

(3) It was shown by PLAKE et al. (2014a, Appendix D) that grasslands can be prone to 

canopy decoupling throughout the day. In their study, temperature inversions yielded 

(i) unstable conditions in the upper canopy and simultaneous stable conditions in the 

lower canopy during daytime and conversely, (ii) stable conditions in the upper cano-

py and simultaneous unstable conditions in the lower canopy during nighttime. Con-

sistently, the directly measured aerodynamic resistances and transport times represent-

ing the upper and lower canopy underwent contrasting diurnal courses. Thus, during 

daytime, when the aerodynamic resistances and transport times in the upper canopy 

were lowest, they were highest in the lower canopy. During nighttime, when they 
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showed their diurnal maxima in the upper canopy, their diurnal minima prevailed in 

the lower canopy. 

(4) For the first time the comprehensive data set of PLAKE et al. (2014a, Appendix D) al-

lowed the comparison of directly measured transport times, chemical timescales and 

Damköhler numbers for various layers within and above a grassland canopy. Their 

analysis on transport-chemistry interactions with respect to contrasting meteorological 

and air-chemical conditions (high and low NOx periods) revealed for daytime condi-

tions that the highest likelihood for chemical divergence prevailed in the lower cano-

py, followed by the upper canopy and the above-canopy layer. At this time, the likeli-

hood within the above-canopy layer was lowest during the low NOx periods. During 

daytime the magnitude of the Damköhler number was mainly determined by the 

transport time. The nighttime conditions during the low NOx periods were found en-

tirely different from those during the high NOx periods. During the low NOx periods 

the turbulence-chemistry interactions remained almost similar to those during daytime. 

In contrast, the extraordinary strong temperature inversion during the high NOx peri-

ods yielded for the lowest canopy layer (i) the longest chemical timescales and (ii) the 

shortest transport times, which resulted in a reversed Damköhler number profile. 

Above the canopy, equally fast chemistry and transport indicated potential chemical 

divergence, whereas in the lower canopy the twenty times faster timescale of transport 

compared to chemistry resulted in the only instance within the entire data set, where 

the Damköhler numbers clearly indicated no potential chemical divergence. 

(5) The grassland canopy investigated in PLAKE et al. (2014a, Appendix D) exhibited sur-

prisingly many parallels with results reported from Amazonian rain forest canopies by 

other studies. Among these were (i) comparable magnitude of the aerodynamic re-

sistances within the lower part of both canopies, (ii) inversed diurnal courses of the 

aerodynamic resistances in the lower and upper part of both canopies resulting in only 

small diurnal variations of the aerodynamic resistances representing the whole cano-

pies and (iii) nighttime transport being faster than the corresponding chemical time-

scale of the NO-NO2-O3 triad within the lowest canopy layers. 

(6) The insignificant NO soil emissions at the site inhibited the quantification of the NOx 

canopy reduction within the grassland canopy. Nevertheless, the unique data set pre-

sented by PLAKE et al. (2014a, Appendix D) allowed the derivation of some general 

conclusions on NOx canopy reduction within natural grassland canopies by comparing 

measured timescales of transport and chemistry with the characteristic timescale of 

NO2 uptake by the plant canopy. Their results indicated for a grassland canopy of sim-

ilar structure with significant NO soil emissions an efficient daytime conversion of 

soil-emitted NO to NO2 (high Damköhler number) and subsequent effective plant up-
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take (fast timescale of NO2 plant uptake). This leads to strong NOx canopy reduction 

within the highly dense and stable stratified lower canopy during daytime. During 

nighttime NO2 plant uptake was found insignificant and, thus, the turbulence-

chemistry interactions (Damköhler number) determine the fate of soil-emitted NO. 

During rather windy nights (low NOx periods) the efficient formation of NO2 within 

the canopy (high Damköhler numbers) favors simultaneous NO2 and NO canopy 

emission fluxes. Nights of low wind speed (high NOx periods) are connected to an ex-

tremely stable stratified upper canopy, suppressing the vertical exchange and, thus, 

causing the breakdown of the O3 supply from above. Subsequently, soil-emitted NO is 

trapped as a mixture of NO and NO2 within the lower canopy until the morning. The 

results of PLAKE et al. (2014a, Appendix D) are the first that indicate strong NOx can-

opy reduction for grasslands based on direct in-canopy measurements. Nevertheless, a 

quantification of the NOx canopy reduction for grasslands is unfortunately still lack-

ing, but the used measurement setup was shown to be definitely suitable for this pur-

pose. Thus, the implementation of an advanced NOx canopy reduction algorithm in 

global atmospheric transport and chemistry models can certainly be achieved in the fu-

ture.  

(7) PLAKE et al. (2014b, Appendix C) determined O3 deposition fluxes at the Mainz-

Finthen site which were, compared to other studies, in the lower range for grassland 

sites. With respect to the nutrient poor site characteristics and the rather high propor-

tion of senescent dead leafs, their results are reasonable. A partitioning analysis of the 

O3 flux revealed that the non-stomatal deposition was the major O3 deposition path-

way towards the natural grassland canopy. This was attributed to high relative humidi-

ty, the senescence of the canopy and several nights of high wind speed during the ex-

periment. 

(8) PLAKE et al. (2014a, Appendix D) found plant uptake and soil deposition of O3 being 

significantly faster than chemistry or transport in the investigated canopy throughout 

the day. Thus, at the investigated site in-canopy Damköhler numbers were irrelevant 

for O3. In contrast to other studies, a chemical divergence for O3 due to reactions with 

ecosystem-emitted NO or VOCs was not detected at the Mainz-Finthen site. A poten-

tial chemical divergence throughout the day, as indicated by the above-canopy 

Damköhler numbers, together with partly comparable O3 and NO levels (small O3/NO 

ratios), led to the estimation of a net chemically induced O3 flux. In contrast to previ-

ous studies, the results revealed a net O3 production during daytime, resulting in an 

underestimation of the median daytime O3 fluxes determined by PLAKE et al. (2014b, 

Appendix C) by 10 %. The O3 production resulted from a deviation from the NO-

NO2-O3 photostationary state by a surplus of NO2, based on NO oxidation by e.g. per-
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oxy radicals or other oxidants. In previous studies, the photochemical O3 production 

was most likely hidden by the outbalancing of O3 reactions with NO or VOCs. Above-

canopy Damköhler numbers did not hint towards a chemical flux divergence. 

(9) PLAKE et al. (2014b, Appendix C) successfully advanced a dynamic chamber system 

and investigated the applicability for flux determinations of depositing compounds, 

such as O3. By validation against eddy covariance, the state-of-the-art flux measure-

ment method, they demonstrated that the dynamic chamber method is suitable to reli-

ably determine diurnal courses as well as 30 min averages of O3 fluxes. Under certain 

conditions, the corresponding relative flux errors were shown to be well below 25 %. 

The prerequisites of representative vegetation structure and activity of the enclosed 

vegetation were fulfilled. The results of PLAKE et al. (2014b, Appendix C) revealed 

that O3 fluxes can be determined as a complementary component of standard NO flux 

measurements by dynamic chamber systems. Such systems generally run simultaneous 

O3 mixing ratio measurements for gas-phase chemistry corrections. These systems can 

easily be used for continuous O3 and also NO2 flux measurements in order to extend 

the knowledge on the deposition of these gases and on the underlying processes for a 

large range of low canopy ecosystems. Solely one additional 3D ultra-sonic anemome-

ter, required for the correction of the resistive scheme, has to be installed at a reference 

level above the canopy. For cases when the canopy is slightly higher than the cham-

bers, such as in PLAKE et al. (2014b, Appendix C), an additional O3 mixing ratio 

measurement above the canopy is needed at the reference level. Overall, it has been 

shown that the dynamic chamber method definitely constitutes an alternative for O3 

flux measurements at low canopy ecosystems in cases when the eddy covariance 

method cannot be applied. Arguments favoring the dynamic chamber against the eddy 

covariance method are: (i) applicability of chamber methods on micro plots for inves-

tigations on gas exchange of different vegetation species and management forms, (ii) a 

more direct determination of canopy resistance that is required as input for process 

and modeling studies, (iii) well-defined gas-phase chemistry corrections for reactive 

compounds in the well-mixed chamber headspace (elimination of potential flux diver-

gence). 

 

 

 



REFERENCES   29 
 

 

References 

 

ALTIMIR, N. et al., 2006. Foliage surface ozone deposition: a role for surface moisture? 
Biogeosciences, 3(2): 209-228. 

ALTIMIR, N., TUOVINEN, J.P., VESALA, T., KULMALA, M. and HARI, P., 2004. Measurements 
of ozone removal by Scots pine shoots: calibration of a stomatal uptake model 
including the non-stomatal component. Atmospheric Environment, 38(15): 2387-
2398. 

ARNETH, A. et al., 2010. Terrestrial biogeochemical feedbacks in the climate system. Nature 
Geoscience, 3(8): 525-532. 

AYLOR, D.E., WANG, Y.S. and MILLER, D.R., 1993. Intermittent wind close to the ground 
within a grass canopy. Boundary-Layer Meteorology, 66(4): 427-448. 

BAKWIN, P.S., WOFSY, S.C., FAN, S.M., KELLER, M., TRUMBORE, S.E. and DACOSTA, J.M., 
1990. Emission of nitric-oxide (NO) from tropical forest soils and exchange of NO 
between the forest canopy and atmospheric boundary-layers. Journal of Geophysical 
Research-Atmospheres, 95(D10): 16755-16764. 

BALDOCCHI, D., 1988. A multi-layer model for estimating sulfur-dioxide deposition to a 
deciduous oak forest canopy. Atmospheric Environment, 22(5): 869-884. 

BASSIN, S., CALANCA, P., WEIDINGER, T., GEROSA, G. and FUHRER, E., 2004. Modeling 
seasonal ozone fluxes to grassland and wheat: model improvement, testing, and 
application. Atmospheric Environment, 38(15): 2349-2359. 

BIGNAL, K.L., ASHMORE, M.R., HEADLEY, A.D., STEWART, K. and WEIGERT, K., 2007. 
Ecological impacts of air pollution from road transport on local vegetation. Applied 
Geochemistry, 22(6): 1265-1271. 

BOURTSOUKIDIS, E., BONN, B., DITTMANN, A., HAKOLA, H., HELLEN, H. and JACOBI, S., 2012. 
Ozone stress as a driving force of sesquiterpene emissions: a suggested 
parameterisation. Biogeosciences, 9(11): 4337-4352. 

CANTRELL, C.A., 2008. Technical note: review of methods for linear least-squares fitting of 
data and application to atmospheric chemistry problems. Atmospheric Chemistry and 
Physics, 8(17): 5477-5487. 

CRUTZEN, P., 1973. Discussion of chemistry of some minor constituents in stratosphere and 
troposphere. Pure and Applied Geophysics, 106(5-7): 1385-1399. 

DE ARELLANO, J., DUYNKERKE, P.G. and BUILTJES, P.J.H., 1993. The divergence of the 
turbulent-diffusion flux in the surface-layer due to chemical-reactions - the NO-O3-
NO2 System. Tellus Series B-Chemical and Physical Meteorology, 45(1): 23-33. 

DOLMAN, A.J. et al., 2006. The CarboEurope regional experiment strategy. Bulletin of the 
American Meteorological Society, 87(10): 1367-1379. 

DORSEY, J.R. et al., 2004. Oxidized nitrogen and ozone interaction with forests. I: 
Experimental observations and analysis of exchange with Douglas fir. Quarterly 
Journal of the Royal Meteorological Society, 130(600): 1941-1955. 



30  REFERENCES 
 

 

DUYZER, J. and FOWLER, D., 1994. Modeling land-atmosphere exchange of gaseous oxides of 
nitrogen in Europe. Tellus Series B-Chemical and Physical Meteorology, 46(5): 353-
372. 

DUYZER, J.H., DEINUM, G. and BAAK, J., 1995. The interpretation of measurements of surface 
exchange of nitrogen-oxides - correction for chemical-reactions. Philosophical 
Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 
351(1696): 231-248. 

EMBERSON, L.D., WIESER, G. and ASHMORE, M.R., 2000. Modelling of stomatal conductance 
and ozone flux of Norway spruce: comparison with field data. Environmental 
Pollution, 109(3): 393-402. 

FINNIGAN, J., 2000. Turbulence in plant canopies. Annual Review of Fluid Mechanics, 32: 
519-571. 

FOKEN, T., AUBINET, M. and LEUNING, R., 2012a. The eddy covariance method. In: M. 
Aubinet, T. Vesala and D. Papale (Editors), Eddy covariance. Springer, Dordrecht, 
Heidelberg, London, New York, pp. 438. 

FOKEN, T. et al., 2012b. Coupling processes and exchange of energy and reactive and non-
reactive trace gases at a forest site - results of the EGER experiment. Atmospheric 
Chemistry and Physics, 12(4): 1923-1950. 

FOWLER, D. et al., 2009. Atmospheric composition change: ecosystems-atmosphere 
interactions. Atmospheric Environment, 43(33): 5193-5267. 

GANZEVELD, L.N., LELIEVELD, J., DENTENER, F.J., KROL, A.C. and ROELOFS, G., 2002a. 
Atmosphere-biosphere trace gas exchanges simulated with a single-column model. 
Journal of Geophysical Research, 107(D16): ACH8-1-21. 

GANZEVELD, L.N., LELIEVELD, J., DENTENER, F.J., KROL, M.C., BOUWMAN, A.J. and 
ROELOFS, G.J., 2002b. Global soil-biogenic NOx emissions and the role of canopy 
processes. Journal of Geophysical Research-Atmospheres, 107(D16). 

GILLILAND, F., MILLSTEIN, J., MARGOLIS, H., LURMANN, F.W., LI, Y.F., AVOL, E. and 
PETERS, J.M., 2004. Effects of prenatal exposure to O3, PM10, NO2, and CO on birth 
weight in full-term pregnancies: Results from the children's health study (CHS). 
Epidemiology, 15(4): S34-S34. 

GREITNER, C.S., PELL, E.J. and WINNER, W.E., 1994. Analysis of aspen foliage exposed to 
multiple stresses - ozone, nitrogen deficiency and drought. New Phytologist, 127(3): 
579-589. 

GUT, A. et al., 2002a. Exchange fluxes of NO2 and O3 at soil and leaf surfaces in an 
Amazonian rain forest. Journal of Geophysical Research-Atmospheres, 107(D20): 
LBA 27-1–LBA 27-15. 

GUT, A. et al., 2002b. NO emission from an Amazonian rain forest soil: Continuous 
measurements of NO flux and soil concentration. Journal of Geophysical Research-
Atmospheres, 107(D20): LBA 24-1-LBA 24-10. 

HENS, K., 2009. Der bodennahe, vertikale, turbulente Transport von 222Rn, 220Rn und anderen 
Spurengasen im Stammraum eines Fichtenbestandes, Johannes Gutenberg - 
Universität, Mainz, 93 pp. 



REFERENCES   31 
 

 

HIROTA, M., ZHANG, P.C., GU, S., SHEN, H.H., KURIYAMA, T., LI, Y.N. and TANG, Y.H., 
2010. Small-scale variation in ecosystem CO2 fluxes in an alpine meadow depends on 
plant biomass and species richness. Journal of Plant Research, 123(4): 531-541. 

IPPC, 2007. Climate Change 2007: the physical science basis. Contribution of working group 
I to the fourth assessment report of the Intergovernmental Panel on Climate Change. 
University Press, Cambridge, UK. 

JACOB, D.J. and WOFSY, S.C., 1990. Budgets of reactive nitrogen, hydrocarbons, and ozone 
over the amazon-forest during the wet season. Journal of Geophysical Research-
Atmospheres, 95(D10): 16737-16754. 

JACOBS, A.F.G., VANBOXEL, J.H. and ELKILANI, R.M.M., 1994. Nighttime free-convection 
characteristics within a plant canopy. Boundary-Layer Meteorology, 71(4): 375-391. 

JÄGGI, M., AMMANN, C., NEFTEL, A. and FUHRER, J., 2006. Environmental control of profiles 
of ozone concentration in a grassland canopy. Atmospheric Environment, 40(28): 
5496-5507. 

KASANKO, M., PALMIERI, A. and COYETTE, C., 2011. Land cover/ land use statistics. In: C. 
Coyette and H. Schenk (Editors), Agriculture and Fishery Statistics. Eurostat, 
Luxembourg, pp. 158. 

KHEMANI, L.T., MOMIN, G.A., RAO, P.S.P., PILLAI, A.G., SAFAI, P.D., MOHAN, K. and RAO, 
M.G., 1994. Atmospheric pollutants and their influence on acidification of rain water 
at an industrial-location on the west-coast of India. Atmospheric Environment, 28(19): 
3145-3154. 

KIM, H.H. et al., 2013. Analysis of the association between air pollution and allergic diseases 
exposure from nearby sources of ambient air pollution within elementary school zones 
in four Korean cities. Environmental Science and Pollution Research, 20(7): 4831-
4846. 

KRUIJT, B. et al., 2000. Turbulence statistics above and within two Amazon rain forest 
canopies. Boundary-Layer Meteorology, 94(2): 297-331. 

KURPIUS, M.R. and GOLDSTEIN, A.H., 2003. Gas-phase chemistry dominates O3 loss to a 
forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. 
Geophysical Research Letters, 30(7). 

LAMAUD, E., LOUBET, B., IRVINE, M., STELLA, P., PERSONNE, E. and CELLIER, P., 2009. 
Partitioning of ozone deposition over a developed maize crop between stomatal and 
non-stomatal uptakes, using eddy-covariance flux measurements and modelling. 
Agricultural and Forest Meteorology, 149(9): 1385-1396. 

LEHMANN, B.E., LEHMANN, M., NEFTEL, A., GUT, A. and TARAKANOV, S.V., 1999. Radon-
220 calibration of near-surface turbulent gas transport. Geophysical Research Letters, 
26(5): 607-610. 

LENSCHOW, D.H., 1982. Reactive trace species in the boundary-layer from a 
micrometeorological perspective. Journal of the Meteorological Society of Japan, 
60(1): 472-480. 

MASSMAN, W.J., MUSSELMAN, R.C. and LEFOHN, A.S., 2000. A conceptual ozone dose-
response model to develop a standard to protect vegetation. Atmospheric 
Environment, 34(5): 745-759. 



32  REFERENCES 
 

 

MATTHEWS, R.D., SAWYER, R.F. and SCHEFER, R.W., 1977. Interferences in 
chemiluminescent measurement of NO and NO2 emissions from combustion systems. 
Environmental Science & Technology, 11(12): 1092-1096. 

MEIXNER, F.X., 1994. Surface exchange of odd nitrogen oxides, Nova Acta Leopoldina; The 
terrestrial nitrogen cycle as influenced by man. Nova Acta Leopoldina, pp. 299-348. 

MESZAROS, R. et al., 2009. Measurement and modelling ozone fluxes over a cut and fertilized 
grassland. Biogeosciences, 6(10): 1987-1999. 

MITCHELL, J.F.B., 1989. The Greenhouse-Effect and Climate Change. Reviews of 
Geophysics, 27(1): 115-139. 

MONCRIEFF, J., VALENTINI, R., GRECO, S., SEUFERT, G. and CICCIOLI, P., 1997. Trace gas 
exchange over terrestrial ecosystems: Methods and perspectives in micrometeorology. 
Journal of Experimental Botany, 48(310): 1133-1142. 

NEMITZ, E. et al., 2009. Turbulence characteristics in grassland canopies and implications for 
tracer transport. Biogeosciences, 6(8): 1519-1537. 

NEMITZ, E., SUTTON, M.A., GUT, A., SAN JOSE, R., HUSTED, S. and SCHJOERRING, J.K., 2000. 
Sources and sinks of ammonia within an oilseed rape canopy. Agricultural and Forest 
Meteorology, 105(4): 385-404. 

OSWALD, R. et al., 2013. HONO emissions from soil bacteria as a major source of 
atmospheric reactive nitrogen. Science, 341(6151): 1233-1235. 

PAPE, L., AMMANN, C., NYFELER-BRUNNER, A., SPIRIG, C., HENS, K. and MEIXNER, F.X., 
2009. An automated dynamic chamber system for surface exchange measurement of 
non-reactive and reactive trace gases of grassland ecosystems. Biogeosciences, 6(3): 
405-429. 

PERSONNE, E. et al., 2009. SURFATM-NH3: a model combining the surface energy balance 
and bi-directional exchanges of ammonia applied at the field scale. Biogeosciences, 
6(8): 1371-1388. 

PILEGAARD, K., HUMMELSHOJ, P. and JENSEN, N.O., 1998. Fluxes of ozone and nitrogen 
dioxide measured by eddy correlation over a harvested wheat field. Atmospheric 
Environment, 32(7): 1167-1177. 

PLAKE, D., SÖRGEL, M., STELLA, P., HELD, A. and TREBS, I., 2014a. Influence of meteorology 
and anthropogenic pollution on chemical divergence of the NO-NO2-O3 triad above 
and within a natural grassland canopy. Biogeosciences, to be submitted. 

PLAKE, D., STELLA, P., MORAVEK, A., MAYER, J.C., AMMANN, C., HELD, A. and TREBS, I., 
2014b. Comparison of ozone deposition measured with the dynamic chamber and the 
eddy covariance method. Agricultural and Forest Meteorology, submitted. 

PLAKE, D. and TREBS, I., 2013. An automated system for selective and continuous 
measurements of vertical thoron profiles for the determination of transport times near 
the ground. Atmospheric Measurement Techniques, 6(4): 1017-1030. 

RIPLEY, E.A. and REDMAN, R.E., 1976. Grassland. In: J.L. Monteith (Editor), Vegetation and 
the atmosphere. Acad. Press, London. 

RUMMEL, U., 2005. Turbulent exchange of ozone and nitrogen oxides between an Amazonian 
rain forest and the atmosphere, University of Bayreuth, Bayreuth, 246 pp. 



REFERENCES   33 
 

 

RUMMEL, U., AMMANN, C., KIRKMAN, G.A., MOURA, M.A.L., FOKEN, T., ANDREAE, M.O. 
and MEIXNER, F.X., 2007. Seasonal variation of ozone deposition to a tropical rain 
forest in southwest Amazonia. Atmospheric Chemistry and Physics, 7(20): 5415-5435. 

SIMON, E. et al., 2005. Lagrangian dispersion of Rn-222, H2O and CO2 within Amazonian 
rain forest. Agricultural and Forest Meteorology, 132(3-4): 286-304. 

STELLA, P., KORTNER, M., AMMANN, C., FOKEN, T., MEIXNER, F.X. and TREBS, I., 2013a. 
Measurements of nitrogen oxides and ozone fluxes by eddy covariance at a meadow: 
evidence for an internal leaf resistance to NO2. Biogeosciences, 10(9): 5997-6017. 

STELLA, P., PERSONNE, E., LAMAUD, E., LOUBET, B., TREBS, I. and CELLIER, P., 2013b. 
Assessment of the total, stomatal, cuticular, and soil 2 year ozone budgets of an 
agricultural field with winter wheat and maize crops. Journal of Geophysical 
Research: Biogeosciences: 1120-1132. 

SUTTIE, J.M., REYNOLDS, S.G. and BATELLO, C., 2005. Introduction. In: J.M. Suttie, S.G. 
Reynolds and C. Batello (Editors), Grasslands of the World. FAO, Rome. 

SWINBANK, W.C., 1968. A comparison between predictions of dimensional analysis for 
constant-flux layer and observations in unstable conditions. Quarterly Journal of the 
Royal Meteorological Society, 94(402): 460-&. 

THOMAS, C. and FOKEN, T., 2007. Flux contribution of coherent structures and its 
implications for the exchange of energy and matter in a tall spruce canopy. Boundary-
Layer Meteorology, 123(2): 317-337. 

VAN PUL, W.A.J. and JACOBS, A.F.G., 1994. The conductance of a maize crop and the 
underlying soil to ozone under various environmental-conditions. Boundary-Layer 
Meteorology, 69(1-2): 83-99. 

WARNECK, P., 2000. Chemistry of the natural atmosphere. Academic Press, San Diego, 
California, 927 pp. 

WILSON, K.L. and BIRKS, J.W., 2006. Mechanism and elimination of a water vapor 
interference in the measurement of ozone by UV absorbance. Environmental Science 
& Technology, 40(20): 6361-6367. 

YIENGER, J.J. and LEVY, H., 1995. Empirical-model of global soil-biogenic NOx emissions. 
Journal of Geophysical Research-Atmospheres, 100(D6): 11447-11464. 

ZHENG, J. et al., 2013. Volatile organic compounds in Tijuana during the Cal-Mex 2010 
campaign: Measurements and source apportionment. Atmospheric Environment, 70: 
521-531. 

 

 

 

 

 





LIST OF APPENDICES   35 
 

 

LIST OF APPENDICES 

 

APPENDIX A:……………………………………………………………………………….37 

Individual contribution to the joint publication 

 

APPENDIX B:……………………………………………………………………………….39 

PLAKE, D. and TREBS, I., 2013. An automated system for selective and continuous 

measurements of vertical thoron profiles for the determination of transport times near the 

ground. Atmospheric Measurement Techniques, 6(4): 1017-1030. 

 

APPENDIX C:……………………………………………………………………………….65 

PLAKE, D., STELLA, P., MORAVEK, A., MAYER, J.C., AMMANN, C., HELD, A. and TREBS, I., 

2014. Comparison of ozone deposition measured with the dynamic chamber and the eddy 

covariance method. Agricultural and Forest Meteorology, submitted. 

 

APPENDIX D:……………………………………………………………………………….97 

PLAKE, D., SÖRGEL, M., STELLA, P., HELD, A. and TREBS, I., 2014. Influence of meteorology 

and anthropogenic pollution on chemical divergence of the NO-NO2-O3 triad above and 

within a natural grassland canopy. Biogeosciences, to be submitted. 

 

 

  



 

 

 

 



APPENDIX A:     INDIVIDUAL CONTRIBUTION   37 
 

 

APPENDIX A 

INDIVIDUAL CONTRIBUTION TO THE JOINT PUBLICATIONS 

This cumulative thesis consists of three manuscripts, which were composed in close coopera-

tion with other researchers. In this section the individual contribution to each joint publica-

tions is specified. 
 

 

 

APPENDIX B 

PLAKE, D. and TREBS, I., 2013. An automated system for selective and continuous 

measurements of vertical thoron profiles for the determination of transport times near the 

ground. Atmospheric Measurement Techniques, 6(4): 1017-1030. 
 

The novel automated system was fully designed by D. PLAKE. He ordered the required hard-

ware components, assembled the system, ran test measurements, organized the calibration and 

was the only operator of the system during the entire field experiment. The side-by-side 

measurement setup idea was his. He fully performed the data analysis. He drafted and wrote 

the entire paper. 
 

I. TREBS gave helpful suggestions during the system planning and testing phase. She provided 

valuable guidance through some difficult phases of the data analysis process. Her proofread-

ing advanced the manuscript. 
 

 

 

APPENDIX C 

PLAKE, D., STELLA, P., MORAVEK, A., MAYER, J.C., AMMANN, C., HELD, A. and TREBS, I., 

2014. Comparison of ozone deposition measured with the dynamic chamber and the eddy 

covariance method. Agricultural and Forest Meteorology, submitted. 
 

D. PLAKE was fully responsible for the combination of the vertical profile and dynamic cham-

ber system for reactive trace gases. He advanced the switching schedule, ordered required 

hardware components, assembled the system, ran test measurements, regularly calibrated the 

essential measurements systems and was the only operator of the combined vertical profile 

and dynamic chamber system during the entire field experiment. He actively supported the 

conduction of the eddy covariance and micrometeorological measurements. The bulk data 

analysis was performed by him. He drafted and wrote the entire paper. 



38  APPENDIX A:     INDIVIDUAL CONTRIBUTION 
 

 

 

P. STELLA contributed with helpful discussions on the resistive scheme and with revising the 

manuscript. 
 

A. MORAVEK helped with the conduction and analysis of the eddy covariance measurements. 

Furthermore, many discussions with him helped to improve the manuscript. 
 

J.C. MAYER was conducive to the study by installing and maintaining micrometeorological 

hardware. 
 

C. AMMANN, contributed ideas during the data analysis and during the writing of the manu-

script. He carefully reviewed the manuscript. 
 

A. HELD added helpful ideas during the data analysis and during the writing of the manu-

script. He contributed to this manuscript by many fruitful discussions and by diligent proof-

reading. 
 

I. TREBS had a hand in many details from measurement setup, over data analysis up to draft-

ing of the manuscript. 
 

 

 

APPENDIX D 

PLAKE, D., SÖRGEL, M., STELLA, P., HELD, A. and TREBS, I., 2014. Influence of meteorology 

and anthropogenic pollution on chemical divergence of the NO-NO2-O3 triad above and 

within a natural grassland canopy. Biogeosciences, to be submitted. 
 

The bulk of the essential measurements for the manuscript were made by D. PLAKE (see also 

Appendix A, B). He was fully responsible for calibration, data analysis and the conceptual 

design and the drafting of the manuscript. 
 

M. SÖRGEL helped with some advisory ideas concerning the data analysis. 
 

P. STELLA contributed by revising the manuscript. 
 

A. HELD provided useful guidance through some conceptual difficulties. The discussions with 

him helped improve the manuscript. In addition, he carefully proofread the manuscript. 
 

I. TREBS contributed helpful ideas concerning the data analysis. Her proofreading advanced 

the manuscript. 

 



APPEND

 

 

APPEN

An au

ment

trans

 

D. Pla

[1] Max 

Germany
*   now a

     biotec

 

 

Correspo

 

Received

Revised:

 

Abstra

The qua

sources, 

which co

evaluate 

tem for 

for the d

first time

concentr

sions for

and 132.

and prop

DIX B:     THO

NDIX B 

utomate

ts of vert

port tim

ke1 and I

Planck Insti

y. 

at: Centre de 

chnologies, 4

ondence to: 

d: 14 Decem

: 25 March 2

act 

antification o

sinks and n

ompares tim

 flux diverge

selective ver

direct and rel

e, we perform

rations under

r three conc

.1 % for Tn 

pagate their 

ORON PROFI

ed system

tical Tho

mes near

. Trebs1* 

itute for Che

Recherche P

41 rue du Br

D. Plake (da

mber 2012 – P

2013 – Accep

of in-canopy

net fluxes of 

escales of ch

ences. In this

rtical Thoron

liable determ

m a rigorous

r field condit

centration cla

(and 16.6 %

uncertainty 

ILE SYSTEM

m for se

oron pro

r the gro

emistry, Biog

Public - Gabr

rill, L-4422 B

aniel.plake@

Published in 

pted: 26 Mar

y transport t

f reactive tra

hemical reac

s study, we p

n (Tn) profil

mination of tr

 determinatio

tions for this 

asses (>100

%, 25.0 %, 99

from the ind

elective a

ofiles for

ound 

geochemistry

riel Lippman

Belvaux, Lux

@mpic.de) 

Atmos. Tech

rch 2013 – Pu

times is of 

ace gases wit

ctions with tr

present and e

les near the e

transport tim

on of system

 type of mea

Bq m-3, 100

9.2 % for Rn

dividual erro

and cont

r the det

y Departmen

nn, Departme

xembourg 

h. Discuss.: 2

ublished: 16 

a major imp

thin plant ca

ransport time

evaluate a no

earth’s surfa

mes within a n

matic and ran

asurement sy

-15 Bq m-3, 

n). We calcul

ors of the Tn

tinuous 

termina

nt, P. O. Box

ent Environm

25 January 2

April 2013 

portance for 

anopies. The

es, is a widel

ovel automat

ce and demo

natural grass

dom uncerta

stem. The ob

<15 Bq m-3)

late in-canop

n concentrati

measur

ation of 

x 3060, 5502

ment and Agr

2013 

r the investig

e Damköhler

ly applied m

ted measurem

onstrate its s

sland canopy

ainties of Tn 

btained medi

) were 8.8 %

py transport 

ion measure

 3

 

re‐

20 Mainz, 

ro- 

gation of 

r number, 

measure to 

ment sys-

suitability 

y. For the 

(and Rn) 

ian preci-

%, 23.2 % 

times (߬) 

ments. A 

9 



40  APPENDIX B:     THORON PROFILE SYSTEM 
 

 

quality assessment of ߬ for the field experiment during a period of 51 days revealed a good data quali-

ty with 44 % of the relative uncertainties below 50 %. The occurrence of transport time uncertainties 

higher than 100 % was caused by absolute Tn gradients lower than 70 Bq m-3 m-1, which was found 

for 22 % of all determined transport times. In addition, the method was found to be highly sensitive to 

the Tn concentrations at the upper of the two inlet heights (ݖ௨). Low values of ்ܥ௡೥ೠ  result in high 

absolute uncertainties of the transport time. A comparison with empirical parameterizations revealed a 

much lower scatter for the ߬ values determined from our measurements. We found an excellent 

agreement with ߬ values obtained by the in-canopy resistance approach used e.g., in the SURFATM 

model during daytime, while the SURFATM model significantly overestimated transport times during 

nighttime. 

1 Introduction 

The two isotopes 220Rn (Thoron) and 222Rn (Radon) are generated in rocks and natural soils, where 

their respective mother nuclides Thorium (232Th) and Uranium (238U) occur as common radioactive 

atoms. Thoron (Tn) and Radon (Rn) can migrate into the atmosphere if the location of the production 

is close enough to the soil-atmosphere interface. The half-life times (T0.5) are 55.6 s for Tn and 3.8 d 

for Rn (Lide, 2004), and limit the transport distances within the soil and the atmosphere. Above the 

soil Tn and Rn atoms undergo dilution and transport in atmospheric air until they are removed by ra-

dioactive decay, which is their only removal process. In flat terrains with homogeneous emission rates 

Tn and Rn concentrations therefore always decrease with height. Due to its relatively long T0.5, Rn is 

widely used as tracer for regional and global atmospheric transport (cf. Dorr et al., 1983; Zahorowski 

et al., 2004) and in global circulation models (cf. Brost and Chatfield, 1989; Zhang et al., 2008). In 

contrast, Tn is excellent for studying meteorological processes in the lowest decameters above soil 

(Israel, 1965). 

Soil is to a large extent covered by plant canopies, such as forest, crop or natural grassland, which act 

as sources and sinks of reactive trace gases. Canopies strongly influence the vertical wind profile and 

other micrometeorological parameters, which drive the trace gas exchange (cf. Finnigan, 2000). The 

first meter above soil is of significant importance for the surface-atmosphere exchange fluxes of trace 

gases, since the eddy diffusivity (ܭ) changes by three orders of magnitude (cf. Ikebe and Shimo, 

1972), and the transition from turbulent to diffusive transport occurs. The transport time of the air 

within this layer determines the effectiveness of (a) chemical reactions and inter-conversion of reac-

tive trace gases (termed “chemical flux divergence” (De Arellano et al., 1993)) and (b) the deposition 

and uptake to/by plants and soil of either the directly emitted compounds or their reaction products. 

For instance, due to long in-canopy transport times only a fraction of soil biogenic nitric oxide (NO) 

emissions may leave a canopy, because a large part is oxidized by ozone (O3) and the product nitrogen 

dioxide (NO2) is subsequently recaptured mainly through uptake by soil and plant stomata (“canopy 

reduction”) (e.g., Yienger and Levy, 1995). The calculation of Damköhler numbers, which compare 

chemical timescales to transport times (߬), is a widely applied approach to evaluate the influence of 

chemistry on exchange fluxes (e.g., Dlugi et al., 2010). Typically, ߬	or	ܭ may be derived using mi-

crometeorological techniques such as the eddy covariance and the flux-gradient approach. However, 
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their application is limited within plant canopies where low turbulence prevails and e.g., the Monin-

Obukov similarity theory does not hold (Denmead and Bradley, 1985). In addition, practical reasons 

complicate their in-canopy application (e.g., short distance between wind sensors and branches). 

Rn is mainly used as a tracer in studies focusing on vertical spatial scales of meters to kilometers 

above soil (e.g., Liu et al., 1984). Some studies present mean residence times for tall forest canopies 

(e.g., Trumbore et al., 1990; Ussler et al., 1994; Martens et al., 2004) derived using Rn canopy inven-

tory models (for details see Trumbore et al., 1990). A similar method was used by Simon et al. (2005), 

who calculated vertical ߬	profiles from Rn measurements inside a rainforest canopy. 

In contrast, studies dealing with Tn mainly focus on the layer adjacent to the ground, where its con-

centration is determined by the competition of transport and the fast radioactive decay. Rn decay can 

be neglected in this layer because of its longer T0.5. Butterweck et al. (1994) point out that even in a 

dense canopy, where most micrometeorological methods fail, the turbulent exchange can be character-

ized with the help of Tn. Lehmann et al. (1999) describe the characteristic vertical range for Tn 

∗ݖ) ൌ ሺߣ/ܭሻଵ/ଶ, where λ ൌ ln 2 / ଴ܶ.ହ ൌ 0.0125 s-1 is the radioactive decay rate (Hänsel and 

Neumann, 1995) and ܭ ൌ 10ିଷm2 s-1) to be 28 cm. Furthermore, they propose a straightforward 

method to determine effective transport times from vertical Tn profiles near the ground as: 

߬ ൌ 	 ln ൤
஼೅೙೥೗
஼೅೙೥ೠ

൨	/	(1)          ߣ 

where ்ܥ௡೥೗  and ்ܥ௡೥ೠ  are the measured Tn concentrations at the lower and upper heights (ݖ௟ and ݖ௨). 

These authors call this approach a perfect tool for studying near-surface gas transport under stable 

situations when more conventional micrometeorological methods are not applicable. The Tn tracer 

technique is independent of any particular transport model and the required physical information is 

entirely provided by the “Tn clock”. 

General prerequisites for the application of Lehmann´s method are homogeneity of the Tn emission 

and a reasonable flatness of the terrain. From the technical point of view the major limitation is the 

precision of the Tn measurement, which was not investigated under field conditions up to now. Typi-

cally, two Tn and Rn monitors (AlphaGuard, Saphymo GmbH, Frankfurt, Germany) were operated in 

series. Since one AlphaGuard analyzer measures the sum of Tn and Rn, the isotope separation is made 

by a defined Tn decay volume installed between the two AlphaGuards. The Tn concentration is then 

obtained by subtraction of the Rn signal (2nd AlphaGuard) from the sum of Tn and Rn (1st Al-

phaGuard). Gut et al. (2002), Hens (2009) and Nemitz et al. (2009) applied the same technical setup 

above a rain forest floor, above a spruce forest floor and within a grassland canopy, respectively. 

However, none of these studies include a determination of systematic errors between the two Al-

phaGuards, nor do they estimate random concentration errors. Consequently, the uncertainties of the 

derived ߬ values in Lehmann et al. (1999), Hens (2009) and Nemitz et al. (2009) are unknown. In ad-

dition, the three measurement heights of the profile in these studies were sequentially switched (time 

resolution: 10 min sampling per hour and height). Thus, the vertical concentration profiles may be 

prone to non-stationarities. 

In this paper, we present a novel automated system for selective Tn and Rn profile measurements con-

sisting of three Tn and Rn monitors. We show measured vertical Tn and Rn concentration profiles 
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within a grassland canopy. The influence of non-stationarities is minimized by continuous and simul-

taneous measurements at three heights. For the first time, a rigorous determination of systematic and 

random uncertainties for Tn and Rn concentrations measured under field conditions is made. Due to 

the outstanding advantages of using Tn to directly determine ߬ near the ground (see above), we partic-

ularly focus our further analyses on Tn. Transport times are calculated from the vertical Tn concentra-

tion profiles and the corresponding random concentration errors are propagated in order to quantify the 

overall uncertainty of ߬. We compare quality assessed ߬ values with empirical parameterizations used 

in surface-atmosphere exchange models. 

2 Methods 

2.1 Radon and Thoron monitor 

The concentrations of Tn and Rn were measured with three commercially available radon monitors 

(RAD7, Durridge, Billerica, USA). The RAD7 uses a solid state alpha detector for alpha particle 

counting and electronic alpha spectrometry for differentiation between Tn and Rn. In the sample air, 

alpha particles of different electric charges are emitted as Tn and Rn decay products. The alpha radia-

tion is converted in the RAD7 measurement chamber to an electric signal and its energy is determined. 

The RAD7 records a spectrum of the incoming alpha particle energies over a chosen integration time 

and can distinguish Rn from Tn, which is very rare for currently available commercial Rn monitors. 

The RAD7 was developed for locating Tn and Rn entry points in basements of buildings and monitor-

ing of mining galleries, i.e. environments with high Tn and Rn concentrations. Our RAD7 monitors 

were modified in order to meet the requirements of continuous profile measurements in a grass land 

ecosystem, with relatively low Tn and Rn concentrations. The sensitivity was enhanced by using a 

high gain modification provided by the manufacturer consisting of a) an increased size of the meas-

urement chambers (0.95 l) and b) alpha detectors with a larger active surface area. In cases when a fast 

Tn response is required in a standard operation mode, the RAD7 is run in Sniff mode with a nominal 

on-board pump flow rate of 0.65 L min-1. This low flow rate promotes the reduction of the Tn signal 

due to fast Tn decay during transport from the sampling point to the RAD7 measurement chamber. To 

diminish this effect we used an external pump and a mass flow controller (MFC) and set the flow rate 

to 2 L min-1. In addition, precise measurements with a RAD7 require atmospheric pressure conditions 

and a relative humidity (RH) below 10 % in the measurement chamber. 

2.2 System setup and configuration 

The automated Tn and Rn profile system (Fig. 1) consists of three identical inlet tubes. The hardware 

components are described in detail in Table 1. The inlet prevents the aspiration of rain drops and parti-

cles into the system and is made of a funnel and a membrane filter (Fig. 2a). Sensitive electronic parts 

like the RAD7s, pumps, MFCs and data recording units are installed in a rack (Fig. 2b) and protected 

by a waterproof housing. The air is drawn through PFA tubing (L = 6 m) from the inlets to the RAD7 

monitors in the housing. The tubing is heated above ambient temperature and isolated to avoid con-
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days, these were 70 L min-1, 35 L min-1 and 5 L min-1 for three, four and seven days, respectively. In 

contrast to other trace gases, such as O3 and CO2, the fast decay of Tn can cause significant concentra-

tion differences even at small horizontal distances of only 15 cm at any time of the day. The applica-

tion of the well mixed dynamic chamber allowed the performance of reliable sbs measurements under 

field conditions minimizing the effect of horizontal inlet separation.  

2.5 Determination of systematic and random concentration errors 

The systematic difference between the RAD7 monitors was determined by plotting the concentrations 

from the sbs measurements against each other and performing a bivariate weighted linear least-squares 

fitting regression analysis with the Williamson-York method provided in a Microsoft Excel spread 

sheet by Cantrell (2008). The counting statistics of the RAD7 monitors provided the weighting errors. 

The RAD7 at height z1 was defined as the reference instrument and the slope and intercept of the re-

gressions were used to correct for the systematic error. The remaining scatter around the 1:1 line is the 

random error of the concentration difference of two RAD7 monitors	ሺߪΔܥሻ (see Wolff et al., 2010). 

This error was found to increase with concentration (see below). To quantify the concentration de-

pendence of ߪΔܥ, we plotted the residuals of the corrected fit, binned them, calculated the means and 

standard deviations of each bin, and made a linear regression (see Wolff et al., 2010). The resulting 

regression (slope + intercept) was used to calculate ߪΔܥ as a function of the Tn and Rn concentration. 

This random error ܥ∆ߪ was calculated for the three RAD7s in all six possible combinations by ex-

changing x and y-axis. Since the air samples at the three heights were measured with RAD7 monitors 

of identical age and specifications, we assume the random error of each instrument to be the same 

ଵܥߪ) ൌ -of one con ܥߪ for all monitors and computed ܥ∆ߪ ଶ). Thus, we calculated an average ofܥߪ

centration measurement required for the error propagation (see below) as: 

ሺܥ∆ߪሻଶ ൌ ଵܥߪ	
ଶ 	൅ ଶܥߪ	

ଶ         (2) 

ܥߪ ൌ
ఙ୼஼

√ଶ
           (3) 

2.6 Determination of transport time uncertainties 

A measured Tn profile contains information about the average transport time of air molecules between 

two measurement heights ݖ௟ and ݖ௨ for the used integration interval. If the difference of the ambient 

Tn concentrations measured at ݖ௟ and ݖ௨ can be resolved, the average transport time (s) can be calcu-

lated according to Eq. (1). The application of this method is limited by the prevailing ambient Tn con-

centrations, transport and dilution by atmospheric turbulence, the instrument precision and the instru-

ment sensitivity (LOD). 
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A pronounced vertical Tn profile was measured during period 1 (Fig. 8a). The measured Tn concentra-

tion differences between z1 and z3 were about 400 Bq m-3 during midnight and about 130 Bq m-3 in the 

early afternoon. These values were typical for period 1 and the precision of the RAD7 monitors was 

sufficient to resolve significant vertical concentration differences. Obviously, this inlet height ar-

rangement was optimal to determine vertical Tn concentration differences. 

In contrast, we found that the inlet arrangement of period 1 was not suitable to measure significant 

vertical Rn concentration differences between all three heights (Fig. 8c). In particular, the daytime Rn 

concentrations at z2 and z3 were often within the random concentration error (see section 3.2) and the 

scatter of the concentrations further complicates the determination of significant Rn differences. 

After increasing the inlet separation distance (period 2), the Tn concentration differences between z1 

and z2 (Fig. 8b) are still significantly different from each other. The concentrations at z1 and z2 range 

from daytime values of 100 Bq m-3 and ~20 Bq m-3, respectively, to nighttime values of 600 Bq m-3 

and 100-300 Bq m-3, respectively. However, the Tn concentrations measured at z3 = 80 cm are always 

below 30 Bq m-3 during period 2 and may occasionally reach the LODTn. 

The Rn nighttime profile (Fig. 8d) shows substantially higher concentration differences 

(25 - 250 Bq m-3) than during period 1. With this inlet arrangement the precision of the RAD7 moni-

tors was sufficient to resolve significant vertical Rn concentration differences during nighttime. 

3.4 Calculation of transport times and quality assurance 

Since the subject of this paper is the description and evaluation of the novel automated measurement 

system, we will mainly focus on the data quality, rather than describe and interpret diurnal courses of 

the transport times. Transport times ߬ were calculated using the measured Tn concentrations 

(Fig. 8a,b) using Eq. (1). The propagation of previously determined random concentration errors (ܥߪ) 

enabled us to assign each value of ߬ with an absolute uncertainty (ߪఛ) (see Eq. (4)). We assessed the 

data quality of ߬ using a classification according to the magnitude of the relative uncertainty. Three 

data quality classes were introduced (
ఙഓ
ఛ

 < 0.5: good; 0.5 ൑ 
ఙഓ
ఛ

 < 1: adequate; 
ఙഓ
ఛ
൒ 1: inadequate quali-

ty). 

The calculated transport times for the two investigated periods are shown in Fig. 9. Our setup allowed 

the calculation of ߬ for three layers within the canopy. The lower layer was between z1 and z2 

(Fig. 9a,b), the upper layer between z2 and z3 (Fig. 9c,d) and the overall transport time between z1 and 

z3 (Fig. 9e,f). Due to the varying inlet height arrangements in period 1 and 2 the lower and upper lay-

ers were not identical. However, the overall transport time during period 1 (Fig. 9e) corresponds to the 

one of the lower layer in period 2 (Fig. 9b), representing the transport between 0.04 m and 0.20 m. 

During period 1, with its more compact inlet arrangement closer to the ground both ߬ in the lower and 

in the upper layer ranged between 20 s and 150 s (Fig. 9a,c). The overall transport time of period 1 

(Fig. 9e) corresponds to the sum of both other layers and indeed featured a similar diurnal pattern as in 

the lower layer during period 2 (Fig. 9b). These values were highest from around 06:00 to 12:00 LT 

ranging from 200 s to 300 s and were lower during nighttime (50 – 150 s). The diurnal course of ߬ in 

the upper and lower layer during period 2 were rather different from each other (Fig. 9b,d). In the low-

er layer ߬ ranged from nighttime minima of 100 s to midday maxima of about 300 s. In contrast, the ߬ 
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values in the upper layer featured maxima during nighttime of up to 350 s and daytime minima rang-

ing from 10 s to 120 s. The overall transport time during period 2 (Fig. 9f) shows the largest values 

always above 120 s with maxima occasionally exceeding 400 s, which is attributed to the large layer 

thickness of 0.76 m. 

The transport times calculated for period 1 generally show a better data quality than those for period 2 

(pie diagrams in Fig. 9). For period 1, 94 %, 88 % and 98 % of the calculated ߬ values for the lower, 

upper and overall layer, respectively, are of good data quality. During period 2 the lower and overall 

layer show a comparably good data quality with 100 % and 94 % of the ߬ values with good quality, 

whereas 40 % and 42 % of the ߬ values in the upper layer are of adequate and inadequate data quality, 

respectively. 

Calculated ߬ values belonging to the inadequate data quality class can be found at any time of the day 

and stand in many cases out of the general diurnal course (often as extreme values) in the correspond-

ing plots (e.g., Fig. 9c, d and f). 

4 Discussion 

4.1 System performance 

The presented system for the continuous determination of transport times near the ground is based on 

vertical Tn profile measurements at three heights using three RAD7 monitors that are selective for Tn 

and Rn. Although other examples for automated Tn profile measurements can be found in the litera-

ture (e.g., Lehmann et al., 1999; Nemitz et al., 2009; Gut et al., 2002; Hens, 2009), the major draw-

back of these studies is the application of a pair of non-selective monitors to measure a sequentially 

switched profile. Thus, the measured vertical concentration differences are prone to non-stationarities, 

particularly for longer integration times. While their method minimizes systematic errors between the 

measurement heights, the random error of the Tn concentration can be amplified since it is determined 

from the difference of two signals of non-selective monitors (for details see Lehmann et al., 1999). In 

contrast, the system of Butterweck et al. (1994), who operated a simultaneous profile consisting of 

four instruments that are selective for Tn and Rn, is not prone to non-stationarities. Nevertheless, none 

of the previous studies assessed systematic or random errors of the determined Tn concentration pro-

files and the calculated ߬ values. Such an analysis is crucial for applications with multiple analyzers 

and required for a thorough interpretation of the in-canopy transport. 

The overall performance of the novel automated measurement system was satisfying, with a Tn recov-

ery of 88 % that was relatively stable and comparable for all sampling lines. Our setup comprising 

PFA tubing, pumps, Nafion tubing and MFCs strongly modified the standard setup of the RAD7 

monitors. The performance of the Nafion dryers was excellent with an average RH of 4 % in all RAD7 

throughout the field experiment. 

We found that the signal of the RAD7 at low concentrations is quite noisy. The higher LOD for Tn 

(18.3 Bq m-3) than for Rn was largely caused by the lower sensitivity of the RAD7 for Tn. The LODTn 

for the setup used e.g., in Lehmann et al. (1999) is not mentioned. Since they determine Tn as the sum 

of two AlphaGuard signals we assume that the LODTn also exceeded LODRn for their setup. 
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4.2 Comparison of transport times with existing empirical parameterizations 

A comparison of our transport times with those of Lehmann et al. (1999) and Nemitz et al. (2009) 

revealed a reasonable agreement for the lowest layer (0.04-0.2 m), although the canopy structure was 

probably quite different for all study sites. In addition, we compared our measured and quality con-

trolled transport times with currently existing parameterizations that are used in models such as 

SURFATM (see Personne et al., 2009). The transport time is expressed as the total resistance multi-

plied with the layer thickness (݄). 

߬ሺ݉ݐ݂ܽݎݑݏሻ ൌ ൫ܴ௔௖ ൅ ܴ௔ሺݖ௥௘௙ሻ൯ ∙ ݄        (5) 

where ܴ௔௖ is the in-canopy and ܴ௔ the aerodynamic resistance (Thom, 1975) at the reference height 

-ሻ for our overall layer (z1-z3) and for data from block 3 ac݉ݐ݂ܽݎݑݏWe calculated ߬ሺ .(௥௘௙ = 0.8 mݖ)

cording to Personne et al. (2009) (equations modified): 

ܴ௔௖ ൌ
௛೎	∙	ୣ୶୮	ሺఈೠሻ

ఈೠ	∙	௄೘ሺ௛೎ሻ
∙ ቄ݁݌ݔ ቀ

ିఈೠ	∙	௭బೞ
௛೎

ቁ െ ݌ݔ݁ ቀ
ఈೠ	∙	ሺௗା௭బሻ

௛೎
ቁቅ      (6) 

ܴ௔൫ݖ௥௘௙൯ ൌ
ଵ

఑మ	∙	௨൫௭ೝ೐೑൯
∙ ቄ݈݊ ቂ

௓

௭బ
ቃ െ Ψுሺܼ/ܮሻቅ ∙ ቄ݈݊ ቂ

௓

௭బ
ቃ െ Ψெሺܼ/ܮሻቅ    (7) 

where ݄௖ is the canopy height, ߙ௨ (= 4.2) the attenuation coefficient for the decrease of the wind speed 

inside the plant cover, ݖ଴௦ the ground surface roughness length, ݀ the displacement height, ݖ଴ the can-

opy roughness height, ܭ௠ሺ݄௖ሻ the eddy diffusivity coefficient at ݄௖ (ܭ௠ ൌ ߢ ∙ ∗ݑ ∙ ሺ݄௖ െ ݀ሻ), ߢ the 

von-kàrmàn constant, ݑሺݖ௥௘௙ሻ the horizontal wind speed at ݖ௥௘௙, ܼ ൌ ௥௘௙ݖ െ  the Monin-Obukhov ܮ ,݀

length and Ψு and Ψெ are the stability correction functions for heat and momentum, respectively. 

Furthermore, we compared our transport times with an empirical approach provided by van Pul and 

Jacobs (1994) used e.g., in the STOCHEM model (Sanderson et al., 2003), where the transport time is 

expressed as: 

߬ሺ݈ݑܲ݊ܽݒሻ 	ൌ ቀଵଷ.ଽ	∙	௅஺ூ	∙	௛೎
మ

௨∗
ቁ         (8) 

where ܫܣܮ is the single sided leaf area index. For our study, the LAI was 4.8 as determined by biomass 

harvest and photographic imagery of subsamples (harvested area: 0.29 m2) close to the inlets after the 

experiment. The values of ݖ ,∗ݑ଴௦, ݖ଴, ݀, ܮ, Ψு, Ψெ were estimated using standard micrometeorologi-

cal methods (Foken, 2008). 

Measured median transport times (߬) between z1 and z3 for all data from block 3 range between 350 s 

during nighttime to 220-290 s during daytime (Fig. 10). The values are in very good agreement with 

߬ሺ݉ݐ݂ܽݎݑݏሻ during daytime from around 09:00 to 18:00 LT. However, nighttime values of 

߬ሺ݉ݐ݂ܽݎݑݏሻ are significantly higher than the measured ߬ values and range between 700 s and 900 s. 

Although the transport in the layer just above the canopy is expressed by ܴ௔, the value of ߬ሺ݉ݐ݂ܽݎݑݏሻ 

mainly depends on ܴ௔௖ since the contribution of ܴ௔ is below 3 % at any time of the day. This reveals 

that the parameterization of ܴ௔௖ by Personne et al. (2009) is not suitable to accurately calculate the in-

canopy transport times during nighttime in this canopy. The reason for the much lower measured 

nighttime values of ߬ is the presence of unstable conditions and convective transport in the lowest part 

of the canopy, which was confirmed by measured temperature profiles (not shown). In contrast, 

߬ሺ݈ݑܲ݊ܽݒሻ compares well with the measured ߬ values during nighttime, but is significantly lower 

during daytime with values of around 100 s. Since both parameterizations require ݑ∗ as input, which 
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method appears highly sensitive to the Tn concentration measured in the upper height	ሺ்ܥ௡೥ೠሻ. Low 

values of ்ܥ௡೥ೠ  result in high absolute values of ߪఛ. An analysis of the contribution of individual error 

propagation terms to ߪఛ underlines these findings. It should be noted that to obtain large gradients it is 

preferable to increase the vertical separation of the measurement heights. For Rn, this is possible to 

some extend since ܥோ௡೥ೠ  decreases only as a result of dilution by turbulence. However, the vertical 

inlet separation is much more limited for the determination of the transport time by the fast Tn decay 

due to sharply decreasing values of ்ܥ௡ with height. Consequently, the analyzer with the best preci-

sion should always be placed in the uppermost height, whose position has to be chosen very carefully. 

The major requirement for the future is the improvement of the RAD7 precision at low concentrations, 

which implies a decrease of the LOD. This might be achieved by further increasing the size of the 

measurement chamber as well as the active surface area of the alpha detectors.  

Our setup allows the quantification of ߬ within the grass canopy for different layers. The transport 

times may subsequently be converted into a vertical profile of bulk diffusion coefficients. Our results 

provide an excellent basis for a reliable investigation of turbulence-chemistry interactions (e.g., 

Damköhler number) in canopies. The uncertainties of ߬ values determined with the Tn or Rn method 

should be considered for the interpretation of results in further studies. 
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Abstract 

Nowadays, eddy covariance is the state-of-the-art method to quantify turbulent exchange fluxes in the 

surface boundary layer. In the absence of instruments suitable for high-frequency measurements, flux-

es can also be determined using e.g., chamber techniques. However, up to date fluxes of depositing 

compounds were rarely determined using chamber techniques, mainly due to a modification of the 

aerodynamic conditions for the trace gas transport within the chamber. In this study, we present ozone 

(O3) deposition fluxes measured by the dynamic chamber technique and validate them against the 

eddy covariance (ܥܧ) method for a natural grassland site in Germany. The chamber system presented 

in Pape et al. (2009) was used and optimized to (i) reduce the likelihood of non-stationarities, (ii) yield 

30 min averages of flux measurements and (iii) supply simultaneous profile measurements. The raw 

O3 fluxes of the dynamic chamber were corrected for gas-phase chemistry in the chamber volume and 

for the modification of the aerodynamic resistances. Simultaneously measured carbon dioxide and 
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water vapor fluxes by both methods compared well during daytime documenting an equal vegetation 

activity inside and outside the chambers. The final corrected O3 deposition fluxes of both methods 

deviated on average by only 11 % during daytime. The findings demonstrate the capability of the dy-

namic chamber method to capture representative O3 deposition fluxes for grassland ecosystems, even 

when the canopy height is similar to the chamber height. The canopy resistance to O3 was assessed by 

both methods and showed a characteristic diurnal cycle with minimum hourly median values of 

180 s m-1 (chambers) and 150 s m-1 (ܥܧ) before noon. During nighttime the flux and resistance results 

showed a higher uncertainty for both methods due to frequent low wind associated with non-stationary 

conditions at the experimental site. Canopy resistances for nitrogen dioxide (NO2) deposition were 

determined analogously with the chambers and showed on average 86 % higher values than for O3. 

 

Keywords: Ozone flux, eddy covariance, dynamic chamber, dry deposition, canopy resistance, flux 

partitioning 

1 Introduction 

Tropospheric ozone (O3) is a well-known greenhouse gas, accounting for 25 % of the net radiative 

forcing attributed to human activities since the beginning of the industrial era and is among the largest 

contributors to radiative forcing (Forster et al., 2007). Since the pre-industrial era, mean annual O3 

concentrations have increased due to human activities from 10 ppb to between 20 and 45 ppb depend-

ing on the geographical location (Vingarzan, 2004). O3 concentrations will probably continue to rise in 

the next century: according to Meehl et al. (2007), mean global O3 concentration could increase by 

20–25 % between 2015 and 2050. Because of its oxidative capacity, O3 is also a widespread air pollu-

tant and is responsible for damages to plants. In this way it is causing a reduction of the CO2 sink of 

terrestrial ecosystems and, thus, also indirectly contributing to global warming (e.g., Felzer et al., 

2007; Sitch et al., 2007). Consequently, control strategies based on flux-oriented dose-response rela-

tionships are crucial to protect vegetation as well as to mitigate climate change effects, and they re-

quire O3 flux measurements for representative ecosystems as scientific base (Grünhage et al., 2000). 

O3 removal from the troposphere predominantly occurs through dry deposition to the Earth’s surface. 

Since O3 is hardly soluble in water, it is deposited mainly to terrestrial ecosystems (Fowler et al., 

2009). Since the terrestrial deposition depends on vegetation and soil characteristics that vary in space 

and time, the quantitative description of processes governing O3 deposition is still poor, and, therefore, 

the estimation of the current tropospheric O3 budget as well as the projections of future climate are 

limited (Wild, 2007). Hence, the accurate quantification of O3 exchange fluxes between the atmos-

phere and the biosphere (including a large variety of ecosystems) is a major challenge in current at-

mospheric research. 

Large efforts have been made during the last decades to develop methodologies to quantify the sur-

face-atmosphere exchanges of trace gases such as O3. The most commonly applied methods are (i) 

micrometeorological approaches like eddy covariance (ܥܧ) and profile methods (Foken, 2008), and 

(ii) enclosure techniques using static or dynamic chambers (Denmead, 2008). While micrometeorolog-
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ical methods allow measurements at the landscape scale (from about one hectare to several square 

kilometers), chambers represent much smaller spatial scales (around 1 m2). 

The ܥܧ technique is the most direct and sophisticated method often used as a reference for the meas-

urement of surface-atmosphere exchange fluxes of greenhouse gases. This was favored by the devel-

opment of sonic anemometers and fast response trace gas analyzers. The method is extensively used in 

CO2 and energy flux measurement networks such as CarboEuroFlux, (Aubinet et al., 2000), Ameri-

Flux (Running et al., 1999), Fluxnet (Baldocchi et al., 2001), and CarboEurope (Dolman et al., 2006). 

However, for other trace gases like O3 fast response trace gas sensors are not always available or 

might be too expensive. Moreover, micrometeorological methods can be mathematically complex and 

expensive. In contrast, chambers offer low-cost and spatially/temporally flexible measurements of 

exchange fluxes based on a relatively simple operating principle (Denmead, 2008). In contrast to mi-

crometeorological methods, they can be used to investigate small vegetation plots e.g. in multiple fac-

tor experiments or to investigate spatial heterogeneity effects. When applied on larger ecosystems, the 

small spatial scale of an individual chamber has to be compensated by operating several chambers 

simultaneously (e.g., Laville et al., 2009; Pape et al., 2009). 

A variety of studies have used dynamic chambers to measure emission fluxes of reactive trace gases 

like nitric oxide (NO) (e.g., Gut et al., 2002b; Pape et al., 2009), ammonia (Amon et al., 2006) or vola-

tile organic compounds (VOCs) (e.g., Bourtsoukidis et al., 2012; Kesselmeier et al., 1998; Pape et al., 

2009) from soils, plants or other surfaces. However, only few studies used this technique to determine 

deposition fluxes of compounds like O3 (e.g., Gut et al., 2002a). This is mainly due to difficulties as-

sociated with the application of the chamber itself, which modifies the aerodynamic and boundary 

layer resistances above the surface and, consequently, also the deposition flux (Pape et al., 2009). 

NO, O3 and nitrogen dioxide (NO2) constitute a triad that undergoes fast chemical reactions. Thus, 

experiments investigating at least one member of the triad often measure all three compounds simulta-

neously to correct for chemical reactions. This is true, e.g., for dynamic chamber experiments that 

investigate biogenic NO soil emissions (see literature survey in Pape et al., 2009). Such dynamic 

chamber experiments could be used to improve the coverage of deposition flux observations if the 

difficulties mentioned above can be overcome. 

In this study, we investigate the comparability of fluxes measured simultaneously by dynamic cham-

bers and ܥܧ at a natural grassland ecosystem in Germany. After examining the fluxes of the non-

reactive trace gases CO2 and H2O for comparability of vegetation activity in the footprint, the study 

focuses on the O3 flux measurements with both techniques. The O3 chamber fluxes were corrected for 

chemical reactions and for modified turbulence in the chambers and are compared to ܥܧ fluxes, which 

serve as a reference. In addition, the partitioning of observed O3 fluxes into stomatal and non-stomatal 

uptake and the application of the chamber method for NO2 deposition measurements are illustrated. 
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2 Material and Methods 

2.1 Site description 

An intensive field campaign was performed from July to September 2011 at a natural nutrient-poor 

steppe-like grassland ecosystem on the estate of the Mainz-Finthen Airport in Rhineland-Palatinate, 

Germany (49.9685°N, 8.1481°E). The grassland ecosystem had only occasionally been subject to 

management activities such as e.g., sheep grazing in the past. The site was topographically situated on 

a plateau besides the Rhine valley and located about 9 km south-west of the city center of Mainz. 

Smaller villages and motorways surrounded the site in a distance of 2 to 6 km and 4 to 15 km, respec-

tively. The largest fetch without significant anthropogenic pollution sources was in the south-western 

sector of the site. The mean canopy height (݄௖) during the field campaign was 0.6 m. A leaf area index 

 meter-ܫܣܮ profile including three heights (0.05 m, 0.07 m, 0.20 m) was determined with an (ܫܣܮ)

-near the dynamic chambers on 18 August 2011. Addi (Licor Bioscience, Lincoln, USA ,2000-ܫܣܮ)

tionally, the plant species enclosed by the dynamic chambers were determined. The ܫܣܮ for green and 

brown leaves in each chamber was assessed by biomass harvest and photographic imagery of subsam-

ples using the software ImageJ (National Institute of Health, Bethesda, USA). 

2.2 Meteorological parameters 

Standard meteorological parameters were measured at a tripod mast (Fig. 1) and recorded by a data 

logger (CR3000, Campbell Scientific Inc., USA) every 10 s. Global radiation and NO2 photolysis fre-

quency (݆ேைమ) were measured at a height of 2.5 m with a net radiometer (CNR1, Kipp&Zonen, Delft, 

Netherlands) and a filter radiometer (Meteorology Consult GmbH, Glashütten, Germany), respective-

ly. Gaps in the ݆ேைమ time series were filled by using a parameterization based on global radiation 

(Trebs et al., 2009). Rainfall was recorded at 1 m height by a rain gauge (AGR100, Environmental 

Measurements, North Shields, UK). Temperature and relative humidity (ܴܪ) were measured at 2.5 m 

height using a combined transmitter (HMT337, Vaisala, Helsinki, Finland) located in a ventilated 

housing. Wind speed was measured at 2.5 m height by a 2D ultra sonic anemometer (WS425, Vaisala, 

Helsinki, Finland). 

2.3 Eddy covariance measurements 

The ܥܧ technique is the most direct approach for the measurement of turbulent exchange fluxes in the 

surface boundary layer and has been extensively used during the last decades. The method and its the-

oretical background are well described in the literature (e.g., Foken et al., 2012) and will not be de-

tailed hereafter. 

The three-dimensional wind and temperature fluctuations were measured at the ܥܧ mast (Fig. 1) at 

3.0 m above ground by a sonic anemometer (CSAT-3, Campbell Scientific Inc., Logan, USA). CO2 

and H2O fluctuations were detected by a fast response open-path CO2/H2O infrared gas analyzer (IR-

GA LI-7500A, LI-COR, USA) installed in a lateral distance of 0.25 m to the sonic path. Highly time-

resolved O3 concentrations were measured by a high-frequency, dry chemiluminescence O3 detector 
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sistance model (see Fig. 3). The correction is based on the assumption that the canopy resistance for 

deposited compounds inside the dynamic chamber (ܴ௖∗) is equal to the corresponding canopy re-

sistance ܴ௖ outside (Eq. 3) if the canopy itself remains unchanged and an appropriate chamber design 

is used. Under these conditions ܴ௖∗ can be computed according to Pape et al. (2009) as: 

ܴ௖∗ ൌ ൤െ
ஜ಺ಿ∙ఘ೏
ி಴ಹ೒೛

൨ െ ܴ௕
∗ሺܫܣܮሻ െ ܴ௣௨௥௚௘ െ ܴ௠௜௫       (8) 

where ܴ௣௨௥௚௘ is defined by the purging flow rate (ܴ௣௨௥௚௘ ൌ ܣ ܳ⁄ ൌ 100 s m-1) and ܴ௠௜௫ is the inter-

nal mixing resistance in the chamber that was quantified by Pape et al. (2009) to be close to zero and 

is therefore neglected. ܴ௕
∗  was semi-empirically parameterized as a function of the ܫܣܮ. Then the un-

disturbed deposition flux ܨ஼ு೎೚ೝ (for ambient aerodynamic conditions) can be calculated from ܴ௖∗ by 

rearranging Eq. 3: 

஼ு೎೚ೝܨ ൌ
ஜ೥ೝ೐೑

ோೌሺ௭ೝ೐೑ሻାோ್ାோ೎
∗          (9) 

The combination of Eq. 8 with Eq. 9 gives the resulting flux correction ratio:  
ி಴ಹ೒೛
ி಴ಹ೎೚ೝ

ൌ
ோೌሺ௭ೝ೐೑ሻାோ್ାோ೎∗

ோ೛ೠೝ೒೐ାோ೘೔ೣାோ್
∗ାோ೎

∗ ∙
ஜ಺ಿ
ஜ೥ೝ೐೑

        (10) 

Compared to the relationship given in Pape et al. (2009), Eq. 10 is extended by the ratio of the trace 

gas mixing ratios (μூே/μ௭ೝ೐೑). This was necessary because the grassland canopy at the study site 

slightly exceeded the chamber height ݄஼ு = 0.43 m (cf. Fig. 3), and therefore the height for the refer-

ence mixing ratio μ௭ೝ೐೑  had to be chosen higher up than the height of the chamber inlet (μூே). 

2.5 Stomatal conductance for O3 and flux partitioning 

H2O flux measurements can be used to derive the stomatal conductance (݃௦) for O3. This can be done 

in a three-step procedure in accordance with e.g., Lamaud et al. (2009) and Stella et al. (2011b), where 

in the first step a preliminary stomatal conductance (݃௦ುಾ) is derived by inverting the Penman-

Monteith equation and adding the ratio of molecular diffusivities between O3 and H2O: 

݃௦ುಾ ൌ
஽ೀయ
஽ಹమೀ

∙
ಶ
ഃೢ

ଵା
ಶ
ഃೢ

ሺோೌାோ್ሻቀ
ഁೞ
ം
ିଵቁ

        (11) 

where ܦைయ  and ܦுమை are the molecular diffusivities for O3 and H2O (in m2 s-1), respectively, ܧ is the 

H2O evapotranspiration flux (in kg m-2 s-1), ߜ௪ the water vapor density saturation deficit (in kg m-3), ߚ 

is the Bowen ratio, ݏ the slope of the saturation curve (in Pa K-1) and ߛ the psychometric constant (in 

Pa K-1). 

The H2O flux ܧ represents the sum of the plant transpiration and evaporation from different compart-

ments of an ecosystem such as soil pores and liquid water on diverse surfaces. Hence, to estimate a 

representative stomatal conductance ܧ should be plant transpiration only and the estimate resulting 

from Eq. 11 has to be corrected in the second step. As proposed by Lamaud et al. (2009) only dry con-

ditions with ܴ60 > ܪ % were used to compute ݃௦ುಾ , a threshold for which liquid water on surfaces is 

assumed to be fully evaporated. In the third step, the stomatal conductance is then corrected for soil 

evaporation by plotting ݃௦ುಾ  against Gross Primary Production (estimated according to Kowalski et 
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for 30 min averaging intervals. The agreement was especially good, when ݑ∗ ranged between 0.15 and 

0.3 m s-1 (daytime of 30 Aug–01 Sep in Fig. 12a,b). During periods of higher 29–28) ∗ݑ Aug in 

Fig. 12b) the ܥܧ fluxes clearly exceeded the ܪܥ method and showed an unplausibly high peak. The 

discrepancy might have resulted from the hf-correction accounting for the tubing (Sect. 4.1.1), which 

most affected the ܥܧ fluxes during daytime as it is a function of wind speed. 

For the correct estimation of deposition fluxes to ecosystems using e.g., big leaf dry deposition models 

with single (Hicks et al., 1987) or multiple vegetation layers (Baldocchi, 1988), the canopy resistance 

ܴ௖ for the corresponding compound has to be quantified. According to Pape et al. (2009) and Eq. 10, 

the correction involves chamber characteristic resistances (ܴ௣௨௥௚௘, ܴ௠௜௫, ܴ௕
∗ ) and is fundamentally 

based on the assumption that the canopy resistance outside the chamber ܴ௖ (Eq. 3) is equal to the one 

inside ܴ௖∗ (Eq. 8). The good agreement of ܴ௖ and ܴ௖∗ suggests that this assumption was mostly fulfilled 

(Fig. 8a) as the daytime medians differed by only 25 % and taking into account that ܴ௖ and ܴ௖∗ were 

derived independently. Thus, they were prone to different sources of uncertainty. The uncertainty of 

the ܥܧ derived ܴ௖ depends on the errors of ܴ௔ሺݖ௥௘௙ሻ and ܴ௕ (Eq. 3). They are both functions of the 

friction velocity ݑ∗, which exhibits higher relative uncertainties for weak wind conditions (e.g., Stella 

et al., 2012). In addition, ܴ௔ሺݖ௥௘௙ሻ is dependent on the stability parameter (ݖ ⁄ܮ ), which is prone to 

uncertainties especially during stable nighttime conditions (e.g., Geissbühler et al., 2000). This might 

explain the large scatter in the ܴ௖ values during nighttime. Furthermore, as discussed in the last para-

graph, a strong nighttime inversion prevailed during several nights at the site, separating the in-canopy 

air layer from above. The corresponding decoupling effect might have been underestimated by the 

calculated ܴ௔ሺݖ௥௘௙ሻ. Consequently, the nighttime ܴ௖ values might have been overestimated, resulting 

in higher median values of ܴ௖ compared to ܴ௖∗ in Fig. 8a. 

The daytime canopy resistances for O3 measured at the natural grassland ecosystem in Mainz-Finthen 

were in the upper range of those reported for low vegetation ecosystems in the literature. Pleijel (1998) 

reported a median daytime ܴ௖ of 80 s m-1 for a dense oat crop (݄௖ ൌ 1 m) for spring and summer 

measurements. The dependence of the canopy resistance on maturation and senescence was illustrated 

in Gerosa et al. (2003), who found mean diurnal minima for ܴ௖ of 80 s m-1 and 160 s m-1 for fully de-

veloped and senescent wheat crops, respectively, in Italy. De Miguel and Bilbao (1999) reported mean 

daytime ܴ௖ of 100–150 s m-1 for a Spanish green grassland in early summer. For an already harvested 

wheat field, Pilegaard et al. (1998) determined daytime ܴ௖ of 200 s m-1. Hence, the comparatively high 

canopy resistances at our site was most likely caused by the high portion of senescent plant material 

during the summer-autumn transition (see Sect. 3.1.1 and 4.1.2) and the insignificant biogenic emis-

sions (NO, VOCs) (see Sect. 4.1.1). 

Previous studies rarely discussed the comparison of O3 flux measurement methods. They mainly fo-

cused on the comparison of ܥܧ and aerodynamic gradient method (ܯܩܣ) and reported contradictory 

results. For instance, Keronen et al. (2003) and Stella et al. (2012) found an agreement of both meth-

ods for O3 flux measurements, whereas Muller et al. (2009) and Loubet et al. (2013) reported large 

discrepancies between ܯܩܣ and ܥܧ methods. The present study is, to our knowledge, the first to re-

port a direct comparison of EC and dynamic chamber measurements of O3 ecosystem fluxes and cano-

py resistances.  
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such as in this study (see Fig. 3), an additional O3 mixing ratio measurement above the canopy is 

needed as reference level (zref) for the ambient resistive scheme. 

For the dynamic chamber system the chosen measurement cycle represented an optimized compromise 

between several requirements and aims: (a) a limitation of instationarities (for details see Sect. 2.4.2); 

(b) a sufficient time resolution, even in combination with the near surface trace gas profile (Fig. 2a), to 

yield one flux estimate per ܪܥ within 30 min; (c) representative rainfall amounts and soil moisture in 

the ܪܥ as a result of long open phases during 90 % of the day and (d) useful additional information 

due to the combination with the near surface trace gas profile. Furthermore, water vapor interference 

in the trace gas detection was eliminated by using Nafion dryers for the NO, NO2 and O3 measure-

ments, which is particularly important for sequentially switched sampling in and outside of soil cham-

bers associated with large humidity differences. Nevertheless, the fluxes determined with the ܪܥ 

method were based on much worse statistics than those from the ܥܧ method, which was mainly due to 

the much lower sampling frequency and the switching between different inlets. Thus, the error of the 

chamber fluxes ܨߪ஼ு was clearly dominated by the effect of non-stationarity (quantified by Eq. 7). 

4.4 Application of the chamber method for other trace gases 

The suitability of the dynamic chamber method for deposition flux measurements has been verified 

here for ozone. However, the method may be equally applied for other depositing trace gases. We 

show exemplary results for NO2 that was measured simultaneously in the present study (Sect. 2.4.1). 

The canopy resistance (ܴ௖∗) for NO2 was calculated from the ܪܥ measurements according to Eq. 8 

assuming pure deposition with a zero compensation point. The resulting diurnal cycle presented in 

Fig. 13 shows a distinct pattern with minimum hourly medians of around 270 s m-1 in the morning 

hours. After that, the ܴ௖∗ሺNOଶሻ medians start to rise until they reach their maximal values around 

560 s m-1 in the evening.  

The median diurnal course of the canopy resistance for NO2 was similar to the one for O3 determined 

by the ܪܥ method (cf. Fig. 8a) but ܴ௖∗ሺNOଶሻ was on average 86 % higher than for O3. A direct inter-

pretation and partitioning is more difficult for NO2, because of the potential existence of an internal 

leaf resistance in addition to the stomatal resistance as found in other studies (e.g., Eller and Sparks, 

2006; Gut et al., 2002a; Stella et al., 2013a). The results indicate that the	ܪܥ	method is a useful tool to 

determine deposition fluxes and characteristic resistances for ecosystems with low vegetation. 

5 Conclusion 

Eddy covariance is the state-of-the-art method for trace gas flux measurements between the surface 

and the atmosphere. Nevertheless, there are arguments favoring the dynamic chamber against the eddy 

covariance method for certain applications. Among these are (i) applicability of chamber methods on 

small plots for investigations on gas exchange of different vegetation species and management forms, 

(ii) a more direct determination of canopy resistances that are required as input parameters for process 

and modeling studies, (iii) well defined gas-phase chemistry corrections for reactive compounds under 

the well-mixed chamber conditions. Thus, for fluxes of compounds emitted by soils or plants, such as 
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matal and non-stomatal pathways both contributed about 50 % to the O3 deposition. Since the contri-

bution of gas phase chemical reactions to the (apparent) non-stomatal O3 deposition was of minor im-

portance in the present study, ozone destruction processes at the plant and soil surfaces must have 

played a major role. 

The present findings may be especially useful for operators of dynamic chamber systems for the de-

termination of NO soil emission fluxes. These systems generally run simultaneous O3 mixing ratio 

measurements for gas-phase chemistry corrections. Such systems can easily be used for continuous O3 

and NO2 flux measurements in order to extend the knowledge on the deposition of these gases and on 

the underlying processes for a large range of ecosystems. 
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Abstract 

The detailed understanding on surface-atmosphere exchange of reactive trace gas species is a crucial 

precondition for reliable modeling of processes in atmospheric chemistry. Plant canopies significantly 

impact the surface-atmosphere exchange. In the past, many studies focused on taller forest canopies or 

crops, where the bulk plant material is concentrated in the uppermost canopy layer. However, within 

grasslands, a land-cover class that globally covers vast terrestrial areas, the canopy structure is funda-

mentally different, as the main biomass is concentrated in the lowest canopy part. This has obvious 

implications for aerodynamic in-canopy transport, and consequently also impacts on global budgets of 

key species in atmospheric chemistry such as nitric oxide (NO), nitrogen dioxide (NO2) and ozone 

(O3). 

This study presents for the first time a comprehensive data set of directly measured in-canopy 

transport times and aerodynamic resistances, chemical timescales, Damköhler numbers, trace gas and 

micrometeorological measurements for a natural grassland canopy. Special attention is paid to the 

impact of contrasting meteorological and air chemical conditions on in-canopy transport and chemical 

divergence. Our results show that the grassland canopy is decoupled throughout the day. In the lower 

canopy, the measured transport times are fastest during nighttime, which is due to convection during 
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nighttime and stable stratification during daytime in this layer. This was found inverse in the layer 

above. During periods of low wind speeds and high NOx (NO+NO2) levels, the canopy decoupling its 

effect on transport was found especially distinct. The aerodynamic resistance in the lower canopy was 

with around 1000 s m-1 as high as values from literature representing the lowest meter of an Amazoni-

an rain forest canopy. The aerodynamic resistance representing the bulk canopy was found more than 

3–4 times higher as in forests. Calculated Damköhler numbers (ratio of transport and chemical time-

scale) indicated a strong flux divergence for the NO-NO2-O3 triad within the canopy during daytime. 

At that time, the timescale of NO2 plant uptake ranged from 90 to 160 s and was the fastest relevant 

timescale. Thus, our results clearly reveal that grassland canopies of similar structure have a strong 

potential to recapture NO, which before might have been emitted by the soil below. Furthermore, a 

photo-chemical O3 production above the canopy was observed, which resulted from a surplus of NO2 

from the NO-NO2-O3 photostationary state. The O3 production was one order of magnitude during 

high NOx than during low NOx periods and resulted in an O3 flux underestimation, which was ob-

served for the first time. 

1 Introduction 

Nitric oxide (NO) and nitrogen dioxide (NO2) play a crucial role in air chemistry since they act as key 

catalysts for ozone (O3) production and are therefore involved in the generation of hydroxyl radicals 

(OH) (Crutzen, 1973). The most significant atmospheric source for O3 is initiated by photochemical 

dissociation of NO2 and subsequent reaction of the resulting oxygen (O) atom with NO: 

NOଶ	 ൅ 	h	ሺ	 ൏ 	420	nmሻ				NO	 ൅ 	OሺଷPሻ	       (R1) 

OሺଷPሻ 	൅	Oଶ 	൅ 	M				Oଷ 	൅ 	M	        (R2) 

When O3 is present, it may oxidize NO and re-form NO2: 

Oଷ ൅ NO
୩య
→ NOଶ ൅ Oଶ          (R3) 

In the absence of additional reactions, R1–R3 represent a null cycle. Beside R1–R3, NO is oxidized by 

OH radicals constituting an additional important net O3 production pathway in the troposphere 

(Warneck, 2000). 

Dry-deposition to terrestrial surfaces, especially to plant canopies, is an important sink for tropospher-

ic O3 and NO2. The uncertainties of dry deposition estimates are substantially higher for NO2, because 

its net ecosystem exchange can be bi-directional depending on the ambient NO2 levels (Lerdau et al., 

2000). O3 instead is exclusively deposited to surfaces. In contrast, NO is known to be mainly net emit-

ted from nearly all soil types. Biogenic NO soil emissions contribute significantly with ~20 % to the 

global NOx (NO+NO2) emissions (IPPC, 2007), highlighting the need of careful investigations on NO 

soil-atmosphere exchange. 

A major challenge for studies investigating surface-atmosphere exchange fluxes of these reactive trace 

gases is the presence of plant canopies. These significantly modify the turbulent properties of the sur-

face that drive trace gas exchange. Most previous studies focused on taller canopies such as forests. 

However, grassland canopies represent a highly important land cover class covering globally 41 % and 

Europe-wide 19 % of the terrestrial land surface (Kasanko et al., 2011; Suttie et al., 2005). In contrast 

to forests, grasslands feature the main bulk plant area density near the soil (e.g., Jäggi et al., 2006; 
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Ripley and Redman, 1976), accompanied with mean distances between plant elements of only some 

millimeters (Aylor et al., 1993). Organized coherent structures govern turbulence dynamics within and 

above plant canopies (Finnigan, 2000). The mean in-canopy transport is slower than above the canopy. 

This modification of in-canopy transport has important implications for global atmospheric chemistry. 

Plant canopies and the soil below are biologically actively emitting and taking up reactive trace gases, 

and they may provide sufficient time for fast chemical reactions to occur within the canopy (Nemitz et 

al., 2009). Subsequently they modify surface exchange fluxes. For instance, ammonia can be released 

by a part of the canopy and taken up by another (Denmead et al., 2007; Nemitz et al., 2000). In addi-

tion, recapturing of NO2 originating from biogenic soil NO emissions after reaction with O3 within 

plant canopies (Rummel et al., 2002) is accounted for in global models by a so-called canopy reduc-

tion factor for NOx (Yienger and Levy, 1995). However, these estimates are based on only one single 

experiment in the Amazon Basin (Bakwin et al., 1990), and the subsequent model analysis (Jacob and 

Wofsy, 1990). Canopy reduction for grasslands and other ecosystems were not studied in detail up to 

now. Consequently, the contrasting canopy structure of grassland and forest ecosystems highlight the 

need for a detailed analysis. 

Net ecosystem exchange fluxes are typically measured at a certain height above the canopy. They rely 

on the constant flux assumption (e.g., Swinbank, 1968), which however, may be violated for reactive 

trace gases within or just above the vegetation. To assess the potential chemical divergence of ex-

change fluxes, the Damköhler number (ܣܦ) has commonly been applied (e.g., Rinne et al., 2012). ܣܦ 

is calculated as the ratio of the transport time (߬௧௥) and the characteristic chemical timescale (߬௖௛): 

ܣܦ ൌ
ఛ೟ೝ
ఛ೎೓

           (1) 

Hence, ܣܦ above unity indicate chemical reactions to occur significantly faster than the transport (flux 

divergence), whereas ܣܦ smaller than 0.1 indicate the reverse case. The range in-between is common-

ly addressed as a critical range, where an impact of chemistry cannot be excluded (Stella et al., 2013). 

In this paper, we present directly measured transport times, chemical timescales and corresponding 

Damköhler numbers for three layers above and within a natural grassland canopy under contrasting 

meteorological and air chemical conditions. For the first time, such a comprehensive analysis involv-

ing trace gas and micrometeorological measurements is made for a grassland canopy. Furthermore, the 

consequences of in-canopy processes for NOx canopy reduction and simultaneously measured O3 dep-

osition fluxes will be discussed. 

2 Material and Methods 

2.1 Site description 

We performed an intensive field experiment from July to September 2011 at the estate of the Mainz-

Finthen Airport in Rhineland-Palatinate, Germany. The vegetation at the site was nutrient-poor grass-

land with a mean canopy height (݄௖) of 0.6 m and a leaf area index (ܫܣܮ) of 4.8. A list of species and 

an ܫܣܮ profile are given in Plake et al. (2014), with the latter indicating a high biomass density below 

0.2 m corresponding to 85 % of the total ܫܣܮ. Topographically located on a plateau 150 m above the 
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The vertical distribution of O3 (Fig. 2e,f) reflected a typical pattern with lower mixing ratios closer to 

the ground and higher mixing ratios above. The diurnal O3 maximum occurred during the afternoon 

around 16:00 CET (= UTC+1). Nevertheless, in the low NOx periods the diurnal O3 maximum was 

much less pronounced compared to the high NOx periods with 35 ppb and 50 ppb, respectively. Fur-

thermore, characteristic vertical O3 distributions were observed during the low and high NOx periods. 

Nighttime O3 gradients were less pronounced during the low NOx than during the high NOx periods. 

Median in-canopy values of O3 were 10-20 ppb and 20-25 ppb above during the low NOx periods 

(Fig. 2e). During the high NOx periods 1-6 ppb were measured in the canopy and 10-25 ppb above 

(Fig. 2f). 

During both the low and the high NOx periods, significantly enhanced NO mixing ratios prevailed 

during the morning hours from 06:00 to 14:00 CET (Fig. 2g,h) with median diurnal maxima of 0.6 ppb 

and 7.2 ppb, respectively, both occurring at 10:00 CET (not visible in Fig. 2h due to scaling). The NO 

mixing ratios decreased afterwards to reach nighttime minima. These were characterized by small 

vertical NO gradients during both periods. During low NOx nights, NO appeared to be mainly present 

in the in-canopy air layer, with median mixing ratios at ݖଵ and ݖଶ of ≤ 0.1 ppb. The median values at 

 .ଶ during the high NOx periods were ≤ 0.3 ppb, respectivelyݖ ଵ andݖ

NO2 mixing ratios were generally found to increase with height (Fig. 2i,j), featuring significantly 

stronger vertical differences during the high NOx periods. Similar to NO, also NO2 mixing ratios were 

enhanced throughout the profile during the morning hours of both, low and high NOx periods, with 

corresponding values of 1–2.5 ppb and 6–14 ppb, respectively. At nighttime, comparable NO2 mixing 

ratios of around 1 ppb prevailed during both periods at ݖଵ. They showed clearly stronger gradients 

above the canopy during the high NOx periods. The diurnal NO2 minima during low and high NOx 

periods were observed between 12-16 CET and 14-16 CET, respectively. 

3.3 Vertical profile of chemical timescales 

The obtained values for ߬௖௛ were generally higher during nighttime than during daytime (Fig. 3a,d,g) 

and decrease from ܮଷ to ܮଵ. The validity of our applied criteria for separation between low and high 

NOx periods, is shown by the median values (brown and green lines) nearly adjoined the interquartile 

range of the overall data set. Significantly higher ߬௖௛ values prevailed during nighttime of the high 

NOx periods, ranging from 300 to 2500 s in ܮଵିଷ. In contrast, low NOx periods were characterized by 

߬௖௛ of 250–800 s in ܮଵିଷ. However, during daytime ߬௖௛ was within 100–200 s in ܮଵିଷ for both peri-

ods. During the low NOx periods ߬௖௛ values were slightly higher compared to the high NOx periods. 

3.4 Vertical profile of transport times 

The median ߬௧௥ሺܮଷሻ of all data Fig. 3b was one order of magnitude smaller during noon than at mid-

night with 30 and 200 s, respectively. As for ߬௖௛ (Sect. 3.3), also in the case of ߬௧௥ the medians of the 

low and high NOx periods adjoined the interquartile range of the overall data set. For example, ߬௧௥ሺܮଷሻ 

in the low NOx periods never exceeded ߬௧௥ሺܮଷሻ in the high NOx periods (cf. Fig. 3b). The difference of 

߬௧௥ሺܮଷሻ between noon and midnight was largest in the high NOx and smallest during the low NOx pe-

riods with 470 and 40 s, respectively. Compared to ܮଵିଶ (Fig. 3e,h), the extreme values of the entire 
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grassland canopies, as their structure is characterized by high biomass density in the lowest layer 

(cf. Sect. 2.1). 

The usefulness of our results is underlined by the direct assessment of measured ܴ௔௖ values. By utiliz-

ing Eq. 6 we can assess ܴ௔௖ for different canopy layers (ܮଵ, ܮଶ and for the whole canopy 

(߬௧௥ሺݖଵ, ;ଷሻݖ Δݖ ൌ ଷݖ െ  ଵሻ wasܮଵ)) within the grassland canopy (cf. Fig. 5). In the lower canopy, ܴ௔௖ሺݖ

generally highest with medians of 900 to 1000 s m-1 during nighttime and 1000 to 1300 s m-1 during 

daytime (Fig. 5). In comparison, Gut et al. (2002) found the aerodynamic resistance in the lowest me-

ter of an Amazonian rain forest canopy in a similar range and showing the same diurnal pattern with 

600 s m-1 during nighttime and 1700 s m-1 during daytime. 

As found for the transport times, the diurnal course was inversed in the layers above (Fig. 5). In the 

upper canopy, the median of ܴ௔௖ሺܮଶሻ typically ranged around 300 s m-1 during nighttime and around 

150 s m-1 during daytime. In comparison, above the canopy the median of ܴ௔ሺܮଷሻ (Eq. 5) was substan-

tially lower with around 80 and 15 s m-1 during night and daytime, respectively. Consequently, the 

aerodynamic resistances in and above the canopy (ܴ௔௖ሺܮଵ,ଶሻ and ܴ௔ሺܮଷሻ) differed by almost two or-

ders of magnitude during daytime, and by one order of magnitude during nighttime. Accordingly, the 

efficiency of aerodynamic transport decreased with height, even if the transport times were partly 

shorter in ܮଵ compared to ܮଷ. The ܴ௔௖ for the whole canopy (Fig. 5) ranged in-between ܴ௔௖ሺܮଵሻ and 

ܴ௔௖ሺܮଶሻ with 440 s m-1 during nighttime and 360 s m-1 during daytime. The opposite diurnal courses 

of both, ܴ௔௖ሺܮଵሻ and ܴ௔௖ሺܮଶሻ have an impact on ܴ௔௖, which in turn showed a smaller diurnal varia-

tion. As ܮଶ contained around 80 % of the layer thickness between ݖଵ and ݖଷ (cf. Fig. 5), ܴ௔௖ was clos-

er to ܴ௔௖ሺܮଶሻ. 

The median transport time through the 0.6 m high natural grassland canopy (also referred to as “cano-

py flushing time”) was presented in the related study of Plake and Trebs (2013) for the same experi-

ment. It was measured using the vertical thoron profile between ݖଵ and ݖଷ (Eq. 6). The canopy flush-

ing time is consistent with the sum of ߬௧௥ሺܮଵሻ and ߬௧௥ሺܮଶሻ in this manuscript (cf. Fig. 7 below) and 

represented the in-canopy layer down to 0.07	∙ ݄௖ (ݖଵ/݄௖). It was determined to be ≤ 6 min exhibiting 

only small day/ nighttime variation. Simon et al. (2005) reported canopy flushing times based on ra-

don measurements within a 40 m high rain forest canopy. For the layer between ݄௖ and 0.13	∙ 	݄௖ 

(canopy top to trunk space), they determined flushing times of around 60 min during any time of the 

day. As in the grassland canopy in Mainz-Finthen, nighttime in-canopy convection accounted for the 

small day/ nighttime variation in their study. Normalization of their canopy flushing time by the layer 

thickness yielded ܴ௔௖ in the order of 100 s m-1, which is around 3–4 times lower than the correspond-

ing ܴ௔௖ of the grassland site. Other studies (Holzinger et al., 2005; Rummel, 2005) based on surface 

renewal models reported somewhat lower flushing times. Rummel (2005) found flushing times in a 

32 m high rain forest canopy of ≤ 200 s during daytime, which correspond to ܴ௔௖ values ≤ 10 s m-1. In 

the same way Holzinger et al. (2005) determined flushing times of 90 s during daytime and around 

300 s during nighttime within a 6 m high scrubby pine forest. Corresponding ܴ௔௖ values were in the 

order of 20 and 60 s m -1, respectively.  

Thus, it is important to note that even if the canopy height of natural grassland canopies is small com-

pared to forests (around 1–10 %); the corresponding canopy flushing times can be shorter or even 
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periods, respectively. In ܮଵ the uncertainty during nighttime was 30 % under all conditions. Further-

more, the in-canopy parameterization of ݆ேைమ might have introduced additional uncertainties since (i) 

in reality the attenuation of in-canopy radiation might be more complex than described by Eq. 3, and 

(ii) the parameterization of ݆ேைమ from ܩ is prone to uncertainties of >40 % for G < 100 W m-2, 10 –

 40 % for G = 100–500 W m-2 and ≤ 10% for G > 500 W m-2 (Trebs et al., 2009). 

The diurnal maxima and minima of ߬௖௛ሺܮଵ–ଷሻ (Fig. 3a,d,g) were found to coincide with the O3 minima 

and maxima (Fig. 2e,f), respectively. The impact of the terms in Eq. 2 on ߬௖௛(ܮଷ) was examined by a 

correlation coefficient analysis. It was found to be highest for O3 followed by NO2 and NO with 

r = -0.57, r = 0.46 and r = -0.07, respectively. As the average air-chemical situation in Mainz-Finthen, 

was characterized by a surplus of O3 compared to NO2 or NO (cf. Sect. 3.2), the magnitude of ߬௖௛(ܮଷ) 

was most affected by the mixing ratios of O3. NO in contrast, was generally less abundant, which ex-

plained the low overall impact on ߬௖௛(ܮଷ). Only in high NOx situations, when NO levels were above 

5 ppb (cf. Sect. 3.1), an increased impact on ߬௖௛(ܮଷ) was found. 

Fig. 6a summarizes the chemical timescales. The temporal variation in ߬௖௛, expressed by higher 

nighttime and lower daytime values, can be considered as a rather typical pattern based on the diurnal 

courses of NO, NO2 and O3 (Fig. 2e–j) and their strong photochemical link. The vertical variation in 

߬௖௛	ሺܮଵ–ଷሻ was on one hand caused by the attenuation of ݆ேைమ in the canopy, and on the other hand by 

generally increasing mixing ratios of NO, NO2 and O3 with height (Fig. 2e–j). It should be noted, that 

the latter was a site characteristic issue. Insignificant NO soil emissions were measured by Plake et al. 

(2014), and were underlined by weak in-canopy NO gradients (Fig. 2g,h). As already seen in the last 

paragraph, generally low NO, NO2 and O3 mixing ratios tend to cause high ߬௖௛	 values and vice versa. 

Consequently, at a site with higher NO emissions as e.g., an intensively managed agricultural field, the 

vertical ߬௖௛	 profile would most likely feature smaller vertical differences. 

The extremely high ߬௖௛(ܮଵ,) during nighttime of the high NOx periods (Fig. 6a) were a direct conse-

quence of canopy decoupling (cf. Sect. 4.1.1). Transport of O3 or NO2 into the lower canopy was sup-

pressed by the temperature inversion (cf. Fig. 2f,j). The residual O3 and NO2 molecules were convec-

tively circulated within the lower canopy and, subsequently deposited efficiently to surfaces until both 

almost disappeared in the early morning (Fig. 2f,j). Thus, the negligible NO emissions together with 

the suppressed supply of O3 and NO2 from above, yielded simultaneously very low mixing ratios of all 

three species, that in turn led to the extremely high ߬௖௛(ܮଵ,) values. 

Our results are in line with those of Stella et al. (2013) who reported median diurnal ߬௖௛	 of 80-300 s 

and 150-600 s above and within the canopy, respectively, of an intensively managed meadow. Their 

in-canopy ߬௖௛	 maximum was somewhat lower than in Mainz-Finthen, which might be attributed to 

NO soil emissions or averaging of different layers. 
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substantially. Natural grasslands exhibit very high biomass densities in the lowest canopy part. Thus, 

the aerodynamic resistance in the lowest canopy layer (0.04–0.2 m) was found to be of the same mag-

nitude (> 900 s m-1) and to feature the same diurnal pattern (higher during daytime, lower at night) as 

the aerodynamic resistance in the lowest meter of an Amazonian rain forest. The in-canopy aerody-

namic resistance representing the whole grassland canopy was at least 3–4 times higher than in-canopy 

aerodynamic resistances of forest canopies taken from literature. Our results reveal that even if the 

canopy height of natural grassland canopies is small compared to forests (around 1–10 %), the corre-

sponding canopy flushing times can be shorter or even longer within grassland than in forest canopies 

(10–400 %). The canopy flushing times exhibited only small day/ night variability, which is well in 

accordance with a detailed study on flushing times within an Amazonian rain forest (Simon et al., 

2005). The small day/ night variability is caused by the compensating transport efficiencies in lower 

and upper canopy layers during day and nighttime for both canopy types.  

The canopy flushing time of the grassland was found to be ≤ 6 min and the chemical timescale of the 

NO-NO2-O3 triad during daytime ranged between 1–3 min. This has obvious implications e.g., for 

soil-emitted reactive compounds such as NO, implying fast chemical conversion of NO to NO2 within 

the grass canopy. During daytime the plant uptake of NO2 was shown to be 2–3 times faster than the 

canopy flushing time. Inevitably, this leads to a strong potential NOx canopy reduction in the presence 

of biogenic NO soil emissions. Due to the extensive global terrestrial coverage with grassland cano-

pies, this finding is highly relevant for the application of global chemistry and transport models. We 

determined a median net chemical O3 production of 10 % during daytime within the air column be-

tween the flux measurement and the canopy, which was due to the absence of biogenic NO soil emis-

sion in our study. Hence, in contrast to previous studies our measured O3 deposition flux by eddy co-

variance is slightly underestimated. The flux divergence for O3 was one order of magnitude larger 

during the high NOx than during the low NOx periods. In-canopy Damköhler numbers were shown to 

be relevant for NO2 only under nighttime conditions, due to the minor role of NO2 uptake by plants at 

this time. Above the canopy Damköhler numbers indicated a potential flux divergence, but did not 

provide a hint for the observed chemical production of O3. The only instance without indication for a 

flux divergence within the entire data set was found during nighttime of the high NOx periods in the 

lowest canopy layer. 
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