Luminescence based chronologies
on Late Pleistocene loess-palaeosol sequences

- an applied-methodological study on quartz separates -

Sebastian Kreutzer

Dissertation
zur Erlangung des Grades
Doktor der Naturwissenschaften
(Dr. rer. nat.)
an der Fakultat fiir Biologie, Chemie und Geowissenschaften
der Universitat Bayreuth

GieBen im Dezember 2012



(© Sebastian Kreutzer, 2012-2013

Erstellt mit WTEX



Die vorliegende Arbeit wurde in der Zeit von Oktober 2008 bis Dezember 2012 am Lehrstuhl
fiir Geomorphologie der Universitat Bayreuth unter Betreuung von Herrn Prof. Dr. Markus
Fuchs angefertigt.

Vollstandiger Abdruck der von der Fakultat fiir Biologie, Chemie und Geowissenschaften der
Universitat Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades Doktor
der Naturwissenschaften (Dr. rer. nat.).

Amtierende Dekanin: Prof. Dr. Beate Lohnert

Tag des Einreichens der Dissertation: 05.12.2012

Tag des wissenschaftlichen Kolloquiums: 08.02.2013

PriifungsausschulB

1. Prof. Dr. Markus Fuchs (Justus-Liebig-Universitat GieBen, Erstgutachter)
2. Prof. Dr. Ludwig Zoller (Zweitgutachter)

3. Prof. Dr. Stefan Peiffer (Vorsitzender)

4. Prof. Dr. Klaus Bitzer

5. Prof. Dr. Andreas Held



Zusammentfassung

Zusammenfassung

Hintergrund Der Wunsch nach einem tiefgreifenden Verstandnis fiir den Ablauf friiherer land-
schaftsgenetischer, morphologischer Prozesse, bildet einen wichtigen Beweggrund in der Quartar-
forschung. Im Hinblick auf die Rekonstruktion von Paldolandschafts- und Umweltbedingungen
haben sich Lossprofile als unverzichtbare terrestrische Archive herausgestellt. Die Uberpriifung
einer durch Gelandeuntersuchungen identifizierten und klassifizierten Stratigraphie, insbeson-
dere hinsichtlich einer gewiinschten Parallelisierung mit anderen Profilen, erfordert numerische
Datierungen. Fiir die Datierung von Lossarchiven hat sich die Lumineszenz-, hier speziell die op-
tisch stimulierte Lumineszenz (OSL-), Datierung als eine der fiihrenden Methoden etabliert. Zu-
dem gibt es, insbesondere in der jiingeren Geschichte der Lossforschung, eine enge Verbindung
zwischen der Entwicklung angewandter Verfahren zur Lumineszenzdatierung an Sedimenten und
einem verbesserten Verstandnis zum zeitlichen Ablauf der Losssedimentation im Spatpleistozan.
Vor diesem Hintergrund konnen Lossforschung und Forschung zur angewandten Lumineszenz-
datierung als korrespondierende Verfahren verstanden werden.

Als Teil des europaischen Lossgiirtels befindet sich die Sachsische Loss Region (Saxonian
Loess Region) in einer Ubergangszone zwischen einem ozeanisch und einem kontinental ge-
pragten Klima. In der sdachsischen Losslandschaft finden sich bis zu 20 m machtige Ablager-
ungen von weichselzeitlichem Loss mit zwischengeschalteten Paldaobdden. Die erste systema-
tische Lossforschung in Sachsen begann in den spaten 1950er Jahren. Seit 2008 wurden im
Rahmen eines von der Deutschen Forschungsgemeinschaft (DFG) finanzierten interdisziplindren
Forschungsprojektes zur Paldolandschafts- und Umweltrekonstruktion, alte und neue Léssprofile
in Sachsen neu gedffnet und systematisch unter Anwendung von Geldande- und Labormethoden
untersucht. In diesem Zusammenhang konnten zum ersten Mal an Lossen in Sachsen hoch
aufgeloste OSL-Datierungen an fiinf Lossprofilen durchgefiihrt werden. Die Geldandearbeiten
wurden von einer Arbeitsgruppe der TU Dresden geleitet, die OSL-Datierungen sind Schwer-
punkt der hier prasentierten kumulativen Studie.

Neben der Vorstellung neu erstellter Chronostratigraphien ist die vorliegende Datierungs-
studie auf einen Vergleich der in der Datierungspraxis liblicherweise herangezogenen KorngroBen
ausgelegt. Es wird versucht die Frage zu klaren, ob es hinsichtlich der verschiedenen Korn-
groBen, die aus einer Bulkprobe separiert werden, Unterschiede in den Lumineszenzeigen-
schaften gibt, welche sich in den Datierungsergebnissen niederschlagen. Konkrete in der
Datierungspraxis verwendete KorngroBen sind: (1) Grobkorn (90-200 pm), (2) Mittelkorn (38—
63 pm) und (3) Feinkorn (4-11pm). Unterschiede sind z.B. aufgrund korngroBenabhangiger
Transportprozesse zu erwarten. Es werden Datierungsstudien von vier Lossprofilen, drei durch-
gefiihrt in Deutschland (Sachsen, Sachsen-Anhalt) und Tschechien, herangezogen und présen-
tiert.

Als Kombination aus angewandter Datierung und methodischer Untersuchung die Lumi-
neszenzdatierung betreffend, liefert diese Arbeit einen Beitrag zur Erstellung von zuverlassigen
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hoch aufgelosten numerischen Chronologien an spatpleistozanen Loss-Paldoboden Sequenzen.
Die Datierungen wurden iiberwiegend an Quarzen durchgefiihrt.

Aufbau und Methoden In der vorliegenden Arbeit werden sieben Einzelstudien vorgestellt.
Eine ausfiihrliche Zusammenfassung liefert Ch. 1. Vier Studien (Ch. 2, 3, 7, 8) stellen nu-
merische Chronologien unter Anwendung der OSL-Datierung vor. Es werden Vergleiche hin-
sichtlich des Alters, basierend auf den Datierungen verschiedener KorngroBen (und Minerale),
vorgestellt. Aus Sachsen werden die Ergebnisse von zwei der im Rahmen dieser Arbeit datierten
fiinf Lossprofile vorgestellt. Eine Ubersicht aller Datierungsergebnisse findet sich im Anhang
dieser Arbeit.

Obwohl die Datierungen hauptsachlich auf Quarzpraparaten basieren, kommt in der Studie
in Ch. 7 ein neuartiges Datierungsprotokoll, post-IR IRSL (Thomsen et al. 2008) zum Ein-
satz, das urspriinglich fiir K-Feldspate (KorngroBe > 90 um) entwickelt wurde und hier an
polymineralischen Feinkornpraparaten Anwendung findet. Die Verwendung polymineralischer
Feinkornpraparte zur Datierung soll die Giiltigkeit der erzielten Ergebnisse an Feinkornquarz
unter Anwendung eines weiteren Minerals (hier Mineralgemisch) und eines anderen Messpro-
tokolls sicherstellen.

Zwei weitere Studien (Ch. 4, 5) beschéftigen sich mit technischen Aspekten die wahrend der
Untersuchungen relevant wurden. Zum einen wurde im Rahmen dieser Arbeit ein R Paket (,, Lu-
minescence") zur Datenauswertung und Visualisierung entwickelt und zum anderen konnten
Streulichteffekte (cross-bleaching) der Infrarot-LEDs in den genutzten Risg Lumineszenzmess-
geraten untersucht und quantifiziert werden.

Die methodische Studie in Ch. 6 geht schlieBlich unter Anwendung des post-IR IRSL Pro-
tokolls an polymineralischen Feinkornpraparaten der Frage nach, ob die iibliche Praxis der Ver-
wendung eines gemeinsamen a-Wertes (Effektivitat der durch a-Strahlung im Verhaltnis der
durch B-, «y- oder Rontgenstrahlung induzierten Lumineszenz) fiir beide Signale (hier IRso und
pIRIR225) gerechtfertigt ist.

Ergebnisse Die vorliegenden Untersuchungen zeigen, dass unter Verwendung von Feinkorn-
quarzpraparaten zuverldssige und hochaufgeloste Datierungen an Lossen bis zum Eem-Inter-
glazial (MIS 5e, 5d) generell moglich sind. Durch die erstellten hochaufgelosten Chronostrati-
graphien konnten in den sachsischen Lossprofilen Hiati von ca. 30 ka zwischen der Friih- und
der Spatweichselzeit (MIS 3) ausgemacht werden, was sich tiber samtliche Profile (sofern die
Stratigraphie dies zuldsst) verifizieren lasst.

Fiir untere Dosisbereiche (Aquivalenzdosis bzw. D. < 100 Gy) zeigen die Ergebnisse zu-
dem eine Altersiibereinstimmung innerhalb der Fehler zwischen den untersuchten KorngréBen.
Dennoch weisen die Grob- und Mittelkornergebnisse eine hohe Streuung innerhalb der De-
Verteilungen auf, was fiir Losse a priori nicht zu erwarten war und sich in Testmessungen
nach kiinstlicher Signalriickstellung bestatigt. Zum anderen gehen die Quarze der Grob- und
Mittelkornfraktion fiir D > 180 Gy in Sattigung und wurden aus diesem Grund fiir spatere
Datierungen nicht mehr verwendet. Im Gegensatz dazu ist fiir die Feinkornfraktion nur eine
geringe Streuung in der D, Verteilung beobachtet worden, was allerdings auch aufgrund von
Mittelungseffekten zu erwarten war. Interessant hingegen ist die Beobachtung, dass die Feinkorn-
quarzfraktion eine erheblich hohere Sattigungsdosis aufweist. Dies ist in der Literatur bereits
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friiher beschrieben worden, allerdings gingen diese hoheren Sattigungsdosen auch manchmal mit
einer Altersunterschatzung einher. Eine Beobachtung, die sich in der vorliegenden Studie nicht
bestatigt. Im Gegenteil war eine zuverldssige Datierung bis zum Eem moglich und Test- mes-
sungen nach kiinstlicher Bleichung haben die Reproduzierbarkeit der gegebenen Dosis auch bei
hoheren Dosen bestdtigt. Zusammen mit den Erkenntnissen der Pedo- und Lithostratigraphie
sind die Datierungsergebnisse als zuverlassig anzusehen.

Die Datierungen an polymineralischem Feinkorn (Ch. 7) konnten zudem die Ergebnisse der
Datierungen an Quarzen bestatigen.

Die Quantifizierung der Streueffekte der Infrarot-LEDs hat nach Messungen auf 10 Geréaten in
unterschiedlichen Lumineszenzlaboren ergeben, dass dieser Effekt nahezu an allen untersuchten
Geraten auftritt und zu erheblichen Verfalschungen bei der Bestimmung der D, fiihren kann
(mittlerer cross-bleaching Effekt ~ 0.026 %). Dariiber hinaus liegt der beobachtete Streueffekt
um eine GroBenordnung iiber dem der ebenfalls im Gerat verbauten blauen LEDs.

Die Ergebnisse der a-Wert Bestimmungen zeigen, dass die mittleren a-Werte fiir Poly-
mineralisch-Feinkorn fiir die gemessenen IRsg und pIRIR225 Signale signifikant (min. um 0.02)
voneinander abweichen. Der resultierende a-Wert fiir das plIRIR»o5 Signal lieferte in den Un-
tersuchungen einen systematisch hoheren Wert. Die Ergebnisse der a-Wert Bestimmungen
lassen daher den Schluss zu, dass die Nutzung eines einheitlichen a-Wertes fiir beide Signale
des post-IR IR Protokolls zu systematischen Verzerrungen fiihren kann.

Fazit Im Rahmen dieser Arbeit wurde fiir die Sachsische Ldss Region zum ersten Mal eine
umfassende Chronostratigraphie erstellt. Die Lossprofile konnen nun zuverldssig mit anderen
Profilen und Archiven korreliert werden, was neue Erkenntnisse hinsichtlich des Palaoumweltver-
standnisses erwarten lasst. Die Zuverldssigkeit von Feinkornquarzpraparaten als Dosimeter
zur OSL-Datierung an Lossarchiven wurde unter Beweis gestellt. Signifikante Abweichungen
zwischen den Altern der KorngroBen, in dem Bereich wo ein Vergleich aufgrund der friihen Sig-
nalsattigung der Grob- und Mittelkornfraktion méglich war, wurden nicht beobachtet. Dennoch
bleibt die Streuung der Grob- und Mittelkornfraktion ebenso wie die hohere Sattigungsdosis der
Feinkornquarze letztlich unerklart. Hierzu sollten weitere Studien durchgefiihrt werden.

Als Konsequenz aus den Ergebnissen der Messungen zur Streuung der Infrarot-LEDs hat der
Geratehersteller mittlerweile ein Bauteil entwickelt, welches den Effekt signifikant zu reduzieren
vermag (bis hin zu einer 20-fachen Reduzierung; siehe Ch. 5).

Das entwickelte R Paket 'Luminescence’, welches im Zeitraum der Erstellung dieser Arbeit
veroffentlicht wurde und auf einer CD dieser Arbeit beiliegt, ermoglicht bisher nicht realisier-
bare Auswertungen und konnte fiir einen Teil der Analysen und zur Erstellung eines groBen Teils
der in dieser Arbeit prasentierten Grafiken verwendet werden. Mittlerweile wird das Paket von
mehreren Personen kontinuierlich weiterentwickelt.

AbschlieBend ist aufgrund der Ergebnisse der a-Wert Bestimmungen ein Umdenken in der
Datierungspraxis unter Anwendung des post-IR IRSL Protokolls zu erwarten, da die Verwendung
eines gemeinsamen a-Wertes nicht gerechtfertigt scheint. Zum einen, weil systematische Fehler
generell zu vermeiden sind und zum anderen weil auch einige Fragen ungeklart geblieben sind:
So sind z.B. die Ursachen fiir die beobachteten Unterschiede unklar und miissten zunachst durch

VI
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andere Studien bestatigt werden. Die Ergebnisse dieser Arbeit mogen solche Untersuchungen
anregen.

VI



Summary

Summary

Background Understanding morphological processes that sculpt former terrestrial landscapes
is one of the driving rationales in Quaternary research. Loess records have been found to be
valuable archives for reconstructing palaeoenvironmental conditions.

However, once identified, characterised and classified by fieldwork, the stratigraphic signif-
icance of such records has to be revealed by numerical dating. Luminescence dating, espe-
cially optically stimulated luminescence (OSL), is the leading dating approach for establishing
chronologies on loess archives. Furthermore, the development of luminescence dating tech-
nigues on sediments is closely connected with the history of loess research and vice versa.

As part of the European loess belt the Saxonian Loess Region is located in a transition zone
between oceanic dominated western and continental dominated eastern climates. The Saxonian
Loess Region comprises up to 20 m thick Weichselian loess accumulations, with intercalated
palaeosoils. Loess research in Saxony dates back to the late 1950s. For an interdisciplinary
research project funded by the German Research Foundation (DFG), since 2008 the Saxonian
Loess Region has been re-investigated by fieldwork and laboratory methods. For the first time,
during the work on this thesis, high-resolution numerical chronologies were established in the
Saxonian Loess Region on five loess sections using OSL dating on quartz separates. Here, age
results of these dating from two sections are presented.

The dating was employed as a comparison of three quartz grain size fractions commonly used
for luminescence dating: (1) coarse (90—200 pum), (2) middle (38—63 um) and (3) fine grain (4—
11um). As a survey on four loess sections, three from Germany (Saxony and Saxony-Anhalt)
and one from the Czech Republic, these studies investigate the question whether the use of
different grain size fractions from one sample yield consistent luminescence characteristics and
age results.

By combining dating application with methodological investigations, this thesis is intended
as contribution towards the establishment of reliable high-resolution numerical chronologies on
Late Pleistocene loess-palaeosol sequences based on OSL dating of quartz separates.

Scope and methods In summary seven studies are presented along with an extended summary
(Ch. 1). Four studies (Ch. 2, 3, 7, 8) present numerical chronologies using OSL dating tech-
niques on different grain size and (mineral) fractions. Although dating of the quartz fraction
is the main focus of this study, in Ch. 7 polymineral fine grain dating results using the post-IR
IR protocol (Thomsen et al., 2008) are presented for a comparison.

Two studies (Ch. 4, 5) deal with technical issues that arose during the dating applications.
Firstly, an R package for luminescence dating data analysis ('Luminescence’) was developed
and secondly, the cross-bleaching behaviour of IR-LEDs of Risg luminescence readers were
quantified.

VIII
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The study in Ch. 6 treats the question whether the common practice of using an identical
a-efficiency (a-value) for the conventional IRsg and plIRIR225s dating is justified under theoreti-
cal and empirical viewpoints.

Results It was found that for the established numerical chronologies on loess the fine grain
quartz fraction results in reliable age estimates up to the Eemian (MIS 5e, 5d). The high-
resolution dating in Saxony uncovered a prominent hiatus of c. 30 ka between the early and the
late Weichselian found in all investigated loess sections in Saxony. The fine grain quartz age
results are confirmed by the polymineral fine grain dating.

For lower dose ranges (D, < 100 Gy) age results of all three grain size fractions agree within
uncertainties. However, the coarse and middle grain fractions show highly scattered D, distri-
butions. For higher doses (De > 180 Gy) the luminescence signals of the coarse and middle
grain fractions are in saturation. In contrast, the luminescence signal of the fine grain fraction
still grows and is reproducible as shown by test measurements.

The results of a cross-bleaching survey on 10 luminescence readers revealed substantial
cross-bleaching behaviour of the IR-LEDs (mean cross-bleaching: ~ 0.026 %), in an order of
magnitude higher than for blue LEDs. This may lead to systematic underestimations during
D determination.

The investigation on the a-values of polymineral fine grain samples gave evidence for signif-
icant differences between the mean a-values obtained with the IR5p and the pIRIR225 signals;
at least by 0.02. The a-value obtained with the plIRIR225 signal is always higher.

Conclusions For the first time a comprehensive numerical chronology was established for the
Saxonian Loess Region. Additionally, it is shown that fine grain quartz separates provide a reli-
able dosimeter for establishing high-resolution chronologies on loess records. Significant grain
size dependent differences in the ages were not observed for dose ranges D, < 100 Gy, where
the dating was applied on all three grain size fractions. However, the scatter of the coarse and
middle grain fraction as well as the dose response behaviour of the fine grain fraction at higher
doses remains unexplained so far. But the outcomes may be subject of further investigations.

As consequence of the cross-bleaching measurements a new component for the luminescence
readers was developed by the manufacturer, which is capable to reduce the cross-bleaching of
the IR-LEDs up to 20-times (Ch. 5). The developed R package 'Luminescence’ was launched
in the course of this thesis enabling data analysis and visualising options, which had not been
available before. The package was intensively used for data analysis and visualising in the pre-
sented studies and is continuously under development by a growing developer community.

Finally, for the first time a-values on polymineral fine grain samples were measured using the
post-IR IR protocol and it was shown that the practice of using a common a-value for different
stimulation temperatures seems not to be justified. But further investigations are needed.
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List of Abbreviations

D Dose rate in Gy ka—!

A Wavelength in nm

) Stimulation intensity (photon flux) in cm™2 s71
Omax Maximum stimulation intensity in cm~2 71

o Photoionisation cross-section in cm?

o Standard deviation

b Decay parameter in the context of LM-OSL in s~!
Cy Coefficient of variation as %

De Equivalent dose in Gy; 1Gy = kJ—g
E Energy in eV

E; Thermal activation energy in eV
/ Luminescence signal intensity

1

k Decay rate in s~

kg  Botzmann's constant (8.6173324 x 107° eV K1)

n Concentration of trapped charges

no Concentration of trapped chargesin m™3 at t =0

P Stimulation period in s

p Probability of a charge carrier to escape from the trap in s~!
s Frequency factor in s™1

T Temperature in K (0°C ~ 273.15K)

t Timeins

R Name of the numerical programming language R (here written in bold letters)
CRAN Comprehensive R Archive Network; http://cran.r-project.org

CW-OSL Continuous wave optically stimulated luminescence
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IRsg  Infrared light stimulated luminescence; signal recorded at 50°C
IR-RF Infrared radiofluorescence

IRSL Infrared (light) stimulated luminescence

LM-OSL Linearly modulated optically stimulated luminescence

MIS  Marine Isotope Stage

OSL  Optically stimulated luminescence

pIRIR2o5 Infrared light stimulated luminescence signal; recorded at 225°C after recording an
IR5g signal

pLM-OSL Pseudo linearly modulated optically stimulated luminescence

post-IR IR Measurement protocol for feldspars according Thomsen et al. (2008); also termed
post-IR IRSL or pIRIR

SAR  Single aliquot regenerative (-dose protocol)

TL Thermoluminescence or thermally stimulated luminescence
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1 Extended Summary

1.1 Introduction

1.1.1 Background

“Loess is not just the accumulation of dust”

(Pecsi, 1990)

This title of an essay on the definition, chemical and physical characteristics of loess now dates
back more than 20 years and it may still be considered as an understatement on the relevance
of simple dust that “becomes loess after the passage of a certain amount of time” (Pecsi,
1990, p. 1) and it may be acknowledged as a snippy reply on the question: What makes loess
interesting?

Antoine et al. (2013, p. 1) stated for the European loess belt that it should be considered
as the "most extensive and continuous continental archive of the Last Glacial”. However, it
undoubtedly represents one of the fundamental Quaternary sediment archives for understanding
and evaluating morphological processes that sculpt former terrestrial landscapes. Furthermore,
with the progression of sedimentation, erosion and soil formation, loess-palaeosol sequences
result in a pattern that preserves valuable information on the palaeoclimate.

Pecsi (1990, p. 2) stated that loess “covers almost 10 % of the land surfaces”, varying
in thickness from a few meters up to several tens of meters (e.g. Rousseau et al., 2007).
The European loess belt extends over an area from Northern France via Germany, Poland, the
Czech Republic, Ukraine, Belarus to Southern Russia (cf. Haase et al., 2007; Fig. 8.1) and
is almost located outside of the Fennoscandinavian and Alpine ice sheets (Kukla, 1977; Haase
et al., 2007; Rousseau et al., 2007). According to Rousseau et al. (2007) the loess in Europe
originated mainly from (distant) dried-out plains (e.g. English Channel, North Sea) and local
dust sources (e.g. dried channels, alluvial plains).

Although varying in detail, all definitions on (pure) loess include the aeolian nature of the
terrestrial sediment (e.g. Smalley and Vita-Finzi, 1968; Pecsi, 1990; Pye, 1995; Wright, 2001).
The deposits consist of silt-sized quartz dominated particles. The modal grain size range varies
in the literature (e.g. 20-50 pm: Smalley and Vita-Finzi, 1968 or 2—63 um: Pye, 1995) and is,
as well as the specific mineral composition, a product of a source area and natural variations (cf.
Pye, 1995; Rousseau et al., 2007). The appearance is described as unstratified (Pecsi, 1990)
“wind-laid sheets” (Smalley and Vita-Finzi, 1968) of pale yellow colouring (e.g. Pye, 1995;
Rousseau et al., 2007) for which Smalley and Vita-Finzi (1968) mentioned two major sources
(a) glacial/periglacial regions and (b) 'hot’ deserts. Accounting for the primary sedimentation
process e.g. Pecsi (1990) called for a distinction between (a) 'primary loess’ (accumulated
by aeolian processes) and (b) 'secondary loess’ (redeposited, post depositional translocated),
whereas Pye (1995) argued against such a distinction because it does not include the name
of the redeposition process. Such emerging discussions appear somehow theoretical but they
highlight an interesting aspect: The appearances and the origins of loess deposits are manifold
and a single loess record may contain a variety of information on the depositional environment
(e.g. Kukla, 1977) and the question of how the process of accumulation occurred and proceeded.
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However, loess archives are collections of single records. They are physically spread out,
often fragmented, incomplete and comprehensive interpretation and recognition at the local
level remain challenging. Pecsi (1990) stated: “Erosional hiatuses are seldom visible to the
naked eye.” Historically, the above mentioned significance of loess as a climate archive as well
as the aeolian origin had not been recognised in the early years of loess research in Europe at the
end of the 19t century (cf. Zéller and Semmel, 2001). Thus, the nowadays commonly applied
litho- and pedological parallelisation (e.g. Antoine et al., 2001; Jary, 2009; Haesaerts et al.,
2010; Meszner et al., 2011) of different loess sections reflects the ongoing research history on
loess over a long period of time (cf. Zoller and Semmel, 2001; Rousseau et al., 2007).

This long research history on loess deposits allows us to take up the initial question again
and to answer it in a way beyond its relevance for terrestrial palaeoenvironmental research:
What makes loess interesting? There are hundreds of loess sections in Europe that have been
described in the literature (e.g. Kukla, 1977). They are partly well investigated, stratified and
reinvestigated by litho- and pedological methods (e.g. Nussloch/Germany: Antoine et al.,
2001, 2009 or Dolni Véstonice/Czech Republic: Klima et al., 1962; Demek and Kukla, 1969;
Kukla, 1975) and provide a profound interregional stratigraphic correlation and understanding
(cf. Zbéller, 2010; Rousseau et al., 2007). This situation qualifies loess records to developing,
testing and refining new methodological investigation approaches and it makes loess sections in-
teresting beyond their palaeoenvironmental implications (e.g. luminescence dating techniques:
Timar-Gabor et al., 2012; Vasiliniuc et al., 2012; Thiel et al., 2011b; Schmidt et al., 2011,
Novothny et al., 2010 or geochemical/pedological techniques: Zech et al., 2012; Buggle, 2011).

On the other hand, the continuous application of new methods on loess sections leads to
an ongoing refinement of existing stratigraphies and revisiting of established theories. This
hand-in-hand process is best described with the history of luminescence dating: Loess was the
first terrestrial sediment on which this dating method was systematically applied (review ar-
ticle: Roberts, 2008). This complementary link is not a historical accident but accounts for
a (still) increasing demand for numerical dating techniques (e.g. Pecsi, 1990) beyond the age
limit of e.g. #C dating (cf. Geyh, 2005) to reveal the stratigraphic significance of the litho-
and pedological findings, estimate mass accumulation rates (e.g. Frechen et al., 2003) or to
uncover gradients and hiatuses (Ch. 2).

“The dating of geological and archaeological events would be easier if the mineral
grains that form a sediment could be dated directly”

(Huntley et al., 1985)

Optical stimulated luminescence (OSL) dating was introduced in 1985 on quartz by Huntley
et al. (1985) and in 1988 on K-feldspar, termed infrared light stimulated luminescence (IRSL)
by Hiitt et al. (1988). Previously, luminescence dating (cf. Sec. 1.3) on loess had been applied
using thermal luminescence (TL) dating (review article: Wintle, 1990). The event dated is
the last heating. The optical bleaching of the investigated luminescence signal using TL dating
is carried out "with less effectiveness” (Aitken, 1998, p. 2) but on loess that presumably
had a long exposure to sunlight the method is applicable. However, secondary locally limited
translocations or short transport distances may lead to age overestimations due to insufficient
signal resetting and constrain the application of TL dating techniques on sediments. For OSL
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dating much shorter bleaching times (e.g. Godfrey-Smith et al., 1988; Stokes, 1999) are needed,
making OSL dating a powerful numerical dating tool (cf. Stokes, 1999, for further discussion
on the advantages of OSL over TL dating on sediments).

Using ubiquitously available mineral grains of quartz or feldspar the method can potentially
be employed all over the world. The dated event is the last exposure of the sediment to sunlight
and the “geological and archaeological events” (Huntley et al., 1985) are dated directly. Fur-
thermore, OSL dating overcomes tentative problems of other commonly applied dating methods
on loess: Other radiometric dating methods (e.g. radiocarbon dating, potassium-argon dating)
cannot directly date the depositional event. In addition, unlike for radiocarbon dating, which
has been proposed as the main quaternary dating methods for the last c. 50 ka (e.g. Reimer,
2012), it is not linked to the availability of organic matter.

Nevertheless, it took another 15 years to develop the single-aliquot regenerative-dose (SAR)
protocol as an efficient, precise and reliable measurement protocol for OSL dating on quartz
(Murray and Wintle, 2000). Since then the number of dating studies for the last glacial-
interglacial cycle on loess have continuously increased along with the methodological progression
of luminescence dating methods (review article: Roberts, 2008).

However, there are still pressing methodological concerns. Within the age range of radiocar-
bon dating luminescence dating (TL/OSL) provides a highly reliable numerical dating method
and its validity can be proved by independent age controls. Beyond the age range of conven-
tional coarse grain (cf. Sec. 1.3 and Fig. 1.7) quartz dating on loess (depending on the dose
rate: 50ka to 80ka; e.g. Zoller, 2010), dating may fail due to the saturation limit of the
dosimeter. For the fine grain fraction of quartz, higher saturation doses (i.e. extended age
ranges) are reported (cf. Roberts, 2008) but they seem to underestimate the expected age
(e.g. Lowick and Preusser, 2011; Timar et al., 2010). Furthermore, smaller grain sizes may
reflect different post-depositional transport processes resulting in differing ages. Here, further
investigations are needed.

Higher saturation doses and therefore extended age ranges are enabled by IRSL dating on
coarse grain K-feldspars or polymineral (a mixture of minerals) fine grains, but luminescence
dating on feldspars suffers from age underestimations due to an anomalous signal loss over
time (anomalous fading: Wintle, 1973; Visocekas, 1985). Much effort has been undertaken
to overcome this problem by numerical corrections (e.g. Huntley and Lamothe, 2001; Auclair
et al., 2003) or adjusted measurement routines (e.g. Kadereit, 2000). An alternative approach
of feldspar dating using a new measurement protocol (post-IR IR protocol) was introduced
in 2008 by Thomsen et al. (2008). The post-IR IR approach deals with measuring a signal
component that is assumed to be less fading affected. Although applied on loess sections (e.g.
Vasiliniuc et al., 2012; Thiel et al., 2011a), this method is still under discussion and has not
been proven beyond any doubt (e.g. Lowick et al., 2012). In addition, Buylaert et al. (2011)
reported unbleachable signal residuals when applying the new protocol which indicated different
bleaching characteristics of the investigated luminescence signals.

Accounting for the mineral composition of loess (quartz content in European loess: 40—
80 %; Rousseau et al., 2007) and considering the disadvantages of feldspar dating, almost all
age results of this thesis have been carried out using OSL dating on quartz. The investigated
age range covers the full last-interglacial cycle. The potential differences between the grain



1 Extended Summary

size fractions have been investigated and combined with further methodological investigations.
The general objectives of this thesis are provided in the following section.

1.1.2 Objectives

This cumulative thesis is intended as a contribution towards the establishing of reliable high-
resolution numerical chronologies based on quartz OSL dating on loess palaeosol-sequences for
the last glacial-interglacial cycle. Designed as an applied-methodological study it continues the
closely-related progression of luminescence dating and loess research.

1. Establishing high-resolution chronostratigraphies

Luminescence dating has become one the most important numerical dating technique for
terrestrial sediment archives but it remains challenging. Although widely applied on Qua-
ternary sediment archives the obtained age results depend on different circumstances that
may hamper the dating procedure. (a) The dosimeter used for dating may suffer from
bad luminescence characteristics, e.g. dim luminescence signal, domination of improper
slowly bleachable signal components or early signal saturation that limit the datable age
range. (b) The investigated transport process may not have had sufficiently reset the
latent luminescence signal, e.g. due to short travel distances. (c) Uncertainties in the
dose rate estimation, e.g. due to radioactive disequilibria.

The prime objective was to establish a reliable high-resolution numerical chronostratigra-
phy on Late Pleistocene loess sections in the Saxonian Loess Region using OSL dating.

The study of Meszner et al. (2011) using IRSL dating on polymineral fine grain (4—11 pm)
samples showed the general suitability of the Saxonian Loess Region for luminescence
dating and due to the aeolian origin of the loess the luminescence signal was expected to
have been fully reset during transport. For the IR-stimulated luminescence signal of the
polymineral fine grain fraction it is believed that the measured signal in the violet-blue
band is dominated by feldspar minerals. However, it is known from feldspar that it suffers
from anomalous fading (Wintle, 1973) that potentially leads to age underestimations.

For this thesis the strategy was to establish the chronological framework on the mineral
quartz and it is hypothesised that a reliable chronostratigraphy can be established up to
the Eemian interglacial (MIS 5d, 5e; Shackleton, 2003).

2. Investigation of luminescence characteristics on different grain size fractions

Luminescence dating is widely applied on loess archives but the dating procedure is not
that straight forward. For luminescence dating on sediments, in general three different
grain size fractions are used: (a) coarse grain (c. 90-250 pm; e.g. Wintle, 2008a), (b)
middle grain (c. 38-63pum; e.g. Lai and Wintle, 2006) and (c) fine grain (4-11pm;
e.g. Roberts, 2008). The selection of a specific grain size for the dating procedure
depends on practical (e.g. grain size availability in the target sediment) or methodological
considerations (e.g. higher saturation doses for fine grain compared to coarse grain;
e.g. Roberts, 2008).

The question remains whether the selection of a specific grain size fraction for dating from
a bulk sample is justified: (a) Different luminescence characteristics for distinct grain size
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fractions are mentioned in the literature (e.g. Wang and Miao, 2006; Roberts, 2008; Lai,
2010; Timar-Gabor et al., 2011) and (b) different transport histories and processes may
result in different depositional ages for the specific grain fractions (e.g. post-depositional
translocation). Systematic investigations on this question were missing at the beginning
of this thesis.

The goal was to compare the luminescence characteristics of different quartz grain size
fractions and compare the obtained age results.

It is hypothesised that grain size fractions show specific luminescence characteristics due
to differences in the dosimeter and therefore result in different luminescence ages.

3. Methodological investigations

Luminescence dating dates back to the 1950s (Daniels et al., 1953; Houtermans and
Stauffer, 1957; Grogler et al., 1958) but it has been greatly improved during the last
decades (review articles: Wintle, 2008b,a, 2010).

For example, for quartz Bailey et al. (1997) proposed that the signal of quartz com-
prises at least three individual signal components with individual bleaching and saturation
characteristics. These signal components can be convoluted by mathematical fitting and
visualised as peak shape curves by measurements ramping the stimulation power (e.g.
LM-OSL measurements) or mathematical transformation of the continuous wave (CW)
measurement. Such investigations allow the characterisation of the dosimeter and the es-
timate whether a dosimeter is suitable for dating or not (e.g. contains an easy bleachable
fast component).

The strategy of this thesis was in general to enhance the combination of methodologi-
cal analysis and dating applications on loess to evaluate and improve existing attempts
towards reliable chronologies on loess deposits.

It aimed at using different methodological approaches during the dating process to inves-
tigate luminescence characteristics and to further methodologically improve the lumines-
cence dating on loess archive.

1.1.3 Thesis scope and format

For this thesis seven studies are selected and presented which were carried out between Oc-
tober 2008 and August 2012 and contributed to international peer-reviewed journals (full list
of publications Ch. C). All studies deal with the application of luminescence dating to estab-
lish numerical chronologies on loess-palaeosol sequences or focusing on somehow more specific
technical or methodological aspects of luminescence dating. The studies should not be consid-
ered as insular contributions but comprehensive developments and investigations that became
necessary during the research process to cover the objectives of this thesis. The studies can
be classified using three categories:

e Dating application (Sec. 1.1.3.1)

e Technical investigations and developments (Sec. 1.1.3.2)
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e Methodological investigations (Sec. 1.1.3.3)

This allows the reader to trace the research process, it provides a link between these studies
and it outlines the purpose of each study.

Five out of seven manuscripts (Ch. 2—6) were prepared as first author articles including data
analysis, writing, scientific discussion, illustration and correspondence with the journal editor if
not stated otherwise. For the other two manuscripts (Ch. 7, 8) substantial contributions as
co-author were provided. The approximated relative authors contributions to each manuscript
are given on the cover sheet of each study. The journal and the publication status are shown
on the cover sheet of each study. The summarised (partly so far unpublished) dating results
are listed in Ch. A.1 (D, values and age results) and Ch. A.2 (nuclide concentrations and dose
rates).

The following subsections (Sec. 1.1.3.1-1.1.3.3) summarise the main intention of each study.
Section 1.2 briefly describes the main research area. Section 1.3 examines the method of
luminescence dating in more detail to provide the basic methodological concepts. In Sec. 1.4 the
main results of this thesis are presented and discussed and subsequently summarised (Sec. 1.5).

1.1.3.1 Dating application

Most of the presented work was carried out within the framework of the DFG funded research
project 'Saxony Loess’ (FU 417/7-1 and FU 417/7-2) that was intended to reconstruct the
palaeoenvironmental conditions of the Late-Pleistocene in Middle Saxony using loess-palaeosol
sequences. As a co-operation between the TU Dresden and the University of Bayreuth the
objective of this project was twofold: (a) To establish a litho- and pedostratigraphy (TU Dres-
den) and (b) to provide a luminescence based high-resolution chronostratigraphy (University of
Bayreuth).

Once the loess layers have been identified, characterised and classified by fieldwork, a numer-
ical chronostratigraphy is needed to reveal their full stratigraphic significance. In the framework
of the DFG project 'Saxony Loess’ on five loess profiles in Saxony and one profile in Saxony-
Anhalt numerical chronologies have been established.

To get started the loess section Ostrau as the most complete last glacial-interglacial loess
section in Saxony was selected as key location for high-resolution OSL dating.

Chapter 2 introduces a chronostratigraphy based on 20 OSL samples. From each sample
three different quartz grain size fractions (coarse, middle and fine grain) were prepared. The
study (a) shows the suitability of the Saxonian loess belt for OSL dating on quartz, (b) intro-
duces the OSL based chronostratigraphy and (c) systematically compares the derived quartz
coarse (90-200 pm) and fine grain ages (4-11pm). The OSL ages based on the middle grain
quartz fraction (38—-63 um) were not part of this study and are thus briefly presented and dis-
cussed in Sec. 1.4.1.1.1.

In preparation of the field trip of the 37t" meeting of the German working group on geo-
morphology to the Saxony-Anhalt loess belt the opportunity arose to reinvestigate the locally
important quaternary profile Zeuchfeld. The profile is part of the Middle German Loess Region
and is well known for its sandur (Zeuchfeld Sandur) at the base of the profile and the overlying
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periglacial deposits (e.g. Ruske, 1961; Meng and Wansa, 2008). To validate the stratigraphical
classification of the Saxonian Loess Region introduced by Meszner et al. (2011) a chronos-
tratigraphy for the profile Zeuchfeld was determined for the first time and compared with the
findings from the Saxonian Loess Region.

Chapter 3 presents and discusses the dating results as a combination of (a) conventional
OSL quartz dating for the loess deposits and (b) innovative feldspar dating using infrared ra-
diofluorescence (IR-RF; Trautmann et al., 1999; Erfurt and Krbetschek, 2003; Erfurt, 2003) for
the Zeuchfeld Sandur. Originally, it was intended to continue the systematic age comparison
of different quartz grain size fractions on the profile Zeuchfeld. Due to feldspar contamination
of the quartz extracts and limited sample material the dating was limited to only one grain size
fraction per sample but the differences in the luminescence characteristics are discussed.

Based on the ongoing fieldwork and the comprehensive numerical framework it was finally
possible to present a revised composite profile for the Saxonian Loess Region.

Chapter 7 summarises and combines the results from the investigated loess sections in
Saxony as an attempt to reconstruct the Pleistocene landscape dynamics. Furthermore, the
chronostratigraphy for the loess record Seilitz is introduced. The luminescence dating was
almost carried out on fine grain quartz separates. However, to provide a cross-validation of
the obtained dating results on the mineral quartz, additionally polymineral fine grains were ex-
tracted to apply a, at this then, newly developed dating protocol (post-IR IR protocol; initially:
Thomsen et al., 2008) on 5 out of 11 samples.

Chapter 8 is intended as a supplementary dating study. This study introduces a revised
chronostratigraphy for the famous loess section Dolni Véstonice in the Czech Republic (e.g.
Klima et al., 1962), well known for its high-resolution loess-palacosol sequence of the last
interglacial-glacial climatic cycle. Carried out between 2009 and 2011, the study deals with
luminescence dating on different grain size fractions of quartz separates. It logically continues
the combination of field work, dating application and methodological investigations towards
reliable numerical frameworks back to the Eemian.

Further related studies (not part of this thesis):

e [ntroducing a chronostratigraphy of the profile Gleina in Saxony based on fine grain quartz:

Zech, M., Kreutzer, S., Goslar, T., Meszner, S., Krause, T., Faust, D., Fuchs, M., 2013.
Technical Note: n-Alkane lipid biomarkers in loess: post-sedimentary or syn-sedimentary?
Biogeosciences Discuss 9, 9875-9896.

doi: http://dx.doi.org/10.5194/bgd-9-9875-2012

1.1.3.2 Technical investigations and developments

In an ideal manner the research process is a step by step process along a well defined path that
finishes the previous step before moving on to the next step. Imbedded in a comprehensive
project framework it often requires a multiple step approach to pay attention to more practical
aspects or to take into account external forces. Such requirement for intermediate steps may
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grow if it turns out that the common approach of data handling and visualisation is no longer
feasible to efficiently analyse the produced amount of data.

Chapter 4 deals with a software developed for the numerical programming language R (e.g.
Hornik and Leisch, 2002; Ligges, 2008). The R package ('Luminescence’) for luminescence
dating data analysis (e.g. LM-OSL component separation or data visualisation) has been con-
tinuously developed during the entire time of this thesis. Initially split up over several R scripts,
the software code was bundled in functions and subsequently provided as R package. The
package was first released in version 0.1.7 in June 2012 under General Public License (GPL)
conditions via the Comprehensive R Archive Network (CRAN). Part of this thesis is the R
package 'Luminescence’ in version 0.2.1 All included functions with the primary author are
given in Ch. A.4.

Chapter 5 accounts for an observation that was made during the luminescence measure-
ments on polymineral fine grain samples from the profile Seilitz (Ch. 7). The measurement of
every first subsample (aliquot) yielded substantially higher D, values. After a series of further
test measurements thereof it was hypothesised that the luminescence signal on the adjacent
measurements positions were reduced due to a cross-bleaching effect (e.g. Bray et al., 2002)
of the used infrared light stimulation head of the luminescence reader. The preliminary results
were first presented on the German LED meeting in Innsbruck in 2010 and later confirmed
by Hiille (2011). Since the cross-bleaching effect of commonly used Risg TL/OSL readers
had never been investigated before, it was decided to conduct a comprehensive series of test
measurements on 10 TL/OSL readers over four luminescence laboratories to investigate and
quantify the effect of optical ‘cross-talk' (cross-bleaching).

Further related studies (not part of this thesis):

e [nvestigation of calibration quartz that has also been used for the B-source calibration at
the luminescence laboratory in Bayreuth:

Kadereit, A. and Kreutzer, S., 2013. Risg calibration quartz — a challenge for B-source
calibration. An applied study with relevance for luminescence dating. Measurement 46
(7), 2238—-2250.

doi: http://dx.doi.org/10.1016/j.measurement.2013.03.005

e Investigation of luminescence signals from empty sample carriers used for the lumines-
cence dating application:

Schmidt, C., Kreutzer, S., Fattahi, M., Bailey, R.M., Zander, A., Zoller, L., 2011. On
the luminescence signals of empty sample carriers. Ancient TL 29 (2), 65-74.

1.1.3.3 Methodological investigations

In a more general approach the progress of scientific knowledge is an ongoing process of
hypothesising and evaluating. The emission of light from natural minerals (e.g. quartz or
feldspar) is a release of energy previously absorbed by interaction of ionising radiation with
matter (cf. Sec. 1.3). For the luminescence dating process (i.e. determination of ages) several

LCD in the cover of this thesis or via CRAN: http://cran.r-project.org/web/packages/Luminescence/index.html
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considerations have to be made accounting for the type of radiation. Due to different ionisation
densities, the luminescence induced per unit Gy of a-radiation varies from that of - and -
radiation. In the luminescence dating practise this behaviour is expressed as a-efficiency or
a-value (cf. Aitken, 1985b) and is also relevant for fine grain dating (for details cf. Sec. 1.3).

For the cross-validation of the fine grain quartz ages carried out on the profile Seilitz the
polymineral fine grain fraction was used applying the post-IR IR protocol (Thomsen et al.,
2008). This protocol is proposed to be less affected by fading because it measures two infrared
light stimulated luminescence signals, the second, less fading affected signal, is measured at
higher temperatures. However, for the dose rate calculation it is assumed that a common
a-value (a-(radiation)-efficiency; cf. 1.3.1.1) can be used for both signals. This raised the
question if this common practise using a fixed a-value is justified.

Chapter 6 deals with this more fundamental concern by presenting empirical results of a-
values measured with the post-IR IR protocol along with theoretical considerations using the
polymineral fine grain fraction. The obtained a-values of this study have been further used for
the age calculation in Ch. 7

A complete list of all a-values measured for fine grain quartz and polymineral separates are
given in Ch. A.3.

Further related studies (not part of this thesis):

e Methodological investigations on amorphous/microcrystalline SiO» using the R package
'‘Luminescence’ and the LM-OSL approach:

Schmidt, C. and Kreutzer, S., 2013. Optically stimulated luminescence of amorphous/mi-
crocrystalline SiO, (silex): basic investigations and potential in archeological dosimetry.
Quaternary Geochronology 15, 1-10.

doi: http://dx.doi.org/10.1016/j.quageo.2013.01.005

e [nvestigation of the luminescence characteristics of the local quartz using TL and LM-
OSL techniques:

Fuchs, M., Kreutzer, S., Fischer, M., Sauer, D., Sgrensen, R., 2012. OSL and IRSL
dating of raised beach sand deposits along the southeastern coast of Norway. Quaternary
Geochronology 10, 195-200.

doi: http://dx.doi.org/10.1016/j.quageo.2011.11.009

1.2 Regional setting

As mentioned, one of the prime objectives of the overarching project framework of this thesis
was to establish chronologies on loess records in Saxony (Germany) using luminescence dating
technologies. Two of the presented dating applications (Ch. 2, 7) were carried out in the
Saxonian Loess Region (Saxony/Germany) and for the technical and methodological studies
mostly samples from loess records in Saxony were taken (Ch. 4, 5, 6).

As part of the European loess belt (e.g. Haase et al., 2007; Antoine et al., 2013) the Saxonian

Loess Region is located on the northern foothills of the Erzgebirge in a transition zone between
oceanic dominated western and continental dominated eastern climates. The Saxonian Loess
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Figure 1.1: Research area in Saxony/Germany with profile locations. The applied luminescence
dating (used mineral and grain size fractions) and the age range (minimum and
maximum extent) covered by luminescence dating as Marine Isotope Stages (MIS)
for each investigated loess record are shown. MIS stages according to Lisiecki and
Raymo (2005).

Region relates to the local major geographic region 'Sachsisches Hiigelland’ (e.g. Lieberoth,
1959). It is featured by abrupt changes between loess deposits and glacial and glaciofluvial
sediments with intercalated pedocomplexes of various intensities. The up to 20 m thick bodies
of loess contain loess and reworked loess from the last glacial-interglacial cycle (Meszner et al.,
2011). The recent mean annual temperature in the research are in Saxony is ~8-9°C with
a total mean precipitation between ~ 600 mm and ~ 750 mm per year (1961-1990; Bernhofer
and Goldberg, 2008).

The significance of the regional Weichselian loess accumulations were noticed at the begin-
ning of the last century (cf. Meszner et al., 2011). However, first intensified palaeopedologic
and stratigraphic investigations go back to the late 1950s (Lieberoth, 1959) and were continued
during the following years (e.g. Lieberoth, 1962; Haase, 1963; Lieberoth, 1964; Lieberoth and
Haase, 1964; Haase, 1968). Since 2004 the loess records in Saxony have been subjected to sys-
tematic investigations using a multi-methodological approach and since 2008 these efforts have
given rise to the DFG project 'Saxony Loess’ to combine litho-, pedo- and chronostratigraphic

11
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findings.

An overview of the investigated loess sections in the Saxonian Loess Region along with the
applied luminescence dating is provided in Fig. 1.1. The figure shows the chosen mineral and
grain size fraction for each profile and the approximated covered age ranges? investigated by
luminescence dating are given as Marine Isotope Stages (MIS). Almost all investigated profiles,
except the profile Rottewitz, are located on the western side of the river Elbe. An additional
map showing the loess distribution is provided with Fig. 7.1.

The different regional settings of the accompanying investigated loess records Zeuchfeld
(Ch. 3) and Dolnfi V&stonice (Ch. 8) are given in Sec. 3.2, Fig. 3.1 and Sec. 8.1, Fig. 8.1.

1.3 Luminescence dating

This section briefly summarises the basic concepts of the luminescence phenomenon and dating
procedure. The section aims at providing (1) an overview in a general manner and (2) focusing
attention on some aspects relevant for this thesis.

1.3.1 The luminescence phenomenon

Luminous effects are well-known from every day experience: Warning plates are still visible when
the light is switched off or bicycle reflectors seem to flash when they are illuminated. However,
not every illumination effect should be termed 'luminescence’. Whereas the first observation
on the warning plate is probably related to some kind of phosphorescence, the latter one is just
a reflection.

Although first observations of the luminescence phenomena are believed to date back to far
eastern and classical antiquity (cf. Newton, 1957) and the first written description is attributed
to Sir Robert Boyle in 1664 (e.g. Newton, 1957; Yukihara and McKeever, 2011), the term
'luminescence’ was introduced by Eilhardt Wiedemann. The German physicist used the term in
1888/1889 to distinguish between light emitted during heating of solids to incandescence and
light emission that does not correspond to the actual temperature and therefore is independent
of the thermal background (e.g. Newton, 1957; Mahesh et al., 1989; Yukihara and McKeever,
2011). The first effect is occasionally called "hot light’, the latter one 'cold light'. According to
the process of light excitation (in the visible or near visible range), the term luminescence has
undergone several classifications such as 'thermoluminescence’ (thermally stimulated lumines-
cence), 'photoluminescence’ (light emission caused by light radiation) or "triboluminescence’
(light excitation by grinding; cf. Mahesh et al., 1989). To distinguish the phenomena by the
time it takes for the emission to takes place after stimulation (delay) the terms 'fluorescence’
(t £1078s) and 'phosphorescence’ (t > 1078s) were used (cf. McKeever, 1988). The opti-
cally stimulated luminescence (OSL) phenomenon used for dating in this thesis is referred to
as phosphorescence phenomenon (photophosphorescence, Yukihara and McKeever, 2011) and
should not be mixed up with the related term 'photoluminescence’, which is used for prompt
light emission. For the latter one no prior energy absorption by ionising radiation is necessary
and thus the emission intensity is independent of the previously stored energy (cf. Bgtter-Jensen
et al., 2003b; Yukihara and McKeever, 2011). In contrast, the emission intensity of the OSL
signal is (amongst others) a function of the absorbed energy (over time).

2The given age ranges do not mean that the profiles contain the complete age information. They just indicate
the minimum and maximum age extent of the investigated part of the profile.
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1.3.1.1 Theoretical background

The theory of luminescence dating is based on the observation that crystalline solids (con-
ductors and semiconductors) are capable to store energy from radiation emitted by naturally
occurring traces of radioactive nuclides and their decay products (238U,23%U, 232Th, 49K 8"Rb)
and cosmic rays (primary muons; Prescott and Hutton, 1994). Therefore, the light emitted
by the stimulation process (e.g. thermal or optical) is just absorbed energy that is released.
The process of energy storage and release is commonly described using the energy band model.
Within crystalline solids sets of discrete energy levels constitute “periodically varying potentials”
(McKeever, 1988, p. 20) of allowed zones ('bands’) of energy states for electrons. The energy
bands are separated by energy gaps. For semiconductors and insulators the zone between the
uppermost energy level filled with electrons (valence band) and the next (partly) unfilled band
(conduction band) is called 'forbidden zone'. The width of the forbidden zone, i.e. the distance
between valence and conduction band is specified as the energy (E4 in eV) needed to surmount
this potential barrier (e.g. for quartz ~8.5¢eV; Bailey and McKeever, 2012).

AA A A A AAAAAA A B A B A
AARAAAI|IAAAAA BAA:(.A)
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"
A A A AA AA A A A B A B A B
Vacancy Interstitial Disorder
(Schottky defect) (Frenkel defect)

Figure 1.2: Intrinsic point defects redrawn from Mahesh et al. (1989).

An ideal crystal would never exhibit any capability of storing energy. However, any disturbance
in the periodicity of the crystal, like structural defects and/or impurities within the lattice,
causes localised energy states in the forbidden zone (e.g. McKeever, 1988; Demtréder, 2005;
Bailey and McKeever, 2012). The literature distinguishes between intrinsic and extrinsic defects
(McKeever, 1988). Intrinsic defects (Fig. 1.2) are point defects like vacancies or missing
atoms (Schottky defects), interstitials (Frenkel defects), atomic disorders or an aggregation of
these defects (Mahesh et al., 1989; Furetta, 2010). Extrinsic or impurity related defects are
substitutionals or interstitials caused by impurities (e.g. Mahesh et al., 1989; Furetta, 2010),
i.e. additions not belonging to the regular crystal structure such as the replacement of Si** by
At in a quartz crystal (cf. Preusser et al., 2009).

The defect-induced localised energy states provide discrete energy levels of positive net charge
in case of electron traps within the forbidden zone (gap) of the crystal where an electron,
displaced from the valence band by ionising radiation and migrating through the crystal lattice,
can become trapped (process of energy storage). Therefore, these energy levels (centres)
are called 'electron traps’ or 'recombination centres’. Traps are located near the band edges,
whereas recombination centres are situated towards the middle of the band gap (McKeever,
1988; Bailey and McKeever, 2012). Once an electron is freed from the valence band a cation
vacancy is induced and might get trapped in a defect center of opposite charge ('hole trap’;
Bailey and McKeever, 2012; McKeever, 1988). In Figure 1.3 the basic principle of excitation
and recombination can described by two models: The Schon-Klasen scheme (Fig. 1.3a) and the
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Figure 1.3: Energy band diagram with modifications redrawn from Bailey and McKeever (2012).
Recombination schemes are shown according to Schén-Klasen (a) as recombination
of an electron with a trapped hole and Lambe-Klick (b) as a mobile hole with a
trapped electron. Solid lines show electrons, dashed lines hole transfers, respec-
tively. VB = valence band, CB = conduction band. Details see main text.

Lambe-Klick scheme (Fig. 1.3b). In both cases an electron is evicted from the valence band by
ionising radiation. Differences occur in the recombination process. In the Schon-Klasen scheme
the recombination process is described as relaxation of the electron from an excited state to the
ground state (valence band), accompanied by a photon emission. In the Lambe-Klick scheme
the photon emission is induced by a mobile hole that “migrates to the vicinity of a trapped
electron which then returns to the valence band” (Bailey and McKeever, 2012, p. 9).3

The mean time an electron spends in a trap can be approximated (15t order kinetics) with
the Arrhenius equation (e.g. Furetta, 2010):

E
T = s texp <kBtT> (1.1)

where s is the frequency factor in s, E; the thermal activation energy in eV, kg is Boltzmann's
constant (8.617 x 107>eV K1) and T the temperature in K. The frequency factor is the
attempt-to-escape frequency and therefore the interaction of the electron with the crystal
lattice (Furetta, 2010). The probability for the charge carrier to escape from the trap is:

p= p= (1.2)

As luminescence dating is based on the principle of energy storage in the form of electrons
trapped at excited energy states, this relationship becomes fundamentally important for this
discussion of luminescence dating. The mean (life) time an electron spends in a trap is finite
and should be, however, greater than the investigated age range. For example, a trap depth

3For further details the reader is referred to the original literature: Schén (1942); Klasens (1946); Lambe and
Klick (1955).
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of E = 1.74eV with a frequency factor of s = 8.9 x 103 s~! would result in a lifetime of
~292Ma at T = 20°C = 293.15K.* Compared with the usually investigated age range of a
few hundred ka, this value seems sufficient for using luminescence dating on quartz. Aitken
(1985b) suggests a lifetime 10 times the age of the sample.

For TL the trap depth is related to the corresponding TL peaks (i.e. luminescence intensity
with temperature) in the glow curve which was first recognised by Urbach (1930). However,
once an electron is trapped at an excited state the energy needed to free the electron again
from the trap is lower than the energy to excite another electron from the valence band. The
eviction process (stimulation) is caused again by energy transfer, here heating (TL) or optical
stimulation (OSL). In the simplest (single electron trap) case, the released electron travels via
conduction band and recombines with a hole at a lower energy state (near the edge of the
valence band). This process is accompanied by the release of a photon in the visible or near
visible spectrum.

Indeed, the process of recombination is much more complex and many other schemes (re-
trapping, non-radiative recombination, direct transitions via tunnelling) for this kind of “lattice
relaxation” (Bailey and McKeever, 2012, p. 11) are thinkable depending on stimulation con-
ditions, i.e. temperature and stimulation wavelength and not last on the dosimeter itself, but
this has to be beyond the scope of this section. To summarise, the eviction and recombination
process can be related to different emission energies and the process of recombination is not
always accompanied by the release of a photon in the visible spectrum. The wavelength emit-
ted is characteristic of the investigated mineral and related to the defects in the crystal lattice
mentioned above (McKeever, 1988).

For natural quartz several kinds of imperfections and impurities lead to a broad complex
emission spectrum depending on the type of stimulation and the trap-centre pairs, i.e. the
energy required to evict an electron from the trap and “the energy loss required for the re-
combination centre to relax to a lower energy state” (Bailey and McKeever, 2012, p. 10).
The stimulation and detection wavelengths relevant for luminescence dating were summarised
by the spectral investigations of Krbetschek et al. (1997). However, the emission does not
occur continuously over the entire visible and near visible (visible plus UV, infrared) spectrum
but is characterised by several mineral specific emission wavelength windows. With regard to
the chronometric application, luminescence dating utilises this observation by selecting specific
stimulation and detection wavelengths. For example OSL dating on quartz is mainly carried out
using optical stimulation in the blue band and detection in the UV band (cf. Sec. 1.3.3.3 for
technical details). Chapter B in the appendix provides a chart of the commonly used mineral
related emission and detection wavelengths along with the characteristics of the used optical
filters.®

The last paragraph of this section focusses in more detail on what was mentioned just briefly
at the beginning: The energy storage process in the crystal by trapping charge carriers is induced
by energy transfer due to external or internal (e.g. from internal U) radiation. Depending on
the type of radiation, a, B and v (and cosmic rays), different types of lattice interactions
occur. Of paramount interest is the amount of energy loss when radiation passes through the

*Values according to Singarayer and Bailey (2003) for the fast component of quartz.

5Note: The chart provides a simplified view as it does not distinguish between optical and thermal stimulation,
nor are all possible stimulation wavelengths or filter characteristics shown. Spectral wavelength ranges
according to Stocker (2010)
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crystal lattice; it depends on the character of the irradiation (e.g. energy, mass) as well as
on the composition of the traversed matter (e.g. density). During radioactive decay different
types of radiation (o, B and 7y) are emitted, differing in their mean range in matter (2 20 ym
for a-particles, ~2mm for B-particles and ~ 30 cm for «y-rays for standard rock;Stolz, 2005;
Aitken, 1985a) and the type of energy transfer. Charged particles, such as a- and B-particles,
lose energy due to a number of atomic collisions. Photons (- and X-rays) may be directly
absorbed with the first collision, releasing a (secondary) charged particle travelling through the
matter (Bailey and McKeever, 2012; Stolz, 2005). Depending on the photon energy different
kinds of interaction processes are possible: photoelectric effect (absorption of the photon),
Compton effect (scattering of the photon) and pair production (absorption of a photon by an
electron and release of electron/positron pair).

With regard to luminescence dating, the different types of radiation-dependent lattice in-
teractions result in specific ways of energy transfer. Beta- and <y-radiation or X-rays show a
low ionisation density (or low linear energy transfer, LET) and high efficiency, expressed as
induced luminescence per unit of energy. In contrast, heavy charged a-particles have a high
ionisation density (e.g. Zimmerman, 1972; Jain et al., 2007), but lower luminescence efficiency
and a higher probability of defect creation, i.e. creating new traps; e.g. Kalefezra and Horowitz
(1982).

1.3.1.2 Towards a dating application

The recognition of the proportional relationship between the amount of absorbed energy and
the amount of released luminescence during heating in the 1950s resulted in early investiga-
tions on dosimetric applications (cf. McKeever, 1988). First applied on alkali halides in 1953,
Daniels et al. (1953) suggested the application for luminescence in terms of environmental
dosimetry, as follows: “Any new method for dating rocks and minerals is well worth exploring,
[...]" (Daniels et al., 1953, p. 349). The first dating applications using TL were carried out on
meteorites by Houtermans and Stauffer (1957) and continued by Grogler et al. (1958) and e.g.
Aitken et al. (1964). Following applications of TL dating were carried out almost exclusively in
archaeological sciences. Dating of sediments emerged in the late 1970s and early 1980s, with
loess being one of the first sediments to which luminescence (TL) dating was applied (review
articles: Wintle, 1980, 1990). With the introduction of optical dating on quartz (Huntley et al.,
1985) and later feldspar (Hiitt et al., 1988), however, this “progenitor” (Aitken, 1998, p. v)
has been favoured by OSL dating due to shorter bleaching times needed for the signal resetting.

The principle of luminescence (here OSL) dating on sediments is shown in Fig. 1.4. Natural
minerals such as quartz or feldspars work like a battery that can be continuously charged and
released. Charging is induced by environmental radiation when the sediment is buried. Sun-
light exposure during sediment transport processes (e.g. aeolian) releases the energy until the
mineral grains are covered again. The energy release process can be induced in the laboratory
using artificial light sources.® The natural signal growth is assumed approximately following an
exponential saturating function (cf. Eq. 1.10) due to a decrease of available free electron traps
with increasing dose.

The (cumulative) absorbed dose, i.e deposited energy by ionisation radiation per unit mass,
is called palaeodose (natural dose), since it cannot be directly read from the mineral, but only

5To avoid confusion: The linear luminescence signal growth in Fig. 1.4 is a graphic simplification.
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Figure 1.4: The principle of luminescence dating, show the luminescence signal growth and
depletion over geologic time scales. The battery symbol indicates the energy storage
and release process. Similar figures can be found in e.g. Preusser et al., 2008;
Fuchs, 2001.

indirectly by measuring the emitted photon flux and calculating an equivalent dose (D, given in
Gy, see also Sec. 1.3.3.4). The energy emitted per time from natural U, Th, Rb, K and cosmic
rays is called dose rate (D in Gy ka~1). The resulting age equation (Eq. 1.3) is a simple division
of these two parameters (for technical remarks cf. Sec. 1.3.3.6):

De [Gy]
D [Gy ka=1]
However, as a drawback to the previous sections, to act as a proper dosimeter for lumines-

cence dating applications the mineral (or more specifically the investigated luminescence signal)
has to fulfil some (amongst other) requirements:

Age [ka] = (1.3)

e Bleachability: The latent luminescence signal has to be reset in sufficient time with regard
to the investigated transport process of the sediment, i.e. question of light sensitive
electron traps zeroing prior to subsequent burial.

e Capacity: The saturation dose of the dosimeter should cover the investigated age range
corresponding to the dose rate specific for the sediment, i.e. question of the number of
available light sensitive electron traps.

e Stability: The signal used for dating has to be stable over the time range of interest:
Thermally (i.e. question of lifetime of the electron traps) and athermally, i.e. question
of possible electron transitions via tunnelling; anomalous fading: Wintle (1973).

e Practicality: The mineral should occur with sufficient quantity in the target sediment and
should be separable from the bulk sediment.

Quartz fulfils these criteria. Mineral grains of quartz are nearly ubiquitous in loess (cf.
Sec. 1.1.1) and quartz has proven to be a stable and reliable dosimeter for loss dating (cf.
Roberts, 2008).
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1.3.2 Luminescence signals

Of particular interest for every kind of luminescence application is the obtained shape of the
signal curve, i.e. luminescence intensity versus stimulation temperature (TL) or stimulation
time (OSL). For TL the appearing temperature related peaks are associated with distinct types
of electron traps (e.g. McKeever, 1988) and the curve peaks may be intuitively interpreted as
singular signals (if not overlapping).

In contrast, a typical OSL curve obtained under constant stimulation power (Astimuration 7#
Adetection) appears to be somehow featureless. Assuming a single type of electron trap and
15t order kinetics (i.e. no re-trapping) the obtained continuous wave (CW)-OSL monotonically
decaying signal curve should follow a single exponential function of the general type (cf. Bailey
and McKeever, 2012):

I (t)eyw = nok exp (—kt) (1.4)

with ng the initially trapped charge at t = 0 and k as the decay constant in s~. Logarithmic
calculus results in a linear function:

In (1 () ep) = In (nok) — kt (1.5)

With regard to the measured CW-OSL signal from a natural sample, however, it becomes
apparent that this assumption might be misleading. Figure 1.5 shows a CW-OSL signal follow-
ing the Eq. 1.4, the inset shows the log count values which graphically follows a linear function.
Contrary, the measured CW-OSL signal reveals a still decaying exponential-like rather than a
linear shape.
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Figure 1.5: Synthetic CW-OSL assuming a single electron trap and 15 order kinetics and natural
CW-OSL curves (BT607, middle grain quartz). The insets show the curve with log
signal values.

The CW-OSL signal comprises a finite number of individual signal components as reported
by Smith and Rhodes (1994). Bailey et al. (1997) postulated that quartz consists of, at least,
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three distinct signal components and due to the individual bleaching characteristics he termed
them as 'fast’, 'medium’ and 'slow’. Later the nomenclature was extended by terms like 'ultra
fast’ and the slow components have been further separated numerically, i.e. 'slow 1'/'s 1’,
'slow 2'/'s 2" and 'slow 3'/'s 3" (cf. Jain et al., 2003; Singarayer and Bailey, 2003). The sum
signal of Eq. 1.6 can therefore be written as a linear combination of j exponential functions:

J
lew (t) = > no,kjexp (—kit) (1.6)
i=1

The distinct signal components are associated with individual types of electron traps (cf. Bai-
ley, 2001) with different bleaching and dose response characteristics that give rise to the sum
signal. OSL dating aims to investigate signal components that have been sufficiently bleached
during transport and can be measured reproducibly. The so called fast component was found
to meet these requirements. In OSL dating on quartz, it is tempted to isolate the fast compo-
nent for D determination. Several approaches of more or less practical relevance have been
suggested to isolate the fast decaying signal component, e.g. by early background subtraction
(Ballarini et al., 2007) or direct measurement using infrared light stimulation (Bailey, 2010).
Although other (less bleachable) components may be used for dating when a dominant fast
component is missing (e.g. Singarayer and Bailey, 2003; Singarayer, 2002), the underlying as-
sumption is that the signal is dominated by the fast component. However, this is in most cases
hardly visible from the sum CW-OSL curve without mathematical fitting procedures. In 1996,
Bulur (1996) presented an alternative read-out method by ramping the stimulation intensity
over time, termed as linear modulation technique (LMT or LM-OSL). The linear ramp is given

as:

b(r) = Py (17)

with @max as the maximal stimulation intensity in cm™
resulting peak-shaped curve can be described as:

2571 P the stimulation period in's. The

J b; b,‘fz
Iim (t) = Znolﬁt exp ( —%5 (1.8)
i=1
with b the detrapping probability

b = 0Pmax (1.9)

Sigma (o) is the photoionisation cross-section in cm? and a fundamental parameter as-
sociated with distinct components resulting in a release of electrons from traps/components
with increasing optical stability (i.e. decreasing detrapping probability) during the measure-
ment. Figure 1.6 shows a comparison of resulting CW-OSL and LM-OSL for similar underlying
assumptions.

Nevertheless, Bos and Wallinga (2012, p. 752) pointed out that the modulation of the
“stimulation power does not result in better separation of quartz OSL components”, but it
may help to visualise the OSL signal components to understand the signal to sum contribution
as a function of the stimulation time. To keep the measurement time as short as possible
mathematical transformation methods can be used to obtain so called pseudo LM-OSL curves,
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Figure 1.6: Synthetic 15t-order kinetics CW-OSL (Eq. 1.6) and LM-OSL (Eg. 1.8) curves com-
prising 5 signal components: ny, 5 = {1 x 10%0,1 % 10%9,1 x 10%,0.7 x 101°,0.3 x
10'?} and b1, 5 = {2,0.05,0.01,0.001,0.0001}. The insets show the plots on a
log scale.

which were first suggested by Bulur (2000). Bos and Wallinga (2012) presented additional
methods with advantages and disadvantages concerning the preferred component to be visu-
alised.

During this thesis several LM-OSL measurements were carried out to investigate the sig-
nal characteristics of the quartz separates and to ensure a domination of the sum signal by
a fast decaying signal component. Automatic LM-OSL fitting routines have therefore been
implemented along with CW-OSL fitting and the transformation methods suggested by Bulur
(2000) and Bos and Wallinga (2012).

1.3.3 Dating practise

In this section the basic technical procedures used for the dating application on quartz are pre-
sented. Most of the sample preparation and measurements were employed at the luminescence
laboratory in Bayreuth. A few samples were partly prepared (Ch. 3) and/or measured at other
laboratories. For the differences in general procedure the reader is referred to the specific study.

1.3.3.1 Sample collection

Two methods of sample collection have been established in the dating routine: (a) Sampling
during nighttime with sampling directly into opaque plastic bags or (b) sampling during daytime
using steel cylinders of varying sizes. For both methods the profile has previously to be carefully
cleaned to locate the distinct sedimentary units of each section. Sampling during nighttime
is carried out using a red light headlamp (A = 640 A 20nm) and after removing the daylight
affected sediment layer. For the sampling procedure during daytime the light-exposed sediment

20



1 Extended Summary

material is removed in the laboratory under subdued red light conditions (A = 640 A 20nm).
On the investigated loess sections the sampling was mostly carried out during nighttime after
preparing the section for luminescence dating sampling. The advantage compared to daytime
sampling is that thin layers (horizons) can be sampled and the amount of the sampled material
is normally not problematic. In contrast, for daytime sampling the amount of material is lim-
ited to the size of the cylinder as well as the diameter. However, practical reasons, accessibility
and/or safety reasons may require daytime sampling.

Sample material for dosimetry (i.e. to determine 238U, 232 Th and 4°K nuclide concentrations)
were taken by random sampling from the surrounding ~ 30 cm. In rare cases the outer daylight
affected material from both sides of the steel cylinders were used.

1.3.3.2 Sample preparation

Sample preparations were carried out under subdued red light conditions (A = 640 A 20nm).
First, the samples were wet sieved to extract the wanted grain size fractions used for dating.
Typically used sieve sizes were: 200 pm, 90 pm, 63pum and 38pm. The fine grain fraction
(4—11 pm) was separated from the fraction < 90 pm by settling applying Stokes’ law. The used
grain size fractions to which luminescence dating is typically applied are shown in Fig. 1.7 with
their corresponding particle size classes.

>288-200 > fine sand
150 coarse grain fine sand
(also 100-200 pm, 125-250 pm)
100— very fine
90 sand
63
50 rF- middle grain .
1 (also 20-50 pm, 63-90 pm) silt
4= " . =.clay
[um] fine grain

Figure 1.7: Typical grain size fractions used for luminescence dating and their corresponding
particle size classes (Chesworth, 2008).

Subsequently, the samples were chemically treated to destroy carbonates and organic material
using HCI (10 % and 30 %) and H202 (10 % and 30 %). The following procedures vary for the
prepared grain size fractions:

(1) Coarse grain (90-200 pm) Heavy minerals and feldspars were separated using density sep-
aration with heavy-liquid solution (lithium heteropolytungstate or sodium polytungstate)
with densities of p = 2.75g cm~3 and p = 2.62g cm~3, respectively. To remove the o-
irradiated outer layer (Fleming, 1970) and remove any remaining feldspar contaminations
the coarse grain extracts were etched for 45 min in HF (48 %) or 60 min in HF (40 %)
and subsequently washed in HCI (10 %) and distilled water.
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(1) Middle grain (38—63 pm) The (polymineral) middle grain fraction was etched in un-
treated H,SiFg (34 %) for at least 14 days to extract the quartz minerals. Quartz grains
were subsequently washed in HCI (10 %) and distilled water (e.g. Lai et al., 2009).

(111) Fine grain (4-11 pm) To extract the mineral quartz the (polymineral) fine grain fraction
was etched in three day pre-treated HoSiFg (34 %)7 for three up to six days and subse-
quently washed in HCI (10 %) and distilled water (cf. Fuchs et al., 2005; Berger et al.,
1980). For the study on polymineral fine grain at the profile of Seilitz (Ch. 7) a part of
the material was not etched.

After etching, the quartz separates were again sieved (coarse grain: 90 um, middle grain:
38 um) or settled using Atterberg cylinders to remove grains smaller than the wanted grain size.
The purity of the quartz extracts was tested by IR stimulation (IRSL/OSL ratio < 2%).8

1.3.3.3 Measurement equipment

Except the radiofluorescence measurements in Ch. 3 all luminescence measurements were car-
ried out on commercially available Risg TL/OSL DA-12 (cf. Ch. 5), DA-15 or DA-20 readers
(Bgtter-Jensen, 1997; Bgtter-Jensen et al., 2000, 2003a)°. All readers were fitted with a EMI
9235Q UV sensitive photomultiplier tube and a 99Sr/90Y B-source. Dose rates are typically
in the range between c. 5Gy min~! and c. 10 Gy min~!. Luminescence was stimulated with
blue LEDs (A = 470 A 20nm, up to 40mW cm~2) and IR LEDs (A = 870 A 40nm, up
to 135mW cm~2). For luminescence detection in the ultra-violet region (quartz) a 7.5mm
Hoya U340 filter and for the violet-blue band (polymineral, feldspar) a 3mm Chroma D410/30x
interference filter (410 A 15nm) or a blue filter combination (BG3, GG400, BG3, BG39) with
comparable transmission window were used (cf. Ch. B in the appendix for the detailed filter
characteristics of the Hoya U340 and Chroma D410/30x filter).

For the three investigated grain size fractions different sample carriers were used. As shown
in Fig. 1.8 the number of accommodated grains on the sample carrier varies with the grain size.
The coarse and middle grain fractions were fixed on the aluminium cups using silicone oil. The
fine grain fraction was adhesively fixed on aluminium disc as a-thin layers. Approximately 2 mg
of sample material were settled on each disc.

For a-irradiation (a-value estimation) two mono-energetic a-sources from the luminescence
laboratory in Bayreuth were used: (a) A built-in 2! Am a-source of one Risg reader delivering
(8.7 Gy min~! to fine grain on aluminium discs) and (b) an external a-source (Littlemore, type
721/B) comprising six 24*Am a-sources each delivering 1.25 Gy min~! to fine grains on alu-
minium discs. The 24 Am sources deliver a-particles with energies of 3.7 MeV. The sources had
been calibrated against the track-length calibrated a-source from the former Forschungsstelle
Archaeometrie at the Max-Planck Institute of Nuclear Science in Heidelberg / Germany. For
all measurements aluminium discs were used. The irradiation was carried out under vacuum

"Pretreatment procedure according to Syers et al. (1968) to remove any traces of HF.

8Note: The rejection criterion is not based on the so called 'IR depletion ratio’ suggested by Duller (2003). For
the purity tests the samples were first measured using IR stimulation at 125 °C and subsequently using blue
stimulation at 125 °C. The net signal integrals of both shine down curves were used to obtain the IRSL/OSL
ratio. The signals were measured in the UV band using a Hoya U340 filter. A preheat of 200°C or 220°C
was applied previous to the IR stimulation.

A technical drawing of the measurement chamber is shown in Fig. 5.1.
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Coarse Grain Middle Grain Fine Grain
(90-200 pm)

(38-63 pm) (411 pm)

Al disc

c. 300-400 grains c. 10* grains c. 108 grains

Figure 1.8: Typical aliquot sizes of different grain size fractions used for luminescence dating.
Depending on the grain size Al cups or Al discs are used. The pictures show quartz
separates.

(< 1072 mbar) conditions.

U, Th and K concentrations for dose rate determination were measured using thick-source
a-counting for the U and Th contents (Zoller and Pernicka, 1989) and ICP-MS (BayCEER
Bayreuth) for the K concentration. Additionally, low-level high-resolution «y-ray-spectrometry
was carried out for U, Th and K concentrations in external laboratories (details given in studies).

1.3.3.4 D, estimation

Since the absorbed dose in Gy cannot be directly measured a reference system is used to eval-
uate the palaeodose (“the dose that the sample received during antiquity”, Aitken, 1985b)
by comparing natural luminescence signals with artificially induced signals. For OSL dating in
general two different approaches for palaeodose estimation have been developed: The addi-
tive and the regeneration method. Regarding the additive method, incrementally increasing
artificial doses are added on top of the natural dose using different sets of multiple aliquots,
before measuring the resulting luminescence intensity. For the regeneration method the nat-
ural signal is recorded and then increasing artificial (regeneration) doses are administered on
previously bleached aliquots (cf. Aitken, 1998). In contrast to the additive method the regen-
eration method can be applied on just one single aliquot to obtain the D, of a sample. The
applied measurement protocol thus comprises several cycles of heating, stimulation and dosing.
However, the luminescence response to a certain dose for the same aliquot can change due to
sensitisation effects (e.g. cf. Chen and Pagonis, 2011). In 2000, Murray and Wintle (2000)
introduced the single aliquot regenerated (SAR) dose protocol which corrects for sensitivity
changes by measuring a separate luminescence signal induced by a constant test dose after
recording the regenerated signals.

All measurements carried out for this thesis are based on the SAR approach on single aliquots.
A generalised SAR protocol is given in Tab. 1.1. Before the protocol is applied for D, deter-
mination, a series of routine test measurements is employed to figure out the optimal protocol
parameters, which are sample dependent. A parameter that is usually altered according to
such series of test measurements is the preheat temperature. Preheats are needed to empty
light sensitive shallow traps that may contribute to the regenerated but not to the natural
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luminescence signal due to a lower lifetime of electrons in those traps (cf. Wintle and Murray,
2006). For this thesis, during combined preheat and dose recovery tests the natural signal was
first bleached and subsequently an artificial dose was administered. SAR measurements using
different preheat temperatures test are aimed at testing the reproducibility of a given dose. The
preheat temperature that showed the best reproducibility was chosen for the final protocol.

Table 1.1: Generalised single aliquot regenerated (SAR) dose protocol according to Murray and
Wintle (2000).

Treatment Observation
[regenerative dose (B-irradiation)]*
preheat@(180,...,260°C) for 10s

blue stimulation©@125°C for 40s Ly, Ly

test dose (B-irradiation)

cutheat to 160°C

blue stimulation@125°C for 40s Th Ty

return to step 1

*skipped for the first cycle

Ln: natural luminescence signal; T,: corresponding natural test signal
Ly: regenerated luminescence signal; Tx: corresponding regenerated test signal

\l@U‘I-PO.)I\)l—‘:H:

Regeneration points are set to enclose the expected range of the D.. For the employed
measurements at least six regeneration points (four dose points, one repeated dose point and
one zero dose point) were set. For higher D (2 200 Gy) more dose points were used. However,
there is no upper limit but additional dose points may substantially increase the measurement
time, particularly for samples with high natural Des.

Along with the mentioned parameters in general every parameter (e.g. read and/or cutheat
temperature) can be altered to increase the reliability of the protocol or to meet previously
defined rejection criteria, as long as the principle of the underlying sequence (progression of
regenerated signal and corrected signal) remains unchanged (cf. Wintle and Murray, 2006, for
further details). Determining the D, means plotting L/T, values against the dose to obtain
so called "'growth’ or 'dose response’ curves. Finally, mathematical fitting is applied to the data
points and the D, can be directly calculated from the fitted function by iteration procedures
(for exponential plus linear function see below). Since it is assumed that the growth of the
luminescence signal with dose can be approximated as an exponentially saturating process
because the electron traps become saturated at higher doses (e.g. Yukihara and McKeever,
2011), the process is mathematically described as:

f(X)EXP:a<1—exp <—(XZC)>) (1.10)

where a describes the saturation dose level, b the onset of saturation and ¢ the y-offset.
Parameter b is called Dg value and suggested as rejection criterion for reliable D, determination
(De < 2Dg; Wintle and Murray, 2006). However, in nature the system is not that simple and
a single exponentially saturating signal growth is the exception rather than the rule (e.g. for
discussion: Bailey and McKeever, 2012; Chen and Pagonis, 2011; Bgtter-Jensen et al., 2003b)
and the fit is often not satisfactory. Therefore, for the dating practise two other functions are
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commonly used, i.e. an exponential plus linear function (Eq. 1.11) and a double exponential
function (Eq. 1.12):

F(X)expiin =2 (1 —exp <— (XJ[; C)> + (QX)> (1.11)

f(X)exprexp = a1 (1 —exp (_(x;q))) + a0 <1 —exp <—(X22C2)>> (1.12)

For Eq. 1.12 it is convenient to assume ¢ to be 0 to make the fitting procedure more stable.10

Although Eq. 1.11 seems to be an appropriate adjustment to the data, for higher dose ranges
it remains physically meaningless (cf. Sec. 1.4). Accounting for an increased interest in higher
dose ranges, i.e. dating 'older’ sediments, in the literature the application of double saturating
exponential functions has emerged (e.g. Pawley et al., 2010; Timar-Gabor et al., 2012; Lowick
and Preusser, 2011; Berger and Chen, 2011). Even the need for a second exponential function
is empirically acknowledged to describe the signal growth at higher doses (cf. Sec. 1.10), the
mechanism is unexplained and the validity for the dating practise is still under discussion (cf.
Timar-Gabor et al., 2012).

D, estimations for this thesis were carried out using the software Analyst version 3.24b
(Duller, 2007). For dose response curve fits for high dose experiments (= 1kGy) the function
plot_GrowthCurve() from the R package 'Luminescence’ was used (Ch. 4).

1.3.3.5 D estimation

The age equation used for luminescence dating (Eq. 1.3) depends on two fundamental values:
The equivalent dose (D) and the dose rate (D). The total dose rate can be described as a
sum function of components related to different types of irradiation:

D.Tota/ = Da + Dﬁ + DI’y + D.Cosmic (1-13)

As mentioned above, the dose rate results from traces of natural radioactive nuclides and
cosmic rays. Due to the specific ranges of the different types of radiation in matter, the calcu-
lations applied for the specific grain size fractions used for dating differ, i.e. due to etching of
the outer rim for coarse grain dating the a-dose rate is neglected. In contrast, the fine grains
are small compared to the mean natural a-particle range (= 20 pm for p = 2.6 g cm™3, e.g.
Aitken, 1985b) and considered as being fully penetrated by a-particles (e.g. Zimmerman, 1971,
1972). However, as mentioned before, the amount of luminescence induced by a-particles is
different from that of B- and y-radiation or X-rays. Thus, the determination of the so called
'a-value' was systematically applied for the fine grain dating for this thesis. For the middle
grain fraction the a-value was deduced from the fine grain fraction and the volume unaffected
by a-radiation was neglected.

9This should be done carefully in the case of high recuperation rates.
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Nuclide concentrations were converted to dose rates using the conversion factors from
Adamiec and Aitken (1998). For the sake of consistency of ages obtained from the Saxo-
nian Loess Region, the re-evaluated conversion factors published by Guérin et al. (2011) during
the work on this thesis were not applied. The internal dose rate for quartz separates was
assumed to be negligible according to the high external dose rate normally determined for
loess deposits (cf. Vandenberghe et al., 2008, for investigations on the internal radioactivity in
quartz). Cosmic dose rates were calculated according to Prescott and Hutton (1994). The
moisture content, which significantly influences the total dose rate due to attenuation of ra-
diation effects, was estimated by: (a) measuring the recent moisture content of the sediment
by drying and (b) considerations on the upper moisture saturation level of the sediment matrix
and sedimentological findings (e.g. hints of soil wetness).

1.3.3.6 Age calculation

Luminescence ages in principle are calculated according to Eq. 1.3. Nevertheless, as mentioned
in the previous section, different parameters have to be included. This was done by using an
MS Excel™ sheet developed by Prof. Dr. Markus Fuchs and Dr. Annette Kadereit for age
calculation. This was used in most cases. In addition, the age calculation software ADELE
(Kulig, 2005) was used (details are given in the studies).

Apart from that, lots of efforts have been undertaken in the OSL dating literature to apply
statistical methods to the D, and/or age distribution to deduce the 'true’ burial dose and
the D, error (cf. Galbraith and Roberts, 2012). But the application of such methods has to
be justified. This might be the case if heterogenous or insufficient bleaching is expected in
a fluvial environment and if dating on small aliquots was performed, i.e. using as few grains
as possible on each aliquot down to just a single grain per aliquot. For loess deposits a priori
no insufficient bleaching is expected due to the windblown origin of the sediment. However,
secondary translocation processes might possibly cause such effects. The dating applied to
coarse grain quartz showed large scattered D, distributions (Sec. 1.4.1); but also during dose
recovery tests. The tried minimum dose/age models (e.g. Fuchs and Lang, 2001; Woda and
Fuchs, 2008) yield unrealistic young ages (data not shown) and have not been further applied.

Since almost all presented chronologies are essentially based on quartz fine grain dating
comprising ~ 10° grains per disc and for this the application of such statistical methods is not
feasible, the obtained D, for every sample was calculated as the mean of individual Dgs from
single aliquots and the standard deviation was taken as error.

1.4 Results & discussions

1.4.1 Dating application

This thesis comprises four dating studies on loess sections in Saxony/Germany (Ch. 2 and
Ch. 7), Saxony-Anhalt/Germany (Ch. 3) and Jihomoravsky kraj/Czech Republic (Ch. 8), com-
bining dating applications with methodological investigations. In this section the main outcomes
of each study and overlapping results are summarised. For methodological details on the lumi-
nescence dating (e.g. individual results of preheat tests, dosimetry etc.) the reader is referred
to the studies themselves.
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1.4.1.1 Main dating results

Chapter 2 presents the first dating results derived through this thesis as a comparison of ages
obtained for two quartz grain size fractions (coarse grain: 90—200 um and fine grain: 4—11 pm).
To determine a high-resolution numerical framework on the Saxonian Loess Region 20 samples
were taken form the profile Ostrau (1.2) in Saxony/Germany. For every sample three grain
size fractions (coarse, middle and fine grain) were prepared. The dating results for the coarse
and fine grain fraction are presented with this study and listed in Tab. 2.2 and Fig. 2.8. The
general suitability of the Saxonian Loess Region for luminescence dating on quartz is shown.

The OSL ages of the two grain size fractions (coarse and fine grain) are consistent within a
20 error range for the upper part of the profile and are in stratigraphic order. From the dating
it was observed that the profile in Ostrau is divided by a hiatus into two parts. In the upper part
of the profile the samples yielded D, estimates < 100 Gy (c. < 30ka) and D, values > 180 Gy
(c. > 60ka) in the lower part. With other words: The entire MIS 3 (29-57 ka; Lisiecki and
Raymo, 2005) is missing in this loess record.

In the lower part of the profile the coarse grain quartz fraction is in saturation, resulting in
unreliable age estimates, whereas the fine grain quartz fraction shows no saturation behaviour
but underestimates the expectations from the litho- and pedostratigraphy. Therefore, the fine
grain quartz ages should be taken as minimum values. Additionally, an adjusted SAR proto-
col for the fine grain quartz fractions was applied using higher cutheat and read temperatures
(cf. Sec. 2.3.3). In contrast to the previous findings for the fine grain quartz fraction, the ob-
tained OSL ages are in good agreement with the litho- and pedostratigraphy, but the reasons
are unknown and further investigations are needed.

Chapter 3 was conducted (a) as an accompanying study to evaluate the stratigraphic clas-
sification of the Saxonian Loess Region presented by Meszner et al. (2011) on a nearby loess
section (Zeuchfeld, Fig. 3.1) in Saxony-Anhalt and (b) as a preliminary dating study on this
loess section for which numerical dating results had been missing so far.

It was found that the quartz mineral fraction (middle and fine grain) from the section is suit-
able for OSL dating up to at least 116 ka. The ages (Fig. 3.2 and Tab. 3.1,3.2) increase with
depth and confirm the previously assumed Weichselian age with the Eemian soil (MIS 5e, 5d)
at the base for the upper periglacial deposits of the profile (Ruske, 1961; Meng and Wansa,
2008). For the underlying fluvioglacial deposits (Zeuchfeld Sandur) luminescence dating on
the potassium rich coarse grain feldspar (K-feldpar) fraction using infrared-radiofluorescence
(IR-RF) shows good luminescence behaviour. However, the IR-RF age (323 4+ 70 ka) overesti-
mates the expected age of the Zeuchfeld Sandur, which is believed to be of Saalian age (MIS 8
to MIS 6, Eis; Eissmann, 1997; Litt et al., 2006). The quartz coarse grain fraction of this
layer yields a saturation age of 179 + 51 ka but should be treated carefully due the saturated
luminescence signal.

Chapter 7 was conducted as a comprehensive study combining sedimentological findings
from 7 loess sections in the Saxonian Loess Region with dating results from the profiles Ostrau
and Seilitz to re-evaluate and extend the pronounced stratigraphic classification published by
Meszner et al. (2011).

For the profile Seilitz 11 samples were dated using the fine grain quartz fraction and in ad-
dition for 5 samples ages are obtained using the post-IR IR protocol (Thomsen et al., 2008)
on the polymineral fine grain fraction (e.g. Thiel et al., 2011a). Ages increase with depth
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from 18.3 £+ 2.2ka at the top (BT706) to 72.8 £ 7.6 ka at the base of the profile (BT715).
As previously observed on the profile Ostrau the profile is divided into two parts by a hiatus
(BT714: < 30ka and BT715: > 70ka). The age results of the quartz fine grain dating are
confirmed by the (fading corrected) post-IR IR dating results. Numerical dating results of the
profile Seilitz are listed in Tab. 7.3 (ages) and Tab. 7.2 (dosimetry). Figure 7.4 provides a
synopsis of the results for the profiles Ostrau and Seilitz.

The dating study on the loess section Dolni Véstonice (Ch. 8) continued and intensified the
monomineralic dating approach to establish a reliable high-resolution chronology for the last
glacial-interglacial cycle as a comparison of three grain size fractions (coarse, middle and fine
grain). To overcome the previously reported problem of age underestimation for the Weichselian
Early Glacial loess on this section (Musson and Wintle, 1994; Zoller et al., 1994; Frechen et al.,
1999), 15 samples were prepared for OSL dating on the coarse, middle and fine grain quartz
fraction. Due to the signal saturation of the coarse and middle grain quartz fractions, for
samples yielding an age > 45ka (> 150 Gy) only the fine grain quartz fraction was used for
age determination (for further discussion see below).

Samples, were all grain size fractions were measured, the derived ages are the same within
errors and therefore a mean age was calculated (Fig. 8.2 and Tab. 8.1, 8.2). Almost all age
estimates are in stratigraphic order except one sample from the base of the profile (BT752)
that underestimates the assumed pre-Weichselian age. The reasons for this age underestimation
remain unknown.

1.4.1.1.1 Supplementary data: Dating results middle grain fraction

The study on the loess profile Ostrau was limited to the coarse and the fine grain quartz frac-
tions. An important aspect that should not be overlooked is that, as mentioned in Sec. 1.1.1,
loess has its modal grain size range in the silt fraction (for the Saxonian Loess Region cf.
Meszner et al., 2011). The choice of the grain size for luminescence dating depends on the
grain size availability in the target sediment and practical considerations, e.g. time for sample
preparation (cf. Sec. 2.1). Besides this, specific grain size fractions can result in differing
luminescence ages due to differences in the transport processes (cf. discussion in Sec. 2.5). In
the conclusion of Ch. 2 it was announced that also the middle grain (38-63 pm) quartz fraction
will be measured. Figure 1.9 shows the, so far unpublished, middle grain quartz ages along with
the age results from the coarse and the fine grain fractions.

Numerical results are listed in the appendix: Sec. A.1 (ages) and Sec. A.2 (dose rates and
nuclide concentrations). Within errors all three grain size fractions yield similar age results.
Though it can be concluded that the fine grain quartz fraction can be used to establish the
chronological framework (see also Ch. 8). For the lower part of the profile no middle grain
quartz ages were obtained due to the signal saturation of the dosimeter (for further discussion
see below). Surprisingly, it was found that the D, distributions of the middle grain quartz
fraction are highly scattered (data not shown). Compared with the coarse grain aliquots, the
number of settled grains on each aliquot is two orders of magnitude larger and lower scatter
was expected due to an averaging effect. The reasons for the differences could not be further
investigated in the framework of this thesis but may serve as a subject for further studies.
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Figure 1.9: Quartz OSL ages for three different grain size fractions from the profile Ostrau.
Numerical data are given in Sec. A.1

1.4.1.2 Methodological aspects

The dating studies deal with two major methodological issues: (a) comparison of the different
grain size fractions used for dating, (b) establishing reliable chronologies using quartz separates
up to the Eemian and therefore beyond the pronounced age range for quartz dating on loess
deposits (e.g. Zoller, 2010; Roberts, 2008).

In Chapter 2 shows that the D, distributions of the coarse grain fractions are highly scattered
(cf. Fig. 2.4). This quartz behaviour in the Saxonian Loess Region was also observed in the
study on the profile Zeuchfeld (Ch. 3). Here, the quartz coarse and middle grain fractions
show a high scatter in the D, distributions, which does not seem to be correlated with the
stratigraphical position. It is perhaps not surprising that ~ 10° grains (fine grain) on an aliquot
(Fig. 1.8) show lower scatter than an aliquot comprising only a couple of hundred grains (coarse
grain) and the differences may originated from an average effect of the luminescence signal.
These variations may reflect differences in the bleaching history, i.e. mixture of grains deposited
over different time periods or insufficient bleaching during reworking or secondary translocation
(cf. Fuchs and Wagner, 2003; Duller, 1994). However, the scatter also occurred during the
combined preheat and dose recovery tests (profile Ostrau: Fig. 2.2, profile Dolni V&stonice:
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Fig. 8.4). These observations indicate that the scatter results from the dosimeter itself and
is probably not related to secondary translocation processes (e.g. insufficient signal bleaching
during the second transport) or post sedimentary mixture effects (mixed ages). The possibility
of different source areas to explain the observed discrepancies by the transport processes (local
and distant transport) could not be further investigated.

The large scatter in the D, distributions of the middle grain fraction (Sec. 1.4.1.1.1) may
originate from a combined effect arising from technical difficulties (e.g. non-mono-layer on the
sample carrier) and the dosimeter characteristics itself because due to the number of grains on
the discs an averaging effect would be expected.

LM-OSL and pLM-OSL investigations performed for selected samples using the R package
'Luminescence’ (Ch. 4) from the profiles Ostrau (unpublished observation), Zeuchfeld (Fig. 3.7
and Fig. 3.9) and Dolni Vé&stonice (Fig. 8.7) show that all investigated samples (independent of
the grain size fraction) consist of a dominant, easy to bleach and fast decaying signal compo-
nent. According to that one would a priori expect similar signal characteristics for every grain
size fraction, but this observation may be misleading. The LM-OSL investigations have not
been performed systematically on all samples during this thesis and an additional component
based age determination could not be accomplished due to time restrictions. Nevertheless, such
investigations are technically possible with the R package 'Luminescence’ developed during this
thesis and the observations can serve for further studies.

Aside from the discrepancies in the D, (age) distributions between the grain size fractions,
the comparative studies (Ch. 2, 3,8) show grain size dependent differences in the saturation
behaviour. For example, for the profile Ostrau (Ch. 2) the luminescence signal of the coarse
grain fraction is in saturation in the lower part of the profile (cf. Fig. 2.3), which is, however,
in accordance with the expectations from the literature (cf. Roberts, 2008), whereas the fine
grain quartz signal still grows. Similar observations for fine grain quartz have been made by
Timar-Gabor et al. (2012, 2011) and confirmed in the dating study on the loess section Doln{
Véstonice (Ch. 8). The results face on three issues:

(1) The fine grain quartz growth curves have been almost best fitted by using an exponential
plus linear function (Eq. 1.11), implying a physically meaningless infinite growth of the lumi-
nescence signal in the dosimeter. Furthermore, Wintle and Murray (2006) suggested that the
D, should not exceed 2Dg to avoid large uncertainties in the D.. Using an exponential plus
linear function, the linear term prohibits the application of such rejection criteria as the Dy
value strongly depends on the fitting.

Nevertheless, in the studies the exponential plus linear function has been chosen as best fit
for the dataset in the investigated dose range covering the expected natural D, and it was
hypothesised that the applied fitting results in reliable De estimations. These were confirmed
by preheat plateau and dose recovery tests as well as high-dose experiments (Fig. 1.10).

The high-dose experiments (up to ~ 1.1 kGy) on the fine grain quartz demonstrate that the
rejection criterion De < 2Dy is fulfilled, and combined with the agreement of the age results
with the litho- and pedostratigraphic findings it is concluded that fine grain quartz dating
provided reliable age estimates for the investigated loess sections.

(2) However, the studies from Timar-Gabor et al. (2012); Lowick and Preusser (2011);
Timar-Gabor et al. (2011) found increasing age underestimation of the fine grain quartz up
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Figure 1.10: High dose growth curves for fine grain quartz sample BT754 (cf. Ch. 8) fitted
with different functions. The 2D value for the EXP and the EXP+EXP fit are
shown within the plots.

to and beyond the Eemian.!l Although differences for the applied protocol for fine grain

were observed for the dating study on the loess section in Ostrau (Ch. 2), in general and in
combination with the sedimentological findings, it is believed that the fine grain quartz fraction
gives reliable age estimates for the investigated loess records. Furthermore, this is confirmed
by the comparison of quartz and polymineral fine grain ages on the profile Seilitz (Ch. 7), which
are in accordance within uncertainties. Therefore, the reasons for the reported observations
could not be ruled out during the conducted studies and may be sample dependent. The OSL
dating of the profiles Zehren, Gleina and Rottewitz (Fig. 1.1) were carried out using only fine
grain quartz separates (dating results: Ch. A Sec. A.1 and Sec. A.2 in the appendix).

(3) In contrast, of paramount importance is the observed grain size saturation characteristic
of the quartz fine grain fraction. In Sec. 2.5 two explanations are presented for the differences
between the grain size fractions: (a) the burial history of the different grain size fractions
(e.g. more bleach and dose cycles combined with different source areas) and (b) the increase
of electron traps (i.e. atomic displacements) as a result of a-activity with time (Odom and
Rink, 1989; Rink and Odom, 1991; Weeks, 1956). It should be noted that this remains highly
speculative and the work of Kalefezra and Horowitz (1982) for TL raises doubt if this is still
a proper explanation, as they found that atomic displacement does not seem to significantly
increase the TL efficiency. Nevertheless, a separate OSL study using fine grain quartz separates
should be conducted to investigate the effect of heavy-charged o particles for the saturation
behaviour of fine grain quartz.

1.4.1.3 Establishing chronologies: A synthesis

In summary, the dating work for this thesis (along with the hitherto unpublished results) re-
veals the stratigraphic significance for the investigated loess sections by establishing reliable
high-resolution chronologies based on OSL dating. For the Saxonian Loess Region this led
to a revised composite profile and supports a qualitative approach to reconstruct the Late

| owick and Preusser (2011) provide additional studies, but it should be noted that not all of these studies
deal with fine grain (4-11pum) quartz.
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Pleistocene landscape dynamic.

The study in Ch. 7 provides a summarised view of these results. It was found that the
Saxonian Loess Region encompasses five stratigraphic units. Unit V > 120ka), covers pre-
Eemian sediments and Eemian soil formation followed by unit IV (< 120 ka to 60 ka), consisting
of compacted pedostratigraphic layers. Due to the high-resolution luminescence dating it was
possible to uncover a hiatus of at least 30 ka, which is assigned to unit Ill (< 30ka) and covered
by the Gleinaer Complex, a local (arctic brown) soil complex first described for the Gleina section
by Lieberoth (1963) (cf. Ch. 7 and Meszner, 2008). The slightly decreasing ages of unit Il
(< 30kato > 22ka) over a couple of meters of the profile indicate a high aeolian dynamic during
the last glacial maximum (LGM). Unit | (< 18ka) represents the top of the composite profile.
The presented pattern was also found at the nearby loess section Zeuchfeld in Saxony-Anhalt,
where the loess accumulation started latest at c. 70 ka and resumed, following a depositional
hiatus, between < 30 ka and 22 ka.

Due to a different local preservation situation the results of Dolni Véstonice illustrate the
landscape dynamic in much more detail, but in general with a similar pattern (Fig. 8.2). The
basal part of the profile comprises Eemian soil on pre-Eemian calcareous loess followed by a
humic soil complex. On top of the laminated sandy loess, a brown soil complex is followed
again by thick laminated sandy loess, indicating high accumulation of loess. In contrast to the
Saxonian Loess Region, the OSL dating uncovered two hiatuses: The first hiatus is indicated at
the transition zone between the lower sandy loess and the brown soil complex (< 50.6 + 3.5ka,
transition unit 6 to 7) the second was found between the brown soil complex (unit 6 to 4) and
the reinserted loess accumulation (unit 3) and may be related to the hiatus found in the
Saxonian Loess Region.

1.4.2 Technical investigations and developments

Two primary technical studies (Ch. 4 and 5) were carried out to deal with emerging technical
problems and challenges.

The 15t technical study was conducted to handle upcoming amount of data. To allow for
intensive data analysis and visualisation for the work of this thesis, scripts for the numerical
programming language R were written (Ch. 4). To share the developed scripts with the lumines-
cence dating community, the previously singular R scripts were encapsulated into functions and
bundled within a separate R package ('Luminescence’; Ch. 4). The package can be installed
and loaded into the R environment; it provides functions that work as small applications within
the R environment. The source code of the scripts is always available and the calculations are
transparent for the user. Along with the R code, a documentation file for every function is
provided as well as additional example data.!?

The package comprises 22 individual functions (Ch. A.4) for luminescence dating data anal-
ysis. It is not intended to replace existing, commonly used software solutions for routine
luminescence dating like the Analyst (Duller, 2007) but it provides tools for a flexible and
unconventional data handling combined with a high-quality graphic output. For example, the
function readBIN2R() directly imports so called BIN-files!® into the R environment. The files
contain the measurement raw data from the Risg TL/OSL luminescence reader and can be
used for further analyses. In R the function is called (details: Sec. 4.2.1):

12CD in the cover of this thesis or via CRAN: http://cran.r-project.org/web/packages/Luminescence/index.html
13% bin - binary file format
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1 readBIN2R(’ [path]/MeasurementData.BIN’)

Another implemented function allows extensive LM-OSL curves analysis and visualisation.
With the introduction of the fit LMCurve(), it was the first time that an automated and
scalable solution for LM-OSL analysis had been provided (details: Sec. 4.2.3). For example,
the analysis simply started by calling:

1 > fit_LMCurve(values=values.curve,n.
> + components=3,log_scale="x"

Since the R package 'Luminescence’ was being developed over the entire time of this thesis
and is continuously under development after the original publication presented in Ch. 4, the
functions within the package have been further improved, extended and new functions have been
added. Some of the functions were developed by other authors or in cooperation with other
authors (cf. Ch. A.4). The functions added by the author of this thesis after the publication
of the study (Ch. 4) are listed in Tab. 1.2. Due to the dimension of the entire project it is not
possible to provide all details of the package. For details of each function the reader is referred
to the manual of the package. Substantial changes from version to version (e.g. bug-fixes,
improvements) are documented in R package itself.

Table 1.2: Selected additional functions in the R package 'Luminescence’ since vers. 0.1.7

# Name Description

1 Cw2pHMi() Transforms a CW-OSL curve in a pHM-OSL curve via in-
terpolation under hyperbolic modulation conditions (Bos and
Wallinga, 2012)

2 CW2pLMi() Transforms a CW-OSL curve in a pLM-OSL curve via in-
terpolation under linear modulation conditions (Bos and
Wallinga, 2012)

3 CW2pPMi() Transforms a CW-OSL curve in a pPM-OSL curve via in-
terpolation under parabolic modulation conditions (Bos and
Wallinga, 2012)

4 fit_ CMCurve() Nonlinear Least Squares Fit for CW-OSL Curves

The functions of the package along with self-written R scripts were intensively used for al-
most all presented studies except the first study (Ch. 2).

The 2" technical study investigates measurement artefacts. Considerable evidence sug-
gested that during the dating application for the study in Ch. 7 on polymineral fine grain
samples using IR stimulation, the measurement results were systematically biased. Test mea-
surements for the D, estimation showed that the first position of every measurement yielded
substantially higher D, values, which may lead to significant age underestimations. The lu-
minescence readers used for the measurements accommodate up to 48 aliquots on a carousel
in a single measurement chamber (Fig. 5.1). Due to this construction and the small distance
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between the single aliquot positions (17 mm), the adjacent positions are potentially affected
by cross-talk effects (cross-irradiation of the (B-source, cross-bleaching of the LEDs arrays;

cf. Fig. 1.11).
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Figure 1.11: Sketch of the cross-bleaching principle redrawn from Bray et al. (2002) and Hiille
(2011).

This behaviour is confirmed by previous studies (e.g. Bray et al., 2002; Bgtter-Jensen et al.,
2000). However, the cross-bleaching of the IR-LEDs had never been investigated before. Par-
ticularly, with regard to the ‘run 1 at a time’ option that carries out all measurement steps on
one aliquot before moving to the next position, this may become an issue. The ‘run 1 at a
time’ option is usually applied for feldspar measurements (IR stimulation) to hold the elapsed
time between irradiation and stimulation constant in order to account for the anomalous fading.
The experiments were carried out on Risg TL/OSL DA-12, DA-15 and DA-20 readers in four
laboratories.

The results show that the cross-bleaching value of the IR LEDs on adjacent positions is
systematically higher than observed for blue LEDs for all investigated DA-15 and DA-20 readers
(Fig. 5.4). The cross-bleaching values range from < 0.0001 % to 0.1279 4+ 0.0167 % and vary
markedly between the readers. In comparison, the cross-bleaching values derived for the blue
LEDs range from 0.0019 % to 0.0176 %, which is an order of magnitude lower than for the
IR-LEDs. The results show no dependence of the cross-bleaching on the stimulation power but
rather a variation with the sample carrier used (higher values for steel discs than for steel cups:
Tab. 5.2). The reasons for the higher cross-bleaching values for the IR LEDs than for the blue
LEDs as well as the notably higher cross-bleaching values for the investigated reader ID 189
(Fig. 5.4) in comparison to other investigated readers have remained unclear so far.

However, in order to account for this problem during this study a newly designed bottom
flange for the LED stimulation head was developed by the measurement manufacturer Risg
(Fig. 5.6). This bottom flange reduces the cross-bleaching value on the adjacent position by
the factor of ~20 (Tab. 5.2).

In addition, it is recommended to split the sequence into different measurement sets to re-
duce the number of measurement steps carried out on one position before moving to the next
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or to use only every 2" position on the sample carousel. To allow an estimation of how much
(cumulative/total) stimulation time on the measurement position is acceptable for a given
threshold value of signal reduction on the adjacent position (blue and IR LEDs), in Fig. 5.7
isoline plots for signal reduction on adjacent position vs. cross-bleaching values are provided.

For this study all measurements were carried out using only every 2" position on the sample
carousel and previous measurements had been checked carefully for measurement artefacts.
However, for the quartz measurements no substantial cross-bleaching effect was observed.

1.4.3 Methodological investigations

Methodological investigations were carried out in a survey on a-values of polymineral fine grain
samples in Ch. 6.

Feldspar provides an alternative if quartz is not available in the target sediment or not
sufficient for dating purposes (e.g. early saturation, domination of slow bleachable signal com-
ponent). As feldspar suffers from anomalous fading, which leads to age underestimations with
the development of the the post-IR IRSL (pIRIR) protocol by Thomsen et al. (2008), a method
was suggested to circumvent this limitation by measuring at higher temperatures and detecting
a signal component that is less affected by fading. For age calculation recent studies (e.g. Thiel
et al., 2011a; Schatz et al., 2012; Buylaert et al., 2011) assumed that the a-efficiency of the
polymineral fine grain fraction allows the application of an identical value for both signals (IRsg
and pIRIR225 or pIRIR2gp).

To characterise the a-value of the IRsg and plRIR2s5 various a-value measurements were
carried out (Ch. 6). The study was twofold: The 1t part was an empirical study of the a-
value determination applying the (regenerated) pIRIR protocol at 225 °C for three methods of
signal resetting (optical, end of SAR cycle, heating); it treated the a-dose as unknown. This
SAR-based approach might be called 'conventional’ since it has been previously applied on fine
grain quartz (e.g. Tribolo et al., 2001; Mauz et al., 2006; Lai et al., 2008). The 2" part
investigated the a-value at higher dose regions using a- and B-irradiation to obtain uncorrected
dose response curves and extrapolate the a-value based on the determined mathematical fit.

The a-values of five polymineral fine grain samples were investigated. The empirical results
show that the mean a-value of the polymineral fine grain fraction differs significantly for the
IR50 and the plRIR2o5 signals, at least by 0.02. The plRIR225 a-value is always higher than
the IRsg a-value (Fig. 6.2, numerical values: Tab. 6.2). Nevertheless, a dependency of the
a-values on the chosen method of signal resetting was observed. The results indicate that this
dependency for the method of optical signal resetting generally arises from apparent residual
signals (cf. for optical bleaching Fig. 6.9). Although for the signal resetting method 'end
of SAR cycle’ a finally convincing explanation is still missing, the results indicate a correlation
between the applied fitting, insufficiently corrected sensitivity changes and the (lower) a-values.

It is further shown that the a- and B-induced growth curves show a similar trend for the IR5q
and the pIRIR225 signals with flatter curves for the pIRIR22s signal (Fig. 6.3). The different
curve shapes for the B-induced growth curves for the IRsg and the plRIR>o5 signals are in
accordance with findings from previous observations (e.g. Thiel et al., 2011a).

The measurements for the synthetic growth curves were carried out on three polymineral
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fine grain samples. The determined synthetic growth curves show that the a-value increases
with higher doses up to the onset of saturation of the B-radiation induced luminescence signal
Fig. 6.6). Consistent high-dose behaviour was found (Fig. 6.5 and Fig. 6.6) compared with
results previously reported in the literature for quartz. From these data it is hypothesised that
the energy density model for the a-effectiveness is valid for polyminerals determined with the
pIRIR protocol. The a-values obtained with the 'conventional’ approach and the uncorrected
growth curves are in accordance within in errors (Fig. 6.7).

The practical significance of the findings is revealed in Sec. 6.5 by comparing ages calculated
with identical a-values with ages calculated using differing a-values. The calculation shows
that the assumption of a common a-value for the IR5g and the plRIR2s5 signal results in a
(mean) age overestimation of the pIRIR225 ages of around 8-10%. It should be noted that
this calculation is just valid for assumed parameters and all a-values of this study are measured
for samples from one single loess record.

Nevertheless, with this study it was shown that the use of identical a-values for the IR5q and
the pIRIR255 signal seems not to be justified and leads to systematic errors in the luminescence
ages. The physical reasons for the differences between the a-values obtained with the IRsg and
the pIRIR255 signals remained unknown so far and further investigations are needed.

1.5 Conclusions

Loess records are considered as most important terrestrial sediment archives to reconstruct
palaeoenvironmental conditions of the last glacial-interglacial cycle and loess research has a
long lasting history. Establishing reliable chronologies to reveal the stratigraphic findings on
loess records remains, however, one of the driving rationales. Luminescence dating provides one
of the most important dating methods for loess archives and by determining the time elapsed
since the last exposure to light on natural mineral grains of quartz and feldspar, it can trace
the morphological process itself.

The broad intention of this cumulative applied-methodological thesis was to provide a con-
tribution towards the establishment of reliable high-resolution numerical chronologies on loess
palaeosol-sequences for the last glacial-interglacial cycle using OSL dating on quartz separates.
In the past, OSL dating on quartz has in general proved its capability for loess dating. However,
different grain size fractions (coarse, middle and fine grain) are used for luminescence dating
and it remained unclear, if the use of a specific grain size fraction influences the age results.
Furthermore, different luminescence characteristics are reported in the literature, especially for
the fine grain quartz fraction, i.e. higher saturation doses.

With this cumulative thesis seven single studies were presented. Four studies (Ch. 2, 3, 7,
8) were focussed on the applications of luminescence dating by establishing chronologies on
loess sections in Germany and the Czech Republic. Different quartz grain size fractions were
investigated. Two studies (Ch. 4, 5) dealt with technical aspects that arose during the work
on this thesis, to provide additional tools for data analysis (Ch. 4) and to overcome press-
ing technical problems (Ch. 5). One study (Ch. 5) investigated fundamental methodological
aspects by presenting empirical results on the a-efficiency for polymineral fine grain samples
measured with the post-IR IR protocol designed for feldspar dating. The individual results can
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be summarised as follows:

e Dating application

For the first time, a comprehensive numerical chronology for the Saxonian Loess
Region based on OSL quartz separates has been established. The dating application
enabled the re-evaluation of the existing composite profile, now encompassing five
units. Furthermore, the high resolution dating uncovered a hiatus of at least 30 ka
(end of MIS 4 to end of MIS 3). Highest sedimentation rates were found for the
MIS 2.

The established chronologies in Zeuchfeld (Saxony-Anhalt/Germany) and in Dolni
Véstonice (Jihomoravsky kraj/Czech Republic) confirmed the general pattern ob-
served in the Saxonian Loess Region.

The comparison of quartz coarse, middle and fine grain ages gave similar results
within uncertainties, so far as the luminescence signal for the coarse and middle
grain fraction is not in saturation (De < 100 Gy).

Based on pedo- and lithostratigraphical findings the fine grain quartz separates have
been proven as reliable dosimeter back to the Eemian.

High dose experiments on fine grain quartz showed that the applied exponential plus
linear function for growth curve fitting is valid for the investigated dose range.

Differences in the dose response characteristics for used grain size fractions remained
unexplained.

e Technical investigations and developments

An R package ('Luminescence’) was developed comprising several functions for ef-
ficient luminescence data analysis and visualisation.

Investigations on the cross-bleaching behaviour of IR-LEDs confirmed a significant
cross-talk effect in an order of magnitude higher than for the blue LEDs. This effect
was quantified for the first time. A new component, developed by the manufacturer,
was confirmed to be capable to reduce the cross-bleaching effect significantly.

e Methodological investigations

For the first time a-values for polymineral fine grains measured with the post-IR IR
protocol were presented.

Investigations on the a-value of polymineral fine grains using the post-IR IR protocol
showed differences in the obtained a-values for the IRsg and the pIRIR2o5 signal by
a least 0.02.

The plIRIR225 signal gave always higher a-values.

It is not appropriate to a priori use identical a-values for the IRgg and the pIRIRo5
signals and it is recommended to measure the a-value for every sample separately.

Several questions emerged that could not been answered or further investigated in the frame-
work of this study. The following points may serve as possible starting place for further studies:
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e The application of double exponential functions for growth curve fitting is still under dis-
cussion. Further investigations using high dose experiments should been carried out along
with modelling approaches that improve understanding of the dose response character-
istics of quartz. Along with spectral measurements it should be investigated, if the age
underestimation for the fine grain fraction at higher doses observed in the literature (e.g.
Timar-Gabor et al., 2011) may be induced by shifts in the detection wavelength (drifting
out of the detection window).

e The higher dose response characteristics for the fine grain fraction remained unexplained.
Odom and Rink (1989), Rink and Odom (1991) reported a growth of electron traps as
a product of a-activity with time. They found that a-recoils (recoil effect) are capable
to increase the electron trap density in the dosimeter by displacement of Si and O atoms
resulting from elastic collisions from a-emitting impurities. The recoil effect has ranges
of 30—40 nm (e.g. Gogen and Wagner, 2000) and should be valid for all grain fractions.
This limits the approach to explain the differences in the shape of the growth curves by
a-recoils. However, a previous work by Weeks (1956) has shown defect formation in the
crystal lattice by fast neutron bombardment. The common approach for coarse grain
quartz OSL dating etches the outer layer which was exposed to a-radiation to remove
the a-affected layer. Due to their small grain character the fine grain quartz fraction is
usually considered as fully affected by external a-particles. The saturation limit of the
fine grain fraction may have been gotten enhanced by such irradiation induced defect
formation.

Although the study of Kalefezra and Horowitz (1982) emphasises that the amount of
induced vacancies may be negligible and not be capable to significantly increase the num-
ber of traps, it would be worthwhile to conduct an empirical study using fine grain quartz
separates to prove the hypothesis that heavy charged a-particles are not responsible for
the higher saturation dose observed for the fine grain fraction.

e Systematically LM-OSL investigations on all different grain size fractions could not been
carried out due to time restrictions. However, the developed R package now allows
comprehensive data analysis. Two aspects should be investigated: (a) The variations
of the component to sum contribution for the different grain size fractions for the same
sample, (b) D, values should be obtained from distinct signal components for comparison.

e The function fit_LMCurve() in the R package works with a simplified start parameter es-
timation based on findings from the literature. However, this may hamper the application
due to the fact that the fitting may be forced to a local rather than a global minimum. A
start parameter estimation based on a genetic algorithm should be included (cf. Adamiec
et al., 2006).

e The study on the a-values of polymineral fine grain samples was limited to samples from
one loess section and to the IR5g and plIRIR2o5 signal. The outcomes of this study should
be: (a) repeated with samples from other sections, (b) carried out using the IRsy and
the plIRIR»gq signal.

e The investigation on the a-values on polymineral fine grain showed that the a-values
increase with dose. Furthermore, the shape of the growth curves differs for distinct types
of irradiation. In the laboratory the artificial irradiation is almost carried out using G- or
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X-ray radiation. Nevertheless, the latent luminescence signal in the nature is induced in
a mixed radiation field. A study using combined a- and S-irradiation should investigate
growth curve shapes under mixed irradiation conditions, to uncover potential differences.
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Abstract

Luminescence dating is one of the leading techniques to establish chronologies for loess-
palaeosol sequences and has been successfully applied to different minerals and grain size frac-
tions. Using optical stimulated luminescence (OSL) from quartz, we present for the first time
a high resolution chronology for the loess section Ostrau in Saxony/Germany. We compare
OSL ages derived from two different grain size fractions, coarse (90-200pm) and the fine
grain (4—11pm) separates. Our results show that the loess section is divided into two parts,
separated by a hiatus. OSL samples from the upper part of the loess section show equivalent
doses of D, < 100 Gy. D, values > 180 Gy are observed for the lower part of the loess section.
The coarse and fine grain ages agree and also fit to the litho- and pedostratigraphy for the
upper part of the profile. For the lower part of the profile the coarse grained quartz OSL is
in saturation. The fine grained quartz OSL is not saturated but it appears that the fine grain
OSL ages underestimate the sedimentation age. Approaches to explain the D, differences be-
tween the grain size fractions are presented (e.g. post-depositional translocation, dosimetry).
A modified SAR protocol for the fine grain fraction produced ages that are in good agreement
with expected ages based on litho- and pedostratigraphy. Although further investigations are
needed, our results show the suitability of the Saxonian loess belt for OSL dating.
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Abstract

Climatic signals are considered as well preserved in loess records. To assess their significance
in a local and global context a reliable numerical chronology is needed. Luminescence dating
provides an established dating method on natural mineral grains of quartz and feldspar by
measuring the last time of the daylight exposure. For the field trip of the 37t meeting of
the German working group on geomorphology to the Saxony-Anhalt loess belt, the upper part
of the Quaternary profile Zeuchfeld has been reinvestigated. The profile is well known for its
sandur (Zeuchfeld Sandur) situated at the base of the profile, assumed to be of Late Saalian
age (MIS 6). Here, OSL quartz age estimates for the overlying loess deposits from the last
glacial-interglacial cycle are reported. Furthermore, the underlying sandur has been sampled
for conventional SAR dating on quartz and IR-RF dating on potassium rich feldspar. The
OSL age estimates have been determined for three commonly used quartz grain size fractions
(coarse, middle and fine grain). The results suggest at least two phases of loess deposition and
preservation around 70 ka and 30 ka to 22 ka confirmed by previous assumptions based on field
work and recent pedo- and lithostratigraphic correlation. In contrast, the quartz SAR and the
IR-RF measurements from the underlying sandur yield a substantially older (pre-Saalian) age.
The reasons for the assumed age overestimation and the details of the luminescence dating
results are presented and discussed.
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Abstract

For routine luminescence dating applications the commonly used Risg readers are bundled with
analysis software, such as Viewer or Analyst. These software solutions are appropriate for most
of the reqgular dating and publication jobs, and enable assessment of luminescence characteristics
and provide basic statistical data treatment. However, for further statistical analysis and data
treatments, this software may reach its limits. In such cases, open programming languages are a
more appropriate approach. Here, we present the R package 'Luminescence’ for a more flexible
handling of luminescence data and related plotting purposes, using the statistical programming
language R. The R language as well as the package and the source code are provided under
the General Public License (GPL) conditions and are available for free. The basic functionality
of the package is described along with three application examples.

This package is not an alternative to the existing software (Analyst, Viewer) but may provide
a collection of additional tools to analyse luminescence data and serve as a platform for further
contributions.
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Abstract

The cross-bleaching behaviour of automated Risg TL/OSL (DA-12, DA-15, DA-20) lumines-
cence readers is investigated. By design, up to 24 or 48 aliquots can be stored on a carousel
in a single measurement chamber. Due to this construction, irradiation or illumination on
one sample may affect the adjacent position resulting in systematic errors. Such cross-talk
(cross-bleaching/illumination) has never been quantified explicitly for the infrared (IR) LEDs,
although they are intensively used in IRSL measurements of e.g. feldspar and polymineral sam-
ples. In IRSL measurements of feldspar or polymineral samples it is important to keep the time
constant between the (midpoint of the) irradiation and the subsequent read out to avoid the
malign effects of anomalous fading in laboratory constructed dose response curves. This may
be achieved by running all measurements for a regular equivalent dose estimation on a single
sample before moving to a subsequent sample (e.g. by using the 'run 1 at the time’ option
in the Risg sequence editor). However, if the measurement sequence is not designed carefully,
then using this option may result in a significant depletion of the natural signal on subsequent
samples. Here we investigate the size of this reduction due to cross-bleaching from the IR
diodes and quantify the cross-bleaching for 10 different Risg TL/OSL readers produced be-
tween 1994 and 2011. We find that cross-bleaching from the IR diodes is worse than from the
blue diodes. Using the 'run 1 at the time’ option can result in significant dose underestimation
(1) if the sequence is not split into different sets (2) or if samples are not placed on every
2" position. In addition, a newly designed flange for the optical unit of the TL/OSL reader is
presented which appears to reduce cross-bleaching significantly.
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Abstract

Recent post-IR IRSL (pIRIR) dating studies using polymineral fine grains assumed that the
a-values obtained for the IRSL signal at 50°C and the pIRIR signal at higher temperatures
(e.g., 225°C) are identical. However, the a-value of a sample depends on the stimulation
method, and the assumption mentioned above remains to be tested. Using five polymineral
fine grain samples, this study investigates whether a common a-value can be used for both
the IR and the pIRIR signals. Applying the pIRIR protocol, the a-values were measured with
three different methods of signal resetting (optical bleaching, end of SAR cycle, heating). In
addition, uncorrected a- and (B-irradiation induced growth curves were determined for three
samples and fitted with single saturating exponential functions. For the investigated samples
we found significant mean differences, 0.023 + 0.012 and higher, in the a-values determined for
the IR0 and pIRIR225 signals. Synthetic a-values deduced from uncorrected multiple-aliquot
dose response curves seem to confirm this observation. Although, in summary, our results
indicate that the practice of using a common a-value should be carefully re-considered, the
physical reasons remain to be determined.
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Abstract

Loess archives are of paramount importance for reconstructing regional paleoenvironmental
conditions of past glacial periods. The Saxonian Loess Region is an area of transition be-
tween the western and the eastern European loess belt. With this contribution, a documented
loess-paleosol composite profile for the Saxonian Loess Region is extended, and a new chronos-
tratigraphy, established by high-resolution OSL dating of two profiles, is described. In addition,
for the first time OSL age estimates for the loess paleosol sequence at Seilitz are presented
for the quartz and polymineral fine grain fraction. Based on the presented composite profile
climatic and environmental conditions (e.g. wind speed, temperature) are deduced. Based
on high-resolution OSL dating it is possible to identify a hiatus spanning c. 30ka. This gap
is located in the Gleina Complex where an underlying layer shows an age of c. 60ka and the
upper layer an age of c. 30ka. Additionally, two periods of strong loess accumulation with
ages of c. 70-60ka and 30-18ka could be identified. There is a general trend of grain size
coarsening-up towards the Late Glacial which shows a maximum at c. 21 ka. Correlations with
French, western German and Polish loess sections are discussed.
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Abstract

The Dolni Vé&stonice loess section in the Czech Republic is well known for its high-resolution
loess—palaeosol sequence of the last interglacial—glacial climatic cycle (Upper Pleistocene). The
loess section is situated in a climatic transition zone between oceanic and continental climates
and is therefore of great value in reconstructing past regional climate conditions and their
interaction with climate systems, in particular that of the North Atlantic. Based on a com-
bination of optically stimulated luminescence (OSL) ages, stratigraphic field observations and
magnetic susceptibility measurements, a chrono-climatic interpretation of the Dolni Véstonice
loess section is presented. To establish a reliable Upper Pleistocene chronology, a quartz OSL
approach was applied for equivalent dose (D.) determination. Monomineralic quartz extracts
of three distinct grain sizes, fine (411 pm), middle (38—63 pm) and coarse (90-200 um), were
used and compared. Within error limits, the calculated OSL ages are the same for the different
grain sizes, and the OSL ages are in stratigraphic order. The established OSL chronology is in
agreement with a Weichselian litho- and pedostratigraphy. The Dolni Vé&stonice loess section is
characterized by four pedosedimentary subsequences. At the base of the profile, subsequence
| is characterized by a distinct Early Glacial soil complex, OSL-dated to c. 110ka to 70Kka,
representing one of the most complete records of environmental change in the European loess
belt. Subsequence Il is allocated to the Lower Pleniglacial and is characterized by laminated
sandy loess. Middle Pleniglacial subsequence Ill is represented by a brown soil complex, and is
followed by the uppermost subsequence |V, characterized by a thick body of laminated sandy
loess, indicating strong wind activity and a high sedimentation rate of more than ~1 mm a~—!
during the Upper Pleniglacial. According to the OSL chronology, as well as to the sedimento-
logical and palaeopedological investigations, it is likely that the sequence at Dolni Vé&stonice has
recorded most of the climatic events expressed in the NGRIP §0 reference record between
110 ka and 70 ka.
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A.2 Complete list of nuclide concentrations and cosmic dose rates
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A.3 Complete list of measured a-values

# 1D Profile =~ M Grain Size Signal n  **'Am o-Source Resetting a-value
[Hm]

1 BT59%4 Seilitz Q 4-11 BOSL NV NV NV NV

2 BT607 Ostrau Q 4-11 BOSL 8/12 Littlemore 721/B  Optical  0.041 + 0.001
3 BT608 Ostrau Q 4-11 BOSL NV NV NV NV

4 BT609 Ostrau Q 4-11 BOSL NV NV NV NV

5 BT610 Ostrau Q 4-11 BOSL NV NV NV NV

6 BT611 Ostrau Q 4-11 BOSL 1/12 Littlemore 721/B  Optical 0.032 4 0.001*
7 BT612 Ostrau Q 4-11 BOSL NV NV NV NV

8 BT613 Ostrau Q 4-11 BOSL 9/12 Littlemore 721/B  Optical  0.040 £ 0.001
9 BT614 Ostrau Q 4-11 BOSL NV NV NV NV

10 BT615 Ostrau Q 4-11 BOSL NV NV NV NV

11 BT616 Ostrau Q 4-11 BOSL NV NV NV NV

12 BT617 Ostrau Q 4-11 BOSL NV NV NV NV

13 BT618 Ostrau Q 4-11 BOSL 8/12 Littlemore 721/B  Optical  0.036 + 0.001
14 BT619 Ostrau Q 4-11 BOSL NV NV NV NV

15 BT620 Ostrau Q 4-11 BOSL NV NV NV NV

16 BT621 Ostrau Q 4-11 BOSL NV NV NV NV

17 BT622 Ostrau Q 4-11 BOSL NV NV NV NV

18 BT623 Ostrau Q 4-11 BOSL 2/6 Littlemore 721/B  Optical  0.030 £ 0.002
19 BT624 Ostrau Q 4-11 BOSL NV NV NV NV

20 BT625 Ostrau Q 4-11 BOSL  6/7 Littlemore 721/B  Optical ~ 0.035 £ 0.001
21 BT626 Ostrau Q 4-11 BOSL NV NV NV NV

22 BT706 Seilitz Q 4-11 BOSL NV NV NV NV

23 BT707 Seilitz Q 4-11 BOSL 7/8 Littlemore 721/B  Optical  0.044 &+ 0.002
24 PM 4-11 IRsg  12/12 Littlemore 721/B Heating 0.079 £ 0.001
25 PM 4-11 pIRIR22s 12/12 Littlemore 721/B  Heating 0.118 + 0.002
26 BT708 Seilitz Q 4-11 BOSL NV NV NV NV

27 BT709 Seilitz Q 4-11 BOSL NV NV NV NV

28 BT710 Seilitz Q 4-11 BOSL  8/8 Littlemore 721/B  Optical  0.046 £ 0.002
29 BT711 Seilitz Q 4-11 BOSL NV NV NV NV

30 Seilitz PM 4-11 IRs0 12/12 Risg DA-15 Heating  0.073 £ 0.001
31 Seilitz PM 4-11 pIRIR2s 12/12 Risg DA-15 Heating 0.107 £ 0.002
32 BT712 Seilitz Q 4-11 BOSL 8/8 Littlemore 721/B  Optical  0.040 £ 0.002
33 BT713 Seilitz Q 4-11 BOSL NV NV NV NV

34 PM 4-11 IRsg  12/12 Littlemore 721/B Heating 0.072 £ 0.001
35 PM 4-11 pIRIR22s 12/12 Littlemore 721/B  Heating 0.108 + 0.002
36 BT714 Seilitz Q 4-11 BOSL NV NV NV NV

37 PM 4-11 IRsg  12/12 Littlemore 721/B Heating 0.075 £ 0.001
38 PM 4-11 pIRIR2s 12/12 Littlemore 721/B  Heating 0.112 + 0.001
39 BT715 Seilitz Q 4-11 BOSL 5/6 Littlemore 721/B  Optical  0.030 &+ 0.002
40 PM 4-11 IRs0 12/12 Risg DA-15 Heating 0.072 £ 0.002
41 PM 4-11 pIRIR22s 12/12 Risg DA-15 Heating 0.104 £ 0.002
42 BT716 Zehren  Q 4-11 BOSL 10/10 Littlemore 721/B  Optical  0.042 4+ 0.002
43 BT717 Zehren Q 4-11 BOSL NV NV NV NV

44 BT718 Zehren Q 4-11 BOSL NV NV NV NV

45 BT719 Zehren Q 4-11 BOSL 12/12 Littlemore 721/B  Optical  0.036 + 0.002
46 BT720 Zehren Q 4-11 BOSL NV NV NV NV

47 BT752 DV Q 4-11 BOSL 13/17 Littlemore 721/B  Optical  0.047 £+ 0.002
48 BT753 DV Q 4-11 BOSL  8/9 Littlemore 721/B  Optical  0.048 4+ 0.002
49 BT754 DV Q 4-11 BOSL NV NV NV NV

50 BT755 DV Q 4-11 BOSL NV NV NV NV

51 BT756 DV Q 4-11 BOSL NV NV NV NV
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# ID Profile = M Grain Size Signal n  “Am o-Source Resetting a-value
(Hm]

52 BT757 DV Q 4-11 BOSL NV NV NV NV

53 BT758 DV Q 4-11 BOSL 11/15 Littlemore 721/B  Optical  0.040 + 0.001

54 BT759 DV Q 4-11 BOSL 12/18 Littlemore 721/B  Optical  0.038 &+ 0.002

55 BT760 DV Q 4-11 BOSL NV NV NV NV

56 BT761 DV Q 4-11 BOSL NV NV NV NV

57 BT762 DV Q 4-11 BOSL NV NV NV NV

58 BT763 DV Q 4-11 BOSL 8/12 Littlemore 721/B  Optical  0.035 &+ 0.002

59 BT764 DV Q 4-11 BOSL NV NV NV NV

60 BT765 DV Q 4-11 BOSL 11/14 Littlemore 721/B  Optical  0.048 £ 0.002

61 BT766 DV Q 90-200 NV NV NV NV NV

62 BT835 Gleina Q 4-11 BOSL 8/12 Littlemore 721/B  Optical ~ 0.042 + 0.001

63 BT836 Gleina Q 4-11 BOSL 12/12 Littlemore 721/B  Optical ~ 0.025 + 0.001

64 BT837 Gleina Q 4-11 BOSL 8/12 Littlemore 721/B  Optical  0.051 + 0.002

65 BT838 Gleina Q 4-11 BOSL 11/12 Littlemore 721/B  Optical  0.031 + 0.001

66 BT839 Gleina Q 4-11 BOSL 11/12 Littlemore 721/B  Optical  0.039 £ 0.001

67 BT840 Gleina Q 4-11 BOSL 12/12 Littlemore 721/B  Optical  0.051 4+ 0.002

68 BT841° Gleina - - - - - - -

69 BT842 Gleina Q 4-11 BOSL 12/12 Littlemore 721/B  Optical ~ 0.040 + 0.001

70 BT843° Gleina - - - - - - -

71 BT844 Gleina Q 4-11 BOSL 12/12 Littlemore 721/B  Optical  0.034 + 0.001

72 BT845° Gleina - - - - - - -

73 BT998 Rottewitz Q 4-11 BOSL 11/12 Littlemore 721/B  Optical  0.034 £ 0.001

74 BT999 Rottewitz  Q 4-11 BOSL 12/12 Littlemore 721/B  Optical  0.035 £ 0.001

75 BT1000 Rottewitz  Q 4-11 BOSL 12/12 Littlemore 721/B  Optical ~ 0.039 + 0.001

76 BT1001 Rottewitz Q 4-11 BOSL 12/12 Littlemore 721/B  Optical  0.036 £ 0.001

77 BT1002 Rottewitz Q 4-11 BOSL 12/12 Littlemore 721/B  Optical ~ 0.036 + 0.001

78 BT1003 Rottewitz  Q 4-11 BOSL 12/12 Littlemore 721/B  Optical ~ 0.034 + 0.001

79 BT1004 Rottewitz  Q 4-11 BOSL 11/12 Littlemore 721/B  Optical  0.034 £ 0.001

80 BT1005 Rottewitz Q 4-11 BOSL 12/12 Littlemore 721/B  Optical  0.034 £ 0.001

81 BT1006 Rottewitz  Q 4-11 BOSL 12/12 Littlemore 721/B  Optical  0.034 + 0.001

82 ZEU I Zeuchfeld Q 4-11 BOSL 11/12 Littlemore 721/B  Optical  0.037 + 0.001

83 ZEU Il Zeuchfeld Q  200-240 NV NV NV NV NV

84 ZEU I Zeuchfeld Q 4-11 BOSL 12/12 Littlemore 721/B  Optical ~ 0.034 + 0.001

85 ZEU IV Zeuchfeld Q 38-63 NV NV NV NV NV

86 ZEU V Zeuchfeld Q 38-63 NV NV NV NV NV

87 ZEU/SA 1 Zeuchfeld Q  130-200 NV NV NV NV NV

88 ZEU/SA 1 Zeuchfeld KFS 130-200 NV NV NV NV NV

L A fixed error was used.
2Samples BT841, BT843 and BT845 are duplicated samples for samples BT840, BT842
and BT844 and have not been further treated.

M = Mineral; Q = quartz; PM = polymineral; KFS = K-feldspar
Signal = investigated luminescence signal
BOSL = blue OSL; IRsp = IRSL®@50°C; plIRIR225 = post IRSL@225°C
IR-RF = infrared radiofluorescence
Fit = chosen function for dose response curve fitting: EXP = exponential; EXP+LIN = exponential plus linear
NV = no value (not measured)
DV = Dolni Véstonice
Optical = optical bleaching in a solar simulator
Heating = heating in an external furnace at 450 °C for at c. 45 min

All a-values given as mean + 20 uncertainty.

Not for all samples an a-value was estimated. Thus, for some studies a mean a-value was calculated,
but from that it may appear that the listed a-values are not consistent with the published results.
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A.4 Complete list of functions in the R package 'Luminescence’
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# Name Description Author

1 Analyse_SAR.OSLdata() Analyse SAR CW-OSL measurements Sebastian Kreutzer

2 Calc_CentralDose() Apply the central age model (CAM) to a  Christoph Burow and
given D, distribution Rex Galbraith

3 Calc_CommonDose() Apply the common age model to a given D, Christoph Burow and
distribution Rex Galbraith

4 Calc_FadingCorr() Applying a fading correction according to  Sebastian Kreutzer
Huntley and Lamothe (2001) for a given age
and a given g-value

5 Calc_FiniteMixture() Apply the finite mixture model (FMM) to a  Christoph Burow and
given D, distribution Rex Galbraith

6 Calc_FuchsLang2001() Calculate D, applying the method of Fuchs Sebastian Kreutzer
and Lang (2001)

7 Calc_MinDose3() Apply the (un-)logged three parameter min-  Christoph Burow and
imum dose model (MAM 3) to a given D, Rex Galbraith
distribution

8 Calc_MinDose4() Apply the (un-)logged three parameter min-  Christoph Burow and
imum dose model (MAM 4) to a given D.  Rex Galbraith
distribution

9 Calc_0SLLxTxRatio() Calculate Lx/Tx ratio for a given set of OSL ~ Sebastian Kreutzer
curves

10 Cw2pHMi() Transforms a CW-OSL curve in a pHM-  Sebastian Kreutzer
OSL curve via interpolation under hyperbolic
modulation conditions (Bos and Wallinga,

2012)

11 cw2pLM() Transforms a CW-OSL curve into a pseudo- ~ Sebastian Kreutzer
LM (pLM) curve (e.g. Bulur, 2000)

12 Cw2pLMi() Transforms a CW-OSL curve in a pLM-OSL  Sebastian Kreutzer
curve via interpolation under linear modula-
tion conditions (Bos and Wallinga, 2012)

13 CW2pPMi() Transforms a CW-OSL curve in a pPM-OSL  Sebastian Kreutzer
curve via interpolation under parabolic mod-
ulation conditions (Bos and Wallinga, 2012)

14 fit_CMCurve() Nonlinear Least Squares Fit for CW-OSL  Sebastian Kreutzer
Curves

15  fit_LMCurve() Non-linear Least Squares (NLS) fit for LM-  Sebastian Kreutzer
OSL curves

16  plot_BINfileData() Plot single luminescence curves from a BIN-  Sebastian Kreutzer
file object (readBIN2R())

17 plot DeDistribution() Plot D, distribution with a kernel density Sebastian Kreutzer
estimate (KDE)

18  plot_GrowthCurve() Fit and plot a growth curve for luminescence  Sebastian Kreutzer
data

19 plot_Histogram() Plot a histogram with a separate error plot  Sebastian Kreutzer

20  plot_RadialPlot() Plot a Galbraith’s radial plot Sebastian  Kreutzer

and Rex Galbraith

21 readBIN2R() Import Risg BIN-file into R Sebastian Kreutzer

22  Second2Gray() Converting values from seconds (s) to Gray  Sebastian Kreutzer

(Gy)

All listed functions will be part of the R package 'Luminescence’ version 0.2 (submission date

to CRAN, December 15th, 2012).

The package source code and the manual is available via

http://cran.r-project.org/web/packages/Luminescence/index.html and on the CD in the cover of
this thesis.
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