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Abstract

Learning about and understanding the mechanisms and pathways of charge and excitation-
energy transfer of natural molecular complexes is a promising approach for the tailored
design of new arti�cial energy-converting materials. Therefore, next to extensive experi-
mental investigations, a theoretical method that is able to reliably describe and predict
these phenomena from �rst principles is of practical relevance. In principle, density func-
tional theory (DFT) and time-dependent density functional theory (TDDFT) appear as
natural choices to study the relevant sizable molecules on a �rst-principles scale at bear-
able computational cost. However, the application of standard local and semilocal density
functional approximations su�ers from well-known de�ciencies, in particular, as far as the
simulation of charge-transfer phenomena is concerned. The present thesis approaches charge
and excitation-energy transfer with the objective of improving the predictive power and
extending the range of applicability of (TD)DFT.

The de�ciencies of standard density functional approximations have been related to self-
interaction. Hence, one major aspect of this work is the extension of the self-interaction
correction in Kohn-Sham DFT that is based on the generalized optimized e�ective potential
to TDDFT using a real-time propagation approach. The multiplicative Kohn-Sham potential
allows for a transparent analysis of the exchange-correlation potential during time evolution.
It reveals frequency-dependent �eld-counteracting behavior and step structures that appear
in dynamic charge-transfer situations. The latter are important for the proper description of
charge transfer. Self-interaction correction allows to access many cases that are di�cult for
standard TDDFT ranging from chain-like systems over excitonic excitations in semiconduc-
tor nanoclusters to short- and long-range charge-transfer excitations. At the same time, it
does not spoil the reasonable accuracy that already (semi)local functionals exhibit for local
excitations. Moreover, the TDDFT perspective on self-interaction correction sheds new light
also on the ground-state formalism. Complex degrees of freedom in the energy-minimizing
transformation of the generalized optimized e�ective potential approach yield smoother or-
bital densities that appear more reasonable when inserted into approximate functionals in the
self-interaction correction formalism. This work provides new insight into the use of di�erent
functional approximations. Last but not least, the in�uence of spin-symmetry breaking and
step structures of the potential on the preference to transfer integer units of the elementary
electric charge between largely separated donor and acceptor moieties is illustrated when
static external electric �elds are applied. This work has been reported in three publications
and one submitted manuscript.

In the �eld of excitation-energy transfer, recent discoveries of quantum coherence e�ects
shed new light on the mechanisms behind energy-transfer rates. The latter are a�ected by
a number of di�erent properties of the isolated molecules, but involve also e�ects due to the
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IV Abstract

environment of the system. This thesis addresses excitation-energy transfer phenomena from
two perspectives. First, I use real-time propagation TDDFT to investigate the intermolecular
coupling strength and the coupling mechanism between single fragments of supermolecular
setups. These investigations base on standard closed quantum system TDDFT and exploit
the coherent oscillation of excitation energy between separated molecules after the initial
excitation process. Second, I use open quantum system ideas in the framework of TDDFT
to study the in�uence of the system's environment on the energy-transfer time scales and
pathways in a circular arrangement of molecules using an e�ective energy-dissipation mecha-
nism. The �rst part of these results is published. The second part is presented in this thesis
and includes work in progress.



Kurzfassung

Ein viel versprechender Ansatz, um künstliche Materialien für Zwecke der Energieumwand-
lung zu entwickeln, besteht darin, neues Wissen über die Mechanismen und Übertragungs-
wege von Ladung und Anregungsenergie in Molekülkomplexen, die in der Natur vorkommen,
zu erwerben. Dafür werden neben umfangreichen experimentellen Untersuchungen auch
Methoden benötigt, mit denen man solche Phänomene zuverlässig theoretisch beschreiben
und vorhersagen kann. Prinzipiell bieten sich die Dichtefunktionaltheorie (DFT) und die
zeitabhängige Dichtefunktionaltheorie an, um Systeme der relevanten Gröÿe mit tragbarem
numerischem Aufwand ausgehend von physikalischen Grundprinzipien zu untersuchen. Aller-
dings wurden in Anwendungen der DFT mit lokalen und semilokalen Dichtefunktional-
Näherungen Probleme aufgezeigt, die insbesondere in Simulationen von Ladungstransfer-
phänomenen kritisch sind. Daher untersucht die vorliegende Dissertation Ladungs- und
Energietransferphänomene mit dem Ziel, die Vorhersagen der (zeitabhängigen) DFT zu
verbessern und deren Anwendungsbereich zu erweitern.

Die Probleme, die sich aufzeigen, wenn man herkömmliche Dichtefunktional-Näherungen
verwendet, wurden mit der sogenannten Selbstwechselwirkung in Verbindung gebracht. Des-
halb ist die Erweiterung der Methode zur Selbstwechselwirkungskorrektur, die im Rahmen
der Kohn-Sham-DFT auf dem Verfahren der verallgemeinerten optimierten e�ektiven Po-
tentiale beruht, auf den Bereich der zeitabhängigen DFT einer der zentralen Aspekte dieser
Arbeit. Die Erweiterung beruht auf einem Echtzeitpropagationsverfahren und verwendet
ein multiplikatives Kohn-Sham-Potential, mit dem man auf transparente Art und Weise den
Zeitverlauf des Austausch-Korrelationspotentials untersuchen kann. In der vorliegenden Ar-
beit wird aufgezeigt, dass dieses Potential frequenzabhängiges Gegenfeldverhalten aufweist
und sich Stufenstrukturen in Ladungstransfersimulationen aufbauen. Diese Strukturen sind
für eine zuverlässige Beschreibung von Ladungstransferphänomenen wichtig. Darüber hin-
aus ermöglicht das Selbstwechselwirkungskorrekturverfahren die Untersuchung vieler Sys-
teme, die für herkömmliche zeitabhängige DFT als notorisch schwierig gelten, ohne dabei
die Genauigkeit zu verlieren, die bereits (semi)lokale Funktionale bei der Beschreibung lokaler
Anregungen aufweisen. Unter diesen Systemen be�nden sich kettenförmige Moleküle, Halb-
leiter-Nanocluster, deren Anregungen als exzitonisch gelten, sowie kurz- und langreichweitige
Ladungstransferanregungen. Weiterhin liefern die Erkenntnisse aus den Untersuchungen der
zeitabhängigen DFT neue Einblicke in den Grundzustandsformalismus. Die Verwendung von
komplexwertigen Freiheitsgraden zur Bestimmung der energieminimierenden Transformatio-
nen im Verfahren der verallgemeinerten optimierten e�ektiven Potentiale führt zu glatteren
Orbitaldichten. Diese Orbitaldichten scheinen besser geeignet zu sein, um sie im Rahmen des
Selbstwechselwirkungskorrekturverfahrens in genäherte Funktionale einzusetzen. In dieser
Arbeit diskutiere ich neue Einsichten in die Verwendung unterschiedlicher Näherungen der
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Funktionale. Weiterhin erläutere ich den Ein�uss von Spinsymmetriebrechung und Stufen-
strukturen im Potential darauf, ob beim Ladungstransfer durch externe elektrische Felder
zwischen zwei weit entfernten Donor- und Akzeptormolekülen der Ladungstransfer ganz-
zahliger Vielfacher der Elementarladung bevorzugt wird oder nicht. Die gefundenen Re-
sultate sind in drei Publikationen verö�entlicht und ein weiteres Manuskript wurde bereits
eingereicht.

Im Forschungsgebiet des Anregungsenergietransfers haben aktuelle Erkenntnisse zur Rolle
sogenannter Quantenkohärenzen neue Einblicke in die Mechanismen des Energietransfers
geliefert. Die relevanten Energietransferraten werden von vielen verschiedenen Eigenschaften
der Moleküle und durch E�ekte der Umgebung des Systems beein�usst. In dieser Arbeit un-
tersuche ich den Anregungsenergietransfer aus zwei Richtungen. Einerseits verwende ich
Echtzeitpropagation im Rahmen der zeitabhängigen DFT, um die Kopplungsstärke und den
Kopplungsmechanismus zwischen zwei einzelnen Molekülen zu untersuchen. Dieser Studie
liegt eine Herangehensweise zugrunde, die ein geschlossenes Quantensystem benutzt und in
deren Rahmen man kohärente Oszillationen der Anregungsenergie zwischen den Molekülen
beobachten kann. Andererseits nutze ich einen Ansatz, o�ene Quantensysteme in Kombi-
nation mit dem Formalismus der zeitabhängigen DFT zu verwenden, um den Ein�uss der
Umgebung des Systems auf die Zeitskala und die Wege des Anregungsenergietransfers zu un-
tersuchen. Ich habe dazu einen heuristischen Dissipationsmechanismus entwickelt und wende
diesen auf eine ringförmige Anordnung von Molekülen an. Der erste Teil dieser Ergebnisse ist
bereits verö�entlicht, während der zweite Teil Untersuchungen enthält, die in dieser Arbeit
erstmals präsentiert werden.
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Chapter 1

Motivation

For actually, in spite of the variety of topics involved, the whole

enterprise is intended to convey one idea only � one small comment on

a large and important question. In order not to lose our way, it may be

useful to outline the plan very brie�y in advance.

Erwin Schrödinger
What is life? (1944)

Today's energy demands are a driving force for the investigation of new energy converting
materials, concepts, and devices. In particular, because of world-wide attempts to reduce
pollution originating from conventional power plants and political decisions against nuclear
power generation via nuclear �ssion, renewable and sustainable energy recovery is a growing
�eld in industry and academia. In this context, development of methodologies for solar
energy harvesting is inspired by the tremendous e�ciency of energy recovery in biological
systems. In recent years, researchers all over the world returned to the original building
blocks of natural light harvesting (LH) systems, and materials and chromophores out of the
toolbox of organic and macromolecular chemistry are experiencing a boom.

A detailed understanding of the mechanisms and pathways of energy recovery in natural
molecular LH complexes is a promising starting point for the tailored design of new arti�cial
energy-converting materials. Future development in the �eld of molecular electronic devices
will require a close cooperation of synthetic chemistry, material and device characterization,
and application design. On all stages of this development also theoretical investigations
are needed to support elementary understanding and decision making. In particular, for
a target-oriented design of high e�ciency LH materials, it is important to understand the
mechanisms of charge transfer (CT) and excitation-energy transfer (EET) of many single
transfer steps. In multichromophoric supermolecules such as LH systems, the rates of these
mechanisms are a�ected by a number of di�erent properties and phenomena. In particular,
they involve the interaction between many unique system components and the interplay with
the system's environment.

A theoretical method that is supposed to provide insight into the physics of technolog-
ically relevant organic materials, therefore, needs to ful�ll a couple of criteria: (i) handle
the relevant system size even beyond single multichromophoric molecules, (ii) guarantee
reliability of its results, and (iii) provide predictive power beyond standard test systems.
In principle, (time-dependent) density functional theory (TD)DFT appears as a natural
choice to study sizable molecules on a �rst-principles scale at bearable computational cost.
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2 CHAPTER 1. MOTIVATION

However, the validity of (TD)DFT results strongly depends on the underlying approxi-
mations for exchange-correlation (xc) e�ects. Application of standard local and semilo-
cal density functionals su�ers from well-known de�ciencies: incorrect dissociation limits
[ZY98], wrong asymptotic behavior of the potential [PZ81], and overestimation of electri-
cal response properties [vGSG+99]. Problems are resported in semiconductor nanoclusters
[ORR02, OCL97, RL98, RL00, VOC02, VOC06], where standard TDDFT functionals tend
to underestimate low-lying optical excitations [MCR01]. Moreover, dynamical properties like
transport characteristics [TFSB05] are overestimated and one observes an incorrect represen-
tation of CT states [DWHG03, Toz03]. Therefore, to guarantee the reliability and predictive
power of (TD)DFT, there is serious need for the improvement of xc functionals.

During this thesis, I focused on the elementary processes of CT and EET, and the
theoretical description of such processes in the framework of (TD)DFT. In particular, I in-
vestigated self-interaction correction (SIC) ideas based on Kohn-Sham (KS) theory and their
application in and extension to real-time propagation TDDFT as one promising approach
to deal with the CT problem. I found that SIC implemented via the generalized optimized
e�ective potential (GOEP) [KKM08] and approximations to the GOEP yields polarizabili-
ties, excitation energies, and CT properties in good agreement with reference calculations.
In the �eld of EET, I developed a tool that uses standard TDDFT real-time propagation
to compute the coupling strength between chromophores in a supermolecular environment.
Further investigations, required an extension of the standard formulation of closed quantum
system TDDFT to open quantum systems that allows for the inclusion of decoherence and
dissipation e�ects. I investigated such a scheme in the framework of stochastic TDDFT and
demonstrated its applicability to EET in circularly arranged model systems in the spirit of
natural LH systems. This work includes four publications referred to as Pub1 - Pub4 and
one submitted manuscript referred to as Man1 that are assembled at the back of this thesis.

This cumulative dissertation is organized as follows. Chapter 2 provides an elementary
introduction to DFT and TDDFT including all concepts that are important for this thesis.
I introduce the self-interaction problem, self-interaction correction ideas, and their imple-
mentation in KS DFT and TDDFT in Chap. 3. In Chap. 4, I discuss the CT problem
and demonstrate how explicit SIC helps with CT investigations. Finally, I present the in-
vestigations on EET and the coupling mechanism in Chap. 5 that comprises unpublished
results and work in progress concerning open quantum system treatment ideas in the TDDFT
framework. Supplementary results and �ndings are gathered in Appendix A. Many of the
results required enormous numerical e�ort that could only be accomplished by performance
enhancement and the implementation of new algorithms to the PARSEC program package.
Therefore, the other chapters B to E of the appendix give an overview, in parts detailed
explanations, and more insight into the implementations and the practical usage of the new
functionalities. They are supposed to serve as an overview and guide for future PARSEC
users.



Chapter 2

Density functional theory and

time-dependent density functional

theory

The large and important and very much discussed question is:

How can the events in space and time which take place within the

spatial boundary of a living organism be accounted for by physics and

chemistry?

Erwin Schrödinger
What is life? (1944)

Density functional theory and time-dependent density functional theory are the methodologi-
cal basis of this dissertation. They are both in principle exact formulations of many-particle
quantum theory, at the same time providing means to study sizable systems at compara-
bly low computational cost. The numerical advantages of (TD)DFT rest upon its single-
particle representation of many-particle quantum systems using the Kohn-Sham scheme.
Yet, reliability of (TD)DFT results strongly depends on the approximations that are used
for many-particle exchange-correlation e�ects in this single-particle representation. I give a
short review of the basics of DFT in Sec. 2.1. However, the main focus of this work is on
TDDFT. Its basic concepts are introduced in Sec. 2.2. There, I also discuss the two most
important routes to obtain excitation energies: the TDDFT linear response formalism that
is well-known as the Casida approach and TDDFT based on real-time propagation of the KS
system. In Sec. 2.3, I explain the idea of using transition densities to investigate the origin of
excitation peaks in the absorption spectra computed with TDDFT methods. I complement
this basic introduction with Sec. 2.4 on fundamental features of the KS scheme and the
xc potential that are vital background for understanding some of the aspects of this work.
In Sec. 2.5, I introduce important xc functional approximations. Finally, details about the
numerical realization of this work are provided in Sec. 2.6. Throught this thesis, I use the
Born-Oppenheimer approximation and consider the electronic sturcture problem only.

For a more detailed discussion of DFT, I recommend the books of Dreizler and Gross
[DG90] and of Fiolhais et al. [NFM03], as well as the review article of Capelle [Cap02].
Recent overviews of TDDFT are provided in the two books of Marques et al. [MUN+06]
and [MMN+12], and in the following review articles [GDP96, MG04, EBF07, CHR12].
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CHAPTER 2. DENSITY FUNCTIONAL THEORY AND TIME-DEPENDENT

DENSITY FUNCTIONAL THEORY

2.1 Density functional theory

2.1.1 Basics of density functional theory

Density functional theory in its original formulation is a method to compute ground-state
(GS) properties of a many-particle system without the need to solve Schrödinger's equation.
Instead, DFT uses the GS density n(r) as its basic variable, thus avoiding to compute the
fully interacting many-particle wave function. This choice of the basic variable amounts
to a drastic reduction of the number of degrees of freedom from 3N coordinates of the
Schrödinger wave function to three coordinates in the density representation. Therefore,
while it is impossible to store the fully interacting wave function of sizable systems, DFT
calculations can in principle be performed with up to hundreds or even thousands of atoms.

The mathematical equivalence of these formulations of quantum mechanics was settled by
Pierre Hohenberg and Walter Kohn [HK64] in 1964. Today, the basis of DFT is well-known
as the two Hohenberg-Kohn (HK) theorems.

First HK theorem: Given a particle-particle interactionW (r, r′), there exists a one-to-
one correspondence between the electron density n(r), the many-particle wave-function Ψ,
and the local external potential vext(r). Thus, the GS Hamiltonian H, the GS wave function
Ψ0, and all observables of the system are unique functionals of the GS density.

Second HK theorem: The GS energy E0 = E[n0] follows from a variational principle.
It can be computed from the variational equation

δE[n]

δn(r)
= 0 (2.1)

taking the functional derivative of the energy density functional E[n] with respect to the
density. The energy functional splits into the HK functional and contributions V [n] of the
external potential v(r), i.e., E[n] = FHK + V [n]. The universal HK functional subsumes the
kinetic and the electron-electron interaction energy T [n] and W [n].

Although the HK theorems provide the theoretical framework for a density representation
of quantum mechanics, they do not give any explicit form of the exact HK functional. In
light of the complexity of solving Schrödinger's equation, �nding FHK can even be considered
intractably di�cult [SV09]. Therefore, practical DFT calculations need to rely on reasonable
approximations for FHK.

2.1.2 Kohn-Sham density functional theory

The �nal breakthrough of DFT came with a single-particle representation of the many-
particle system, the so-called Kohn-Sham scheme [KS65]. In the Kohn-Sham (KS) approach,
the many-particle problem is mapped onto an auxiliary system of non-interacting particles
that is supposed to give the same density as the true interacting system. Many-particle
e�ects are covered by an e�ective local potential. To this end, the KS partitioning of the
total energy gives a good starting point for developing approximations for FHK and the
related potential contributions. With regard to discussions in the following chapters, I use
the notation of spin DFT [vBH72] with additional spin index σ. Atomic units are used
throughout. In this formulation, the total energy of the electronic problem with Coulomb
interaction reads

E[n↑, n↓] = FHK[n↑, n↓] + V [n] = TS[{ϕiσ[nσ]}] + EH[n] + Exc[n↑, n↓] + V [n]. (2.2)
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TS[{ϕiσ[nσ]}] is the kinetic energy functional of the N = N↑ +N↓ non-interaction electrons
that are represented by the auxiliary orbitals {ϕiσ}, i.e.,

TS[{ϕiσ[nσ]}] = −1

2

∑

σ=↑,↓

Nσ∑

i=1

∫
ϕ∗iσ[nσ](r)∇2ϕiσ[nσ](r) d3r, (2.3)

and EH[n] is the classical Hartree interaction

EH[n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′| d3r d3r′. (2.4)

The exchange-correlation (xc) energy functional Exc[n↑, n↓] includes all many-particle e�ects
that are not covered by the other functionals. Thus, it is related to FHK[n↑, n↓],

Exc[n↑, n↓] = FHK[n↑, n↓]− TS[{ϕiσ[nσ]}]− EH[n]. (2.5)

The xc energy functional is the great unknown of DFT and needs to be approximated (see
Sec. 2.5.1). The success of DFT depends on the quality of these approximations. Last but
no least, V [n] considers external �elds, e.g., the �eld of the atomic nuclei. In the following,
any coupling of V [n] to the spin degrees of freedom is disregarded.

Based on the KS energy partitioning, the variational principle of the HK theorems leads
to a set of single-particle Schrödinger equations, the so-called KS equations

[
−∇

2

2
+ vKS,σ[n↑, n↓](r)

]

︸ ︷︷ ︸
hKS,σ(r)

ϕiσ(r) = εiσϕiσ(r). (2.6)

Here, I introduced the KS Hamiltonian hKS,σ(r) that acts on the KS orbitals {ϕiσ}. The
local multiplicative KS potential vKS,σ[n↑, n↓](r) reads

vKS,σ[n↑, n↓](r) = vH[n](r) + vxc,σ[n↑, n↓](r) + vext(r). (2.7)

The single contributions are calculated as functional derivatives of the corresponding energy
functionals with respect to the density, thus vH[n](r) =

∫ n(r′)
|r−r′| d

3r′ and the xc potential
reads

vxc,σ[n↑, n↓](r) =
δExc[n↑, n↓]

δnσ(r)
. (2.8)

Finally, the density of the KS system can be computed from the KS orbitals according to

n(r) =
∑

σ=↑,↓
nσ(r) =

∑

σ=↑,↓

Nσ∑

i=1

|ϕiσ(r)|2. (2.9)

In the basic KS DFT rationale, n(r) is the central quantity of physical signi�cance, whereas
the KS orbitals are auxiliary functions that do not necessarily carry physical meaning. Fur-
ther insight into the properties of the KS system and the xc potential are provided in Sec. 2.4.
In practical KS calculations, vKS,σ is unknown at the beginning. Hence, the KS equations
need to be solved self-consistently starting from some initial guess and iteratively updating
the KS potential and diagonalizing the KS Hamiltonian.
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2.2 Time-dependent density functional theory

2.2.1 An introduction to time-dependent density functional theory

Although the HK theorems lay the foundation for a density representation of the fully inter-
acting many-particle system, they do not establish a direct relation between the GS density
and truly dynamic or excited-state properties. The investigation of such properties using
density functionals is based on time-dependent density functional theory. In TDDFT, the
Runge-Gross theorem [RG84] is the complement of the HK theorems of GS DFT. Given
an initial state and particle-particle interaction, it establishes a one-to-one correspondence
between the time-dependent (TD) density n(r, t) and the TD external potential vext(r, t)
up to a purely TD function c(t). With vext(r, t) and the initial state Ψ(t0), also the TD
wave-function is determined uniquely up to a TD phase via solution of the TD Schrödinger
equation. As expectation values of any operator are not sensitive to the phase of the wave
function, in principle, each observable is a functional of n(r, t) and the initial state. The
Runge-Gross proof has be re�ned by van Leeuwen [vL99] who covers the non-interacting v-
representability question of TD densities by a construction procedure of the external potential
of the alternative reference system [vL99, MUN+06]. Moreover, the initial-state dependence
of the density representation has been discussed in Refs. [MB01] and [MBW02].

To derive a calculation scheme for dynamic properties, Runge and Gross [RG84] suggested
a variational principle that rests upon on an action functional. However, Refs. [vL98] and
[vL01] demonstrate that TDDFT based on the Runge-Gross action leads to contradictions
in the symmetry and causality requirements of one of the most important ingredients of
TDDFT linear response theory, namely the xc kernel

fxc(r, t; r
′, t′) =

δ2Axc

δn(r, t)δn(r′, t′)
, (2.10)

where Axc is the xc part of the Runge-Gross action [RG84]. Van Leeuwen [vL98, vL01]
solved this problem by introducing a new action functional that is based on the time contour
method due to Keldysh (for more details, see Refs. [vL98, vL01, MUN+06, Mun07]). The
thus obtained variational principle yields a set of time-dependent Kohn-Sham equations

i
∂

∂t
ϕjσ(r, t) = hKS,σ(r, t)ϕjσ(r, t), (2.11)

where the TD KS Hamiltonian reads

hKS,σ(r, t) = −∇
2

2
+ vH(r, t) + vxc,σ(r, t) + vext(r, t). (2.12)

The TD xc potential vxc,σ(r, t) follows from the functional derivative

vxc,σ(r, t) =
δAxc

δn(r, τ)

∣∣∣∣
n=nσ(r,t)

(2.13)

of the xc part of the new action functional with respect to the density n(r, τ) where the time
variable τ is the Keldysh pseudo time, but the functional derivative is taken at the physical
TD density n(r, t) [vL98, vL01]. By the basic theorems of TDDFT, vxc,σ(r, t) is a functional



2.2. TIME-DEPENDENT DENSITY FUNCTIONAL THEORY 7

of the TD density and its entire history, the initial interacting wave function, and the initial
state of the KS system. Finally, based on xc approximations, the TD density follows from
the Nσ occupied orbitals per spin channel of the TD KS system according to

n(r, t) =
∑

σ=↑,↓

Nσ∑

j=1

|ϕjσ(r, t)|2. (2.14)

Practical calculations of TDDFT rely either on the linear response formalism or on real-time
propagation of the KS system. Both approaches are introduced in the following.

2.2.2 TDDFT linear response formalism

Today, most TDDFT excitation energy investigations are based on the linear response for-
malism. The linear response of the GS density to small perturbations δvext(r

′, t′) of the
external potential reads

δn(r, t) =

∫ ∫
χ[nGS](r, r′, t− t′)δvext(r

′, t′) d3r′ dt′, (2.15)

where χ[nGS](r, r′, t − t′) is the linear response function of the interacting system. For the
sake of clarity, I use a spin-independent notation here and in the next section. Based on
the fundamental theorems of TDDFT, the density response may be expressed in terms of
the linear response of the KS system due to changes of the KS potential [PGG96]. Hence, a
relation between χ[nGS](r, r′, t− t′) and the linear response function of the KS system χKS

exists [PGG96, MUN+06]. In frequency space, the interacting linear response function is

χ(r, r′, ω) =χKS(r, r′, ω)

+

∫ ∫
χKS(r, r1, ω)

{
1

|r1 − r2|
+ fxc(r1, r2, ω)

}
χ(r2, r

′, ω) d3r1 d3r2,
(2.16)

where χKS(r, r′, ω) is the frequency-dependent linear response of the KS system reading

χKS(r, r′, ω) = 2 lim
η→0+

∑

i,a

{
ξia(r)ξ

∗
ia(r

′)

ω − ωia + iη
− ξ∗ia(r)ξia(r

′)

ω + ωia + iη

}
. (2.17)

It depends on the eigenvalue di�erences ωia = εa − εi between all possible combinations of
occupied KS orbitals i and unoccupied KS orbitals a and on the orbital products ξia(r) =
ϕ∗i (r)ϕa(r) of the corresponding GS KS orbitals [MUN+06]. It has poles at frequencies ωia.
The KS response contribution to Eq. (2.16) includes only those e�ects that are encoded in
the single-particle GS KS system, whereas the Hartree-exchange-correlation (Hxc) kernel

fHxc(r, r
′, ω) =

1

|r − r′| + fxc(r, r
′, ω) (2.18)

needs to cover all many-particle e�ects beyond that.
Finding the excitation energies of the interacting systems in linear response amounts

to �nding the poles of χ(r, r′, ω). Casida [Cas95, Cas96] developed a matrix-equation for-
mulation for practical implementations of this strategy. In this approach, solution of the
eigenvalue problem [Cas96, MUN+06]

∑

i′,a′

Ria,i′a′Fi′a′ = Ω2Fia, (2.19)
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where
Ria,i′a′ = ω2

iaδii′δaa′ + 4
√
ωiaωi′a′Kia,i′a′ (2.20)

and
Kia,i′a′(ω) =

∫ ∫
ξ∗ia(r)fHxc(r, r

′, ω)ξi′a′(r
′) d3r d3r′, (2.21)

yields the excitation energies Ω of the interacting system. The corresponding oscillator
strength is encoded in the eigenvectors [Cas96]. This procedure is well-known as the �Casida
approach� of linear response TDDFT. It is most frequently used in today's TDDFT based
applications and implemented in most quantum chemistry codes.

An approximate approach to �nding Ω from TDDFT linear response provides means for
more insight into the in�uence of the individual contributions of Eq. (2.16), i.e., contribu-
tions from the GS KS system and Hartree-exchange-correlation e�ects. It is based on the
single-pole approximation [PGG96]: Assuming that the true excitation Ω̃ is dominated by
one transition from a single occupied orbital j to a single unoccupied orbital b, all other
contributions to the total response can be neglected. Thus, one obtains [PGG96, AGB03]

Ω̃ ≈ ωjb + 2 Re{Kjb,jb(ωjb)}. (2.22)

Equation (2.22) is used in Sec. 4.1 to explain the CT problem of TDDFT.

2.2.3 Real-time propagation TDDFT

In this thesis, I mainly used the real-time (RT) propagation approach to TDDFT which does
not require explicit linear response theory, but is directly based on the TD KS equations of
Sec. 2.2.1. The central idea of this method is to compute the time evolution of the density
from RT propagation of the TD KS system

ϕj(r, t) = U(t, t0)ϕj(r, t0) = T exp

[
−i

∫ t

t0

hKS(r, t′) dt′
]
ϕj(r, t) (2.23)

via application of the propagator U(t, t0). All other observables need to be obtained from
n(r, t). This is a crucial point because in some situations it is di�cult to extract information
that is easily available in the Casida approach from the time evolution of the density, e.g.,
see Chap. 4. In such cases, new investigation ideas need to be developed as for instance
the transition density analysis tool of Sec. 2.3. Yet, some important observables are explicit
functionals of the density, in particular the TD dipole moment

d(t) =

∫
rn(r, t) d3r. (2.24)

Excitation energies emerge as peaks in the spectrum of the TD density after some initial
excitation [ZS80, CRS97]. Most importantly, optical excitations that are sensitive to the
dipole moment cause peaks at frequencies ω in the Fourier transformation d(ω) of the TD
dipole moment that correspond to optical excitation energies. To compute the latter, the
system is typically excited by an initial moment boost and the resulting TD dipole moment is
used as basic observable [YB96, YB99a, YB99b, MCBR03, CAO+06, MK07, Mun07, Mun09].
Here, the boost is applied initially by multiplying exp

(
ir·pboost

~
)
to the GS KS orbitals. This

introduces an excitation energy Eexcit via the momentum |pboost| =
√

2mEexcit/N . The
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Fourier transformation of the dipole signal after such a momentum boost can be related to
the dynamical polarizability and the dipole strength function [ZS80, YB96, CRS97, CAO+06],
where peak positions correspond to excitation energies and peak heights are related to the
oscillator strength of the transitions. As long as one is interested only in the position of
excitation peaks, the dipole power spectrum [CRS97, Mun07, Mun09]

D(ω) =
3∑

j=1

|dj(ω)|2 (2.25)

gives a reliable and relatively clean signal in the frequency domain. Other applications
involve excitations via TD external �elds, e.g., laser �elds. Such external perturbations may
be included in terms of explicitly TD external potentials that act during propagation. More
insight into external laser �elds, possible laser pulse shapes, and applications are given in
Refs. [Mun07] and [Mun09].

The RT propagation approach comes along with some advantages in comparison to the
explicit linear response formulation. First, the xc kernel does not need to be computed, as RT
propagation is based on the potential only. The determination of fxc may be complicated, in
particular, in case of xc approximations where already the determination of vxc is di�cult.
Second, RT propagation shows a more advantageous scaling [YB99b]. However, for many
applications, this scaling argument holds only for really large particle numbers, because
multipliers that are modifying the scaling behavior are typically notably larger in case of the
RT approach. Third, RT propagation is not limited to the linear response regime. Thus, it
can be applied to non-perturbative and non-linear phenomena, as for instance excitation by
strong laser �elds. Finally, the RT propagation method is applicable to general TD situations
and, therefore, illuminates the RT evolution of explicitly TD observables.

2.3 The transition density analysis tool

At �rst glance, RT propagation does not seem to provide more information about the nature
of excitations than their energetic position and the corresponding oscillator strength. From
this alone, it appears di�cult to make clear statements about the performance of di�er-
ent functional approximations by just comparing the computed absorption spectra. For a
trustworthy assessment of excitation energy results, it is important to know the nature of
the excitation peaks, i.e., to understand the character of the underlying transitions. The
Casida approach [Cas95, Cas96] allows this in a natural way as it decomposes excitations
into transitions from occupied to unoccupied orbitals with a certain weighting factor. In
this way, one can, e.g., distinguish between local and CT excitations. In principle this infor-
mation is also available from RT propagation, but extracting the information from the TD
orbitals is tedious. Therefore, I suggested an analysis tool for the RT signal that is based
on the transition density and allows to explore the nature of excitations. The transition
density is directly related to the TD density, thus well de�ned in the framework of TDDFT
[KAR01, BCOR04, TK09].

The transition density ρω(r) corresponding to an excitation at frequency ω is proportional
to the negative of the imaginary part of the Fourier transformation δn(r, ω) of the TD density
�uctuations δn(r, t) = n(r, t)− n(r, 0) according to [BCOR04, TK09]

ρω(r) ∝ −Im{δn(r, ω)}. (2.26)
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In PARSEC, I implemented a step by step Fourier transformation during time propagation to
calculate ρω(r) for preset frequencies (see Appendix E.3 for details). The obtained transition
densities are a unique �ngerprint of the excitation and can be used to distinguish between
excitations of di�erent character. �Visual inspection� of transition densities helps to assign
excitations peaks of spectra computed by di�erent methods or functional approximations.
Examples of how transition density �ngerprints are used to identify transitions of known
character in spectra from di�erent functionals are given in Pub2 and Pub4.

More insight into the nature of transitions is available if the contributions of occupied to
unoccupied orbital transitions are known. In this case, the transition density can be written
as a weighted sum of occupied and unoccupied orbital products [BCOR04]

ρω(r) ∝
occup.∑

i

unoccup.∑

j

aωijϕi(r)ϕ
∗
j (r) (2.27)

with weighting factors aωij . Transition densities from RT propagation are compared to transi-
tion densities from GS orbital products in Pub2 and Pub4 to identify CT transitions and the
corresponding excitation energies in two important model systems that exhibit di�erent CT
character. Moreover, in an attempt to set the �visual inspection� idea on a more objective
footing, I suggested two quantitative comparison criteria that are explained in Pub4.

2.4 Exact properties and features of the exchange-correlation

potential

The work presented in this thesis is deeply rooted in the KS framework of DFT. The KS
scheme provides some theoretical and technical advantages: it ful�lls exact conditions as, e.g.,
Janak's ionization-potential theorem [Jan78], exact KS eigenvalues are good approximations
to relaxed vertical ionization potentials [CGB02, Kör09], using local potentials has numerical
advantages, and the local multiplicative potential allows for a transparent analysis of the
response behavior and interpretability of orbitals and eigenvalues [DKK+11]. Taking exact
properties of the KS system and its xc contribution into account, is an established route for
improving xc functional approximations. Therefore, concluding the overview of DFT and
TDDFT basics, I comment on the derivative discontinuity and its manifestation in the xc
potential and name some other important features and exact properties of the KS approach.

One property of the DFT description of xc e�ects that is important for this work is
related to the behavior of the total energy of a quantum system when its total electron
number passes integer values. This situation was studied by Perdew et al. [PPLB82] based
on a statistical mixture of N - and (N +1)- electron systems to realized fractionally occupied
systems with total electron number N + ω, where 0 ≤ ω ≤ 1. The important �nding of Ref.
[PPLB82] is that the GS energy EN+ω of fractionally occupied systems varies linearly with
the fractional occupation ω between the energies of the N - and (N + 1)- electron system as

EN+ω = (1− ω)EN + ωEN+1. (2.28)

This straight-line behavior of the total energy between integer electron numbers implies
discontinuous changes of its slope with respect to the fractional particle number Z when it
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passes integers N . Thus, also the chemical potential µ(Z) = ∂EZ/∂Z jumps discontinuously

µ(Z) =

{
−IP (N) = EN − EN−1, N − 1 < Z < N

−EA(N) = EN+1 − EN , N < Z < N + 1
(2.29)

when Z passes integer occupations N [PPLB82]. IP and EA are the ionization potential
and the electron a�nity of the N -electron system. The discontinuity at the integer electron
number N is given by ∆ = IP (N)−EA(N). This di�erence is called the fundamental gap.
In KS DFT, ∆ may be separated into two contributions

∆ = ∆KS + ∆xc, (2.30)

the KS gap ∆KS and the derivative discontinuity of the xc potential ∆xc [PL83]. The KS
gap is the di�erence εexact KS

LUMO − εexact KS
HOMO of the HOMO (highest occupied molecular orbital)

and the LUMO (lowest unoccupied molecular orbital) eigenvalue of the yet unknown exact
N -electron KS system. ∆xc quanti�es the integer jump of the xc potential when in an open
system framework with non-integer particle numbers the electron number passes integer
values [PPLB82, PL83, SS83, Per90, DG90]. Hence, it is de�ned as

∆xc = v+
xc(r)− v−xc(r) = (IP (N)− EA(N))−

(
εexact KS

HOMO − εexact KS
LUMO

)
, (2.31)

where the potentials v+
xc(r) and v

−
xc(r) correspond to the limiting cases when the fractional

electron occupation approaches N from above or from below according to

v+
xc(r) = lim

ω→0

δExc

δn(r)

∣∣∣∣
N+ω

, (2.32)

v−xc(r) = lim
ω→0

δExc

δn(r)

∣∣∣∣
N−ω

. (2.33)

The discontinuous behavior of the GS energy re�ects the strong tendency of true elec-
tronic systems to reject fractional occupation [Per90]. Perdew [Per90] related the derivative
discontinuity to the principle of integer preference: In a system composed of separate subsys-
tems, nature always prefers to locate integer charges on each object. Although this concept
was introduced in an ensemble formulation of quantum systems with fractional occupations,
it also manifests in the xc potential of systems with integer electron numbers in terms of
step-like structures [SP08, GGS09].

The dissociation process of diatomic molecules is one such situation where step-like struc-
tures are important to support integer number of electrons on fragments of the system
[PPLB82, Per90, RPC+06, KAK09, TMM09, Kör09, MKK11]: When two di�erent atoms A
and B with di�erent electronegativity dissociate, a step emerges in the exact xc potential in
between the two atoms as they move apart. It is needed to align the eigenvalues correspond-
ing to the HOMO of A and B in the in�nitely separated case via relative shifts of the A and
B potential wells in order to avoid fractional charge transfer during the dissociation process
[KAK09]. A second kind of step-like structure was observed in vxc at the boundaries of the
shells of the atomic shell structure [KLI92, GvLB94, vLGB95]. Step structures appear also
during TD processes [LK05, MK05], as for instance at the boundary of an emerging potential
plateau during ionization due to strong external �elds [LK05].



12
CHAPTER 2. DENSITY FUNCTIONAL THEORY AND TIME-DEPENDENT

DENSITY FUNCTIONAL THEORY

A di�erent manifestation of step-like structures and the derivative discontinuity is the
�eld-counteracting behavior of vxc when external �elds are applied. A �eld-counteracting
trend of the xc potential has been identi�ed to be decisive for the description of static
response properties such as polarizabilities [vGSG+99, GvGSB00, KKP04, KMK08, KAK09].
More insight into the static �eld-counteracting behavior is given in Appendix A.1.

The derivative discontinuity, step-like structures, and �eld-counteracting behavior are
particularly important also for Coulomb blockade e�ects [CBKR07, KSK+10] and charge-
transfer investigations [TFSB05, Mai05, HG12]. In Chap. 4, the latter topic is discussed in
greater detail in static and dynamic situations.

Exact properties of the GS functional [MMN+12] beside the derivative discontinuity in-
clude scaling relations and signs of the energy contributions, the xc virial theorem, freedom
from self-interaction in one-electron systems [PZ81] (see Chap. 3 for more details), proper-
ties of the xc hole, zero-force and torque theorem of the xc potential, and the asymptotic
behavior of the potential. In TDDFT, during time propagation fundamental conservation
laws should be respected. In particular, the total energy should remain constant when no
external perturbation acts. The torque and zero-force theorems [Vig95, GDP96] also apply
in TDDFT. The latter states that the xc potential cannot exert a net force on the system as

∫
n(r, t)∇vxc(r, t) d3r = 0. (2.34)

More exact constraints on density functionals and their relevance in TDDFT are discussed
in Refs. [HPB99, MUN+06, MMN+12].

2.5 Exchange-correlation functionals

2.5.1 Approximations for the exchange-correlation energy functional

The practical usability and reliability of DFT and TDDFT strongly depends on the quality
of the used xc density functionals. This aspect has not been settled so far. I give an
introduction into the most important and for this thesis most relevant approximations to
Exc in the following.

Local and semilocal functionals: The earliest and still one of the most wide-spread
approximations is the local density approximation (LDA) [HK64] and its extension to spin-
dependent cases, the local spin-density approximation (LSDA) [vBH72]. The rationale behind
LDA is to use the functionals of the exchange and correlation energies (εhom

x (nhom) and
εhom
c (nhom)) of the homogeneous electron gas and replace the homogeneous electron density
nhom by the local density n(r) according to

εhom
xc [n(r)] =

[
εhom
x (n0) + εhom

c (n0)
]
n0=n(r)

. (2.35)

The exchange part of the homogeneous electron gas xc energy has an analytical expression.
The correlation contribution is only known from highly accurate quantum Monte-Carlo simu-
lations [CA80] and needs to be parametrized for application in DFT, e.g., the parametrization
of Perdew and Wang [PW92]. The LDA xc energy reads

ELDA
xc [n] =

∫
εhom
xc (n(r))n(r) d3r. (2.36)
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Semilocal functionals are the �rst class of beyond-LDA functionals. Historically, the �rst
step beyond purely local functionals was to include also gradients of the density into the
xc functional. However, consistent improvements were obtained only when the so-called
generalized gradient approximations (GGAs) [LM83, PY86, Per86] were introduced. One of
the most popular GGAs, the non-empirical GGA of Perdew, Burke, and Ernzerhof (PBE)
[PBE96], is based on exact constraints, e.g., to the xc hole. Other functionals use free
parameters and �t those to data sets from reference calculations or experimental �ndings.
For instance, the semiempirical BLYP functional combines Becke88 exchange [Bec88] with
the correlation functional of Lee, Yang, and Parr (LYP) [LYP88]. A second class of semilocal
functionals are the so-called meta-GGAs that may include also higher-order derivatives of
the density, the kinetic energy density, and gradients of the latter. Note that meta-GGAs
may already fall into the next class of functionals, the so-called orbital functionals, because
they may include explicit orbital dependence although they are semilocal in nature.

Orbital functionals: Orbital-dependent functionals comprise explicit dependence of
the orbitals of the KS system beyond semilocal contributions [KK08]. They are still implicit
density functionals because the orbitals themselves are implicit functionals of the density.
Prominent representatives of this class of functionals are the self-interaction correction (SIC)
of Perdew and Zunger [PZ81] and the exact exchange (EXX) functional

Ex[{ϕjτ}] = −1

2

∑

σ=↑,↓

Nσ∑

i,j=1

∫ ∫
ϕ∗iσ(r)ϕ∗jσ(r′)ϕjσ(r)ϕiσ(r′)

|r− r′| d3r d3r′, (2.37)

the Fock exchange integral known from Hartree-Fock (HF) theory computed with KS or-
bitals. The latter includes exact exchange only and �nding a compatible correlation func-
tional is known to be di�cult. In the SIC approach, exchange and correlation are based on
the underlying xc functional approximation on top of which the self-interaction correction is
performed (see Pub3 and Chap. 3 for a discussion and more details).

The price one has to pay when using orbital functionals are di�culties when computing
the xc potential via the functional derivative of Exc with respect to the density, because one
does not know the explicit density dependence of the orbitals. A solution to this problem,
the optimized e�ective potential (OEP) method [SH53, TS76, GKG97, KK08], yields a mul-
tiplicative xc potential in the KS sense. This method is introduced in the context of SIC in
Chap. 3. As an alternative to the OEP, one may leave the grounds of KS theory and rely on
the generalized KS (GKS) approach [SGV+96]. In the GKS scheme, the constraint of strictly
non-interacting reference systems is relaxed and interacting reference systems that use a sin-
gle Slater determinant are allowed. The potential in the GKS approach is no longer a local
but an orbital-speci�c one. Typically, functionals implemented via the GKS method involve
at least a fraction of EXX, thus most GKS potentials include a fraction of the nonlocal
Fock potential [KK10]. Details about the GKS approach and di�erences to the theoretical
framework of the KS scheme are discussed in Refs. [SGV+96, KK10, BLS10].

Hybrid functionals: In the hybrid functional idea, basically a fraction of the EXX
functional is mixed with some semilocal (sl) density functional. For instance, a one-parameter
hybrid can be written as

Ehyb
xc = aEx + (1− a)Esl

x + Esl
c (2.38)

with the mixing parameter a. In this case, one mixes the semilocal exchange Esl
x with

exact exchange and takes the full correlation Esl
c of the semilocal functional. Typically, the
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mixing parameter of such hybrid functionals is chosen empirically, for instance by �tting the
functional to a test set of atomic and molecular properties. Probably the most prominent
hybrid functional is B3LYP [Bec93, SDCF94], a three-parameter hybrid functional based on
a weighted mixture of LDA exchange and correlation, LYP correlation, Becke88 exchange,
and EXX. The three parameters are obtained empirically from �tting to a set of atomic
properties. Other approaches emphasize the density dependence of such mixing parameters
and suggest approaches to compute mixing parameters from the density alone [MVO+11].

Recently, the range-separated hybrid functional idea became increasingly popular. It rests
upon a range-separation scheme [Sav95] of the electron-electron interaction into a short-range
and a long-range part. In those two parts, the electron-electron interaction is treated with
di�erent functional approximations. Each of those approximations is supposed to play a
speci�c role: Typically semilocal functionals are used in the short-range part, whereas EXX
is supposed to dominate the long-range contribution. The transition between short and long
range is determined by a partitioning scheme and a range-separation parameter γ [Sav95,
VS06, LB07, BLS10, KSSB11]. The inverse of this parameter 1/γ can be interpreted to be a
characteristic length scale that distinguishes between short and long rang. The choice of γ is
the key element of the performance of such range-separation ideas. First approaches of this
kind were based on empirical range-separation parameters [YTH04, VS06, LB07, CHG07],
but only recently parameter tuning to some additional theoretical constraints [SKB09a,
SKB09b, BLS10, KSSB11] has been employed. Tuned range-separated hybrid functionals, as
long as the underlying xc functionals are non-empirical, do not rely on empirical input data.

Hybrid functionals involve an explicit dependence on the orbitals. Thus, the di�culties
with orbital functionals already discussed in the previous section apply again. Usually, hybrid
functionals are implemented via the GKS scheme [SGV+96, KSSB11]. An implementation
within the KS framework of DFT can be performed based on the OEP method.

2.5.2 Exchange-correlation functionals in TDDFT

The xc action functional and the corresponding TD xc potential in TDDFT are very complex
quantities, presumably even more complex than their static counterparts. Yet, the validity
of results from TDDFT calculations strongly depends on the quality of the description of xc
e�ects. Therefore, although the action functional formalism provides a solid starting point
for developing functional approximations, �nding reliable TD xc potentials for practical
calculations can be tedious, in particular, for di�cult applications like charge transfer.

Today, most applications of TDDFT rely on the so-called adiabatic approximation
[GDP96, EBF07]. The rationale behind this approach is that in cases where the external
potential varies slowly enough in time, the time evolution of the system looses its dependence
on the past, and can be well described by the instantaneous density. Thus, the adiabatic
approximation amounts to using well-known functionals and the corresponding potentials
from GS DFT as TD xc potentials according to

vadia
xc,σ [n](r, t) = vxc,σ[nt](r) =

δExc[nt]

δnt,σ(r)
, (2.39)

where the time variable t is considered as a parameter of the density nt. For linear response
calculations the adiabatic approximations may also be applied to the xc kernel. The adia-
batic xc kernel is completely local in time, thus transforming it into Fourier space yields a
frequency-independent xc kernel [MUN+06].
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In principle, the adiabatic approximation introduced so far may be applied to every
GS xc approximation. Many applications of TDDFT rely on the adiabatic local density
approximation (ALDA, TDLDA), which is the simplest extension of GS DFT to the TD
case. Surprisingly, ALDA works quite well far beyond its obvious range of validity, namely
slowly varying densities both in space and in time [MUN+06]. Other applications use GGAs,
hybrid functionals, or orbitals functionals as introduced in Sec. 2.5.1. In any case, one should
be careful in choosing the right functional for each application depending on the system and
observable one is interested in.

Care should be taken when using the term �adiabatic� and considering its implications on
the history dependence of such approaches. Explicit density functionals implemented via Eq.
(2.39) neglect all memory dependence of the system evolution of times t′ ≤ t. When it comes
to explicitly orbital-dependent functionals, however, the TD KS orbitals in general depend
on the entire history of the density n(r, t′) for t′ ≤ t, thus recover in a natural way part of
the memory dependence that is not in the TD density [GDP96, MBW02, MMN+12]. In this
case, the �adiabatic approximation� should better be termed orbital-adiabatic approximation
in contrast to density-adiabatic approximation.

2.6 Numerical realization

Most DFT and RT TDDFT investigations presented throughout this thesis are based on
the Bayreuth version [MK07, Mun07, Mun09] of the PARSEC program package [KMT+06].
PARSEC is a real-space electronic-structure code that uses norm-conserving pseudopoten-
tials of Troullier-Martins [TM91] type and a high-order �nite di�erence schemes for numeri-
cally representing the Laplacian operator [CTS94, KMT+06]. The GS version is designed for
solving the KS equations by numerical diagonalization of the KS Hamiltonian. The Bayreuth
version includes solution of the OEP equation [KK08, Kör09] via the construction scheme of
Refs. [KP03a, KP03b] and approximations to the OEP, as for instance the Krieger-Li-Iafrate
(KLI) approximation [KLI92] and the Slater approximation [Sla51].

The practical realization of the RT propagation idea is based on stepwise numerical
propagation with time steps ∆t using the propagator U(t+∆t, t) [CAO+06, Mun07, Mun09].
The PARSEC real-time TDDFT implementation uses a Taylor series up to fourth order
to numerically expand U(t + ∆t, t) combined with the exponential midpoint rule [MK07,
Mun07, Mun09]. In this scheme, the potential needs to be determined twice per time step.
Other propagation techniques are explained in Ref. [CMR04]. To avoid spurious re�ection
of density that moves to the boundary of the numerical grid, RT PARSEC o�ers absorbing
boundaries [RSA+06, Mun07, Mun09]. Last but not least, the Bayreuth version of TD
PARSEC [MK07, Mun07] includes RT propagation of orbital functionals implemented via
the time-dependent KLI approximation.

For the feasibility of most RT calculations presented in this thesis, numerical optimiza-
tion of the original PARSEC version and the implementation of new algorithms were needed
to reach acceptable computation times. One of the most time-consuming steps during time
propagation is the evaluation of the Hartree potential via solution of Poisson's equation.
Numerical e�ciency of the Poisson solver is especially important when orbital functionals
as, e.g., the EXX or the SIC are used. Therefore, I implemented a multigrid solver as an
alternative to the existing conjugate gradient solver. Details about the numerical realiza-
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tion are described in Appendix B. Further code optimizations are compiled in Appendix
E. It includes an extrapolation scheme to avoid explicit determination of the potential for
the midpoint Hamiltonian, some evaluation tools and extra features for the propagation, an
adaptation scheme of the diagonalization accuracy to reduce diagonalization times during
the GS self-consistency iterations, and some additional features for GS PARSEC. All imple-
mentations that are directly related to the PARSEC functionalities used in this thesis are
described in the following chapters and the related appendices.



Chapter 3

Self-interaction correction

Another feature which at least induced a semblance of popularity was

the lecturer's intention to make clear the fundamental idea, ...

Erwin Schrödinger
What is life? (1944)

Density functional theory and time-dependent density functional theory have gained pop-
ularity because of their success in predicting and explaining properties of many di�erent
kinds of systems and their applicability to sizable systems at bearable computational cost.
However, standard density functionals may su�er from well-known de�ciencies: incorrect dis-
sociation limits [ZY98], wrong asymptotic behavior of the potential [PZ81], overestimation
of electrical response properties [vGSG+99] and transport characteristics [TFSB05], incor-
rect representation of charge-transfer (CT) states [DWHG03, Toz03], and problems with
excitonic e�ects in con�ned systems [RL98, MCR01, ORR02, VOC06]. De�ciencies of this
kind have been attributed to the self-interaction error (SIE) of standard, explicitly density
dependent functionals. The self-interaction correction (SIC) is a promising approach for
curing these de�ciencies of DFT and TDDFT.

I provide insight into the self-interaction problem of DFT and correction ideas in Secs.
3.1 and 3.2. The SIC of Perdew and Zunger (PZ) is an explicitly orbital-dependent density
functional. In KS DFT, it requires implementation via the optimized e�ective potential
(OEP) or generalized OEP (GOEP) method introduced in Sec. 3.3. The unitary variance of
PZ SIC is taken into account in the GOEP by additional unitary transformations (see Sec.
3.4). The impact of these transformations on the performance of SIC is discussed in Sec. 3.5.
Finally, I present in Sec. 3.6 one of the main results of this thesis: the TDDFT extension of
GOEP SIC. An overview of the performance of this method on a wide range of test systems
is given in Sec. 3.7 and Chap. 4.

3.1 The self-interaction problem

The self-interaction problem of DFT lies at the heart of the energy partitioning of KS
theory. In the KS scheme, the Hartree energy represents the classical part of the Coulomb
interaction, thus the xc energy needs to cover everything beyond the Hartree contribution.
The self-interaction problem of this energy partitioning manifests most clearly in a single-
electron (se) system, where the electron is described by the single-particle wave function

17
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ϕse(r) with density nse(r) = |ϕse(r)|2. In this case, the Hartree energy does not vanish, but
includes the Coulomb interaction of the single electron with itself. In the exact KS approach,
this spurious self-interaction needs to be covered by the xc energy [PZ81], thus the sum of
Hartree and xc energy contributions should vanish according to

EH[nse] + Exc[n
se, 0] = 0. (3.1)

As a matter of fact, however, most xc density functional approximations Eapp
xc do not cover

this single-electron SIE, i.e., typically EH[nse] + Eapp
xc [nse, 0] 6= 0.

The self-interaction error is well de�ned in the single-electron case, yet more di�cult in
a many-particle context. The PZ attempt towards de�ning many-electron self-interaction is
based on an extension of the single-electron criterion of Eq. (3.1) [PZ81]. In this approach,
the occupied orbitals from a DFT single particle approach are interpreted to represent the
Nσ electrons of the system. Then, a functional is declared to be self-interaction free, when

∑

σ=↑,↓

Nσ∑

j=1

[EH[njσ] + Eapp
xc [njσ, 0]] = 0, (3.2)

where the orbital densities njσ(r) = |ϕjσ(r)|2. The ambiguity of this de�nition has led
to alternative de�nitions of self-interaction in many-electron systems [RPC+06, MSCY06,
KKM08]. One prominent criterion for the freedom of many-electron self-interaction is
the straight line behavior of the total energy with respect to non-integer particle num-
bers [RPC+06, MSCY06, KKM08] that is introduced in Sec. 2.4. Perdew [Per90] re-
lated the SIE to the derivative discontinuity concept. The dependence of the total energy
from standard density functionals on fractional electron numbers was investigated by Refs.
[MSCY06, VSP07] with the conclusion: None of the investigated standard xc density func-
tionals strictly ful�lls the straight-line criterion.

3.2 Self-interaction correction

The PZ de�nition of a functional's freeness from self-interaction leads to the PZ self-
interaction correction scheme. The idea of the correction is to identify the energy related to
the interaction of every KS particle with itself and subtract this spurious energy contribution
from the xc energy of some xc approximation Eapp

xc [n↑, n↓] according to

ESIC
xc [n↑, n↓] = Eapp

xc [n↑, n↓]−
∑

σ=↑,↓

Nσ∑

j=1

[EH [njσ] + Eapp
xc [njσ, 0]] . (3.3)

However, the SIC idea of Eq. (3.3) raises some questions. First, the SIC approach is
applicable to in principle all available xc functional approximations. Some of them have
been advocated [PZ81] and some of them have been reported to be doubtful [VSP+06]. On
top of which approximate Eapp

xc [n↑, n↓] should SIC be performed then? Second, in Eq. (3.3),
orbital densities are inserted into GS xc functionals that are designed for GS densities. Is it
justi�ed to insert orbital densities into GS functionals? Third, related to the last question
one might ask: Is the choice of orbital densities a unique one? And if the answer is no, do
di�erent choices of the orbital densities in�uence the performance of SIC?
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These questions are addressed in Pub3 and Pub4, and the obtained insight is summarized
throughout this chapter. For the following discussions it is important to state that the PZ SIC
energy is not invariant under unitary transformations among the occupied orbitals: As long as
the density remains the same, constructing di�erent orbital sets via unitary transformation
Uσij of the occupied orbitals is allowed. Thus, one may obtain new orbital densities that
yield di�erent SICs. Suggestions to solve this �unitary variance problem� are based on two
orbital sets [PHL84, PHL85, PL88, GND00, PAZ01, KKM08, MDRS08, MDRS09a] that take
di�erent roles [KP03c]: The canonical orbital set {ϕjσ(r)} of Nσ occupied orbitals solves the
single particle equations and a second orbital set {ϕ̃jσ(r)} is used to set up the SIC xc energy
(3.3) uniquely. The orbital sets are connected by Uσij according to

ϕ̃iσ(r) =

Nσ∑

j=1

Uσijϕjσ(r). (3.4)

I use the term generalized SIC (GSIC) to refer to such approaches.
Finally, the SIC energy functional directly depends on the orbitals and, therefore, is only

an implicit functional of the density. The OEP method provides means for handling such
explicit, orbital-dependent functionals in the KS framework. To deal with the unitary vari-
ance of SIC, one needs to use the GOEP formalism [KKM08], where the freedom of unitary
transformations in the space of occupied orbitals is taken into account in the derivation of
the OEP equation. This is what I introduce in the next section.

3.3 The optimizied e�ective potential and its generalization

3.3.1 The optimized e�ective potential method

The OEP scheme is a method to compute the local, multiplicative xc potential from ex-
plicitly orbital-dependent functionals. Using the chain rule when computing the potential
vxc,σ(r) =

δExc[{ϕjτ}]
δnσ(r) via the functional derivative of the xc energy with respect to the den-

sity, one obtains the optimized e�ective potential integral equation [KK08, Kör09] for vOEP
xc,σ .

A solution scheme to the OEP equation in real space based on the so-called orbital shifts
was introduced in Refs. [KP03a, KP03b] and its implementation to the PARSEC program
package is described in Ref. [Kör09]. Solving the OEP equation is feasible, but can be a
tedious task. Therefore, most practical applications rely on approximations to the OEP.

The most widely used approximation to the OEP is the Krieger-Li-Iafrate (KLI) approx-
imation [KLI92]. Originally, it was derived from an approximation to the denominator of
the Greens function of the KS system, one of the ingredients of the OEP integral equation.
Later investigations of this approximation clari�ed that it can be interpreted as a mean-�eld
approximation to the OEP equation [GKKG00, KK08]. The KLI potential equation

vKLI
xc,σ(r) = vSLA

xc,σ (r) +
1

2nσ(r)

Nσ∑

j=1

njσ(r)
[(
v̄KLI

xc,jσ − ūxc,jσ

)
+ c.c.

]
(3.5)

has an analytic solution [KK08]. Here, the orbital-speci�c potentials uxc,jσ(r) are

uxc,jσ(r) =
1

ϕ∗jσ(r)

δExc[{ϕkτ}]
δϕjσ(r)

(3.6)
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and the orbital-density averaged potentials are given by

v̄KLI
xc,jσ =

∫
ϕ∗jσ(r)vKLI

xc,σ(r)ϕjσ(r) d3r (3.7)

and
ūxc,jσ =

∫
ϕ∗jσ(r)uxc,jσ(r)ϕjσ(r) d3r. (3.8)

The �rst term of Eq. (3.5) is the so-called Slater (SLA) [Sla51] contribution

vSLA
xc,σ (r) =

1

2nσ(r)

Nσ∑

j=1

njσ(r)[uxc,jσ(r) + u∗xc,jσ(r)], (3.9)

whereas the second term is the response potential with the characteristic (v̄KLI
xc,jσ − ūxc,jσ)

contribution. For a unique designation of implementation methods in combination with
functionals, I use the notation �method-functional�, e.g., KLI-SIC denotes SIC implemented
via the KLI approximation.

The KLI approximation to the full OEP equation is realized on the level of the OEP
potential and not directly on the level of xc energy expressions. An energy functional cor-
responding to the KLI potential does not exist. Moreover, the KLI expression itself is not
invariant with respect to unitary transformations of the canonical KS orbitals [SG01]: In
case of the EXX functional, the Slater contribution is invariant, but the KLI response po-
tential may change due to unitary transformations of the occupied orbitals that are relevant
in subspaces of degenerate orbitals when degeneracies occur. A solution to the unitary vari-
ance of the KLI-EXX potential is available via a modi�cation of the KLI approximation
[SG01, GB01, GGB02, Jou07, KK08]. The new potential approximation is known as the
localized Hartree-Fock [SG01] or common energy denominator approximation [GB01] (LHF-
CEDA). It includes also non-diagonal contributions in terms of occupied orbital products
ϕiσϕ

∗
jσ and their complex conjugate to the response part of Eq. (3.5). However, in case of

the SIC functional the unitary variance problem of the KLI potential is even more involved
than in KLI-EXX as it appears already on the level of the Slater potential. Moreover, as
the LHF-CEDA approximation is tailored to the EXX functional, it is not clear from the
start that it can readily be applied to other orbital-functional approximations. In particular
application to the SIC appears di�cult as the SIC functional involves orbital combinations
that are very di�erent to the EXX orbital structure, e.g., the EXX functional is unitarily
invariant whereas the SIC functional is not.

3.3.2 Generalization of the OEP to unitarily variant functionals

To take the freedom of unitary transformations of unitarily variant orbital functionals into
account in the OEP method one has to add an additional step in the derivation of the OEP
potential when executing the functional chain rule. This leads to the GOEP integral equation
(for details, see Refs. [KKM08, Kör09]). For the sake of clarity, I focus only on the case of
the PZ SIC energy functional from now on. If not stated explicitly, SIC of the L(S)DA
functional is performed throughout. In the GOEP integral equation, the potentials uxc,jσ(r)
of the standard OEP equation are replaced by the generalized orbital-speci�c potentials

uG
xc,jσ(r) =

1

ϕ∗jσ(r)

Nσ∑

i=1

Uijσϕ̃
∗
iσ(r)ṽSIC

iσ (r), (3.10)
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where

ṽSIC
iσ (r) =

δESIC
xc [{ñkτ}]
δñiσ(r)

. (3.11)

Ref. [KKM08] shows that solutions of the GOEP equation can be obtained with well-known
methods invented for the standard OEP case. Yet, for numerical reasons often the generalized
KLI (GKLI) approximation is used [KKM08]. For converting the standard KLI to the GKLI
potential, uxc,jσ(r) in Eqs. (3.5) to (3.9) needs to be replaced by the generalized uG

xc,jσ(r)
[KKM08, Kör09]. The formal separation of the KLI potential into Slater and response part
applies also in the GKLI case. Thus, the generalized Slater (GSLA) corresponds to Eq. (3.9),
where uxc,jσ(r) is replaced by uG

xc,jσ(r).
With the GKLI approximation at hand, I investigated its behavior when the KS orbitals

change unitarily as already discussed in the context of KLI in Sec. 3.3.1. The GKLI approach
heals part of the KLI problem: vGSLA

xc,σ (r) is invariant under unitary transformations among
occupied KS orbitals as long as the optimized orbitals {ϕ̃iσ(r)} that are inserted into Eqs.
(3.10) and (3.11) are the same. However, the response contribution remains variant also
in the GKLI case. This �nding explains part of the convergence problem of O2 in Pub3.
Moreover, close examination of the splitting into Slater and response contributions reveals
di�erences between these two contributions in the KLI and in the GKLI approximation in
terms of their response behavior to external electric �elds. It appears that GSLA covers part
of the response that is not covered by the standard SLA approximation. More details about
this observation are discussed in Appendix A.1.

3.4 Unitary optimization with di�erent types of orbitals

The unitary variance of the SIC energy functional appears to be a weakness of the
SIC approach, but can be turned into a strength in GSIC as the degrees of freedom
of Uijσ provide means to include additional constraints into the energy functional. Ex-
ploiting this feature, many promising improvements have been obtained in GS DFT
[PHL84, PHL85, PL88, KKM08, DKK+11]. However, some important aspects have not
been discussed before. In particular, the use of complex numbers for the optimized orbitals
and the unitary transformation appears natural from a TDDFT perspective, but has not
been investigated in GS GSIC using the GOEP framework so far. Therefore, to conclude
the GSIC scheme, I address the question of how the unitary transformation of Eq. (3.4)
that enters the GOEP formalism can be de�ned. This short introduction is needed as a
background for the overview of the performance of GSIC in Sec. 3.5. As it is closely related
to Pub3, a more detailed discussion can be found there.

Energy-minimizing transformation: The idea of using energy-minimizing transfor-
mations is based on a suggestion of Pederson, Heaton, and Lin [PHL84, PHL85, PL88] that
is applied in KS DFT [KKM08, MDRS09b]. The unitary transformation of GS DFT is used
to support the variational energy-minimization procedure of Hohenberg and Kohn: The or-
bitals {ϕ̃iσ} and the transformation Uijσ are chosen such that the total energy is minimized
via unitary optimization of the SIC energy contribution exploiting its freedom of unitary
transformations. This Pederson et al. criterion leads to a set of equations [PHL84]

〈ϕ̃iσ|ṽSIC
iσ (r)− ṽSIC

jσ (r)|ϕ̃jσ〉 = 0 ∀i, j occupied. (3.12)
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(see Pub3 for more details). However, starting from real canonical KS orbitals, there are still
two possible choices of the orbitals {ϕ̃iσ} and the transformation Uijσ: They can be chosen
either both real-valued or both complex-valued. Each choice correspond to one de�nition
of the unitary transformation: Uijσ is de�ned according to Eq. (3.12) with numbers either
restricted to be real or free to be complex. These options in�uence the shape of the resulting
orbital densities ñiσ = |ϕ̃iσ|2 and, therefore, may exhibit di�erent performances of the SIC.
This in�uence is discussed in detail in Pub3 and summarized in Sec. 3.5. I denote energy-
minimizing GSIC based on the GOEP, GKLI, and GSLA methods by GOEP-SIC, GKLI-
SIC, and GSLA-SIC. If not stated explicitly, complex-valued energy minimization is used
throughout this thesis.

Spatially localizing transformation: A second de�nition of the unitary transforma-
tion is based on the observation that typically localized or Foster-Boys (FOBO) orbitals
[Boy60, FB60, ER63, PM89] are good approximations to real energy-minimizing orbitals
[KKM08]. This �nding is rationalized in Ref. [Kör11] and supported by Pub3. Performing
the FOBO unitary optimization is numerically less expensive, thus serves as a reasonable
alternative to energy-minimizing transformations. The FOBO transformation can also be
performed with complex-valued orbitals. Yet, the FOBO criterion is not sensitive to the
degrees of freedom provided by complex numbers. I denote GSIC with FOBO localization
based on the GKLI potential by FOBO-SIC.

The optimization procedure of the energy-minimization and spatial localization criteria
is one of the most time-consuming steps in GSIC calculations. Therefore, to guarantee
reasonable numerical performance, I implemented new algorithms that are based on energy
gradients (see Appendix C). Best performance can now be obtained in PARSEC with an
algorithm that uses conjugate gradients, step-size optimization, and that takes the unitary
constraint of Uijσ into account explicitly. This algorithm was adapted and implemented to
PARSEC in collaboration with Peter and Simon Klüpfel. More details are explained in Pub3
and Appendix C.1.3. The extension of existing algorithms in PARSEC (see Ref. [Kör09]) to
complex-valued {ϕ̃iσ} and Uijσ is presented in Appendix C.1. In Appendix C.2, I compiled
an overview of PARSEC features and user-input options related to GSIC.

3.5 Generalized self-interaction correction in DFT

Many of the features of GOEP and its GKLI approximation were already investigated in the
work of Thomas Körzdörfer [KKM08, Kör09]. Both approaches yield GS energies and spin
densities in close agreement [KKM08]. The relation between GKLI and GOEP is illustrated
further by the results in Appendix A. Yet, using complex degrees of freedom in the unitary
transformation yields a new perspective on the GS GOEP-SIC approach. The in�uence of
complex-valued unitary transformations and optimized orbitals is the content of Pub3. In
the context of Pub4, I performed supplementary investigations on the response behavior of
chain-like systems depending on di�erent approximations to the GOEP and di�erent choices
of Uijσ. These �ndings are presented in detail in Appendix A.1. Here, I give a summary of
the SIC and GSIC results of this thesis.

Investigations of total energies and bond lengths of a representative set of dimers and
small molecules in Pub3 show that the choice of the unitary transformation has notable
in�uence on the outcome of GKLI-based calculations, while standard KLI-SIC results may
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Figure 3.1: Orbital densities of the energy-minimizing orbitals of H2O computed self-
consistently with GKLI-SIC using real-valued energy minimization (upper part) and
complex-valued energy minimization (lower part). The numbering of the optimized orbital
densities is arbitrary as their order does not carry physical meaning. One clearly observes
for the example of H2O that the orbital densities of real-valued energy-minimizing orbitals
form nodal planes, whereas nodal planes are avoided in the complex-valued case.

be compromised by de�ciencies of the KLI potential (see Sec. 3.3.1). Total GSIC energies
decrease with increasing the degrees of freedom of the unitary transformation from real-
valued to complex-valued numbers. The in�uence on the bond length di�ers for single-
bond and multiple-bond systems. In case of single-bond systems, increasing the degrees
of freedom leads to increasing bond-length underestimation. For double- and triple-bond
systems, GKLI-SIC with a complex-valued energy-minimizing transformation improves upon
the known SIC bond-length underestimation [GU97, VSP+06]. Total energies and bond
lengths computed with FOBO-SIC are close to real-valued energy-minimizing GKLI-SIC.

The di�erence between real and complex energy minimizing orbitals is related to the
formation of nodal planes of the orbital densities ñiσ(r). The optimized orbitals {ϕ̃iσ}
need to be orthogonal like the canonical KS orbitals. Real-valued orbitals preserve this
orthogonality via formation of nodal planes that are passed on to the orbital densities.
However, using complex degrees of freedom, nodal planes of the orbital densities can be
avoided while preserving orthogonality of the optimized orbitals. This �nding is illustrated
with the orbital densities of H2O in Fig. 3.1 and with CO in Pub3. Thus, ñiσ(r) without
nodal planes are smoother and, therefore, closer to GS densities. Such orbital densities are
important in the context of the question whether it is allowed to insert orbital densities into
GS xc energy functionals: Hope is high that smooth orbital densities of the complex-valued
case are closer to the realm where (semi)local functionals are appropriate. The reduced
appearance of nodal planes in complex-valued ñiσ(r) also serves as an explanation why the
SIC of PBE is more sensitive to changes from real to complex numbers than the SIC of
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LSDA (see Pub3). The PBE functional is more sensitive to large changes of the density due
to its dependence on density gradients. Therefore, allowing or avoiding nodal planes where
large density gradients occur makes a more pronounced di�erence for PBE than for LSDA.

More insight into the performance of di�erent (G)OEP approximations is provided from
the results of Appendix A.1 and Appendix A.2, where energy minimization in GKLI-SIC is
always performed with complex-valued orbitals. The response of hydrogen chains to static
electric �elds shows that SLA-SIC and KLI-SIC may exhibit a distorted response behavior.
This �nding can be understood from the unitary invariance of both the SIC energy expression
and the KLI potential approximation. Instead, the GKLI-SIC potential is a reasonably
good approximation to full GOEP-SIC and exhibits the �eld-counteracting behavior of the
xc potential that is important for a proper description of polarizabilities (see Sec. 2.4).
GSLA-SIC gives polarizabilities close to GKLI-SIC for short chains, but the polarizability
deviations to GKLI-SIC increase with increasing chain length. This �nding is in line with
the observation that GSLA-SIC does not show a clear �eld-counteracting response behavior.
In case of hydrogen chains, FOBO-SIC polarizabilities are close to GKLI-SIC, but slightly
worse. The situation reverses in polyacetylene chains, where FOBO-SIC polarizabilities are
slightly closer to reference calculations than GKLI-SIC. The comparison between hydrogen
and polyacetylene chains indicates that localization e�ects play di�erent roles in di�erent
kinds of systems. Only detailed investigations show if orbital localization or full energy
minimization gives results closer to reference calculations and to experimental �ndings.

3.6 Generalization of SIC in TDDFT

One of the main aspects of this work is the extension of GSIC from GS DFT to TDDFT
covered by Pub2 and Pub4. The motivation for this extension was based on the promising
features of GKLI-SIC in DFT, see for instance Refs. [KKM08, KKMK09, Kör09, DKK+11]
and Sec. 3.5. The GKLI-SIC performance is good news for application in TDDFT for
two reasons. First, the time-dependent OEP (TDOEP) is known to be very demanding to
solve [MK06, WU08]. Therefore, most applications of orbital functionals in TDDFT rely
on a TD extension of the KLI approximation [UGG95, MK06]. Second, however, the time-
dependent KLI (TDKLI) approximation su�ers from its own problems beyond the de�ciencies
known for GS KLI: RT propagation of the TDKLI potential shows stability issues and zero-
force theorem violation [MKvLR07, MDRS09b, MDRS11]. Therefore, starting with GSIC
in TDDFT, hope was high that the additional degrees of freedom provided by the unitary
transformation together with the SIC functional could be exploited to support propagation
stability. Then, the promising features of SIC could help in TDDFT to study questions that
were considered too di�cult for local and semilocal density functionals.

The extension of SIC to TDDFT by Tong and Chu [TC98b, TC98a] uses the PZ SIC
energy functional in an orbital-adiabatic sense (see Sec. 2.5.2) together with the TDKLI
approximation. TD SIC with GKLI is based on a similar rationale, i.e., the orbitals and
the unitary transformation are used at every instant of time to keep the system on a stable
energy path during propagation. The GSIC extension to TDDFT results from three steps.
First, the generalized orbital-speci�c potentials are transferred to the TD case, thus reading

uG
xc,jσ(r, t) =

1

ϕ∗jσ(r, t)

Nσ∑

i

Uσij(t)ϕ̃
∗
iσ(r, t)ṽSIC

iσ (r, t), (3.13)
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where

ṽSIC
iσ (r, t) =

δESIC
xc [{ñkτ}]
δñiσ(r, t)

. (3.14)

Second, the standard orbital-speci�c potentials uxc,jσ(r, t) need to be replaced by the gen-
eralized ones in the TDKLI potential [TC98b, TC98a, MK06]

vTDKLI
xc,σ (r, t) + fσ(r, t) =

vTDSLA
xc,σ (r, t) +

1

2nσ(r, t)

Nσ∑

j=1

njσ(r, t)
[(
v̄TDKLI

xc,jσ (t)− ūxc,jσ(t)
)

+ c.c.
]
, (3.15)

where

fσ(r, t) = − i

4nσ(r, t)

Nσ∑

j=1

∇2njσ(r, t)

∫ t

−∞

(
ūxc,jσ(t′)− ū∗xc,jσ(t′)

)
dt′ (3.16)

is the so-called memory term and the TD Slater (TDSLA) contribution reads

vTDSLA
xc,σ (r, t) =

1

2nσ(r, t)

Nσ∑

j=1

njσ(r, t)
(
uxc,jσ(r, t) + u∗xc,jσ(r, t)

)
. (3.17)

Orbital-averaged potentials are computed in analogy to Eqs. (3.7) and (3.8) of the ground
state. Third, in the TD case, the unitary transformation is a TD function that connects the
TD KS orbitals and a second optimized orbital set according to

ϕ̃iσ(r, t) =

Nσ∑

j=1

Uσij(t)ϕjσ(r, t). (3.18)

Thus, a suitable choice of Uσij(t) concludes the time-dependent GKLI (TDGKLI) approxima-
tion of the SIC functional and establishes time-dependent GSIC (TDGSIC). Replacing uxc,jσ

by uG
xc,jσ in Eq. (3.17) yields the time-dependent GSLA (TDGSLA) approximation.
Although this extension appears straight forward at �rst glance, there are a lot of hidden

di�culties and obstacles. The �rst issue concerns the choice of Uσij(t) that is discussed
comprehensively in Pub4. The central idea is to apply the energy-minimization and the
spatial localization criteria known from GS DFT (see Sec. 3.4) at every instant of time.
This proceeding is in line with the orbital-adiabatic use of the SIC energy functional. I
use the shortcut TDGKLI-SIC for complex-valued energy minimization and TDFOBO-SIC
for spatial localization together with the TDGKLI approximation. Yet, optimizing either
of the GS criteria for many ten thousands of time steps during time propagation renders
application of TDGSIC impractical for sizable systems. When propagating the GSIC ground
state without external perturbation, I realized that part of the TD transformation could also
be performed analytically. This idea enabled the breakthrough of TDGSIC. In such a setup,
Uσij(t) evolves from Uσij(t−∆t) of the previous time step with the KS eigenvalues εj , i.e.,

Uσij(t) = eiεj∆tUσij(t−∆t). (3.19)

This time propagation of the unitary transformation can be used as an initial guess for
subsequent unitary optimization at every instant of time or as an approximation to the
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TD transformation. More details are explained in Pub4. All TDGSIC propagations are per-
formed with complex TD orbitals and transformations. They are started from a ground state
with complex-valued Uσij optimization because, otherwise, when starting from real-valued op-
timized orbitals and transformations the additional degrees of freedom of the complex-valued
TD transformation may instantaneously change the ground state even without external per-
turbation.

Finally, the choice of the unitary transformation is important for the explicit memory
dependence of the GKLI approximation via its generalized fσ(r, t) (fG

σ (r, t)) contribution.
While fσ(r, t) vanishes in TDKLI-SIC [UGG95, GDP96, TC98a, TC98b, MK06], it is not
clear from the start that fG

σ (r, t) vanishes in TDGKLI-SIC. Pub4 demonstrates that the
contribution of the TDGKLI memory term depends on the criterion for Uσij(t). When energy
minimization is used in the ground state and during time propagation, the memory term
does not contribute to TDGKLI. For all other cases, the memory dependence via fG

σ (r, t)
remains unclear. Explicit choices for fG

σ (r, t) are explained in Pub4. Note that no matter
how fG

σ (r, t) contributes to the TDGKLI memory, propagation of SIC with TDGKLI includes
an implicit dependence on the history of the density n(r, t′) for t′ ≤ t via the KS orbitals in
a natural way [GDP96, MBW02, MMN+12].

3.7 Performance of generalized SIC in TDDFT

First investigations of TDGSIC [Hof08] focused on the propagation stability question of Na5,
a notoriously problematic system for RT propagation. Here, the propagation instability
manifests in zero-force theorem violation and notable drifts of the total energy from its
GS value although no external �eld acts [MKvLR07, Mun07]. Reference [Hof08] indicates
that propagation stability can be increased by increasing the numerical accuracy of the
unitary optimization. However, using the initial guess of Eq. (3.19) puts this �nding into
a new perspective. The appendix of Pub4 demonstrates that TDGSIC schemes show much
better stability than propagation with TDKLI-SIC even for the di�cult case of Na5. For
most applications, reasonably stable propagation of TDGSIC can be performed in a time
window that is long enough for computing the dipole spectrum. However, as a warning, one
should be aware that instability problems may occur and always check for stability issues.
Based on this reassuring �nding, TDGSIC is ready for applications to dynamic situations
and investigations of excitation features. I summarize the results on the performance of
TDGSIC in the following.

Hydrogen chains are a transparent model system to study the response behavior of the
potential for di�erent approximations to vxc(r, t). For slowly varying external perturbations,
one expects the TD xc potential to perform similar to GS xc potentials, i.e., that it coun-
teracts the external �eld (see Sec. 2.4). Pub4 demonstrates that the TD response to such
an external potential parallels the response behavior known from GS xc potentials: vxc(r, t)
of TDLDA follows the external �eld, whereas TDGKLI-SIC exhibits a �eld-counteracting
behavior. At higher frequencies of the external perturbation, TDGKLI-SIC develops compli-
cated features that can not be assigned to a simple frequency-dependent response behavior.
Similar studies of di�erent approximations to TDGKLI-SIC are also presented in Pub4. In-
terestingly, TDFOBO-SIC exhibits a response behavior very similar to TDGKLI-SIC. While
a clear assignment of the energy-minimizing GSLA-SIC response was di�cult in the GS case,
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TDGSLA-SIC unambiguously follows the external �eld even at elevated frequencies of the
external perturbation. Moreover, using only Eq. (3.19) for the unitary transformation spoils
the �eld-counteracting behavior of the xc potential already at low frequencies of the external
�eld. Thus, the results of Pub4 show that the response term of the (G)KLI approximation
and optimizing the unitary transformation at every instant of time are important for a proper
�eld-counteracting response behavior.

The TD response behavior studies are complemented in Pub4 by investigations of hy-
drogen chain excitations energies. Whereas TDKLI-SIC results su�er from propagation
instability and do not improve upon TDLDA, TDGSIC notably shifts the lowest excitation
energies to higher values. TDGKLI-SIC excitation energies are in close agreement to B3LYP
but deviate from approximate coupled-cluster singles-and-doubles model excitation energies
by at least 0.9 eV. In conclusion, TDGKLI-SIC and its TDFOBO-SIC approximation show
promising performance on hydrogen chains. Yet, already static polarizabilities of hydrogen
chains exhibit large deviations between OEP and GOEP [KK11] (for more background, see
Appendix A.1) and a comparison between TDOEP and TDGOEP is not available. Because
of the peculiar nature of hydrogen chains [vFdBvL+02], the performance of TDGSIC also
needs to be assessed for real molecules.

Application to metal clusters in Pub4 shows that TDGSIC does not spoil the good accu-
racy that already TDLDA reaches. However, TDGSIC improves in cases where (semi)local
functionals exhibit systematic failures: In hydrogenated silicon clusters, quantum con�ne-
ment and excitonic e�ects are known to play an important role [OCL97, RL98, RL00, ORR02,
VOC02, VOC06]. Here, low-lying optical excitations are underestimated by standard func-
tionals and TDKLI-SIC [MCR01], in particular for the very small clusters. Pub2 and Pub4
demonstrate that TDGSIC notably improves and yields excitation energies in good agree-
ment with results from the GW Bethe-Salpeter equation approach. Lowest excitation ener-
gies of oligo-acetylenes in Pub4 also improve upon TDLDA and reveal di�erences between
the di�erent possible choices of the unitary transformation during time propagation. Last
but not least, TDGSIC also gives promising results for static and dynamic CT situations as
well as CT excitation energies. This is the topic of the next chapter.





Chapter 4

Charge transfer and charge-transfer

excitation energies

The obvious inability of present-day physics and chemistry to account

for such events is no reason at all for doubting that they can be

accounted for by those sciences.

Erwin Schrödinger
What is life? (1944)

A trustworthy description and theoretical prediction of charge transfer is one of the
well-known and longstanding problems of (time-dependent) density functional theory
[DWHG03, Toz03, Mai05, TFSB05, KBE06, TS07, KBY07, TS08, EVV09, LBBS12]. Typi-
cally, energies of electronic excitations that exhibit CT character are underestimated when
calculated with (semi)local xc functionals [DWHG03, Toz03, Mai05]. Transport proper-
ties as, e.g., conductance and I-V characteristics of molecular electronic devices may be
severely in error [TFSB05, KBE06, TS07, KBY07, TS08, LBBS12] when calculated from the
Landauer-Büttiker approach [Lan57, Büt86] based on non-equilibrium Green's function the-
ory in combination with DFT using standard xc functionals. Recently, also RT propagation
has been used to study CT scenarios [KSA+05, CEVV06], but the reliability of results is
limited by the quality of xc functional approximations. I provide more insight into the CT
problem of (TD)DFT in Sec. 4.1 and complement this discussion by some solution ideas.
The CT failure is commonly related to the self-interaction error of (semi)local xc functionals
[TFSB05, TS07, KBY07, TS08] and the lack of a derivative discontinuity in such approaches
[TFSB05, KBE06, TS07, TS08, LBBS12]. Therefore, self-interaction correction is a promis-
ing approach for improving the (TD)DFT description of CT phenomena. I discuss in Sec. 4.2
how generalized KS SIC introduced in Chap. 3 performs in static and dynamic CT situations
and how it improves the description of CT excitation energies.

4.1 The charge-transfer problem of DFT and TDDFT and

some solution ideas

The discussion of the CT problem of TDDFT in the literature [DWHG03, Toz03, DHG04,
GB04, Mai05, TFSB05, MT06, ZSK+09, Aut09, IHG10, FRM11, HG12] reveals the many
facets of this intriguing issue. Among the many di�erent perspectives to approach the CT
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Figure 4.1: Model CT situation between a donor (D) and an acceptor (A) separated by the
large distance R. See the main text.

problem, in the following, I present one that is based on the long-range CT between a donor
(D) and an acceptor (A) subunit separated by the large distance R (for an illustration, see
Fig. 4.1). The excitation energy that is needed to transfer one integer unit of the elementary
electric charge e from D to A is given by Mulliken's rule [Mul50, SKB09a, SKB09b]

ΩM = IPD − EAA − 1

R
. (4.1)

The ionization potential IPD of D is the energy that needs to be payed when removing
one electron from D, and the electron a�nity EAA of A is the energy one gains when
adding one electron to A. The third term amounts to the energy gain due to the Coulomb
interaction between the additional negative charge on A and the positive charge of D. The
excitation energy needed for a very long-range charge transfer (R→∞) equals the di�erence
IPD − EAA between the ionization potential of D and the electron a�nity of A.

The important question now is how TDDFT behaves [DWHG03, Toz03, DHG04]. For a
transparent illustration, I use the TDDFT linear response approach in single-pole approx-
imation (see Sec. 2.2.2). One assumes that in the case of a well separated D and A, the
eigenvalues and orbitals of the entire system correspond to the eigenvalues and orbitals of
the isolated D and A, and the charge transfer is dominated by the transition from the HOMO
(H) located on D to the LUMO (L) located on A. With these assumptions, the excitation
energy reads

Ω = ωKS + 2

∫ ∫
ϕD ∗

H (r)ϕA
L (r)fHxc(r, r

′, ωKS)ϕD
H(r′)ϕA ∗

L (r′) d3r d3r′, (4.2)

where ωKS = εA
L − εD

H abbreviates the eigenvalue di�erence. The overlap of KS orbitals
localized on D and orbitals localized on A decreases exponentially with the distance R, thus
the orbital products of the last term of Eq. (4.2) vanish when R→∞. This term contributes
to the CT excitation energy only when the kernel diverges to compensate for the vanishing
overlap [GB04]. Note that by de�nition the exact xc kernel exhibits all features that are
required to yield correct CT excitation energies. However, adiabatic, (semi)local xc approx-
imations do not show singular behavior of the xc kernel. Resulting CT excitation energies
are dominated by ωKS, which is typically not a good approximation to the fundamental gap
∆ = IPD − EAA, and do not exhibit the 1/R behavior.

This de�ciency of standard, explicitly density-dependent functionals has been analyzed
from di�erent perspectives. Strong frequency dependence of the xc kernel and a proper
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inclusion of the particle number discontinuity have been identi�ed to be important for the
reliable description of charge transfer [Toz03, Mai05, TFSB05, MT06, HG12]. Moreover,
the CT problem has frequently been related to the self-interaction error of many density
functional approximations [TFSB05, TS07, KBY07, TS08].

Recent approaches to improve upon the CT failure of (semi)local functionals include
orbital and hybrid functionals. Exact exchange that does not su�er from the SIE yields the
correct 1/R dependence [DWHG03, IHG10] due to the non-local contribution of the Fock
exchange functional, but misses correlation e�ects. Standard hybrid functionals include only
a fraction of EXX and, therefore, only partially correct for the CT problem. Yet, range-
separated hybrid functionals where EXX dominates the long range have been shown to
predict CT excitations reliably [YTH04, CHG07, LB07, SKB09b, KSBK11].

Beside the just presented approaches, I demonstrate in the following section that KS
(TD)GSIC improves the (TD)DFT description of CT situations. The �ndings of Chap.
3 already reveal �rst indications for this improvement: GSIC exhibits a �eld-counteracting
response behavior to static external electric �elds and improves static polarizabilities of chain-
like systems (see Chap. 3.5 and Appendix A). The �eld-counteracting behavior is related
to the derivative discontinuity and manifests also in step-like structures of the potential
(see Sec. 2.4 for an introduction). Such kind of discontinuous structures of the potential
lead to singular features in the xc kernel that may compensate for the vanishing orbital
overlap. In energy-minimizing TDGKLI-SIC, the �eld-counteracting behavior carries over
to the response at low-frequency TD external perturbations and exhibits notable frequency
dependence when external �elds with higher frequencies are applied (see Sec. 3.7). Last
but not least, the SIC functional is non-local and its xc potential shows the proper 1/r
asymptotic decay [PZ81, GKKG00].

4.2 Self-interaction correction and charge transfer

4.2.1 The integer preference of electron jumps

In this section, I demonstrate how (TD)GSIC describes the static and dynamic charge trans-
fer between two well separated D and A moieties. To this end, I chose a transparent model
system [KBY07] of two hydrogen chains as depicted in the left part of Fig. 4.2. The chains
are separated by a distance of 8 Å which is large enough for the overlap of the electronic
structure of the two chains to almost vanish, but which is at the same time short enough to
allow charge transfer driven by external �elds from one chain (D) to the other (A). Therefore,
one expects charge transfer to proceed in jumps of integer units of e from D to A when ex-
ternal �elds with su�cient �eld strength are applied. Man1 investigates this system in static
and dynamic situations at di�erent external �eld strengths and reveals the peculiar features
of the (TD)GSIC xc potential that support integer preference of the electron jumps. Here, I
summarize and complement the �ndings of Man1. Beyond that, I present in Appendix A.3
one additional observation of the total energy of the CT system with respect to the external
electric �eld strength. I start with GS DFT investigations before I turn to the dynamic
scenario.

The �rst important result of Man1 is that GSIC exhibits � in contrast to (semi)local and
standard hybrid functionals � integer particle preference during the charge transfer from D
to A when static external �elds are applied. This �nding is illustrated in the right part of
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Figure 4.2: Left: Charge-transfer model system [KBY07] of two identical hydrogen chains
(H8 with an H distance of 1 Å) separated by a distance of 8 Å. An electric �eld transfers
charge from the right (donor, D) to the left (acceptor, A) hydrogen chain. The absorbing
boundary is used only during time propagation. Right: Integrated charge of the A chain
depending on the �eld strength of the external electric �eld computed with GKLI-SIC,
GOEP-SIC, and LSDA. The charge is computed by integration over the left half space of the
real-space grid. The numbers in brackets indicate the number of electrons per spin channel
between the �rst and the second electron jump using the notation �(spin up, spin down)�.
Note that convergence problems of GKLI-SIC (7,9) occurred in between 5.1× 109 V/m and
5.4× 109 V/m where I was able to converge solely the GKLI-SIC (8,8).

Fig. 4.2. The �rst electron jump of GSIC can be computed to within 0.1×109 V/m accuracy.
However, in case of the second jump I faced convergence di�culties due to degeneracies at
the Fermi level and, therefore, an uncertainty of 0.3×109 V/m remains. As already stated in
Man1, the integer preference behavior of GKLI-SIC is in good agreement with full complex
energy-minimizing GOEP-SIC. I support this �nding by GOEP-SIC calculations presented
in the right part of Fig. 4.2 for external electric �elds with �eld strengths from 0.0 V/m to
3.5 × 109 V/m: The integrated charges on the acceptor chain and total energies in GOEP-
SIC are almost identical with the GKLI-SIC results. However, OEP-SIC calculations su�ered
from serious convergence di�culties that prohibited a reliable computation of the integrated
charge on the A chain. In full OEP-SIC, the KS orbitals ful�ll two roles at the same time
[KKM08]: They attempt to optimize both the kinetic and the SIC energy, thus need to
decide between being delocalized or localized. It is likely that the underlying compromise
impedes OEP-SIC convergence.

Second, the local, multiplicative xc potential allows to transparently analyze the vxc fea-
tures that support the integer preference behavior. Man1 demonstrates that step structures
in the GKLI-SIC xc potential rise in between the two hydrogen chains before electron jumps
occur. At the same time, the potential well of the A chains is shifted upwards. Thus, the
potential barrier for an electron jump increases and the step structure works against frac-
tional charge transfer. When the electron jumps, the xc potential changes discontinuously:
The potential wells shift relative to each other and a reverse step structure appears that
keeps the just transferred electron on the A chain. With further increasing the external �eld
strength, �rst, the reverse step feature decreases before another cycle of emerging xc poten-
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�rst electron jump second electron jump
process ↓D ↓A ↑D ↑A ↓ ↑ process ↓D ↓A ↑D ↑A ↓ ↑

(S) 4 4 4 4 8 8
(1) ↑ D → ↑ A 4 4 3 5 8 8 ↓ D → ↓ A 3 5 3 5 8 8
(2) ↓ D → ↓ A 3 5 4 4 8 8 ↑ D → ↑ A 3 5 3 5 8 8
(3) ↑ D → ↓ A 4 5 3 4 9 7 ↓ D → ↑ A 3 5 3 5 8 8
(4) ↓ D → ↑ A 3 4 4 5 7 9 ↑ D → ↓ A 3 5 3 5 8 8

Table 4.1: The left part of the table shows four realizations (indicated in the �rst two
columns) of the �rst electron jump from D to A starting from the con�guration in the �rst
row labeled by (S). It explicitly highlights the spin of the electrons, thus lists the number
of electrons per spin up (↑) or down (↓) on the D and A moieties in the central columns.
When external �elds are present, this assignment of electrons in terms of KS orbitals to D,
A, and spin-channels is unique as the KS orbitals are localized on either side of the real-space
grid. In the last two columns of the left part, I summed up the number of electrons per spin
channel after the electron transfer. The right part of the table indicates the consecutive
second electron jump starting from the corresponding con�guration after the �rst jump. All
paths end with the same distribution of electrons over spin channels and D and A sides.

tial structures before and after the second electron jump starts. These step and reverse step
features are one more example of the relation between the derivative discontinuity, integer
particle preference, and structures of the xc potential.

The third important aspect of Man1 is the role of spin-symmetry breaking for a reliable
description of the CT situation. The true physical charge transfer of one electron should
be an equally weighted superposition of a spin-up and a spin-down electron jump. Yet,
performing GKLI-SIC calculations and starting from a ground state with eight electrons
per spin channel � a symmetric distribution of electrons over spin channels � one observes
that spin symmetry breaks as the �rst electron transfers only in one of the spin channels.
Investigating these calculations in detail, one �nds that the GKLI-SIC KS ground state
exhibits a weak aufbau principle violation after the �rst electron transfer: The HOMO of
one spin channel is higher in energy than the LUMO of the other spin channel. Thus, the
electron occupation points to a situation with an unequal distribution of electrons over spin
channels. Fixing the occupation numbers of the KS system to investigate this alternative
con�guration yields a KS ground state with an aufbau principle violation that points back to
the previous con�guration. Taking into account that the just discussed cases may be realized
also with the opposite spin assignment, four realizations of the �rst electron transfer appear.
They are outlined in Table 4.1 together with the consecutive second electron jump.

One observes that in realizations (1) and (2) eight electrons are in each of the spin
channels, whereas in realizations (3) and (4) two more electrons are in one of the spin channels
after the �rst electron transfer. Although the last two realizations appear unphysical because
the applied electric �eld can hardly induce a spin-�ip, they are all relevant for the GKLI-SIC
realization of a one-electron charge transfer: All realizations are degenerate in terms of the
total energy, the �eld strengths where the electron jumps occur, and the number of electrons
on D and on A (see Fig. 4.2 on the right). Here, only realizations (1) and (3) are discussed
because realizations (1) and (2) as well as (3) and (4) are equivalent in terms of the relevant
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e�ects. The aufbau principle violation together with the degeneracy of all four realizations
re�ect that transferring an electron of either spin channel is equally probable in the true
physical CT situation. Thus, breaking the spin symmetry in GSIC is an �easy way� to model
the physics that may otherwise be too di�cult for approximate density functionals.

Di�erences between realizations (1) and (3) appear in the details of how the xc potential
builds up the reverse step and newly appearing step structures after the �rst and before the
second electron transfer (see Man1). In realization (1), the reverse step appears only in the
up-spin potential, decreases with increasing external �eld strength, and a step builds up in
the down-spin potential. Instead, in realization (3) the reverse step after the �rst electron
jump and the step counteracting the second electron jump emerge in both spin channels.
Details about the step and reverse step structures are explained in Man1. After the second
electron jump the symmetric distribution of electrons into spin channels is recovered.

Last but not least, I turn to the truly TD investigations of Man1. There, the external
�eld strength of 8.0 × 109 V/m is chosen to be strong enough that according to the GS
investigations two electrons may be transferred from the D to the A chain during time
evolution. Moreover, charge may be accelerated to the boundary of the grid, thus the
system may ionize. I use an absorbing boundary on the A end of the grid to remove this
density and prevent it from being spuriously re�ected back to the system (see Fig. 4.2).1

Man1 reveals that in time-dependent LSDA (TDLSDA) the potential barrier between the
two chains decreases and a notable fraction of charge is transferred from D to A. Instead,
a time-dependent step that works against spurious fractional charge transfer builds up in
the TDGKLI-SIC xc potential as a function of time. Similar features are also important
for the ionization of the system. In TDLSDA, fractions of the density start to arrive at the
absorbing boundary already after 2 fs. In GKLI-SIC, step structures appear also at the outer
boundaries of the system and counteract ionization.

Man1 investigates only the early stage of the time evolution of the CT system for several
conceptual and technical reasons. First, the absorbing boundary removes density from the
system when ionization occurs. However, the unitary optimization scheme of GKLI-SIC so
far is de�ned only for integer occupations [Kör09] and it is not clear how the unitary trans-
formation needs to be implemented in other cases. Moreover, there is no charge-injection
mechanism that could feed density from the opposite side of the grid to compensate for the
absorbed density. Second, I estimated the propagation time until the �rst electron transfer
occurs in TDGKLI-SIC from the TDLSDA time evolution. In the present setup, after 100 fs
not more charge than a quarter of one unit of e has been transferred in TDLSDA. Already
this time scale is tedious for TDGKLI-SIC propagation and I expect the �rst electron to
jump not before 200 fs. Third, I expect spin-symmetry breaking to be important also during
the time propagation to realize the transfer of the �rst integer unit of e. For the role of spin-
symmetry breaking in TDDFT, see also Refs. [FRM11, DL11]. It remains to be investigated
if and how this may succeed with TDGKLI-SIC.

Yet, already the short time evolution discussed in Man1 reveals the TD step structures
that are important for reliable CT simulations. This together with the integer preference
and occurring step structures of the model system in static CT situations raise hope that
(TD)GSIC is a valid functional for investigations of electron transport in more complex and
more realistic CT scenarios.

1Calculations were performed on an ellipsoidal grid with semi-principal axes of 50 bohr along the x-axis
and 28 bohr perpendicular to the x-axis. The absorbing-boundary layer was 2.5 bohr thick.
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4.2.2 The performance of GSIC on charge-transfer excitation energies

Having discussed static and explicitly TD simulations of charge transfer in Sec. 4.2.1, I �nally
turn to another important �eld of CT investigations, namely to CT excitations energies
that are part of the linear response absorption spectra. In the literature, assessments of
the performance of xc approximations on CT excitation energies are mostly carried out
with transparent test systems in the long-range CT limit with almost vanishing orbital
overlap of Sec. 4.1 using the Casida approach [DWHG03, GB04, IHG10]. In this case, the
decomposition of the underlying transition into occupied to unoccupied orbital products can
be used to identify CT excitation energies. The latter in turn allow for a straight forward
investigation of the 1/R dependence and comparison to excitation energies obtained from
higher level wave-function theory reference calculations. Very long-range CT excited states
carry only an almost vanishing oscillator strength because of the exponentially decaying
overlap between the D and A moieties. Therefore, although they are still visible in the
Casida-type linear response formalism, detecting very long-range CT excitation energies
from the RT dipole signal is impracticable as the latter relies on non-vanishing transition
dipole moments.

Alternative CT test systems are provided by the study of Peach et al. in Ref. [PBHT08].
It includes CT excited states that where classi�ed as being of short-range and of long-range
CT type. For the investigations of the performance of TDGKLI-SIC on CT excitation ener-
gies, I chose two systems: 4-(N,N-dimethylamino)benzonitrile (DMABN) [JFTL02, PBHT08]
and a dipeptide molecule [SAF98, TAH+99, PBHT08, RLG10]. In DMABN, a local excita-
tion is seen experimentally at 4.25 eV and an excitation that has been classi�ed as being of
short-range CT character [JFTL02] at 4.56 eV. The dipeptide is a hallmark CT test system
that exhibits a long-range CT excitation from one peptide unit to the other [RLG10] at 7.18
eV in the complete active space perturbation theory of second order (CASPT2) reference
[SAF98]. Whereas in case of DMABN local and semilocal functionals yield a reasonable
description of both the energetic position and the character of the lowest CT excitations,
(semi)local functionals as well as standard hybrid functionals fail badly in case of the dipep-
tide [PBHT08].

Pub2 and Pub4 demonstrate that TDGKLI-SIC improves the situation. To clearly re-
late excitation energies computed via di�erent functionals and methods (RT propagation,
Casida approach, and others), and to identify CT excitation energies uniquely, I developed
the transition density analysis idea that is outlined in Sec. 2.3. Based on this identi�cation
tool, one observes that TDGKLI-SIC correctly shifts the lowest TDLDA excitation energies
of DMABN by about 0.2 eV to 4.1 eV (local) and 4.4 eV (short-range CT). Thus, it improves
local and short-range CT excitations towards experimental results without spoiling the rea-
sonable accuracy that already (semi)local functionals have. In the dipeptide, the TDLDA
CT excitation energy underestimation is more severe: The CASPT2 CT excitation at 7.18
eV appears at 5.2 eV in TDLDA. Again TDGKLI-SIC improves and the lowest CT excitation
energy of the dipeptide appears at 7.2 eV. This demonstrates the power of TDGKLI-SIC to
correctly describe long-range CT excitations in the framework of KS TDDFT. Note that in
contrast to the �ndings of the previous section, the improvements of excitation energies are
obtained without breaking the spin symmetry. This observation emphasizes the importance
of the spatial structure and frequency dependence of the xc potential in TDGKLI-SIC for a
reliable description of CT phenomena.





Chapter 5

Excitation-energy transfer

On grounds upon which we cannot enter here, we have to assume that a

small system can by its very nature possess only certain discrete

amounts of energy, called its peculiar energy levels. The transition from

one state to another is a rather mysterious event, which is usually

called a 'quantum jump'.

Erwin Schrödinger
What is life? (1944)

Electronic excitation-energy transfer (EET) after light absorption is one of the key processes
in the natural light harvesting (LH) event and a prerequisite for charge generation in the
LH reaction center [Küh95, CF09]. The e�ciency of the entire light harvesting process is
determined by the rates of charge transfer and EET of many single transfer steps contributing
to the entire mechanism. These rates are a�ected by a number of di�erent properties and
phenomena: the electronic structure of the single chromophores, the electronic coupling
between di�erent system components, the geometry and arrangement of all constituents,
the energetic and position (dis)order, and the interplay with the environment. TDDFT
naturally lends itself to be used for investigations of the intermolecular coupling strength and
has been applied [HFHGHG01, Hsu03, Neu07, Neu08, MLCGM08, FKH+08, CMLM+09,
SFK09] using the Casida approach. In Sec. 5.1, I present a real-time TDDFT approach
for investigating the intermolecular coupling strength and coupling mechanism. Real-time
approaches are a good starting point for including decoherence and relaxation processes that
are needed for studying EET. However, to investigate the RT dynamics of a system in contact
with a dissipative bath, one needs to go beyond the standard TDDFT scheme and apply
open quantum system ideas. Here, I use an approach that is based on the stochastic TD
KS equation [DVD07, DDV08, ADV09, ADV11, MMN+12]. I give a short introduction to
this method in Sec. 5.2 and present how it can be exploited to investigate EET in circularly
arranged supermolecular setups in Sec. 5.3.

5.1 Intermolecular coupling and real-time TDDFT

The Förster model is probably the most prominent method to interpret experimental data of
EET [För46, För48, För65, New91, Spe96, HDRS98, Sch03, SPB+06, MNMB07, BWLT07,
KN12]. However, when using this model for the interpretation of actual data one should
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always check its validity as, e.g., the applicability of Förster theory depends on the underlying
coupling mechanism between the donor and the acceptor moiety. Förster theory relies on
a dipole-dipole interaction between the transition dipole moments on D and A. Based on a
formulation in the weak coupling limit, the Förster EET rate exhibits a characteristic 1/R6

dependence. Therefore, when applying Förster theory for instance as a spectroscopic ruler
on the nanoscale [Str78], it should be clari�ed if the assumptions on which Förster theory is
based are ful�lled.

The �rst investigations of the coupling strength and coupling mechanism [Hof08] between
a donor and an acceptor molecule focused on the distance dependence of the coupling strength
in an attempt to distinguish between Förster- and non-Förster-type coupling in a resonant
situation of two equal molecules. This work is published in Pub1. It demonstrates in a test
system of two sodium dimers and a more realistic system of two benzaldehyde molecules
at which distance the Förster-type coupling approximations breaks down. To this end, a
multipole expansion is performed explicitly in the Hartree contribution of the KS potential
along two routes, namely starting from the Hartree energy and starting directly on the level
of the Hartree potential. This expansion is truncated after the dipole-dipole coupling term.
Pub1 argues that the expansion route starting from the Hartree potential yields a potential
with a more natural behavior and, therefore, uses this potential during time propagation. I
explain the potential expansion idea in greater detail together with its implementation to
the PARSEC code in Appendix D.1. From a comparison between two real-time evolutions
of the coupled system of two molecules, one with the full Hartree potential and one with
the Hartree potential in multipole expansion and truncated after the dipole-dipole term, one
can distinguish between Förster- and non-Förster-type coupling in both example systems.

Second, Pub1 suggests a scheme to directly compute the intermolecular coupling strength
from the real-time propagation of two interacting molecules. This investigation is based on
the Davydov splitting and extracts the coupling-matrix element between the initial and the
�nal state of EET from the dipole moment time evolution using a resonant two-level model.
It clearly reveals in the sodium dimer test case that the coupling is of dipole-dipole type for
distances above 25 bohr, whereas clear deviations from the dipole-dipole character can be
observed for distances below 20 bohr.

However, to also investigate the in�uence of the energetic alignment of two neighboring
molecules on the coupling strength one needs to go beyond the resonant coupling case. The
illustration in the following is based on the well-approved Na2 model system of Pub1.1 For
excitations oriented along the bond axis, Na2 is almost a single level system as there is
one prominent excitation at 2.1 eV and a second excitation at 4.1 eV with notably smaller
oscillator strength. Na2 exhibits strong dipolar character and the electronic structure can
be modi�ed easily by bond-length variation starting from the experimental bond length of
5.78 bohr. The relation between bond-length variation and energetic detuning is depicted
in the left part of Fig. 5.1. Due to variations of the bond length on the order of 1 bohr,
excitation-energy shifts of about 0.25 eV can be induced.

In an o�-resonant coupling situation between two isolated excited molecules where two
excitation energies are close and all others far o�, a two-level picture [Neu08] similar to Pub1
can be applied to determine the coupling-matrix element. In analogy to the resonant case,

1All calculations in this chapter are based on the LDA functional. I used real-space grids with a grid
spacing of 0.7 bohr, an LDA pseudopotential with a core cut-o� radius of rc(Na) = 3.09 bohr, and propagation
time steps of 0.003 fs for closed quantum system and 0.001 fs for open quantum system investigations.
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Figure 5.1: Left panel: Excitation-energy variation of one sodium dimer depending on vari-
ations of the bond length. I computed this property from a supersystem calculation as ex-
plained in Appendix D.2 using 20 bohr and 25 bohr dimer distances. Right panel: Coupling-
matrix element calculated in a system of two Na2 depending on the energetic o�-resonance
(shift of the excitation energy from its value at the GS geometry) of one of the dimers.

the coupling strength can be extracted from a suitable observation of the dipole moments of
each subsystem (for details, see Appendix D.2). The results of the coupling-matrix element
as a function of the energetic o�-resonance of the excitation energy of one of the dimers are
shown in the right part of Fig. 5.1. One observes a general trend of the coupling-matrix
element to decrease with increasing excitation energy within the data range investigated
here. A clear resonance peak of the coupling strength appears at the resonant coupling
situation. It is by about a factor of 1.4 larger than the coupling in o�-resonant situations. In
summary, RT propagation TDDFT provides a tool not only to distinguish between Förster-
and non-Förster-type coupling but also to compute the coupling-matrix element in resonant
and o�-resonant coupling situations based on two-level models.

5.2 Open quantum systems in the density functional context

So-far, I have been discussing RT TDDFT methods to approach electronic excitations and
the coupling between separated fragments of supermolecular setups. This closed quantum
system TDDFT formulation describes the coherent system evolution, but does not include
decoherence and dissipation e�ects. Therefore, to study the role of coherent energy transfer
and the environment of the system for EET pathways and time scales in the context of LH
systems, one needs to go beyond the closed quantum system formulation. Usually, such
studies are based on the density-matrix formalism and master equations where the models
of Haken and Stobl, the model of Red�eld, polaron modi�cations, or related theories are
employed [JJS02, YF02, JCRE08, IF09, RMAG09, KNOC11, Sil11]. The latter approaches
typically use input such as coupling parameters and excitation energies from the experiment
or from electronic-structure theory. Here, I introduce an alternative to master equations
that addresses the EET problem directly from the electronic-structure theory perspective.
It rests upon RT TDDFT and uses the stochastic TD KS equation [DVD07, DDV08, ADV09,
ADV11, MMN+12]. The rationale behind this approach is to use the strength of (TD)DFT
in describing static and dynamic properties of the electronic structure, while the interaction
with the system's environment is treated e�ectively via the open quantum system scheme.
The approach opens a path for investigating the in�uence of electronic-structure properties
on EET. I start with an introduction to the stochastic Schrödinger equation (SSE) and outline
recent research about using SSEs in KS TDDFT.
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5.2.1 The Stochastic Schrödinger equation

The stochastic Schrödinger equation is an alternative formalism to quantummaster equations
that is able to deal with quantum systems in contact with an external bath [DCM92, GN99,
BP06, vK07, Wei08, MMN+12]. It exhibits some advantages in the TDDFT context as
I outline at the end of this section. In contrast to quantum master equation approaches,
the SSE does not work on the level of density matrices but uses a statistical ensemble of
state vectors to unravel the open quantum system dynamics directly on the level of wave
functions. To this end, the so-called Feshbach projection-operator method can be employed
to separate the system and bath degrees of freedom of a combined Hamiltonian of system and
environment [DCM92, GN99]. Such approaches start from a total Hamiltonian for system
and bath where the system degrees of freedom are coupled to a bosonic environment

H = HS ⊗ IB + IS ⊗HB + λHSB. (5.1)

IS and IB denote identities in the system (S) and bath (B) Hilbert spaces. Here, the system
includes all dynamics and observables of the core system, e.g., of one molecular complex.
The bath and system-bath coupling describe the environment as for example surrounding
molecules and its interactions with the core system part. The system of interest is described
by the many-particle Hamiltonian

HS =

N∑

i=1

[
[pi + Aext(ri, t)]

2

2
+ vext(ri, t)

]
+

N∑

i<j

W (ri − rj) (5.2)

of the electronic degrees of freedom, where p is the momentum operator, Aext an external
vector potential, vext a scalar external potential, and W describes the particle-particle inter-
action. Spin indices are omitted here and in the following. The environment, given by HB,
induces a �uctuating force that drives the system due to the interaction between the system
and the bath

HSB =
∑

α

Sα ⊗Bα. (5.3)

The latter is expressed by many-particle operators Sα and Bα in the most general case,
where Sα operates on the system degrees, Bα on the bath degrees of freedom, and α denotes
di�erent possible system-bath coupling mechanisms. The bath may have a complex structure
and not all of its microscopic details are relevant for the system dynamics. The driving force
that is induced by the bath may, therefore, be subsumed by a stochastic noise that can
usually be characterized by mean values and correlation functions [GN99]. λ determines the
strength of the system-bath coupling and serves as an expansion parameter.

The derivation of the SSE in the so-called Born-Markov limit involves some approxima-
tions [DCM92, GN99, ADV11, MMN+12]: The Born approximation assumes that a pertur-
bative expansion up to second order in the coupling parameter λ is su�ciently accurate.
The description of the environment in terms of the bath relies on the fact that the bath
degrees of freedom form a dense energy spectrum and remain in thermal equilibrium. The
Markov approximation amounts to assuming that the bath thermalization time scales are
much shorter than relevant system time scales. Thus, the bath does not retain memory of
the system-bath interaction at previous times. Moreover, the derivation invokes that there
are no initial correlations between system and bath and the phases of the bath degrees of
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freedom can be described by a random-phase approximation. Finally, one arrives at the SSE
in the Born-Markov limit [DCM92, GN99, ADV11, MMN+12]

i∂tΨS(t) = HS(t)ΨS(t)− i

2

∑

α

S†αSαΨS(t) +
∑

α

lα(t)SαΨS(t), (5.4)

where lα(t) are stochastic processes with vanishing ensemble average and δ-time-correlation

lα(t) = 0, lα(t)lβ(t′) = 0, l∗α(t)lβ(t′) = δαβδ(t− t′). (5.5)

The bar denotes the statistical average over an ensemble of stochastic processes. For the sake
of convenience, the coupling strength parameter λ has been absorbed in the bath operator
Sα. The �rst term of the SSE (5.4) determines the usual unitary system evolution under
the action of the Hamiltonian HS. Although the SSE employs the system Hilbert space
only, the coupling to the bath is still included by the second term that describes dissipation
e�ects due to the system-bath interaction. Finally, the third term introduces �uctuations in
the time evolution: Although the dissipative term causes the probability density to decay in
time, the norm of the state vector Ψ(t) averaged over a statistical ensemble of realizations
is conserved up to fourth order in the system-bath coupling parameter λ. For the sake of
a clear notation, in the following I use only a single bath operator S and, therefore, omit
indices at the bath operator. A single bath operator is su�cient for the investigations of
Sec. 5.3 as well.

As a result of the stochastic nature of Eq. (5.4) the system wave function can not be
simulated by a single evolution of the SSE but needs to be represented by a statistical
ensemble of wave functions {Ψs(t)}. Starting from a pure initial state, the time evolution of
expectation values

< OS > = < Ψ(t)|OS|Ψ(t) > (5.6)

of physical observables OS can be calculated from the statistical average over all ensem-
ble members {Ψs(t)}. Yet, it is important to note that a reliable computation of smooth
observables requires a large enough set of stochastic realizations.

Finally, I address one of the noteworthy di�erences of the SSE and Red�eld and similar
master-equation-type approaches. In the latter, positivity of the statistical operator may not
be guaranteed in cases of stochastic Hamiltonians, TD Hamiltonians, or TD bath operators
[FO05, DDV08, DDV09]. The SSE yields normalized ensemble-averaged wave functions
with a positive weight for arbitrary TD operators, thus positivity is guaranteed in any
case. This aspect is particularly important if one intends to use KS Hamiltonians and DFT
approximations that depend on internal degrees of freedom of the system for each ensemble
member separately, as this renders the Hamiltonian stochastic [DVD07, DDV08, DDV09].
Hence, the SSE is a solid starting point for a DFT theory of open quantum systems.

5.2.2 Stochastic Schrödinger equation and Kohn-Sham density functional

theory

In this section, I begin with an introduction to the open quantum system SSE approach in the
framework of TD current density functional theory (TDCDFT) of Refs. [DVD07, DDV08]. In
contrast to standard TD(C)DFT, the open quantum system scheme uses ensemble-averaged
quantities. Therefore, one introduces the ensemble-averaged particle density

n(r, t) = 〈n(r)〉, (5.7)
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where the density operator is de�ned as

n(r) =

N∑

i=1

δ(r− ri), (5.8)

and the ensemble-averaged current density

j(r, t) = 〈j(r, t)〉, (5.9)

where the current operator reads

j(r, t) =
1

2

N∑

i=1

{δ(r− ri),pi + Aext(ri, t)} (5.10)

and {. , .} denotes the anticommutator bracket. The theorem of stochastic TDCDFT of
Refs. [DVD07, DDV08] states that under reasonable physical conditions for a given and
�xed bath operator S, many-particle interaction W , and initial state Ψ(t0 = 0) a one-to-one
correspondence between the external vector potential Aext(r, t) and the ensemble-averaged
current density j(r, t) exists. The theorem paves the way for a non-interacting KS scheme of
open quantum system TDCDFT as it guarantees the existence of a KS system that yields
the same current density as the true interacting system. The KS Hamiltonian reads

HKS ({rk}, t) =

N∑

i=1

[
[pi + Aext(ri, t) + Axc(ri, t)]

2

2
+ vext(ri, t) + vH(ri, t)

]
(5.11)

with the xc vector potential Axc(r, t) and the Hartree potential vH(r, t). The KS Slater
determinant ΦKS(t) evolves according to the open system KS equation [DVD07]

i∂tΦKS(t) = HKSΦKS(t)− i

2
S†SΦKS(t) + l(t)SΦKS(t). (5.12)

The xc vector potential in the open quantum system approach may in general depend on
j(r, t), the initial states Ψ(t0) and ΦKS(t0), and the bath operator S. For practical calcula-
tions, however, one needs to rely on existing approximations for the xc vector potential as
the true Axc(r, t), especially in open quantum systems, is not known [DVD07].

The proof of the stochastic TDCDFT theorem is based on the reasoning of well-known
proofs of TDDFT [RG84, vL99] and TDCDFT [Vig04] and discussed in detail in Refs.
[DVD07, DDV08, ADV11]. Therefore, I do not reiterate the entire proof, but focus on some
crucial aspects and comments. First, a notable di�erence between the closed and the open
quantum system approach is that the usual continuity equation between the density and the
current density does not hold in the open quantum system case. Due to the coupling to the
external bath, additional terms appear in the equation of motion of ensemble-averaged ex-
pectation values [Fre90, DDV08]. The continuity equation of the ensemble-averaged density
and current density reads

∂tn(r, t) = −∇j(r, t) + FB(r, t), (5.13)

where the density modulation that is induced by the bath is described by

FB(r, t) =
1

2
〈2S†nS − S†Sn− nS†S〉. (5.14)
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The proof of the above stated one-to-one correspondence requires implicitly that FB(r, t) is a
functional of n(r, t) and j(r, t) alone and that Eq. (5.13) can be solved uniquely to determine
n(r, t) [DDV08, DDV09, ADV11]. However, although there is a unique relation between the
density and the current density, the proof guarantees only the one-to-one correspondence
between j(r, t) and the vector potential. Therefore, the ensemble-averaged density of the
true and the non-interacting system are not necessarily equal.

Second, the e�ect of the scalar potential vext(r, t) is not discussed explicitly in Refs.
[DVD07, DDV08] as it can be eliminated by a gauge transformation at all times [Vig04].
In the context of a non-interacting representation of an interacting many-particle system
the use of scalar potentials is accompanied by di�culties: Even if a given current density is
v-representable in an interacting many-particle system, the current density is not necessarily
v-representable in the non-interacting representation of the same system [DV05].

One important application of open quantum system schemes are quantum transport
problems where one is interested in the spatial distribution of the current density to inves-
tigate charge �ow. Yet, the investigation in the following approaches EET processes where
no charge transfer occurs. Such investigations can be based on the density and its moments
alone without explicit need for the current density. From a practical point of view, the num-
ber of available approximations forAxc(r, t) is limited, whereas there are plenty of choices for
approximations for the (TD)DFT xc potential. Also for numerical reasons a density-based
approach is preferable. For applications that are based on the time evolution of the density
it is of great interest to �nd an open quantum system approach in the framework of TDDFT.

Extensions of TDDFT to open quantum systems were already performed by Burke et
al. [BCG05] and Yuen-Zhou et al. [YZTRRAG10] based on density matrices and master
equations. Both strategies aim at the representation of the density of the interacting open
quantum system by an auxiliary system with a di�erent particle-particle interaction. To
prove the validity of such approaches, one needs to �nd the corresponding external potential
of the auxiliary KS system that produces the same density under given conditions. The proofs
of Refs. [BCG05] and [YZTRRAG10] are based on the reasoning of Refs. [RG84, vL99, Vig04]
and rely on assumptions about the action of the bath operator. Yet, to the best of my
understanding, details about the consequences of these assumptions, in particular with regard
to practical calculations and choices of the bath operator, are open questions in the �eld,
and the use of approximate KS Hamiltonians in master equations is debated. Moreover,
a conclusive extension of the proof of stochastic TDCDFT that abandons the ensemble-
averaged current density and establishes an open quantum system TDDFT scheme based on
the ensemble-averaged density alone is not available yet.

5.2.3 A single-particle approach in practice

Practical applications of stochastic TDDFT so far rely on approximate realizations of the
stochastic formalism in KS TDDFT. In the approach of Refs. [ADV09, ADV11], a heuris-
tic bath operator [PDV08] is used that applies to single TD KS orbitals and allows for a
single-particle KS approach to the open quantum system problem. In collaboration with
Massimiliano Di Ventra and Heiko Appel, I applied a stochastic TDDFT scheme according
to this rationale. The following investigations are based on the stochastic single-particle KS
equations

i∂tϕi(r, t) = hKS(r, t)ϕi(r, t)−
i

2
s†isiϕi(r, t) + l(t)siϕi(r, t), (5.15)
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the usual non-interacting single-particle KS Hamiltonian of Eq. (2.12), and speci�c single-
particle bath operators si [ADV09, ADV11]. In the following, xc e�ects are approximated
by the LDA. The heuristic bath operator of the investigations presented below is introduced
and motivated in Sec. 5.3.2. Beyond that, I also investigated the theoretical justi�cation of
this approach. More background about these investigations is presented in Appendix D.3.1.

The open quantum system simulations were carried out using the quantum-jump al-
gorithm [DCM92, GPZ92, BP95, BP06] that has been introduced in the context of open
quantum system KS equations in Ref. [ADV11]. The algorithm is implemented in a cus-
tomized version of the PARSEC program package. Details on the bath operator implemen-
tation are gathered in Appendix D.3.2. The quantum-jump algorithm relies on a piecewise
deterministic evolution of the norm-preserving single-particle equations

i∂tϕi(r, t) = hKS(r, t)ϕi(r, t)−
i

2
s†isiϕi(r, t) +

i

2
|siϕi(r, t)|2ϕi(r, t) (5.16)

that are interrupted by quantum jumps. These jumps occur in the entire system and repre-
sent the non-deterministic action of the bath. The points of time where such a jump occurs
are determined by a random process according to a waiting-time distribution. However,
as in general this waiting-time distribution is not known beforehand, it needs to be deter-
mined alongside the actual propagation of Eq. (5.16) (for details, see Ref. [ADV11]): The
waiting-time distribution can be determined from the decay of the norm

η(t) =
1

N

N∑

i=1

∫
|ϕaux
i (r, t)|2 d3r (5.17)

of an auxiliary system of N particles in contact with the single-particle bath operators si
starting from the same ground state and boost excitation as the original system and evolving
according to

i∂tϕ
aux
i (r, t) = hKS(r, t)ϕaux

i (r, t)− i

2
s†isiϕ

aux
i (r, t). (5.18)

In this system, norm conservation is not build in explicitly. One obtains single waiting
times that represent quantum-jump times by drawing random numbers in the interval [0,1]
and choosing the time T when η(T ) drops below this number. The waiting-time distribution
follows from many samples of such single quantum-jump times. Each of these processes yields
one KS orbital set {ϕi,s(t)} that is one member of the statistical ensemble of KS orbital sets.
Physical observables are calculated from the statistical average over all ensemble members.

5.3 Pathways and time constants of excitation-energy transfer

5.3.1 The excitation-energy transfer model system

In the following, I use the stochastic open quantum system formalism introduced in the
previous section with a heuristic bath operator for practical applications in the area of EET
with the objective of studying EET in a supermolecular arrangement of molecules: I study
a model system of circularly arranged molecules that is designed in analogy to circular LH
complexes of the antenna system of LH organisms (see Fig. 5.2). The aim is to investigate
the in�uence of electronic-structure properties on EET time scales and pathways in such
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Figure 5.2: Circular arrangement of eight
molecules m1, m2, . . . , m8 with equal in-
termolecular distance. In principle, the
molecules may be chosen arbitrarily, but for
the sake of clarity, I use Na2 as a model sys-
tem. The excitation of the entire ring setup is
performed via boost application at molecule
m5. I measure the excitation spread in this
arrangement by application of a dissipative
bath operator that serves as a measurement
process at molecule m1. For a transparent in-
vestigation of the in�uence of the intermolec-
ular coupling and the energetic alignment of
the molecules on energy-transfer pathways,
I introduce defects in the molecules m3 and
m7. All other molecules are �xed according
to their GS geometry.

supermolecules, especially the in�uence of the coupling and the energetic alignment. With
this in mind, the physical picture behind these calculations is the following: One molecule
of the complex gets excited via light absorption. Then, the excitation travels in the system
due to the electronic interaction between the molecules. As a result the excitation spreads
over the entire complex and I intend to measure the time scale of this excitation spread.

In a circular arrangement of molecules, there are at least three time scales relevant for
the signal observed on the ring: the time scale related to the energy of the excited states,
the time scale due to intermolecular coupling (here, more time scales are involved if the
system is partly or in total o�-resonant), and the time scale due to dissipative bath action.
The latter process is needed to break the coherent evolution of the system (see Sec. 5.3.3
for an illustration). To allow for the investigation of the in�uence of electronic-structure
properties on the excitation-energy spread, its time scale needs to be chosen such that it
does not interfere with the EET time scale that is determined by the coupling mechanism
and coupling strength. In this sense, the bath mechanism that I introduce in the next section
plays the role of a measurement process.

In the basic model setup consisting of eight molecules as indicated in Fig. 5.2, all
molecules in the circular arrangement and all intermolecular distances are equal. The actual
study uses the Na2 model system, but the considerations in the following are not restricted
to dimers and can be applied to more general systems. All sodium dimers are aligned along
the z-axis and placed according to the setup of Fig. 5.2. Their centers of mass are in the
x-y-plane. Initially, starting from the ground state of the setup I introduce an excitation at
one of the molecules. To be explicit in the assignment, I chose molecule m5. I simulate the
excitation due to light absorption by a momentum boost oriented along the z-axis. In the
Na2 case, this dominantly amounts to an excitation at 2.1 eV. In practical calculations, the
boost is applied only in one section of the real-space grid, so that only molecule m5 gets
excited (see Appendix D.1.3 for details about the implementation). Defects in terms of vari-
ations of the electronic structure can be introduced easily by Na2 bond-length variation. To
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guarantee unambiguousness and transparency of the investigations in the following sections,
I modify only molecules m3 and m7, and �x all other system components. The relevant
coupling parameters of Na2 are discussed in detail in Sec. 5.1.

5.3.2 Practical simulation approach

The bath operator is supposed to act as an e�ective measurement process that allows to
measure the time an initial excitation travels within the ring system. In the setup of Fig.
5.2, it operates on molecule m1 on the opposite side of the initial excitation to measure the
time scale the excitation needs to travel halfway through the ring. The measurement process
is supposed to model deexcitation, thus remove the entire excitation energy out of the system
when the initial excitation has reached molecule m1. In contrast to true molecules where
the excitation moves due to relaxation to lower lying energy levels, here the measurement
processes immediately brings the supermolecule back to its ground state. The bath operator
needs to model an incoherent mechanism without back transfer from the bath to the system.
I assume that the bath is sensitive to dipolar excitation and couples to the dipole moment
of molecule m1. For these reasons, the bath operator has the following structure

si =
√
γ
|d1(t)− d1(t0)|

D
|ϕi(t0)〉〈ϕi(t)| (5.19)

with three speci�c contributions. The �rst factor
√
γ is a free parameter that includes the

e�ective decay rate γ. The second factor is sensitive to local changes of the dipole moment
|d1(t) − d1(t0)| of molecule m1. Here, the index denotes molecule m1 and indicates that
the dipole moment is calculated only in the section of the grid that corresponds to m1.
This factor ensures that the bath couples only to dipolar excitations and it renders the bath
operator sensitive to the dipolar excitation that has reached molecule m1. D denotes a
normalization factor of the dipole moment variations and needs to be chosen reasonably as
discussed below. The third factor is a projector that takes the TD KS orbitals and projects
the latter back onto their corresponding GS orbital. Details about the implementation of
this bath operator and examples of alternative heuristic bath operators are assembled in
Appendix D.3.2.

Having chosen one speci�c de�nition for the bath operator, I �rst assess its functionality,
i.e., I adjust the normalization factor D and investigate its performance on a single Na2.
The aim of this investigation is to �nd D such that the functionality of the scaling factors√
γ and (|d1(t)− d1(t0)|)/D in front of the projector is clearly split into two contributions:

D needs to be determined such that the decay time τ of the relaxation process is determined
only by the decay rate γ, thus τ = 1/γ. The dipole dependent scaling factor is intended to
guarantee for the coupling to the dipole moment of molecule m1 and should not interfere
with the role of γ. Therefore, the normalization factor needs to be adapted to the dipole
oscillations of the isolated model molecule m1, i.e., of one isolated Na2.

In the procedure for the determination of D, I calculated 100 fs of the dipole moment
time evolution of a single Na2 in a closed quantum system after an initial momentum boost
that was applied along the bond axis of the dimer. Here, only the dipole moment along this
axis gets excited by the boost and the investigation can be restricted to this dipole moment
component. There are various di�erent options to determine the normalization based on the
existing dipole moment data: D may be chosen to be the �rst maximum, the average over
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Figure 5.3: Norm decay η(t) (see Eq. (5.17))
of a single model molecule. The damping
is performed with di�erent decay-time con-
stants τ after an initial boost excitation with
0.001 eV excitation energy. The norm de-
cay always follows an exponential function
exp(−t/τ) with the preset time τ . Here,
quantum jumps were performed as the norm
dropped below 0.014 %. They manifest in
vertical lines where the norm jumps back to
one and stays for the rest of the time evolu-
tion as application of the bath operator does
not change the ground state.

all maxima, the absolute average, and the absolute square average of the dipole moment. I
found by numerical tests that only normalization according to the average of the absolute
square of the dipole moment gives an exponential decay with time constant τ that I aimed
at by setting the decay rate. This observation is robust with regard to di�erent decay-time
constants as Fig. 5.3 shows. All computed decay times are in accordance with the preset
decay rate.

Another in�uencing factor on the determination of D is the energy that one introduces
to the system by the boost excitation. I interpret the excitation procedure as a single
absorption process of one energy portion. The dissipation of such an energy portion due to
the measurement process should be independent of the boost strength as long as the boost
strength corresponds to a single excitation process. Therefore, in the single excitation case,
the normalization factor needs to be adapted to the boost strength. I guarantee for the boost
strength adaptation by always determiningD from a closed quantum system calculation with
the same initial boost excitation as in the open quantum system calculation that I aim at.
In the following, a boost with 0.001 eV excitation energy is used consistently. The thus
obtained normalization factor yields a decay time that is independent of the boost strength.

The excitation process could likewise be performed by application of an external laser
�eld. In this case, an instantaneous excitation could be simulated by a short pulse and the
determination of the normalization factor should then be performed using the dipole signal
after the pulse excitation.

Figure 5.4: Left, ensemble-averaged dipole moment (z-component) and, right, total energy
of a single molecule in contact with a dissipative bath that induces a decay time of 10 fs.
Both �gures are calculated from an ensemble of 200 members.
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Figure 5.5: Time evolution of the dipole mo-
ment (z-component) of four molecules of a
circular setup of eight equal sodium dimers
according to Fig. 5.2. The intermolecular dis-
tance is 20 bohr. Here, an initial boost exci-
tation was applied at t = 0 in the subsys-
tem m5 and no dissipative mechanism acts
within the entire system. The oscillation pat-
tern emerges due to interference of the dipolar
excitation that is traveling in the ring system
along both directions.

Having discussed the norm decay in detail, I �nally provide some insight into how the
bath operator works by investigating some relevant observables. The exponential decay of
the norm translates into an exponential decay of the total energy and the envelope of the
dipole moment oscillation (see Fig. 5.4). Thus, the bath operator ful�lls all desired criteria
and is ready for application in more complex molecular systems.

5.3.3 Resonant excitation spread and decay time constants

As a �rst step towards the investigation of EET in circular supermolecules, I study the
perfectly resonant coupling situation where all molecules are the same. I use the setup
of Fig. 5.2 with an intermolecular distance of 20 bohr and perform the boost excitation
at molecule m5 as explained in Sec. 5.3.1. I start with the fully coherent case without
system-bath coupling. The time evolution of the dipole moment of four molecules of this
ring con�guration is depicted in Fig. 5.5. One observes a fast oscillation of the dipole
moment that corresponds to the lowest excitation energy of the model system at 2.1 eV
while the envelope follows an interference pattern: At di�erent points of time the largest
dipole moment amplitude can be observed at di�erent subsystems. This interference pattern
emerges as the dipolar excitation travels in the ring system along both directions. It is
governed by the intermolecular coupling strength, i.e., the time an excitation needs to be
transferred between neighboring molecules. In the model system at a separation of 20 bohr,
the coupling strength is 0.038 eV (see Pub1). Thus, if two of those model molecules were
isolated, one would observe a resonance oscillation with a cycle duration of 107.8 fs where the
maximum amplitude of the dipole oscillation can be observed on one of the two neighbors
after each quarter of one period. In the circular setup, however, every molecule has neighbors
on both sides, thus providing a pathway for excitation-energy spread.

I now add the bath mechanism of Sec. 5.3.2 acting on molecule m1. To measure the EET
time, the bath needs to break the interference of the so-far fully coherent energy spread, thus
it needs to operate on a comparably short time scale. Here, it acts with a decay time of 5 fs.
This choice is motivated further in the following. I depict in Fig. 5.6 the time evolution of
the dipole moment of four molecules like in Fig. 5.5. Due to the bath mechanism, one further
time scale comes into play and one observes clearly how the oscillation of the dipole moment
decays in all subsystems of the ring due to the dissipative process. The coupling to the bath
breaks the coherent evolution and causes relaxation of the system back to its ground state.



5.3. PATHWAYS AND TIME CONSTANTS OF EXCITATION-ENERGY
TRANSFER

49

Figure 5.6: Ensemble-averaged dipole mo-
ment (z-component) time evolution of four
molecules of the same circular setup as in
Fig. 5.5. After an initial boost excitation at
molecule m5, the excitation travels in the ring
and decays due to a dissipative bath that is
acting with a decay time of 5 fs on molecule
m1.

To be able to measure the traveling time of an excitation in the circular setup, the decay
time needs to be chosen short enough to sample the initial stage of the coherent EET before
the interference pattern starts to build up. In the example of Fig. 5.6 the decay time of 5 fs
ful�lls this criterion: The dipole oscillation at molecule m1 reaches only one maximum and
subsequently decays to the ground state, thus no noticeable interference emerges.

I measure the time that the excitation needs to travel from molecule m5 to molecule m1
in terms of the lifetime of the excitation on the ring before relaxation occurs. To this end,
I monitor the decay of the norm η(T ) of the auxiliary system and take the quantum-jump
times T when η(T ) drops below preset thresholds. For the present setup and bath operator,
a single simulation of the auxiliary system with a late quantum jump is su�cient because for
each of the ensemble members the time evolution consists of two unique parts: a deterministic
time evolution until the quantum jump occurs and a trivial time evolution after the system
has jumped back to the ground state (for more details, see Appendix D.3.2). However,
due to the interference along the excitation spread, monitoring just a single threshold of
this norm decay may be dominated by interference e�ects, thus its meaningfulness may be
compromised. Therefore, I considered the norm decay down to three di�erent thresholds:
0.100, 0.050, and 0.012. The quantum-jump times T for the perfectly resonant situation
are listed in Table 5.1. They serve as a good starting point for investigating the in�uence
of electronic-structure properties on the time an excitation needs to spread in the circular
arrangement of sodium dimers with an intermolecular distance of 20 bohr.

5.3.4 In�uence of energetic o�-resonance

Having examined the resonant excitation-energy spread, I now assess the in�uence of ener-
getic o�-resonance on the EET time scales by introducing defects in the ring setup. Such
defects can be inserted via bond-length variations and/or removing one of the molecules.
I compare in Table 5.1 the quantum-jump times T to the fully resonant situation of the
previous section. I found that small changes of the bond length of -0.1 bohr in molecule
m3 or in both molecules m3 and m7 result only in a minor increase of the time scale set
by the resonant case. Larger increases of the quantum-jump time T can be observed in
cases where in one of the molecules the bond length is changed by -0.5 bohr. Note, that
already in this data set the in�uence of interference e�ects on the quantum-jump times can
be observed: While the times corresponding to the decay down to η = 0.100 and η = 0.012
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m3 m7 η = 0.100 η = 0.050 η = 0.012

0.0 bohr 0.0 bohr 52 fs 75 fs 117 fs
-0.1 bohr 0.0 bohr 56 fs 110 fs 121 fs
-0.5 bohr 0.0 bohr 84 fs 97 fs 143 fs
-0.1 bohr -0.1 bohr 57 fs 112 fs 123 fs
-0.1 bohr -0.5 bohr 85 fs 97 fs 157 fs
-0.5 bohr -0.5 bohr 166 fs 181 fs 211 fs
removed 0.0 bohr 80 fs 89 fs 125 fs
removed -0.1 bohr 99 fs 125 fs 147 fs
removed -0.5 bohr 205 fs 227 fs 265 fs

Table 5.1: Quantum-jump times T where the norm η(T ) of the decaying auxiliary system
drops below 0.100, 0.050, and 0.012. The calculations are performed in a circular setup of
model molecules (see Fig. 5.2) with an intermolecular distance of 20 bohr. I modi�ed the
electronic structure by systematically introducing defects in the molecules m3 and m7 in
terms of bond-length variation and/or removing one of the molecules. These modi�cations
are indicated in the �rst two columns of the table. A bond-length reduction of 0.1 bohr
(0.5 bohr) of one Na2 amounts to an energetic detuning of the excitation energy of 0.049 eV
(0.135 eV) and a reduction of the coupling-matrix element of 0.006 eV (0.012 eV).

give a clear picture, quantum-jump times at η = 0.050 may exhibit a di�erent behavior. Yet,
one observes a clear rise of the transfer time as soon as the more severe defect of -0.5 bohr
bond-length variation is introduced in both pathways between the initially excited molecule
and the molecule where the measurement process works: All quantum-jump times increase
by about a factor of two.

As an alternative defect, I investigated a setup where molecule m3 is removed from the
ring. In this case, the coupling between molecules m2 and m4 is smaller by about a factor
of one-eighth than the previous coupling strength between m3 and its neighbors because
of the almost dipolar coupling in this distance regime. In this situation, as long as all
other molecules are perfectly resonant, the quantum-jump times increase by about the same
amount as they did due to less severe defects in molecule m3. Yet, introducing further defects
in molecules m7, the energy-transfer process slows down notably as one observes the longest
quantum-jump times in case of removed molecule m3 and bond-length variation of -0.5 bohr
in molecule m7.

In conclusion, I found that in cases of resonance or close to resonance the EET time scale
is not a�ected much by variations of the coupling strength and interference e�ects play a
role for quantum-jump times corresponding to speci�c setups. However, as soon as sizable
defects occur in both pathways of EET, the time scales determined by the measurement
process notably increase. As a result EET is substantially hindered.

5.3.5 In�uence of the intrasystem coupling

In the �nal investigation of this section, I examined the in�uence of the intermolecular elec-
tronic coupling mechanism on the quantum-jump time, especially the di�erence between
full electronic coupling and the dipole-dipole coupling of Förster theory. In order to ob-
serve noticeable di�erences between Förster-type and full coupling, I chose an intermolec-
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coupling m3 η = 0.100 η = 0.050 η = 0.012

full 0.0 bohr 95 fs 116 fs 163 fs
Förster 0.0 bohr 86 fs 104 fs 152 fs
full -0.1 bohr 99 fs 140 fs 182 fs
Förster -0.1 bohr 94 fs 108 fs 154 fs
full -0.5 bohr 109 fs 140 fs 209 fs
Förster -0.5 bohr 89 fs 115 fs 185 fs

Table 5.2: Investigation of the quantum-jump times T in analogy to Table 5.1. Here, the
molecules are arranged at a distance of 12 bohr. Thus, notable di�erences of the coupling
strength exist between the cases of full electronic coupling and Förster-type dipole-dipole
coupling. Moreover, defects in terms of bond-length variations are introduced in molecule
m3 as indicated in the second column.

ular distance regime where such di�erences occur. For the Na2 model system, Pub1 has
demonstrated that signi�cant deviations from the dipole-dipole coupling can be observed for
distances below 20 bohr where the dipole-dipole coupling approximation overestimates the
true coupling strength. Therefore, I switched to a circular setup of 12 bohr distance between
the molecules to guarantee for a clear analysis of the in�uence of the coupling behavior. I
decided to keep the dissipation time constant of 5 fs of the previous calculations although
for 12 bohr intermolecular distance the coupling-matrix element of 0.105 eV is notably larger
than in the previous case (see Pub1). The results are compiled in Table 5.2.

One observes that Förster-type coupling overestimates the quantum-jump times of the
measurement process in comparison to the true electronic coupling, thus it overestimates
EET in the present setup. This �nding parallels the fact that also the coupling-matrix
element is overestimated by the dipole-dipole coupling (see Pub1). This result is consistently
con�rmed also in situations where defects are introduced in the circular arrangement. Finally,
I note that the quantum-jump times observed for an intermolecular distance of 12 bohr are
smaller than the numbers for 20 bohr, although in the latter case the coupling is notably
weaker. This is a result of interference e�ects that are more pronounced in cases of stronger
coupling. Therefore, it is di�cult to compare absolute time scales unless the dissipation
time constant of the measurement process is chosen short enough to prevent a build-up of
interference due to excitation-energy spread along di�erent available pathways.

5.4 Summary and Outlook

In summary, TDDFT in combination with the open quantum system framework is an at-
tractive tool for studying excitation-energy transfer phenomena. Here, the heuristic bath
operator that I introduced and implemented using a system of stochastic single-particle KS
equations served as a measurement process for investigating the excitation-energy spread
in a circular arrangement of molecules in the spirit of LH complexes. I demonstrated that
indeed the dissipative mechanism breaks the interference pattern of coherent EET that is
inherent to standard closed quantum system TDDFT and removes excitation energy from
the system. The time scale of this relaxation is determined by the intermolecular coupling
and the dissipation time constant. In this context, the strength of TDDFT is to yield a
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comparably reliable description of the electronic structure of the entire complex and its sub-
systems on the level of available xc functional approximations. This together with the open
quantum system framework provides a tool for studying the in�uence of electronic structure
properties and intermolecular coupling mechanisms on EET processes. The results that are
presented above demonstrate that small deviations of the electronic structure, for example
via bond-length variation, cause only minor changes of the time scale monitored by the
measurement process. Only when all EET pathways of the circular setup su�er from sizable
defects, the EET time drops notably. Similarly, variations of the coupling mechanism, as
for example via Förster-type dipole-dipole coupling, change the EET times in line with the
changes of the coupling strength.

In future work, this and related open quantum system schemes in the TD(C)DFT frame-
work should be assessed both from a theoretical and a practical perspective. On the con-
ceptual side, there are still a number of open questions concerning open quantum system
TD(C)DFT. First, a conclusive proof of the validity of the stochastic TDDFT framework
using single-particle KS equations that applies to a broad range of bath mechanisms remains
a topic for future investigations. Second, assumptions of the existing proofs on the range of
bath operators need to be examined and the validity and range of applicability of approxi-
mate schemes needs to be assessed. Third, actual simulations using stochastic TDDFT rely
on standard xc approximations although in the open quantum system framework the xc (vec-
tor) potential may in general also depend on the choice of the bath operator in addition to
the dependencies that it already exhibits in standard TD(C)DFT. Therefore, the assessment
of the range of applicability of standard functional approximations should be complemented
by research towards functional approximations that are tailored to the open quantum system
context. On the application side, simulations of more realistic systems using the existing
and newly developed schemes should be performed to demonstrate the practical value of
the open quantum system TDDFT scheme. In particular, the presented framework may be
a powerful tool for unraveling the role of electronic structure properties and true quantum
mechanical e�ects in LH systems beyond the description with standard rate equations.
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Appendix A

Polarizability and static

charge-transfer properties

The �rst appendix of this thesis includes a compilation of yet unpublished results and �ndings
supplementing the previous work. I start in Sec. A.1 with results on model hydrogen chains
and investigate di�erences that occur in longitudinal polarizabilities when SIC is performed
via di�erent methods. Such observations can be explained and understood if one analyzes
the shape of the xc potential when external �elds are applied. Analysis of the contributions
to the xc potentials in approximations of the (G)OEP reveals di�erences in the way the KLI
and SLA approximations on the one hand, and the generalized methods GKLI and GSLA
on the other hand treat the so-called response part of the xc potential. Therefore, this trans-
parent system allows to address the question about the quality of the (G)KLI and (G)SLA
approximations compared to the full (G)OEP. In Sec. A.2, I perform a similar polarizabil-
ity investigation with a realistic test system, the polyacetylene chains, complementing the
results of Pub4. The compilation of additional results and �ndings closes in Sec. A.3 with
an observation made in the CT model system of Man1, namely a discontinuous variation of
the total energy in GSIC where the LSDA total energy varies continuously. Throughout this
appendix, complex-valued energy minimizing transformations are used. For the notation in
the �gures and tables, I use only the shortcuts of implementation methods because they are
all applied to the SIC functional. For instance, instead of �KLI-SIC� I write just �KLI�.

A.1 Polarizability and �eld-counteracting potentials in self-

interaction free density functional theory

For a transparent and conclusive investigation of the in�uence of xc potential approxima-
tions on polarizabilities and the shape of the xc potential [CMVA95, vGSG+99, GvGSB00,
MSWY03, KKP04, KK06, PSB08, RPC+08, KMK08, AKK08, CK09, KK11], I chose hydro-
gen chains as a model system that allows for a clear-cut analysis. Here, the hydrogen chains
are set up from H atoms with alternating H-distances of 2 bohr and 3 bohr.1

I provide in Table A.1 longitudinal polarizabilities of a set of hydrogen chains along the
chain's backbone calculated from the change of the dipole moment when an external �eld

1I used a hydrogen LDA pseudopotential with core cut-o� radius rc(H) = 1.39 bohr. The grid spacing
was 0.25 bohr.
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LDA KLI GKLI GOEP SLA GSLA FOBO CC MP4
H4 38 20 34 33 20 36 34 29 29
H6 73 62 64 62 65 68 65 51 52
H8 116 99 99 93 103 107 100 74 76
H10 165 152 136 132 174 150 138 99 101
H12 217 196 175 170 243 196 178 124 127

Table A.1: Polarizability in atomic units of H chains with alternating H-distance of 2 bohr
and 3 bohr. In the �rst part of the table, I show LDA and (G)SIC results where the methods
behind the latter are ordered according to increasing sophistication. In the second part of the
table, I compiled results from the Slater approximation and calculations based on Foster-
Boys orbitals. The �nal part shows reference values: CCSD(T) (CC) polarizabilities are
obtained from Ref. [CK09] and MP4 results from Ref. [PSB08].2

is applied [KKP04, KK06]. I compare these results to Coupled-Cluster (singles, doubles,
and perturbative triples, CCSD(T)) and Møller-Plesset perturbation theory of fourth order
(MP4) reference values. These benchmarks are very close in the case of hydrogen chains,
thus provide a solid basis for comparison. At �rst sight, one clearly observes the well-known
polarizability overestimation of LDA. However, in the hydrogen chains presented here, full
OEP-SIC is known to perform well and yield polarizabilities close to the CCSD(T) bench-
mark [KKM08, KMK08, KK11] (not shown here). This remarkable performance disappears
if one uses the KLI or SLA approximation and SLA-SIC is even worse than LDA in the
long-chain case. Part of the OEP-SIC performance however can be recovered by the GSIC
approaches [KKM08, KK11]. Yet, in the hydrogen chains, GOEP-SIC is not as close to
CCSD(T) results as full OEP-SIC [KK11]. The calculations show beyond the results of Ref.
[KK11] that GKLI-SIC polarizabilities are comparably close to GOEP-SIC, while GSLA-SIC
results although being notably better than bare SLA-SIC are further of. FOBO localization
gives polarizabilities close to complex energy-minimizing GKLI-SIC that are at the maxi-
mum 1.8 % larger, as far as the data presented here is concerned. Moreover, if one computes
the polarizabilities per H2 repeat unit, the deviation between GOEP-SIC, GKLI-SIC, and
FOBO-SIC remains almost the same, whereas the distance to GSLA-SIC polarizabilities
increases with increasing chain length.

So-far, it is obvious that GSIC calculations in general improve upon LDA, but GSLA-SIC
is not perfectly in line with the �ndings of GOEP-SIC, GKLI-SIC, and FOBO-SIC. Analysis
of the shape of the xc potential and its behavior when an external �eld is applied gives more
insight into the performance of the di�erent SIC approximations. Here, the �ndings are
exempli�ed with the H8 chain. To this end, I investigated the change of the xc potential when
an external �eld F of �eld strength 0.005 Ry/bohr is applied to the ground-state vxc along
the chain's backbone in x-direction. The GOEP, that gives results closest to the CCSD(T)
polarizabilities, shows a pronounced �eld-counteracting behavior (see Fig. A.1 (a)), that is
decisive for a proper description of the response [vGSG+99, GvGSB00, KKP04, KMK08].
LDA however misses the �eld-counteracting trend completely. An interesting observation
can be made in the KLI-SIC and SLA-SIC response to the external �eld in Fig. A.1 (b).
Both potentials do not follow the response pattern observed in GOEP-SIC but show a rather

2Benoît Champagne kindly provided a list of hydrogen chain CCSD(T) and MP4 polarizabilities.
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Figure A.1: Each of the panels shows the change of the xc potential vxc(F ) − vxc(0) when
an external �eld with �eld strength F = 0.005 Ry/bohr is applied compared to the ground
state with F = 0 Ry/bohr. I depict LDA and GOEP-SIC in part (a), KLI-SIC and SLA-SIC
in part (b), GKLI-SIC and GOEP-SIC in part (c), and GKLI-SIC, GSLA-SIC, and FOBO-
SIC in part (d). The external potential is given throughout. FOBO-SIC and GKLI-SIC are
almost identical in part (d). Note that the calculations were performed spin-dependently, but
I show only one of the spin channels of the xc potential as both spin channels are identical
in H8.
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Figure A.2: Left panel: Slater contribution to the xc potential of GS H8 without external
�eld in self-consistent KLI-SIC, SLA-SIC, GKLI-SIC, and GSLA-SIC calculations. The
Slater contribution is almost the same in the cases of KLI-SIC and SLA-SIC as well as in
the cases of GKLI-SIC and GSLA-SIC. Right panel: Corresponding response contributions
vKLI

xc (x) − vSLA
xc (x) to the KLI-SIC and GKLI-SIC potential. The shape of the response

potential di�ers notably between the standard and the generalized KLI approximation.

distorted response structure. Here, a clear statement about the �eld-counteracting behavior
is di�cult. I understand this �nding as a consequence of the SIC functional su�ering from
unitary variance problems and the KLI-SIC and SLA-SIC potentials neither being functional
derivatives nor being unitary invariant themselves (for more details, see the discussion and
references in Pub3 and Sec. 3.3.1).

The �eld-counteracting behavior however is recovered in the GKLI-SIC approach. Fig.
A.1 (c) clearly shows that the GKLI-SIC potential models the GOEP-SIC behavior reason-
ably in the central region but is less favorable in the near asymptotics. Such di�erences
obviously cause the deviations of the polarizabilities observed in Table A.1. As far as the xc
potential response is concerned, FOBO localization is a good approximation to the energy-
minimizing GKLI-SIC and exhibits only small deviations from the GKLI-SIC behavior (see
Fig. A.1 (d)). However, the interpretation of the GSLA-SIC response is not obvious: If one
draws a line through the peaks of the GSLA-SIC response coming from the negative side,
one �nds for the �rst three peaks a slope in accordance with the external potential followed
by a �eld-counteracting behavior at the end of the chain. Note that the �eld-counteracting
contribution of the standard KLI potential is typically attributed to the so-called response
part of vxc, i.e., the di�erence between full KLI and its SLA contribution.

However, this assignment does not hold in the same way in the GSIC approaches as
the total GSLA-SIC response exhibits a �eld-counteracting behavior in parts. Therefore, I
isolated the Slater contribution to the KLI-SIC and GKLI-SIC potentials and investigated
occurring di�erences as depicted in the left panel of Fig. A.2. In both cases, the self-consistent
Slater only potential resembles the Slater contribution of the self-consistent (G)KLI potential,
but misses the (G)KLI response term. Yet, one observes that the distribution between
Slater and response contribution to the (G)KLI potential notably changes if one goes from
the standard KLI to an energy-minimizing GKLI potential. This reshu�ing of the Slater
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contribution also a�ects the response part, as can be observed in the right panel of Fig. A.2.
The response contribution of the KLI potential, which is an approximation to the standard
OEP, is known to be important for orbital functionals in general. However, in the case of
GSIC using GKLI it does not play an as pronounced role.

I conclude that approximations of the standard OEP may exhibit a distorted response
if applied to the SIC functional. Therefore, I strongly recommend the use of generalized
approaches that explicitly take the possible unitary freedom of orbital functionals as for
instance of the SIC functional into account, particularly when it comes to approximations
of the (G)OEP. In this context, the GKLI-SIC potential is a reasonable approximation to
the GOEP-SIC in ground-state DFT and exhibits a proper �eld-counteracting behavior.
GSLA-SIC notably improves upon SLA-SIC, but does not show a clear �eld-counteracting
contribution and, therefore, yields polarizabilities further o�.

Finally, note that although hydrogen chains are a transparent test system that allow
for a clear-cut analysis of the behavior of the xc potential, they are arti�cial systems and
of peculiar nature. Already in earlier works, it has been observed, e.g., that current DFT
taking ultranonlocal xc e�ects into account leads to large polarizability improvements for
real conjugated polymers, whereas in hydrogen chain models the improvements are small
[vFdBvL+02]. Hence, care needs to be taken when drawing conclusions from absolute num-
bers calculated in such test systems. The performance in realistic molecules needs to be
investigated independently. Therefore, in the following section I turn to real polyacetylene
chains to further investigate the dependence of the polarizability on functional approxima-
tions and implementation methods.

A.2 Polarizability of polyacetylene chains

The polyacetylene chains are an interesting real test system because they are almost as
transparent as hydrogen chains, easy to modify in terms of the chain length, and reveal
di�erences between di�erent (G)SIC methods. Pub4 demonstrates that excitation energies
of polyacetylene chains di�er notably between di�erent approximations to the TDGOEP, in
particular TDFOBO-SIC calculations yield excitation energies that are closer to the reference
values than energy-minimizing TDGKLI-SIC.

Here, I complement the data on excitation energies with results of polyacetylene polar-
izabilities and test if the observations made on the polarizabilities of hydrogen chains also
hold in case of polyacetylene. To this end, I give the static polarizability of a selection of
polyacetylene chains calculated with di�erent functionals in Table A.2. The data con�rms
the general �nding that LDA overestimates polyacetylene polarizabilities. SIC calculations
based on standard KLI and SLA do not cure this overestimation: Standard KLI-SIC even
surpasses LDA results and SLA-SIC is similar to LDA or slightly better. Thus, if at all,
both methods are not able to improve much upon LDA at the end of the day. This �nd-
ing parallels the excitation-energy results. It is re�ected in an erroneous reduction of the
lowest excitation energy in TDKLI-SIC. However, all GSIC schemes reduce the polarizabil-
ity overestimation, thus cure part of the problem: Except for the shortest chain, C4H6,
GKLI-SIC gives polarizabilities close to B3LYP. GSLA-SIC is close to GKLI-SIC results
but tends to give slightly lower, thus better polarizabilities. FOBO localization gives the
lowest polarizabilities of all approximate SIC schemes addressed so far. Here, the Foster-
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PROPERTIES

LDA KLI GKLI GOEP SLA GSLA FOBO B3LYP HF MP2
C4H6 76 77 68 62 77 68 67 84 75 64
C6H8 173 175 160 140 171 158 154 164 142 112
C8H10 294 297 273 222 283 277 262 274 229 187
C10H12 457 466 426 322 445 435 406 413 332 267

Table A.2: Axial polarizability in atomic units of several polyacetylene chains calculated
with di�erent functionals. As a reference, I give MP2 results taken from Ref. [TTdM+95],
HF taken from Ref. [KTRH95], and B3LYP polarizabilities that were calculated with TUR-
BOMOLE.3

Boys criterion guarantees for spatial localization that is not necessarily equal to the complex
energy-minimizing transformation.

Full GOEP-SIC calculations are notably better than GKLI-SIC and FOBO-SIC polariz-
abilities: For the longer polyacetylene chains, GOEP-SIC seems to improve by about half the
distance between LDA and MP2 results. Interestingly, the GOEP-SIC polarizabilities pre-
sented here are close to, but slightly better than HF ones. Yet, there is still a noticeable gap
to the MP2 reference. Therefore, I conclude that although GSIC approaches and especially
the full GOEP-SIC improve upon LDA, the results do not coincide with polarizabilities from
wave-function perturbation theory.

The observations made on the basis of the polarizability data are in line with the trend of
the excitation energies where TDFOBO-SIC provides the highest values in best agreement to
reference calculations and the experiment. Hence, in case of polyacetylene chains the trend
of the lowest excitation energies can be related to the behavior of the static polarizability.
Therefore, for systems that are similar to polyacetylene the polarizability could possibly be
used as an indicator for the performance of excitation-energy evaluations, where TDGKLI-
SIC and TDFOBO-SIC give improved results, but the deviation from reference values is
still 0.3 eV at the maximum. Following the polarizability trend one may expect even better
excitation energies from full TDGOEP-SIC, as for GOEP-SIC a signi�cant reduction of the
polarizability can be observed. I �nally conclude that the (TD)GSIC scheme yields notable
improvement of the LDA description of polyacetylene chains, where among the approaches
available here FOBO localization gives the best numbers for excitation energies and GOEP-
SIC exhibits the overall most promising polarizability results.

A.3 Static charge transfer in a transparent model system

Finally, I complement the �ndings on the CT model of Man1 and Sec. 4.2.1 by one additional
observation on the total energy of this system when static external �elds are applied. If
one plots as in Fig. A.3 the total energy of the model system versus the �eld strength of
the external �eld, one observes almost straight line segments of the total energy that are
interrupted by discontinuous changes of the slope. Slight deviations from these straight lines
can be observed in the intermediate segment. Note that GOEP-SIC calculations for �eld
strengths up to 3.5× 109 V/m are in almost perfect agreement with the GKLI-SIC �ndings.
The �eld strengths where the slope changes discontinuously equal the �eld strengths where

3The B3LYP polarizabilities were kindly provided by Andreas Karolewski.
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Figure A.3: Dependence of the total energy
of the CT model system of the left part of
Fig. 4.2 on the strength of the external �eld.
I present the results computed with LSDA,
GKLI-SIC, and GOEP-SIC. For this illus-
tration, I subsumed the degenerate realiza-
tions of GKLI-SIC (see Sec. 4.2.1). As a
guide for the eye, I �tted straight lines with
a least-squares linear regression to the three
segments of the GKLI-SIC data points from
0.0 V/m to 2.5× 10−9 V/m, from 2.5× 10−9

V/m to 5.5× 10−9 V/m, and from 6.0× 10−9

V/m to 8.0 × 10−9 V/m. Theses segments
correspond to the situation where no electron
is transferred, one electron has jumped from
the donor to the acceptor chain, and two elec-
trons are transferred.

the electrons jump from the donor to the acceptor chain according to Man1 and the right part
of Fig. 4.2. Thus, the discontinuous changes of the slope of the total energy can be attributed
to these electron jumps. At the corresponding �eld strengths, the density reshu�es notably
so that the �eld acts on very di�erent density distributions before and after the electrons
transfer. In Fig. A.3, this manifests in the di�erent slopes of the total energy with respect
to the electric �eld strength. Details of the latter dependence remain to be investigated.

At �rst sight, the straight line segments of the total energy of Fig. A.3 appear reminiscent
of the straight line behavior of the total energy with fractional changes of the electron number
that Perdew et al. reported in Ref. [PPLB82] (for an overview, see Sec. 2.4). Yet, the picture
that emerges here is a di�erent one as the calculations do not involve fractional charges of
the entire system and Fig. A.3 shows the total energy versus the �eld strength in contrast
to fractional charges that are depicted in Ref. [PPLB82]: Although some values of the
external �eld strength can be related to speci�c integer occupations of D and A in GKLI-
SIC calculations, none of the intermediate points corresponds to any fractional occupation of
the two hydrogen chains. Still, the abrupt changes of the slope at the �eld strengths where
electrons jump are a manifestation of the integer electron transfer behavior.

In principle, a relation between the external �eld strength and the (fractional) charge of
the D or of the A chain may be set up in the case of LSDA using the fractional occupations
of the single moieties in the LSDA data of the right part of Fig. 4.2. Yet, this picture
does not coincide with the fractional occupation picture of the entire system of Perdew et
al. [PPLB82] despite the striking analogy, because here the single moieties are not isolated
and interactions between D and A need to be taken into account. In Fig. A.3, the LSDA
functional exhibits a continuous concave shape of the total energy with respect to the external
�eld strength. This �nding re�ects the fractional electron transfer behavior of LSDA where
no abrupt density reshu�ing occurs.





Appendix B

Multigrid Poisson solver

The solution of Poisson's problem is one of the key features of the PARSEC code as it is
exploited to determine the Hartree potential instead of computing the Hartree potential in-
tegral directly [KMT+06]. The standard method to solve Poisson's equation in PARSEC is
the conjugate gradient (CG) method [Saa03]. In a standard (semi)local density functional
PARSEC run, the solution of Poisson's equation is not of central limiting character to the
overall performance of the code as it is required only once per GS self-consistency iteration
and once per time step if one assumes that one needs to perform a single potential evaluation
per time step. Yet, for orbital-dependent functionals as for example SIC, EXX, and espe-
cially energy-minimizing GSIC, the e�ciency of the Poisson solver is crucial for the overall
performance. For instance, in SIC the Poisson solver needs to be called N + 1 times both
per self-consistency iteration and per time step, where N is the number of orbitals involved.

The situation is even more complicated in energy-minimizing GSIC calculations. Here,
the Poisson solver is needed at least N times in each step that needs to be taken during
the iterative unitary optimization of the unitary transformation in a GS calculation (see Ap-
pendix C). Most Poisson calls, however, are performed during TDGSIC time propagation.
For instance, propagation of the 28 occupied orbitals of the DMABN molecule of Sec. 4.2.2
for 40 fs requires 5×104 time steps, where in the example per time step and orbital on aver-
age 4.2 Poisson calls are performed. In total this makes about 6×106 Poisson calls using the
most e�cient propagation scheme and algorithms available in PARSEC at current terms.
This example clearly demonstrates that the solution of Poisson's equation is a performance
limiting factor if one uses orbital functionals in PARSEC. For the feasibility of many calcu-
lations presented in this thesis, I addressed this performance bottleneck and implemented a
new method based on multigrid (MG) and defect correction ideas to the solution of Poisson's
equation in the PARSEC program package.

In this appendix, I give an elementary introduction to the basic MG and defect correction
concepts and explain the implementation of the MG solver in the PARSEC code. The new
algorithm turns out to be much more e�cient than the CG Poisson solver. Moreover, the
parallelization of the MG Poisson solver is adjusted to the requirements of SIC and EXX
calculations, where orbital density dependent Poisson problems can be performed in parallel.
For a more detailed introduction to the MG method, I recommend the book of Trottenberg,
Oosterlee, and Schüller [TOS01], the book of Hackbusch [Hac85], and the introduction of
MG methods in the Numerical Recipes [PTVF92]. Parts of the presentation in the following
are based on these books.

63
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B.1 Multigrid and defect correction

B.1.1 The multigrid idea

Typically, one uses the MG method for solving second-order partial di�erential equations.
Here, for a clear-cut presentation in the PARSEC context, I focus on Poisson's equation in
three dimensions

∇2v(r) = −4πn(r) = f(r), (B.1)

where v(r) is the Hartree potential and n(r) the density. I abbreviate the inhomogeneity on
the right hand side of Eq. (B.1) by f(r). For a numerical solution, the Laplacian operator as
well as the functions v(r) and f(r) are discretized on a grid. The discretized equation reads

Lhvh = fh, (B.2)

where the discretized functions carry the index h corresponding to the grid spacing h and
Lh denotes the discretized version of the Laplacian operator. If one introduces ṽh to be an
approximate solution of Eq. (B.2), the error to obtain vh is

uh = vh − ṽh. (B.3)

The residual between the approximate result of Lhṽh and the true result of Lhvh reads

rh = Lhṽh − fh. (B.4)

Based on these de�nitions, Poisson's equation can be written in terms of rh and uh as

Lhuh = −rh. (B.5)

One naturally arrives at an iterative procedure for new potentials

ṽ
(n+1)
h = ṽ

(n)
h + u

(n)
h (B.6)

that can be obtained from previous potentials ṽ(n)
h and solutions u(n)

h of Eq. (B.5), where rh
is computed at each step n of the iteration according to Eq. (B.4).

The MG method is used to solve the central Eq. (B.5) of the previous iterative scheme.
Understanding the main idea of the MG method is related to two basic principles [TOS01]:
the smoothing principle and the coarse grid principle. I illustrate both principles using the
expansion
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(B.7)

of the error [TOS01], where Nx, Ny, and Nz are the number of grid points in x, y, and z
direction, respectively, and uh(x, y, z) vanishes at the boundaries of the grid. The highest
frequency components (large k, l, or m) contributing to this series are given by the grid
spacing h: Only functions that vary on a length scale that is larger than the grid spacing
can be represented after discretization. The maximum extension of the grid determines the
lowest frequency components (k, l, and m are small) of the Fourier series. Classical iterative
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Figure B.1: The left panel illustrates the MG grid-level management with a one-dimensional
example and four grid levels. At each coarser grid level the grid spacing doubles in comparison
to the previous �ner grid level. The grid points are depicted by full circles  . Circles with
smaller size are used only on �ner grid levels. The right panels show the cycle succession
of the three most prominent MG cycling schemes, the V-, W-, and F-cycle. On the very
coarsest grid level an exact solution should be computed, whereas on the �ner grid levels a
couple of iterations of the iterative relaxation method are performed.

relaxation methods, for example Jacobi or Gauss-Seidel relaxation, e�ciently solve high
frequency components of Eq. (B.5). Therefore, application of these techniques amounts to
a strong smoothing of the error of any approximation (smoothing principle) [TOS01]. Yet,
determining lower frequency components is a tedious task using classical relaxation methods.
This is where the coarse grid principle comes into play [TOS01]. For an explanation, consider
two grids: a coarse and a �ne one. The highest frequency components that can be sampled
on the coarse grid are smaller than the highest frequency components that can be sampled on
the �ne one. Therefore, only functions that are smooth on the �ne grid can be approximated
reliably on the coarse grid. If one is sure that the functions that are involved in Poisson's
problem are smooth on the �ne grid, the problem can be transferred to the coarse grid where
�nding solutions is more e�cient.

The main idea of the multigrid method is to exploit those two principles for a fast
solution of Eq. (B.5): High frequency components of the error are relaxed on �ne grids
and lower frequency components are solved on successively coarser grids. Moreover, this
idea can equally be applied starting on the coarse grid side and proceeding to �ner grids.
Typically, one arranges the grid levels such that the grid spacing always changes by a factor
of two. This type of grid management is illustrated with a one-dimensional example in the
left part of Fig. B.1. In this scheme, only a few relaxation steps are needed per grid level.
Subsequently, the solution is transferred either to a coarser grid by a so-called restriction
operation or to a �ner grid by prolongation. On this new grid level further relaxations are
performed. As the classical relaxation methods can be conducted e�ciently especially on the
coarser grid levels, the solution of Eq. (B.5) can be obtained with comparably low numerical
e�ort. For instance, the CG method is reported to need numerical operations on the order
of N3/2 log ε to solve the two-dimensional Poisson problem, while the iterative MG method
yields a solution after about N log ε operations [TOS01]. Here, N denotes the number of
unknowns and log ε re�ects the fact that the numerical accuracy and, therefore, the stop
criterion are assumed to be in the range of the discretization accuracy.

Based on the central MG idea, di�erent cycling schemes have emerged to conduct a MG
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cycle. In the following, I introduce the most prominent ones, the so-called V-, W-, and
F-cycles [TOS01] as illustrated in the right part of Fig. B.1. All cycling schemes have in
common that on the coarsest grid level a high quality solution of Poisson's equation needs
to be obtained. In Fig. B.1, this aspect is depicted by the symbol 2. On all other grid
levels a small number of standard relaxations are performed. The most basic cycling scheme
is the V-cycle. Here, one goes from the �nest grid successively down to the coarsest grid
and straight back. In the W-cycling scheme, when going from grid level to grid level one
always performs one additional V-cycle compared to the V-cycling scheme (see Fig. B.1).
This amounts to a higher number of coarse grid solutions in the W- than in the V-cycle.
One further alternative is the so-called F-cycle. Here, during the back transfer from coarse
to �ne grids, one consecutively goes n steps up and down starting with n = 1 and increases
n after each round until the �nest grid level is reached. The numerical e�ort related to a
full cycle di�ers [TOS01] for each cycling scheme, as every time a di�erent number of steps
and operations are involved. Yet, the di�erent methods provide means to adapt the MG
method to the special requirements of particular problems as one is able to tune the number
of relaxations before and after transferring the error between grid levels.

B.1.2 An introduction to defect correction

The numerical load involved in a classical relaxation step strongly depends on the number
of neighboring points that are used to compute the Laplacian operator on the grid. One
strategy of the PARSEC code to gain numerical e�ciency is to treat the Laplacian operator
of the kinetic energy with a higher-order expansion [KMT+06] as this allows for larger grid
spacings. Therefore, also the solution of Poisson's equation needs to be performed by a
high-order scheme. Yet, the high numerical performance of MG solvers is obtained by low
order discretization using only immediate neighbors in the Laplacian operator as well as the
�ne to coarse grid restriction and the coarse to �ne grid interpolation operations. A solution
to this con�ict is the so-called defect correction [Ste78, Hac81, Sch84, Hac85, TOS01].

Using defect correction one does not solve Poisson's equation

L̂hvh = fh, (B.8)

with a higher-order discretization L̂h of the Laplacian operator. Instead, the central idea is
to determine the defect

dh = fh − L̂hvh + Lhvh (B.9)

related to di�erent discretizations and solve Poissons's equation for this defect

Lhvh = dh (B.10)

with a lower order Laplacian discretization Lh by the MG method. The defect correction
idea can be combined with the MG cycling schemes. In this case one needs to perform the
following steps:

(i) start from an initial guess ṽ(0)
h , set k = 1

(ii) compute one MG cycle with lower order discretization to obtain ṽ(1)
h

(iii) determine the defect d(k)
h to the higher-order discretization using the actual approximate

solution ṽ(k)
h in Eq. (B.9)
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(iv) solve Lhṽ(k+1)
h = d

(k)
h with one MG cycle to obtain ṽ(k+1)

h

(v) set k := k + 1, iterate steps (iii) to (v) until convergence of ṽh

Alternatively, defect correction does not have to be performed on the �nest grid level only.
Defect correction may also be included in the multigrid cycle, thus be performed on coarser
grid levels. For instance, one may perform defect correction when reaching a higher grid level
during the back transfer from the coarsest to the �nest grid in the F-cycle and may conduct
additional F-cycles from this grid level before going to the next higher level [TOS01].

B.2 Features of the PARSEC code in the multigrid context

When implementing a MG Poisson solver into the PARSEC code, there are some peculiarities
of the code that need to be considered. First, the PARSEC grid is shifted from the origin by
one half of the grid spacing so that all grid points are symmetrically arranged with respect
to the axis and planes of the coordinate system but no grid point is in the origin. This
grid arrangement is in con�ict with the coarsest possible MG grid level of only three grid
points per dimension where two grid points are at the boundary and one grid point is at
the origin. In MG implementations one likes to go down in the coarse grid hierarchy to this
coarsest possible grid level as the solution there is trivially determined from the boundary
condition. Therefore, I had to change the grid arrangement so that in case of MG PARSEC
runs, the grid is no longer shifted with respect to the origin. The di�erence in the grid
arrangement of CG and MG based calculations should not make any di�erence for general
systems with arbitrary nuclei positions as long as the results are converged with respect to
the grid spacing. Yet, the grid arrangement may a�ect special case, e.g., single atoms at
the origin where the density is particularly high at the center of the grid. In such situations
caution should be exercised with respect to the choice of the Poisson solver and results should
be checked carefully.

Second, calculations in PARSEC are not performed on a cube or a cuboid but the grid
has a spherical or an elliptical shape [KMT+06]. Such a shape is di�cult in the context of
MGs as in case of MG one likes to hold on to the grid points at the boundary and perform
equidistant grid coarsening by factors of two. Therefore, the PARSEC MG implementation
relies on a superordinate grid of cubic or cuboidal shape that contains all grid points of
the original PARSEC grid plus some additional grid points that �ll the gap between the
PARSEC and the extended grid. With this grid extension, an additional immediate con�ict
emerges: On the one hand, one likes to go down in the coarse grid hierarchy to very coarse
grids, at best down to a grid with only three points per dimension. On the other hand,
if the PARSEC grid does not �t perfectly into this grid hierarchy, one may need to add a
signi�cant number of extra grid points on the �nest grid level to guarantee that all PARSEC
grid points are included in the superordinate grid. This con�ict is of special signi�cance in
case of elliptical PARSEC grids. Here, the grid extension may di�er notably for di�erent
directions of the coordinate system and, therefore, cubic superordinate grids may amount to
a tremendous number of extra points.

To cope with the underlying con�ict of interest, I tried to �nd a reasonable tradeo�
between as small as possible cubic or cuboidal superordinate grids and grid hierarchies with
coarsest grid levels that contain a minimum of grid points. The tradeo� is guided by practical
experience with the PARSEC code. As the spherical PARSEC grid is just a special case of
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the more general elliptical shape, I explain the case of elliptical PARSEC and cuboidal
superordinate grids. In the following, small letters n indicate grid levels and capital letters
N denote numbers of grid points on a speci�c grid level.

The �rst step is to determine the maximum number nmax of possible grid levels. To this
end, I start on the coarsest level with three grid points and build up a grid hierarchy until the
number of grid points of the highest level exceeds the number of grid points Nmin along the
coordinate axis with the smallest grid extension. The number of grid points per level going
from a coarser to a �ner grid can be computed by the recursion formula Nfine = 2N coarse−1,
where N coarse = 3 at grid level n = 1. Thus, nmax is the index of the �rst grid level where
Nfine is greater than Nmin.

In the second step, I start with the number of grid points Nmax of the largest grid
extension and go down the grid levels with the recursion formula N coarse = int(Nfine/2) + 1
until one of the following stop criteria is ful�lled: If the number of coarse grid points N coarse

reaches one of the numbers 6, 7, 10, 11, 14, or 15, the recursion stops and the number of
grid levels l equals the number of recursion steps plus one. Otherwise, after the maximum
of nmax − 1 steps the number of grid levels l is set to nmax. The numbers of the �rst option
are determined by the following rationale: The number of grid points in the grid hierarchy
starting from three grid points are (3, 5, 9, 17, ...) as one can observe in Fig. B.1 on the left
and starting from seven grid points one obtains (7, 13, 25, ...). If one goes from one of the
numbers 6, 7, 10, 11, 14, or 15 down to the next odd number that is part of one of these
hierarchies, one pays the prize of a signi�cant number of additional grid points outside the
PARSEC grid. To avoid the resulting memory requirements I stop at the listed numbers.
Having determined the number of grid levels, the grid hierarchy is built for each direction of
the coordinate system (i = x, y, z) by the following steps:

(i) iterate N coarse
i = int(Nfine

i /2) + 1 with l − 1 steps starting from Nmax
i

(ii) if the resulting N coarse
i is an even number, set N coarse

i := N coarse
i − 1

(iii) build the grid hierarchy with l levels on top of N coarse
i using Nfine

i = 2N coarse
i − 1

Finally, note that one obtains the spherical case by setting Nmax
i = Nmax and performing

the last three steps of the above procedure.
In many cases of the just presented grid hierarchy setup, PARSEC does not reach the

coarsest grid level with three grid points only, thus the coarsest grid solution cannot be
obtained trivially. I guarantee su�cient quality of the coarse grid solution by performing
a great number of relaxation steps on the coarsest grid level. These iterations involve a
notably reduced number of grid points and are comparably cheap. The speci�c number of
relaxation steps is adapted to the largest number Ni and based on numerical tests.

For this thesis, I performed PARSEC calculations on con�ned systems where all orbitals
and the density vanish outside a limited domain [BSK+03]. Yet, the Coulomb potential is
of long-range nature and, therefore, the Hartree potential typically does not vanish within
the bounds of the numerical grid. Hence, I �nally comment on the setup of the boundary
condition of the Poisson problem solver. In standard PARSEC calculations, the boundary
is su�ciently far o� so that the potential on the boundary is dominated by the multipole
components of the density. The boundary condition is set up by calculating the potential in
terms of the multipole expansion of the density [BSK+03, KMT+06]. For the CG solver, the
potential is computed on the spherical or elliptical boundary of the standard PARSEC grid
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[BSK+03]. In case of the MG solver, the boundary condition is set up by the same multipole
expansion evaluated on the surface of the cube or the cuboid of the MG superordinate grid.
Thus, di�erent boundary conditions are used for the CG and the MG solver. However, if the
size of the grid is chosen carefully enough, the in�uence of the boundary condition vanishes
and no di�erences between CG and MG occur.

B.3 The multigrid implementation in PARSEC

Having introduced the ideas of MG and defect correction and having discussed PARSEC
peculiarities related to the implementation of the MG solver, I �nally summarize the charac-
teristics and functionalities of the MG solver that I implemented in PARSEC and introduce
the input parameters related to the Poisson solver. These parameters are listed in Table B.1.
Additional general remarks concerning the PARSEC input, especially its input data types,
are compiled in Sec. E.1. The Poisson solver choice can be made with the input parame-
ter poissonsolver. The PARSEC MG Poisson solver uses defect correction to adopt to the
higher-order �nite di�erence requirement of the PARSEC code. To this end, the low order
�nite di�erence solution of Eq. (B.10) takes only next neighbors into account. The order
of the Laplacian of the higher-order discretization is determined by the input parameter
MG_Laplace. The cycling scheme of the MG can be selected with MG_Cycle_mode. All
restriction operations during the MG cycles are performed by full-weighting restriction and I
use standard trilinear interpolation for all prolongation operations [TOS01]. The relaxation
method can be selected by the input parameter MG_Relaxation_mode. Both implemented
methods are based on the well-known Gauss-Seidel relaxation [TOS01, Hac85, PTVF92].
Note that some more options are coded in the �nal PARSEC version of this thesis, but they
are not addressable by the input.

The assessment of the convergence of the solution of Poisson's equation is adapted from
Ref. [PTVF92]. The termination of the solver iterations is determined by a convergence
criterion

||rh|| ≤ ε, (B.11)

where the norm of the residual is required to be smaller than some given convergence pa-
rameter ε. The Numerical Recipes [PTVF92] suggest an estimate of this error in terms of
the relative truncation error

τh = LH(Rvh)−RLh(vh), (B.12)

whereR denotes a restriction operation and the capitalH indicates quantities and operations
on a grid that is coarser by one level. It can be interpreted as a correction to the right hand
side of Eq. (B.2) that makes the solution of Poisson's equation on the coarse grid

LHvH = fH + τh, (B.13)

equal the �ne grid solution as long as the solution is su�ciently smooth [PTVF92]. An
approximate relative truncation error τ̃h follows from using the approximate solution ṽh in
Eq. (B.12). It gives an estimate of the convergence parameter [PTVF92] according to

ε = α||τ̃h||, α ≈ 1

3
. (B.14)
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parameter name type options explanation
poissonsolver int 0 (D) CG solver

1 MG solver (obtained from the Kronik group)
2 MG solver
10 CG solver with grid shift as in MG

MG_Convergence dp 1.0 (D) scaling parameter for accuracy
MG_Relaxation_mode int 1 (D) standard red-black Gauss-Seidel relaxation

2 red-black Gauss-Seidel with overrelaxation
MG_Cycle_mode int 1 (D) V-cycle

2 F-cycle
3 V-cycle, defect correction on all grid levels
4 F-cycle, defect correction on all grid levels
5 two F-cycles, then V-cycles

MG_Laplace int 1-4 (D) Laplacian order in defect correction

Table B.1: PARSEC input parameters and input values related to the Poisson solver. Each
parameter is described in brief in the last column. The shortcut �int� denotes integer and the
shortcut �dp� double precision data types. Default values are labeled by (D). All parameters
with names that begin with �MG� are available only in case of poissonsolver �2� which is the
MG solver introduced in this appendix.

I employ this estimate in PARSEC together with two de�nitions of the norm: (i) the square
root of the integral over the square of τ̃h and (ii) the maximum value of |τ̃h|. This proceeding
yields two di�erent convergence parameters. To be on the save side, I scale both parameters
by a factor of one half. Moreover, an additional scaling factor of this estimate can be applied
by the input parameter MG_Convergence that is multiplied to the estimate of ε. These
convergence parameters are calculated on the �y based on the �nest grid and the �rst grid
coarser than the �nest grid during the �rst call of the MG Poisson solver. In all further
calls, convergence of the approximate solution ṽh is tested every time the �nest grid level is
reached.

Last but not least, the MG Poisson solver is embedded into the parallel PARSEC en-
vironment. Therefore, let me �nally comment on parallelization of MG methods in general
and the PARSEC implementation in particular. Di�erent methods and ideas for a MG par-
allelization are available in the literature [Bra81, MT96, Jun97, HJ97, Mit97, FJ00, �ST03,
DHL03, HKMR05, KSRS08]. Such parallelization strategies address the parallelization over
the grid of a single Poisson solver call and involve grid partitioning and domain decomposi-
tioning techniques. In these cases communication operations need to be performed during
relaxation and interpolation on all grid levels of the coarse grid hierarchy when grid points
that are treated by di�erent processors are involved. Moreover, one has to �nd an appropri-
ate distribution of grid points over processors in the parallel environment for all grid levels.
This is an especially di�cult task on the coarse grid levels where the number of grid points
may be on the order of the processors that are involved. Therefore, to obtain a reasonable
parallel speed-up, one needs to carefully design the management of grid levels and parallel
distribution of numerical load.

Yet, with respect to the special requirements of PARSEC where solutions of Poisson's
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equation need to be performed for the orbital densities of all N occupied orbitals, a di�er-
ent parallelization strategy with parallelization over the orbitals lends itself to be used. I
parallelized the N Poisson solver calls in PARSEC such that the Hartree potential of one
orbital density is computed only by one processor. The advantage is that such a single Pois-
son solver call does not require any parallel communication, thus the sequential MG solver
can be used. However, as the parallelization in all other PARSEC routines is implemented
via grid partitioning, the new strategy requires an initial redistribution of orbital densities
and a �nal redistribution of the corresponding orbital-speci�c Hartree potentials from grid
partitioning to orbital parallelization and back. This redistribution is conducted by col-
lective message passing interface (MPI) routines. It is designed such that if possible each
processor performs the same number of Poisson calls. Yet, if an equal distribution of the
numerical load is not possible, some processors are idle while the other processors work on
their orbital-speci�c Poisson problems. Thus, in this parallelization strategy the number of
processors should be adapted to the number of occupied orbitals: Dividing N by the number
of processors should yield a number that equals or is slightly smaller than an integer. To
use the sequential Poisson solver for computing the Hartree potential of the total density in
a parallel environment, the following steps are performed:

(i) the density is distributed to all processors

(ii) each processor performs the same MG solver call with the total density as input and
the Hartree potential on the entire grid as output

(iii) each processor takes the appropriate part of the Hartree potential according to the grid
partitioning from its own entire-grid solution to save communication overhead

B.4 Assessment of the multigrid solver

Having implemented the MG solver as described before, I �nally assessed the performance
of the solver in terms of accuracy of the solution and of computation time. For a reasonable
comparison to the CG method it was crucial to use a PARSEC grid that is identical in both
Poisson solver cases. Therefore, I introduced a new Poisson solver method �poissonsolver =
10� that is a CG solver with the PARSEC grid shifted as in the MG case (CG shifted).

Using this new solver setup, I �rst compared the sequential solver version in terms of
accuracy of the eigenvalues, Hartree energy, and dipole moment as well as the computation
time for a test set of molecules representative for the systems investigated in the Kümmel
group: Eigenvalue deviations were typically smaller than 1× 10−3 %, Hartree energy devia-
tions smaller than 5× 10−4 %, and dipole moment deviations smaller than 1× 10−5 atomic
units. These deviations, if notable at all, are smaller than the accuracy that may be expected
from density functionals, thus con�rm the accuracy of the MG implementation. Yet, a de-
tailed presentation of the test set goes beyond the scope of this appendix. Therefore, I just
outline a single example that gives a �avor of the performance of the MG implementation.

I chose the small silicon cluster Si4 as a transparent test system (see Table B.2 for details
of the system and the PARSEC setup). It is an ideal test case for parallelization as all eight
occupied orbitals of Si4 can be distributed over the CPUs of an octo-core processor. The
results of a KLI-SIC ground-state run are listed in Table B.3. First, one observes that CG
shifted and MG give almost identical total energies and eigenvalues. Yet, deviations on the
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test system PARSEC input MG grid setup
Si4 Boundary_Sphere_Radius: 18.0d0 number of grid

Grid_Spacing: 0.4d0 points per
coordinates of the nuclei [bohr]: Expansion_Order: 10 dimension:
0.000001, 2.246272, 0.000000 States_Num: 10 - sphere size: 93
3.739822, 0.000372, -0.000069 Spin_Polarization: .false. - �ne grid: 97
0.000001, -2.244924, 0.000001 Convergence_Criterion: 1.0d-05 - coarse grid: 7
-3.739817, 0.000373, 0.000052 Diag_Tolerance: 1.0d-07

Eigensolver: diagla number of grid
occupied KS orbitals: 8 Mixing_Method: Anderson levels: 5

Mixing_Param: 0.3d0
grid points (CG setup): 382,336 Memory_Param: 3
grid points (MG setup): 38,915

Table B.2: Si4 test system for assessing the performance of the MG solver. I assembled
important parameters of Si4 and the grid setup in the left column, relevant PARSEC input
parameters in the central column, and an overview over the number of grid points and
di�erent grid levels of the MG in the right column.

order of 1× 10−3 % occur if one compares CG calculations with grid shifts relative to each
other. Such deviations are solely related to the numerical representation on the grid and can
be reduced by decreasing the grid spacing. I performed similar tests on a coarser PARSEC
grid with a spacing of 0.6 bohr instead of 0.4 bohr and found notably larger deviations of
that kind. However, deviations between CG shifted and MG were by almost three orders of
magnitude smaller. Second, one �nds in sequential runs that Hartree computation times are
by about a factor of �ve and KLI computation times are by about a factor of six faster in MG
than in CG cases. This is a clear indicator for the remarkable speed-up of the MG solver.
Although in the parallel case the speed-up for single Hartree calls is only about a factor of
1.5, KLI xc potential evaluations are almost a factor of ten faster when using the MG than
using the CG. This manifest also in a notable improvement of the total computation time.

I assessed also the performance of GSIC calculations with energy minimization using the

sequential parallel
Etot [Ry] HOMO [Ry] TH [s] TKLI [s] Ttot [s] TH [s] TKLI [s] Ttot [s]

CGsh -30.66069 -0.53198 7.91 47.88 2,275.35 2.14 13.19 503.15
CG -30.66176 -0.53236 7.71 47.66 2,061.81 2.44 14.82 518.44
MG -30.66068 -0.53198 1.51 7.61 1,745.35 1.47 1.32 374.64

Table B.3: Performance assessment of the sequential and parallel MG solver in a standard
SIC KS self-consistent ground-state calculation using Si4 as a test system (see Table B.2).
The parallel environment uses eight CPUs on the same core. All PARSEC runs listed
here required 11 iterations. Moreover, I compiled the average CPU times needed for the
Hartree solver (TH), the KLI potential procedure (TKLI), and the total CPU time for the
self-consistency iteration (Ttot). The solution obtained with the CG solver where the grid is
shifted as in the MG case (CGsh) serves as a reference.
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gradient line-search optimization algorithm (see Sec. C.1.3). While eigenvalues and total
energies are in reasonable agreement, the MG solver gains notable speed-up of the total
self-consistency procedure. In the sequential PARSEC test, the MG procedure requires 21
self-consistency iterations and 212 optimization loops instead of 17 and 198 using the CG
solver, but obtains convergence by about a factor of four faster (TMG

tot = 5,743.6 s instead of
TCG shifted

tot = 24,180.8 s). In the parallel case, speed-up is even better as with a total time
of 1,126.5 s the MG version is by about a factor of 5.6 faster than the CG run (TCG shifted

tot

= 6,259.8 s).
Finally, I stress that although already in GS calculations the gain of computation time

is remarkable, even better performance enhancement in terms of total computation time
may be expected during time propagation. Therefore, I propagated Si4 for 1.0 fs with an
electronic time step of 0.001 fs using the �Taylor� propagation algorithm [CMR04, MKHM06,
Mun07, Mun09] and compared the total CPU times needed by the di�erent methods. The
sequential propagation based on the MG solver required 22,860 s CPU time in comparison
to 117,0442 s based on the CG shifted solver. Thus, in this case the MG version of the
sequential code is by a factor of 5.1 faster than the CG version. Even better performance
enhancement can be observed in the parallel version: The propagation takes 40,098 s using
the CG shifted solver, whereas the MG version requires only 7,300 s for the �rst fs. This
amounts to a speed-up with a factor of 5.5 of the entire propagation part of the PARSEC
code due to the MG Poisson solver implementation.





Appendix C

Algorithms for the unitary

optimization

The determination of the unitary transformation is the most time critical step in GSIC
calculations. The unitary optimization in PARSEC is based on iterative algorithms where
the time need manifests in two ways: �rst, the number of steps that are needed to obtain
convergence of the iteration and, second, the numerical load per iteration step. In case of
energy-minimizing unitary transformations, orbital-speci�c Hartree and xc potentials need
to be computed per orbital in each step of the iteration. Therefore, a reasonable perfor-
mance of the algorithm requires an e�cient solution of Poisson's problem that is behind the
computation of Hartree potentials. This aspect is discussed in Appendix B. Furthermore,
optimization can be obtained by reducing the number of iteration steps required to achieve
convergence. To this end, I implemented di�erent algorithms in PARSEC that accomplish
unitary optimization along di�erent ideas. Moreover, to conduct unitary optimization with
complex-valued optimized orbitals, algorithms that were available for real-valued orbitals
needed to be customized for the complex case. In the following discussion, I focus on the
more general complex-valued case. Based on the resulting equations, one obtains the algo-
rithms for real-valued orbital optimization by neglecting all the complex conjugation signs.

C.1 Algorithmic principles

C.1.1 Fois loops based on the Pederson criterion

The �rst algorithm discussed in this section is based on an idea of Fois, Penman, and Madden
[FPM93]. It uses the Pederson criterion (3.12) and starts from an initial set of optimized
orbitals {ϕ̃(0)

jσ }. In each step (k) of the iterative procedure a new unitary transformation

U
(k+1)
ijσ =

Nσ∑

n=1

S
(k)
inσU

(k)
njσ (C.1)

and thus a new set of optimized orbitals

ϕ̃
(k+1)
iσ (r) =

Nσ∑

j=1

S
(k)
ijσϕ̃

(k)
jσ (r) (C.2)
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can be obtained by unitary rotations with the matrix S(k)
σ . This transformation is assumed

to perform only small changes. Thus, it varies only slightly from the unit matrix according
to

Sno
ijσ = δij + τijσ, (C.3)

where τijσ are complex numbers |τijσ| � 1 and τijσ = −τ∗jiσ. As in this approximation the
transformation Sno

ijσ is not strictly unitary, Thomas Körzdörfer [Kör09] suggested to explicitly
take care of the loss of unitarity by means of Löwdin's method of symmetric orthogonalization
[Löw50, May02]: Using the Löwdin matrix

Cijσ = 〈ϕ̃no
iσ |ϕ̃no

jσ〉−1/2 (C.4)

computed from the nonorthogonal orbitals

ϕ̃no
iσ =

Nσ∑

j

Sno
ijσϕ̃

(k)
jσ (C.5)

one obtains a new orthogonal orbital set

ϕ̃iσ =

Nσ∑

j,m

CimσS
no
mjσϕ̃

(k)
jσ . (C.6)

Inserting this new orbital set into Pederson's symmetry condition yields

Nσ∑

k,m=1

C∗jmσS
no ∗
mkσ

Nσ∑

l,n=1

CinσS
no
nlσ 〈ϕ̃

(k)
kσ |ṽSIC

jσ − ṽSIC
iσ |ϕ̃(k)

lσ 〉︸ ︷︷ ︸
=:〈k|j−i|l〉

= 0, (C.7)

where I introduced a shortcut for the bracket notation. The Löwdin matrix (C.4) can be
approximated [GU97, Kör09] by

Cijσ ≈ δij −
1

2

(
〈ϕ̃no

iσ |ϕ̃no
jσ〉 − δij

)
= δij +

1

2

(
Nσ∑

m

τ∗imστ
∗
mjσ

)
(C.8)

and expressed in terms of τijσ via Eqs. (C.5) and (C.3). Thus one readily computes

Nσ∑

n=1

CinσS
no
nlσ = δil + τilσ +

1

2

Nσ∑

p=1

τ∗ipστ
∗
pjσ +

1

2

Nσ∑

p,j=1

τ∗ipστ
∗
pqστqlσ

︸ ︷︷ ︸
=:ωilσ

. (C.9)

Following the derivation of Fois et al. [FPM93] and Körzdörfer [Kör09] this result needs to
be introduced into Eq. (C.7) and one obtains the �nal expression after a little algebra

τijσ =
1

2
〈j|j − i|i〉+

1

2

Nσ∑

l=1

[ωilσ〈j|j − i|l〉+ δjlτilσ]

+
1

2

Nσ∑

k=1

[
ω∗jkσ〈k|j − i|i〉 − δikτ∗jkσ

]
+

1

2

Nσ∑

k,l=1

ω∗jkσωilσ〈k|j − i|l〉.
(C.10)
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A �nal orthogonalization of the transformation of Eq. (C.3) using τijσ of Eq. (C.10) yields

the unitary transformation S(k)
ijσ. Thus, one obtains the new orbital set and transformation

for the iteration procedure from Eqs. (C.1) and (C.2). The algorithmic implementation of
this method is identical to the one described by Körzdörfer [Kör09]. Here, convergence is
determined by the Pederson criterion. It is reached when the absolute value of the largest
matrix element of the matrix of Eq. (3.12) is smaller than a given threshold which is typ-
ically less than 10−5 Ry. Numerical tests of this method revealed that a notable number
of iterations is required to obtain convergence of the Pederson criterion below a reasonable
threshold. Yet, an optimization of this method in terms of larger steps is di�cult. There-
fore, I conclude that designing optimization algorithms based on the Pederson criterion of
Eq. (3.12) is legitimate, but algorithms that base directly on the energy expression may be
more e�cient. I discuss such kind of algorithms in the following sections.

C.1.2 Energy gradient based algorithm

The second algorithm presented in this appendix uses an energy gradient suggested by Mes-
sud et al. [MDRS09a]. It is based on the fact that the SIC energy varies with respect to
unitary transformations of the occupied KS orbitals

ϕ̃iσ(r) =

Nσ∑

j=1

Uijσϕjσ(r). (C.11)

For computing the gradient of Messud et al. [MDRS09a], one needs to take the Lagragian
multiplier matrix into account that appears when minimizing the SIC energy with respect
to the orbitals and guarantees orthogonality of the latter. This matrix does not appear in
KS DFT. Therefore, the analogue KS energy gradient of the total energy ESIC

tot in the GSIC
formalism reads

Dijσ = ∂U∗ijσE
SIC
tot = −〈ϕjσ|ṽSIC

iσ |ϕ̃iσ〉. (C.12)

It determines the direction in which the unitary transformation Uijσ needs to be changed
to �nd the total energy minimum starting from a �xed set of occupied KS orbitals. The
gradient scaled by the gradient step size η can be used to �nd a new transformation

Uno
ijσ = U

(k)
ijσ − ηD

(k)
ijσ (C.13)

at each step (k) of a resulting iterative procedure starting from a previous transformation
and optimized orbital set. As this transformation is nonorthogonal, the new transformation
U

(k+1)
ijσ of the next iteration needs to be determined by orthogonalization of Uno

ijσ. In PAR-
SEC, this a posteriori orthogonalization can be performed either by Gram-Schmidt or by
symmetric Löwdin orthogonalization.

In gradient algorithms, the gradient step size is a natural starting point for performance
enhancement. However, as application of the gradient is always followed by an orthogonal-
ization to guarantee for unitarity of the transformation, the original search direction given
by the gradient gets lost to some extend. Moreover, the gradient step size not only scales the
application of the gradient, it also has a signi�cant in�uence on the outcome of the a poste-
riori orthogonalization. This renders the optimization of the step size di�cult. Therefore, in
the PARSEC implementation of the energy-gradient algorithm, I introduced an adaptation
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of the gradient step size depending on how the gradient performs during previous steps of
the iteration: During the iteration, I monitor if application of the gradient improves the
convergence criterion towards the preset convergence threshold or not. If the convergence
parameter improves during three succeeding cycles, the gradient step size is multiplied by a
factor of two until it reaches a preset maximum value. In this scheme, the initial gradient
step size is 100 and the maximum value can be determined by the PARSEC input. On the
contrary, in each cycle where the convergence parameter deteriorates, the gradient step size
is divided by a factor of two and the code checks if application of the old gradient scaled by
the new gradient step size improves or not. This down scaling of the gradient step size is
performed either until the convergence parameter improves again or until a minimum of the
step size of 1 × 10−4 is reached. If application of the gradient is no longer able to improve
the convergence parameter, the algorithm stops with a warning. Otherwise, the iteration
is performed until convergence. For a successful application of this algorithm it is impor-
tant that changes of the unitary transformation due to application of the energy gradient
are not deteriorated by the a posteriori orthogonalization. Therefore, the orthogonalization
procedure needs to maintain the direction of the unitary rotation of Uno

σ as close as possible.
To this end, I recommend to use Löwdin's orthogonalization method that yields a unitary
transformation U (k+1)

σ as close as possible to Uno
σ .

In case of energy-gradient algorithms, at least two convergence parameters lend them-
selves to be used: (i) minimization of the total energy and (ii) reduction of the Pederson
criterion below a given threshold. As the minimum of the energy is not known, this criterion
needs to be exploited as a self-consistency criterion. Thus, energy convergence is reached
if the energy changes of two consecutive iteration steps are lower than the corresponding
convergence parameter. Typical energy convergence parameters are on the order of 10−8

Ry. In the PARSEC implementation, both convergence parameters can be combined or
used separately (see Table C.2). Moreover, the treatment of the convergence parameter in
ground-state calculations and during time propagation can be chosen independently.

Numerical tests of this algorithm showed that it notably improves in terms of computation
time until convergence is reached in comparison to the algorithm of Sec. C.1.1. Yet, due to
the a posteriori orthogonalization large gradient steps are precluded. Therefore, in the next
section I explain another idea that allows for large energy-gradient steps due to step-size
optimization.

C.1.3 Energy gradient and line-search optimization

The central idea of the third algorithm for unitary optimization of the SIC energy imple-
mented in PARSEC is to optimize the application of the energy gradient so that no explicit
a posteriori orthogonalization is needed and consequently step size optimization can be
performed e�ciently. It is based on a conjugate gradient (CG) method where the unitary
constraint of the energy-minimizing transformation is taken into account explicitly [AEK09].
Here, for the sake of completeness, I give a short introduction and summary of this algorithm
following the presentation of Pub3 where it is explained in more detail.

In contrast to the gradient of Sec. C.1.2, the energy gradient of this section is based on
a di�erent idea. Here, in each step (k) of the iterative procedure one tries to �nd a unitary
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transformation S(k)
σ that determines a new orbital set {ϕ̃(k+1)

iσ } according to

ϕ̃
(k+1)
iσ (r) =

Nσ∑

j=1

S
(k)
ijσϕ̃

(k)
jσ (r) (C.14)

with lower SIC energy starting from a previous optimized orbital set {ϕ̃(k)
iσ }. Thus, S

(k)
σ also

needs to modify the previous unitary transformation U (k)
σ according to

U
(k+1)
ijσ =

Nσ∑

n=1

S
(k)
inσU

(k)
njσ (C.15)

so that U (k+1)
σ yields the new optimized orbitals from the occupied KS orbitals

ϕ̃
(k+1)
iσ (r) =

Nσ∑

j=1

U
(k+1)
ijσ ϕjσ(r). (C.16)

In this case, one is interested in SIC energy changes due to small variations of the transfor-
mation Sσ from the unit matrix starting from a �xed orbital set {ϕ̃(k)

jσ } [PFD+11]: Linear
order changes of the SIC energy due to deviations of Sσ from the unit matrix are given by
the anti-Hermitian gradient matrix

G
(k)
ijσ =

∂ESIC
xc [{ϕ̃(k)

nσ }, Smnσ]

∂S∗ijσ

∣∣∣∣∣
S∗ijσ=δij

= 〈ϕ̃(k)
jσ |ṽ

SIC (k)
iσ (r)− ṽSIC (k)

jσ (r)|ϕ̃(k)
iσ 〉. (C.17)

The SIC potentials ṽSIC (k)
jσ (r) are computed from the energy-minimizing orbitals ϕ̃(k)

jσ (r).
The gradient of Eq. (C.17) coincides with the Pederson condition.

The idea of Ref. [AEK09] is to perform the gradient step in a reduced space where the
unitarity constraint is guaranteed by choice of the parameter space [EAS98]. Thus, the
optimization problem can be turned into an unconstrained one by suitable restriction of the
parameter space to the Lie group of n × n unitary matrices U(n) [AEK09]. Due to the
anti-Hermiticity of the gradient matrix, the exponential map

S(k)
σ (l(k)

σ ) = exp{−l(k)
σ G(k)

σ } (C.18)

with step size l(k)
σ constitutes a unitarity-conserving transformation when it is applied to

the unitary transformation U (k)
σ as in Eq. (C.15). G(k)

σ corresponds to the steepest descent
search direction, but due to the exponential map unitarity of S(k)

σ is guaranteed. Thus, the
problem of a posteriori orthogonalization is avoided.

The numerical performance of this unitarity-conserving application of the energy gradient
can be increased by means of CGs and optimization of the gradient step size. The idea of the
CG is to use not only the information of the search direction given by the energy gradient,
but to also take information of the previous search direction into account. Thus, the new
search direction H(k)

σ is based on the current gradient G(k)
σ and the search direction H(k−1)

σ

of the last step of the iteration. In the PARSEC CG implementation, I use the new search
direction

H
(k)
ijσ = G

(k)
ijσ + γ(k)

σ H
(k−1)
ijσ , (C.19)
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Figure C.1: Dependence of the SIC energy
correction (ESIC

xc [n]−Eapp
xc [n] according to Eq.

(3.3)) on the step size during the initial stage
of the energy-minimizing unitary optimiza-
tion in Si4 using the energy gradient with
step-size optimization algorithm of Sec. C.1.3.

where γ(k)
σ is the Polak-Ribière weighting factor [AEK09]

γ(k)
σ =

〈G(k)
σ −G(k−1)

σ , G
(k)
σ 〉

〈G(k−1)
σ , G

(k−1)
σ 〉

. (C.20)

The brackets are de�ned by

〈X,Y 〉 =
1

2
Re{Tr(XY †)}, X, Y ∈ Cn×n. (C.21)

Finally, adaptation of the gradient step size l(k)
σ gives further performance enhancement.

As illustrated in Fig. C.1.3, the improvement of the SIC energy correction that can be
obtained per iteration strongly depends on the value of the step size of Eq. (C.18): One
observes an almost parabolic behavior of the energy correction for small step sizes and a
large deviation from the optimum value of the correction for larger step sizes. Thus, the
optimum step size can be estimated by a line search where the dependence of the SIC energy
on l

(k)
σ via the transformation (C.18) is approximated to be a second order polynomial.

Details of this line search, an overview of the algorithm, and more insight into its practical
implementation are presented in Pub3.

The gradient line-search algorithm outperforms the two previous optimization algorithms
in terms of numerical e�ciency although per iteration step it requires twice the number of
Poisson solver calls because of the step-size optimization. Yet, the number of iterations until
convergence is reached is notably smaller. Therefore, using this algorithm GSIC calculations
where unitary optimizations of molecules with up to one hundred electrons are performed
and even TDGSIC propagation of such molecules are feasible.

C.2 The unitary optimization algorithms in PARSEC

C.2.1 Initialization of the optimization steps

Practical experience with the PARSEC code has shown that a high quality of the initial guess
of the unitary transformation guarantees a fast solution of the unitary optimization prob-
lem per self-consistency iteration cycle. I pursue two strategies in PARSEC to �nd initial
guesses: The �rst strategy is to determine the initial guess from algorithms and/or unitary
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parameter name type options explanation
SIC_xc_type string ca/pz/lda (D) SIC of LDA, PZ parametrization

pb/pbe SIC of PBE
pw/pw91 SIC of Perdew-Wang GGA functional

Localization bool false (D) switch localization on/o�
Localization_Type string fobo (D) Foster-Boys localization

pede Emin, Fois et al. algorithm
grad Emin, gradient algorithm,

initial guess: Foster-Boys localization
goly Emin, gradient algorithm,

initial guess: previous transformation
grls Emin, gradient line-search algorithm,

initial guess: Foster-Boys localization
glso Emin, gradient line-search algorithm,

initial guess: previous transformation
inve ground state: as �grad�,

during propagation: {ϕ̃jσ(r, 0)} �xed
and Uijσ(t) computed from {ϕiσ(r, t)}

triv ground state: as �grls�,
propagation: �xed phase factors

trgo ground state: as �glso�,
propagation: �xed phase factors

FosterBoys_type int 1 (D) Jacobi sweeps algorithm [ER63]
propagation: �xed phase factors

2 Fois et al. algorithm
initial guess: previous transformation

3 gradient algorithm
initial guess: previous transformation

4 gradient line-search algorithm
initial guess: previous transformation

5 gradient line-search algorithm,
initial guess: previous transformation
propagation: �xed phase factors

Complex_Localization bool false (D) switch complex optimization on/o�
Use_last_trafo bool false (D) switch use of transformation of last

step during propagation on/o�
Prop_use_KLI_mem bool false (D) switch use of memory term in

TDGKLI propagation on/o�

Table C.1: PARSEC input parameters related to GSIC calculations together with their data
types, possible input options, and a short explanation. The shortcut �int� denotes integer
and �bool� boolean data types. Moreover, Emin abbreviates energy minimization. Default
values are labeled by (D). The optimization algorithm of Fois et al. (Sec. C.1.1), the gradient
algorithm (Sec. C.1.2), and the gradient line-search algorithm (Sec. C.1.3) are explained in
the text.
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optimization criteria that require lower numerical e�ort to perform the unitary optimization.
To this end, the Foster-Boys criterion implemented with the Jacobi sweeps algorithm [ER63]
lends itself to be used prior to more elaborate optimization algorithms like the ones pre-
sented before. Such Foster-Boys localizations start from the unit matrix. Here, I use a less
restrictive convergence threshold for the Foster-Boys optimization and employ the resulting
transformation as the starting point for subsequent optimizations. This strategy is always
applied in the early stage of self-consistency iterations where changes of the integral over
the charge weighted potential that is used as self-consistency residual error (SRE) has not
dropped below 0.1. In spin-polarized calculations it needs to be lower than 0.1 in both spin
channels.

The second strategy involves the optimized transformation of the last self-consistency it-
eration cycle. As the orbitals may change notably during the �rst steps of the self-consistency
iteration, this strategy can only be applied after a couple of iterations when the SRE has
dropped below 0.1. In this case, PARSEC compares all orbitals of the current cycle to the
corresponding orbitals of the previous cycle. If the orbital overlap is larger then a given
threshold, the previous transformation is used as initial guess for all orbitals. Currently this
threshold is set to be 0.85. Note that during the diagonalization of the Hamiltonian the
orbitals may change parity and in cases of close degeneracy the orbitals may change their
order. Therefore, in cases where the orbitals do not match according to the comparison cri-
terion, I check for sign changes and orbital swaps of orbitals with adjacent numbers. When
such operations make the current orbitals match the orbitals of the previous cycle, the trans-
formation needs to be adapted by changing signs, columns, and rows, respectively. Then,
the modi�ed transformation can be used as initial guess. In all other cases where no orbital
matching can be obtained, the �rst strategy is applied and the initial guess is determined
from the Foster-Boys criterion.

The only exceptions to these two strategies are the Localization_Types �goly� and �glso�
(see Tab. C.1) where always the transformation of the last self-consistency iteration cycle
is used except for the �rst iteration. In the �rst iteration, PARSEC initializes the energy-
minimizing transformation always by Foster-Boys localization.

C.2.2 The PARSEC implementation

An overview of the PARSEC input parameters relevant for SIC and GSIC calculations is
compiled in Tables C.1 and C.2 (see Sec. E.1 for more general information about the PARSEC
input). These tables indicate possible input parameters and input values and highlight
default settings. The xc functional upon which the SIC is performed is determined by
SIC_xc_type. The unitary optimization of GSIC calculations is switched on and o� by
the �ag Localization. All further parameters discussed in the following apply only in case
of GSIC. The parameter Localization_Type allows for the choice of unitary optimization
algorithms and criteria. In case of Foster-Boys localization the algorithm needs to be speci�ed
by FosterBoys_Type. The �ag Complex_Localization controls the use of complex-valued
minimizing orbitals and corresponding transformations. Two further parameters are needed
only for GSIC propagation. Use_last_trafo determines if the transformation of the last
step during the propagation shell be used as initial transformation guess of the current time
step. In all other cases the transformation is initialized or determined by phase factors
according to the orbital eigenvalues (see Pub2 and Pub4). Finally with the input parameter
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parameter name type options explanation
FosterBoys_Convergence dp c (D) Foster-Boys convergence criterion
Pederson_Convergence dp s (D) Pederson convergence criterion
Gradient_Convergence dp s (D) energy convergence criterion
Adaptive_loc_tolerance bool false (D) switch use of localization tolerance

adaptation on/o�
Orthogonalization int 0 Gram-Schmidt orthogonalization

1 (D) Löwdin orthogonalization
Grad_step_max dp 500.0 (D) maximum gradient step size in case of

gradient algorithm
0.01 (D) trial step size in case of gradient line

search algorithm
Gradient_control_criterion int 1 check only Pederson criterion

2 check only energy criterion
3 (D) either Pederson or energy criterion

has to be ful�lled
4 ground state: as in �3�,

propagation: only energy criterion
5 ground state: as in �3�,

propagation: only Pederson criterion

Table C.2: PARSEC input parameters of the unitary optimization algorithms together
with their data types, possible input options or default values, and a short explanation.
The shortcut �int� denotes integer, �dp� double precision, and �bool� boolean data types.
Moreover, c is the self-consistency convergence criterion and s the diagonalization-solver
tolerance. Default values are labeled by (D).

Prop_use_KLI_mem the usage of the memory term of the TDGKLI approximation can be
switched on or o�.

A second set of parameters (see Table C.2) is needed to control the unitary optimiza-
tion algorithms. The convergence criteria can be set by three di�erent input parameters:
FosterBoys_Convergence, Pederson_Convergence, and Gradient_Convergence. These input
parameters are relevant for di�erent settings of Localization_Type and FosterBoys_Type.

• The Foster-Boys criterion measures changes of the FOBO localization criterion per
Jacobi sweep. Convergence is reached as soon as such changes are below the Fos-
terBoys_Convergence threshold. Typical numbers of this parameter are on the order
of 1 × 10−20. This parameter is used in case of �FosterBoys_Type = 1� and if the
transformation is initialized by Foster-Boys localization.

• The Pederson_Convergence parameter speci�es the threshold of the Pederson energy-
minimization criterion. In this case, convergence is reached as soon as the abso-
lute values of all elements of the Pederson criterion matrix drop below the Peder-
son_Convergence threshold, typically on the order of 1× 10−5 Ry. This parameter is
used for all optimization algorithms except the ones indicated here explicitly.

• Using the parameter Gradient_Convergence, changes of the SIC energy during the
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minimization algorithms �Localization_Type = grad� and �Localization_Type = goly�
are monitored and convergence is indicated as soon as these changes are lower than
the input, typically on the order of 1 × 10−8 Ry. In those two cases, the use and
combination of the Pederson_Convergence and the Gradient_Convergence parameters
can be determined by the input parameter Gradient_control_criterion (see Tab. C.2).

The thresholds of the convergence parameters of the optimization algorithms can be
adapted to the progress of the KS self-consistency iteration. Using this scheme, the conver-
gence parameters are adapted according to the value of the SRE: The convergence thresholds
are set to higher values when the SRE is notably larger than it is supposed to be at self-
consistency. Only when the SRE is close to the self-consistency threshold, the preset values
are used for the convergence parameters of the optimization algorithms. The adaptation
scheme can be (de)activated by the �ag Adaptive_loc_tolerance. (A similar convergence-
parameter adaptation idea is presented in Sec. E.5.) The parameter Grad_step_max is
needed for the gradient step size optimization in both gradient algorithms. In case of the
energy gradient of Sec. C.1.2, the parameter sets the maximum size of the gradient step.
Yet, in case of the gradient line-search algorithm of Sec. C.1.3, this parameter can be used
to determine the size of the trial step. Here, I recommend to use the default values. Finally,
using the parameter Orthogonalization one can choose between di�erent types of orthog-
onalization algorithms during the unitary optimization, namely Gram-Schmidt or Löwdin
orthogonalization.



Appendix D

Förster-type potentials and stochastic

time-dependent density functional

theory

This appendix is dedicated to the description of the PARSEC implementations that I per-
formed related to the work on Pub1 and subsequent investigations that are presented in
Chap. 5. First, I summarize in Sec. D.1 the Förster-type potential expansion ideas and their
realization in PARSEC. These implementations were already performed during the work on
Ref. [Hof08]. Second, I explain the determination of the coupling-matrix element from real-
time propagation based on an o�-resonant two-level model in Sec. D.2. Third, the appendix
includes a description of the PARSEC extension of the standard closed quantum system KS
propagation scheme to open quantum systems based on the stochastic Schrödinger equation.
Some ideas about using the latter in the KS TDDFT framework, suggestions of bath oper-
ators for the single-particle approach, and more details about the PARSEC implementation
are described in Sec. D.3.

D.1 Förster-type potentials and grid partitioning

D.1.1 The Förster-type potential expansion in Donor-Acceptor systems

To investigate the coupling mechanism and check for Förster-type coupling behavior, I sug-
gested in Pub1 a dipole coupling scheme that can be applied in the TDDFT context. In
the following, I outline some of the theoretical background of this concept that is needed to
explain the PARSEC implementation. For including a dipole-dipole coupling approximation
in the KS framework, there are two valid starting points: the Hartree energy and the Hartree
potential. Both routes involve a multipole expansion of the 1/|r − r′| factor in the Hartree
integral. Starting from the Hartree energy, one �rst performs the multipole expansion and
then draws the functional derivative to obtain the corresponding potential (see Pub1 and
Ref. [Hof08] for details). Along this route, one obtains the potential in dipole-dipole coupling
approximation (superscript dd and superscript index E)

vddE
H [nD, nA] =

(
vH[nD] + vddE,D

H [nA]
)
Θ(−x)+

(
vH[nA] + vddE,A

H [nD]
)
Θ(x). (D.1)
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The Heaviside function splits the entire real space into a D (Θ(−x)) and an A (Θ(x)) part (see
Fig. 1 of Pub1). Hence, the superscripts D and A indicate properties that are computed only
on the D or A side, respectively. Based on this notation, vH[nD(A)] is the Hartree potential
of D(A) and vddE,D(A)

H [nA(D)] is the potential resulting from the interaction between D and
A in the D(A) half space. With the help of the multipole moments of the D(A) density,

N i =

∫
ni(ri) d3ri,

di =

∫
rini(ri) d3ri,

Qijk =

∫
ni(ri)(3rijr

i
k − ri 2δjk) d3ri,

(D.2)

where i = D,A, the Förster potential that the D density generates in the half space of A is

vddE,A
H [nD](rA) =

ND

|R| −
(NDrA − dD) ·R

|R|3 +
rA · dD

|R|3 +
ND

2

3∑

j,k=1

(3rA
j r

A
k − rA 2

δjk)
RjRk
|R|5

+

3∑

j,k=1

QD
jkRjRk

2|R|5 − 3(R · rA)(R · dD)

|R|5 .

(D.3)

The corresponding potential vddE,D
H [nA](rD) is obtained from equation (D.3) by interchanging

D and A superscripts and replacing R by −R.
Alternatively, the multipole expansion can be inserted directly into the Hartree potential

and one obtains the potential

vddv
H [nD, nA] =

(
vH[nD] + vddv,D

H [nA]
)
Θ(−x)+

(
vH[nA] + vddv,A

H [nD]
)
Θ(x) (D.4)

with the superscript index v that denotes the potential route, where

vddv,A
H [nD] =

ND

|rA +R| +
dD · (rA +R)

|rA +R|3 +
3∑

j,k=1

QD
jkRjRk

2|rA +R|5 (D.5)

and

vddv,D
H [nA] =

NA

|rD −R| +
dA · (rD −R)

|rD −R|3 +
3∑

j,k=1

QA
jkRjRk

2|rD −R|5 . (D.6)

Pub1 demonstrates that these two approaches result in potentials that di�er qualitatively
outside the regions where the density is high. From a comparison of the two potentials
with the true Hartree potential, Pub1 concludes that vddv

H [nD, nA] is more appropriate as it
exhibits the asymptotic decay to zero expected naturally from a physical potential.

Both ways of using Förster-type potentials are implemented in the PARSEC code.
The Förster-type potential expansion feature can be (de)activated using the boolean �ag
Use_foerster. The input parameter foerster_type allows for the choice of the potential-
determination route along the previous lines: �foerster_type = 1� is the default and uses Eq.
(D.4), whereas �foerster_type = 2� uses Eq. (D.1). The separation of the grid into two half
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spaces is always performed by the planes of the coordinate system that are perpendicular to
the coordinate axes. To this end, one needs to indicate the desired coordinate axis �x�, �y�, or
�z� via the input parameter foerster_half_space (string) and the partitioning is performed
accordingly. To guarantee for consistent calculations, the selected scheme is used for the
ground state and during real-time propagation throughout.

D.1.2 Using Förster-type potentials in supermolecular systems

For the investigations on supermolecular systems of Chap. 5, I extended the Förster-type
potential evaluation of the previous section to deal with more complicated molecular arrange-
ments. This functionality may be (de)activated by the boolean �ag Use_multi_foerster when
�Use_foerster = true�. The statements of the previous section concerning foerster_type ap-
ply accordingly.

Two di�erent types of arrangements, linear and circular ones, may be used to separate
the entire grid into partitions, according to which one may place single molecules. These
setups can be addressed by the integer input parameter Foerster_neighbor_type: numbers
1 to 3 correspond to linear arrangements, whereas numbers 10 and 11 imply circular setups.
The PARSEC input block Foerster_centers was implemented to de�ne the position of the
grid segments via the coordinates of their centers. For the sake of clearness, I use the term
�hub� for these points in the following. Note that the hubs always need to be listed in
consecutive order. In case of linear setups one additionally needs to specify the orientation
of the alignment in terms of the coordinate axis using the parameter foerster_half_space.
Then, the grid slicing is performed along each center line of neighboring hubs where center
lines are perpendicular to the speci�ed coordinate axis.

Circular setups are supposed to be arranged on a circle around the origin in the x-y-
plane. The slicing is performed in terms of angles. If hubs are given via the input block
Foerster_centers, PARSEC computes the angles corresponding to the center lines that run
through the origin and through the middle of all neighboring hubs. Here, the number of
hubs should equal the number of wedges speci�ed via the integer input parameter Foer-
ster_wedge_number. The grid partitioning is performed along planes given by these center
lines and the z-axis. When no hubs are de�ned, PARSEC performs an equidistant circular
slicing while it assumes that the �rst molecule is positioned on the x-axis. In this case, one
needs to give the number of wedges using the parameter Foerster_wedge_number.

Within each of these arrangements, one may choose between di�erent ways of how the
interaction between the subsystems is implemented. I start with the options that are avail-
able in the cases of linear arrangements. �Foerster_neighbor_type = 1� corresponds to an
interaction between next neighbors only for all moments of the multipole series except for the
monopole part. The latter contribution is by de�nition the most long-range one of the mul-
tipole series. It is important for reasonable absolute values of the potential and, therefore,
needs to be applied also beyond next neighbors. In case of �Foerster_neighbor_type = 2�,
PARSEC computes the pairwise interaction between all grid parts. �Foerster_neighbor_type
= 3� models periodic boundary conditions: It computes the multipole moments of the last
(�rst) molecule of linear arrangements and places a �ctitious molecule with the same prop-
erties in front of the �rst (behind the last) molecule. The intermolecular interaction works
only between next neighbors and assumes equidistant molecular spacing.

As this proceeding is just a crude approximation to periodic systems, the idea with
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circular arrangements is to design �closed� systems where each molecule naturally has next
neighbors on both sides and no explicit periodic boundary conditions need to be applied. In
the circular setup of �Foerster_neighbor_type = 10�, the interaction contributions beyond
the monopole term work only between next neighbors whereas monopole interaction applies
between all molecules. �Foerster_neighbor_type = 11� uses pairwise interaction between all
molecules of the setup.

D.1.3 Partition-selective excitation and observation

For TD investigations, it may be relevant to excite only speci�c subsystems instead of the
entire system. In cases where the previously explained partitioning is used, such subsystems
can be related to partitions of the grid. In D-A systems where the separation is performed
into two half spaces, such a feature can be controlled by the boolean �ag Use_sel_boost. If
�Use_sel_boost = true�, one may indicate via boost_half_space in which of the half spaces
the excitation is supposed to work. This parameter reads a string with two positions where
the �rst position discriminates between the negative (�n�) and the positive (�p�) side of the
coordinate axis and the second position determines the axis (�x�, �y�, or �z�) along which the
separation occurs.

A similar feature is implemented in case of more complex supermolecuar systems by
the integer input parameter Excite_center. If �Excite_center = 0�, the excitation is per-
formed only in one of the half spaces of the grid, thus one additionally needs to specify
boost_half_space. Alternatively, one may address the grid partition where excitation is per-
formed via the hubs given by Foerster_centers. To this end, one needs to set Excite_center
to the number corresponding to the position of the hub in the Foerster_centers input list.
Finally, the input option �Excite_center = -1� deactivates selective excitation and the excita-
tion process is applied in all partitions of the grid. Note that both space-selective excitation
features may also be used independent of the Förster-type potential expansion.

In PARSEC calculations with multiple centers, some important observables are calculated
not only in the entire system but also for each system partition separately. In cases of Förster-
type potential approximations or selective excitation, the dipole moment and the integral
over the density corresponding to each grid partition are written to the �le �multi_center.out�
during time propagation. Here, the TD dipole moment is calculated relative to the centers
of mass at the initial time t = 0 corresponding to each grid partition.

D.2 Unraveling the coupling strength with TDDFT

In this section, I brie�y explain how the coupling strength and the energetic o�-resonance
in a system of one donor and one acceptor molecule manifest in the TD dipole moment.
Note that the resonant coupling case was already discussed in Ref. [Hof08] and Pub1. The
considerations employ a two-level model [Neu08] based on the assumption that the wave
function of the total system can be separated into D and A parts due to negligible electronic
coupling between D and A. To be able to employ the two-level picture, the excitation energies
of interest of the true system need to be well separated from the energies of other excited
states. Initially, the acceptor is in its ground state denoted by |A〉 and the donor is in an
excited state |D∗〉. This amounts to an initial product state |D∗A〉 = |D∗〉|A〉 = |1〉. The
�nal wave function corresponds to the inverse situation, where |DA∗〉 = |2〉. The states are
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characterized by their eigenenergies E1 and E2. One can measure the energetic o�-resonances
by the parameter

∆E =
1

2
(E1 − E2). (D.7)

The coupling between |1〉 and |2〉 is mediated by the Coulomb interaction VC. It leads to
the coupling-matrix element

V = 〈DA∗|VC|D∗A〉. (D.8)

The time evolution of the two-state system with initial state |Ψ(0)〉 = |1〉 is given by

|Ψ(t)〉 = a1(t)|1〉+ a2(t)|2〉 (D.9)

with the coe�cients a1(t) and a2(t) [CTDF99],

|a1(t)|2 = B +A cos2
(√

V 2 + ∆E2t
)
,

|a2(t)|2 = A sin2
(√

V 2 + ∆E2t
)
,

(D.10)

where A = V 2

V 2+∆E2 and B = ∆E2

V 2+∆E2 . This time evolution of the coe�cients corresponds

to an incomplete oscillation with beat frequency ωbeat =
√
V 2 + ∆E2 that depends on the

coupling between the initial and the �nal state as well as the energetic o�-resonance: The
occupation probability of the initial state varies around B with amplitude A, while the
occupation probability of the �nal state oscillates with amplitude A around zero.

The TD dipole moment dA(t) = 〈Ψ(t)|rA|Ψ(t)〉 of the acceptor, where I take the dipole
operator rA in the space of the acceptor only, can be calculated as

dA(t) = |a1(t)|2〈A|rA|A〉+ |a2(t)|2〈A∗|rA|A∗〉. (D.11)

Here, I exploited the orthogonality of |D〉 and |D∗〉. If the static dipole moment 〈A|rA|A〉
of A vanishes, Eq. (D.11) simpli�es to

dA(t) = |a2(t)|2〈A∗|rA|A∗〉. (D.12)

Accordingly, with the assumption that the static D dipole moment vanishes, the TD donor
dipole moment reads

dD(t) = |a1(t)|2〈D∗|rD|D∗〉. (D.13)

Thus, the resonance oscillation of the coe�cients can be observed in the time evolution of
the dipole moments dA(t) and dD(t). In principle both Eqs. (D.12) and (D.13) can be used
to determine V . Of special importance is Eq. (D.13) together with Eq. (D.10): A �t to
the absolute of the extrema of the k-th component of the D dipole moment time evolution
provides Apk, Bpk, and ωbeat, where pk = 〈D∗|rD

k |D∗〉. It can be used to determine V , ∆E,
and pk. One obtains

V =

√
Apk

Apk +Bpk
ωbeat (D.14)

and

∆E =

√
Bpk

Apk +Bpk
ωbeat. (D.15)
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Figure D.1: Donor and acceptor dipole mo-
ment (z-component) in a setup of two Na2,
where the bond length of the acceptor Na2 is
reduced by 0.5 bohr compared to the exper-
imental bond length. I performed �ts to the
envelope of the oscillation according to the
model discussed in the text.

A typical time evolution of the z-component of the D and A dipole moments of the model
system is depicted in Fig. D.1 together with �ts to the corresponding envelopes. Note that the
two-level model qualitatively �ts to the dipole oscillation of the o�-resonant, coupled system
of two molecules. However, the dipole moment envelopes do not perfectly follow the sin2- and
cos2-shape. I understand these deviations as a consequence of the coupled system not being
perfectly separable into D and A parts as one assumes in the model. Furthermore, although
the second excitation of Na2 with polarization in z-direction is energetically far o� and carries
notably smaller oscillator strength, Na2 is not a perfect single level system. Therefore, the
system of two sodium dimers does not perfectly �t into the two-level model. Nevertheless,
the approach provides a tool to determine the coupling V and the energetic o�-resonance
∆E. The validity of the model can be checked by comparison of the thus obtained ∆E
to TDDFT excitation energies. Two di�erent ways are available for calculating the latter:
either from straight forward TDDFT propagation of one dimer with shifted bond length
or along the just presented route. I performed both methods and found good agreement.
Therefore, I assume reasonable quality of the coupling-matrix element results of Fig. 5.1.

D.3 Stochastic time-dependent density functional theory

D.3.1 An attempt towards a theoretical justi�cation of stochastic time-

dependent density functional theory with speci�c bath operators

Establishing an open quantum system scheme in the framework of TDDFT is highly relevant
for studying large scale systems in contact with some e�ective environment. However, its
theoretical foundation su�ers from conceptual di�culties as I explain in Sec. 5.2.2. In this
section, I supplement already existing approaches of proving open quantum system schemes
in the TD(C)DFT framework. The underlying idea is based on the SSE and transparently
illustrates how the range of possible bath operators is restricted to guarantee for the existence
of an auxiliary system that reproduces the same density as the original interacting open
quantum system of interest. The assumptions on the range of bath operators are guided
by the attempt to avoid current density dependent contributions where v-representability
is questionable [DV05]. The idea of proof was developed to establish the existence of a
non-interacting open quantum system that reproduces the density of an interacting open
quantum system for the bath operator that I introduced in Sec. 5.3.2. The applicability of
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the idea of proof to this bath operator is discussed critically at the end of this section.
The attempt towards a proof of stochastic TDDFT starts from the system Hamiltonian

HS =

N∑

i=1

[
p2
i

2
+ vext(ri, t)

]
+

N∑

i<j

W (ri − rj) (D.16)

without vector potentials. The initial state of the wave function Ψ at t = t0 is Ψ0. I
follow the reasoning of van Leeuwen [vL99] and consider the equations of motion of the
ensemble-averaged density (see Eq. (5.13)) and of the ensemble-averaged current density

∂tjk(r, t) = −n(r, t)∂kvext(r, t)− 〈ψ(t)|
3∑

i=1

∂iTik(r)|ψ(t)〉 − 〈ψ(t)|Wk(r)|ψ(t)〉+ GB k(r, t),

(D.17)
where the k-th component of the current density modulation that is induced by the bath is
described by

GB k(r, t) =
1

2
〈2S†jk(r, t)S − S†Sjk(r, t)− jk(r, t)S†S〉. (D.18)

Here, I adopted the notation of van Leeuwen [vL99] for the momentum-stress tensor Tik(r)
and the gradient of the particle-particle interaction Wk(r). Moreover, I apply van Leeuwen's
physical assumptions on the shape of the external potential and its analyticity in time [vL99].
By taking the time derivative of Eq. (5.13) and the divergence of Eq. (D.17) one obtains

∂2
t n(r, t) = ∇

[
n(r, t)∇vext(r, t)

]
+ q(r, t)−∇GB(r, t) + ∂tFB(r, t), (D.19)

where

q(r, t) = 〈ψ(t)|
3∑

i=1

3∑

k=1

∂i∂kTik(r) +

3∑

k=1

∂kWk(r)|ψ(t)〉. (D.20)

To investigate the one-to-one correspondence between the external potential and the
ensemble-averaged density, I put some restrictions on the functional dependence of FB(r, t)
and GB(r, t) on n(r, t) and j(r, t). I assume that FB(r, t) depends on n(r, t) only and GB(r, t)
exhibits the general form

GB(r, t) = a[n(r, t)](t)j(r, t) + b[n(r, t)](t)j(r, t0) + c[n(r, t)](r, t). (D.21)

Here, a and b are arbitrary scalar functions that may depend on n(r, t) and t, whereas c is
a general vector that may depend on n(r, t), r, and t. The question whether bath operators
that ful�ll these assumptions exist is discussed below. One obtains

∂2
t n(r, t) =∇

[
n(r, t)∇vext(r, t)

]
+ q(r, t) + ∂tFB(r, t)

− a[n(r, t)](t)∇j(r, t)− b[n(r, t)](t)∇j(r, t0)−∇c[n(r, t)](r, t)
(D.22)

by inserting GB(r, t) of Eq. (D.21) into Eq. (D.19). Finally, ∇j(r, t) and ∇j(r, t0) can be
substituted using the continuity equation (5.13) and one arrives at

∂2
t n(r, t) =∇

[
n(r, t)∇vext(r, t)

]
+ q(r, t) + ∂tFB(r, t)

+ a[n(r, t)](t)∂tn(r, t)− a[n(r, t)](t)FB(r, t)

+ b[n(r, t)](t) ∂tn(r, t)
∣∣∣
t0
− b[n(r, t)](t)FB(r, t0)−∇c[n(r, t)](r, t).

(D.23)
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Equation (D.23) directly relates the external potential to the ensemble-averaged density
without need for the current density.

Based on an equation similar to Eq. (D.23), van Leeuwen shows with his original proof
that the density of a closed quantum system can be reproduced by an auxiliary system with
Hamiltonian

H ′S =
N∑

i=1

[
p2
i

2
+ v′ext(ri, t)

]
+

N∑

i<j

W ′(ri − rj) (D.24)

which contains a di�erent particle-particle interaction W ′ and external potential v′ext. The
auxiliary system starts from the initial state Φ0 and the potential v′ext vanishes at in�nity
as vext does. The van Leeuwen proof relies on some initial and boundary conditions for the
density and current density: The density of both systems needs to be equal, i.e.,

〈Φ0|n(r)|Φ0〉 = 〈Ψ0|n(r)|Ψ0〉. (D.25)

Both systems need to start from the same time derivative of the density, i.e., ∂tn′(r, t) =
∂tn(r, t) at t = t0, and one obtains via the continuity equation

〈Φ0|∇j(r)|Φ0〉 = 〈Ψ0|∇j(r)|Ψ0〉. (D.26)

To apply the van Leeuwen construction scheme of the external potential of the auxiliary
system in the open quantum system case with bath operator S′, I adopt equivalent initial
and boundary conditions for the corresponding ensemble-averaged properties. However, due
to the presence of FB(r, t) and GB(r, t), some further requirements on the action of the bath
operator need to be introduced in the auxiliary system. I assume that the modulations of the
density equation of motion that are induced by the bath need to be both density dependent
only and identical at t = t0, i.e., FB(r, t0) = F ′B(r, t0). Moreover, G′B(r, t) needs to have the
same structure as GB(r, t), so that

G′B(r, t) = a′[n′(r, t)](t)j′(r, t) + b′[n′(r, t)](t)j′(r, t0) + c′[n′(r, t)](r, t). (D.27)

Here, a′, b′, and c′ correspond to the quantities of the original system in terms of their
dependence on n′(r, t), r, and t. These requirements imply that one needs to �nd a bath
operator S′ in the auxiliary system that leads to a density-only dependent F ′B(r, t) with
initial condition FB(r, t0) = F ′B(r, t0), a linear current density dependence of G′B(r, t), and
density dependent coe�cients a′, b′, and c′. Thus, the auxiliary system follows the equation

∂2
t n
′(r, t) =∇

[
n′(r, t)∇v′ext(r, t)

]
+ q′(r, t) + ∂tF ′B(r, t)

+ a′[n′(r, t)](t)∂tn′(r, t)− a′[n′(r, t)](t)F ′B(r, t)

+ b′[n′(r, t)](t) ∂tn′(r, t)
∣∣∣
t0
− b′[n′(r, t)](t)F ′B(r, t0)−∇c′[n′(r, t)](r, t)

(D.28)

which is similar to Eq. (D.23) with all system speci�c properties being primed.
If one assumes that both systems have the same ensemble-averaged density, i.e., n(r, t) =

n′(r, t), one obtains by subtracting Eqs. (D.23) and (D.28)

∇
[
n(r, t)∇ω(r, t)

]
= ζ(r, t), (D.29)
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where ω(r, t) = vext(r, t)− v′ext(r, t) and

ζ(r, t) = q′(r, t)− q(r, t) + ∂t
[
F ′B(r, t)−FB(r, t)

]

+
[
a′[n(r, t)](t)− a[n(r, t)](t)

]
∂tn(r, t)− a′[n(r, t)](t)F ′B(r, t)

+ a[n(r, t)](t)FB(r, t) +
[
b′[n(r, t)](t)− b[n(r, t)](t)

]
∂t n(r, t)

∣∣∣
t0

− b′[n(r, t)](t)F ′B(r, t0) + b[n(r, t)](t)FB(r, t0)

−∇c′[n(r, t)](r, t) +∇c[n(r, t)](r, t).

(D.30)

The �rst two terms of Eq. (D.30) equal the contributions of the van Leeuwen construction,
whereas all other terms come from the in�uence of the bath and depend only on the ensemble-
averaged density. Note that no explicitly current-density-dependent terms occur as I aimed
at when setting up the assumptions for the structure of FB and GB. As Eq. (D.29) is of
Sturm-Liouville type, a unique solution for ω(r, t) exists if n(r, t) and ζ(r, t) are known
[vL99]. From here on, the idea is to follow the rationale of Ref. [vL99]: Solve Eq. (D.29) at
t = t0 and consecutively compute its time derivatives to construct v′ext(r, t) from its Taylor
series order by order in time within the convergence radius of the Taylor expansion. Note
that the potential v′ext(r, t)+C(t) produces the same density as the system is not sensitive to
a purely TD shift C(t) of the potential. In the van Leeuwen construction scheme [vL99], the
choice of the boundary condition of ω(r, t) at in�nity �xes a particular gauge of the potential
v′ext(r, t), thus determines the arbitrary constant C(t).

In summary, the just presented rationale indicates: If one restricts the range of allowed
bath operators and uses reasonable initial and boundary conditions the ensemble-averaged
density n(r, t) obtained from an open quantum system with Hamiltonian HS, bath operator
S, and initial state Ψ0 can be reproduced by an auxiliary open quantum system with dif-
ferent particle-particle interaction W ′ and initial state Φ0. The external potential v′ext(r, t)
� determined up to a purely TD function C(t) � is uniquely de�ned as long as the bath
operator S′ is chosen adequately. Thus, within the assumptions discussed above, a one-to-
one correspondence between the external potential and n(r, t) exists, and the approach can
be used for open quantum KS systems with a TDDFT Hamiltonian and a suitable external
potential.

The potential obtained along this construction scheme may depend strongly on the choice
of the bath operators S and S′. Therefore, I consider one special case of the previous
assumptions where the density dependence of the action of the bath operator on the equation
of motion of the ensemble-averaged density and current density is the same in the original
and the auxiliary system, i.e., FB(r, t) = F ′B(r, t), a = a′, b = b′, and c = c′. In this case
Eq. (D.30) reduces to

ζ(r, t) = q′(r, t)− q(r, t), (D.31)

thus equals the term of van Leeuwen's closed quantum system proof, yet with ensemble-
averaged quantities. Here, the potential v′ext(r, t) is determined by ζ(r, t) only, as both bath
operators have by construction the same in�uence on the equations of motion of n(r, t) and
j(r, t) in the original and the primed system.

Finally, I discuss the practical value of the just presented strategy. To this end, I consider
a bath operator in the original SSE that is motivated in analogy to the single-particle bath
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operator of Sec. 5.3.2: The bath operator

S =
√
γ|Ψ(t0)〉〈Ψ(t)| (D.32)

induces relaxation of the excited system back to its ground state with the decay rate γ.
Inserting S into the formula for FB(r, t) yields

FB(r, t) = γ
[
〈Ψ(t)|Ψ(t)〉〈Ψ(t)|Ψ(t)〉n(r, t0)− 〈Ψ(t)|Ψ(t)〉〈Ψ(t)|n(r)|Ψ(t)〉

]
. (D.33)

The wave functions that are solutions of the SSE are normalized only in the ensemble average
up to fourth order in the coupling parameter λ, i.e., not every ensemble member itself is
normalized. Therefore, focusing on the second term of Eq. (D.33), one cannot simply split
the statistical average of this term in two factors because in general

〈Ψ(t)|Ψ(t)〉〈Ψ(t)|n(r)|Ψ(t)〉 6= 〈Ψ(t)|Ψ(t)〉 〈Ψ(t)|n(r)|Ψ(t)〉 = (1 +O(λ4))〈Ψ(t)|n(r)|Ψ(t)〉.
(D.34)

The same problem occurs also when setting up F ′B(r, t) using the KS reference system to-
gether with the bath operator

S′ =
√
γ|Φ(t0)〉〈Φ(t)| (D.35)

that is supposed to model a bath mechanism that is equivalent to S in the stochastic TD
KS equation (5.12) using the stochastic TDDFT KS Hamiltonian

H ′KS({rk}, t) =

N∑

i=1

[
−∇

2
i

2
+ v′H(ri, t) + v′xc(ri, t) + vext(ri, t)

]
, (D.36)

where v′xc needs to be computed from v′H, vext, and the corresponding v′ext.
For the connection between the bath operators S and S′ and the idea of proof presented

above, it remains to be argued that FB(r, t) and F ′B(r, t) are pure functionals of the ensemble-
averaged density, i.e., one needs to establish a relation like

〈Ψ(t)|Ψ(t)〉〈Ψ(t)|n(r)|Ψ(t)〉 = f [n(r, t)] 〈Ψ(t)|n(r)|Ψ(t)〉 (D.37)

and corresponding relations for the KS system, where f is some unique functional of n(r, t).
An analogous problem appears also when one investigates the dependence of GB(r, t) and
G′B(r, t) on the ensemble-averaged density and current density. Relations such as Eq. (D.37),
similar relations for statistical correlations that emerge in GB(r, t), and the corresponding
contributions in the KS system remain to be investigated.

From a practical point of view, one could consult the quantum-jump (qj) algorithm
[DCM92, GPZ92, BP95, BP06] in order to get a grip on the problem with the statistical cor-
relations. The piecewise deterministic evolution performed in the quantum-jump algorithm
preserves the norm of each ensemble member Ψqj. Thus, the problem with the statistical
correlations of the above discussion is avoided as 〈Ψqj(t)|Ψqj(t)〉 = 1 for each ensemble mem-
ber. FB(r, t), F ′B(r, t), GB(r, t), and G′B(r, t) computed with S and S′ would then exhibit
the dependencies on n(r, t) and j(r, t) required for the idea of proof.

For solving the open system KS equation (5.12) based on the stochastic TDDFT Hamil-
tonian of Eq. (D.36) with the quantum-jump algorithm, one needs to propagate the norm-
preserving equation

i∂tΦ = H ′KSΦ− i

2
S′†S′Φ +

i

2
||S′Φ||2Φ (D.38)
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and simultaneously also the auxiliary equation

i∂tΦ
aux = H ′KSΦaux − i

2
S′†S′Φaux, (D.39)

where the norm of the auxiliary system decays. The scheme of Ref. [WT79] to transfer these
equations to two sets of N single-particle equations applies when one uses S′ of Eq. (D.35).
One can demonstrate that the resulting equations equal the equations of the single-particle
quantum-jump algorithm of Sec. 5.2.2 if one takes the single-particle bath operator

s′i =
√
γ|ϕi(t0)〉〈ϕi(t)|. (D.40)

In summary, it is possible to �nd a single-particle version of the quantum-jump algorithm
according to the scheme of Sec. 5.2.2 for simulating the open quantum system KS equation
(5.12) when using the TDDFT Hamiltonian of Eq. (D.36) and the bath operator S′ of Eq.
(D.35). Note that the dipole-dependent factor of the single-particle bath operator of Eq.
(5.19) can be included straight forwardly to this rationale by introducing a time-dependent
damping factor γ̃(t) = γ|dk(t)−dk(t0)|2/D2 to s′i instead of γ that takes the purely density-
dependent dipole moment into account.

D.3.2 Bath operators in the single-particle KS framework and related

features

The choice of the bath operator is at the heart of the applicability of the open quantum
system TDDFT scheme. On the one hand, the bath operator models the underlying physics
of the bath mechanism, thus needs to be motivated by physical processes. On the other hand,
it is important for the theoretical foundation of the open quantum system TDDFT framework
and the existence of a single-particle scheme. Here, I introduce four heuristically motivated
bath operators. All four bath operators are designed for the single-particle framework of
KS TDDFT. They involve projection operators and induce relaxation of the entire excited
system back to its ground state via projection to the occupied ground-state KS orbitals. The
rationale behind these operators and their implementation is explained in the following.

The central idea behind the �rst bath operator is to interpret the di�erences between
eigenvalues of occupied and unoccupied KS orbitals as excitation energies of the system. In
this sense, one obtains, e.g., an excited state by replacing one of the occupied orbitals of the
GS system by one of the higher lying unoccupied KS orbitals. Then, relaxation to the ground
state may be performed if one detects the overlap of the time evolution of each orbital of
this system with the space of all (or at least the most important) unoccupied orbitals and
projects back to the ground state. To model this behavior with single-particle operators,
the �rst bath operator s(1)

i uses a large basis of M occupied and unoccupied KS orbitals,
computes the overlap of all TD KS orbitals to these basis functions, and projects onto the
corresponding GS orbital depending on the magnitude of the overlap [PDV08, ADV11]. This
bath operator reads

s
(1)
i =

√
γ

M∑

j=i+1

|ϕi(t0)〉〈ϕj(t0)|, (D.41)

where I use all KS eigenstates with an eigenvalue that is energetically above the eigenvalue of
the reference orbital ϕi(t0) and project back to the latter orbital. The factor

√
γ includes the
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decay rate γ corresponding to the decay time τ = 1/γ. Although this type of bath operator
may be used to model interesting physics, to the best of my knowledge there is no explicit
proof available that guarantees for its validity in the stochastic TDDFT framework of open
quantum system theory. Therefore, I investigated alternative types of bath operators for the
work that is presented in Sec. 5.3 and used s(1)

i only for test calculations and implementing
the algorithms.

The second class of bath operators induces relaxation of the excited system back to its
ground state via projectors of the TD KS orbitals onto the corresponding GS orbitals. Such
operators are motivated and introduced in Sec. 5.3.2. Here, I shortly outline a generalized
version of this bath operator together with its implementation to the PARSEC code. The
time constant of the decay process is given by the decay rate γ. One additional multiplicative
factor renders this type of bath operator sensitive to variations of the multipole moments of
the entire density or to such moments of particular subsystems. For reasons of a notation
consistent with the PARSEC input that is explained in Sec. D.3.3, this bath operator is
labeled by the superscript (4) and reads

s
(4)
i =

√
γ
|dk(t)− dk(t0)|

D
|ϕi(t0)〉〈ϕi(t)|, (D.42)

where γ is an e�ective decay rate. The operator is proportional to variations |dk(t)−dk(t0)|
of the dipole moment dk(t) =

∫
rnk(r, t) d3r of the subsystem indicated by the index k. Here,

the index k denotes a speci�c part of the grid using a particular partitioning scheme of the
grid (see Sec. D.1 for further details about grid partition ideas). The density nk(r, t) is the
density that corresponds only to subsystem k. Thus, this operator causes deexcitation of the
entire system, but is sensitive to local changes of the dipole moment from the corresponding
GS values during time propagation. D denotes a normalization factor of the dipole moment
variations. In this approach, the time constant related to the rate γ of the dissipative
mechanism is a free parameter, whereas D needs to be chosen reasonably as discussed in
detail in Sec. 5.3.2. An attempt towards the theoretical justi�cation of the use of this bath
operator modulo the dipole-dependent factor in the framework of stochastic TDDFT using
single-particle KS equations is outlined in Sec. D.3.1.

Another approach to de�ne bath operators involves besides to the KS orbitals also lo-
calized orbitals {ϕloc

κ (t0)}, where localization is performed according to the Foster-Boys
criterion. The rationale behind this idea is to �nd bath operators that act in a restricted
part of the grid. To this end, they measure the spatial localization in a speci�c region of
the grid by calculating the overlap of the K localized orbitals ϕloc

κ (t0) and the KS orbital
onto which the operator acts. Here, the localized orbitals are dedicated and selected to rep-
resent orbitals that correspond to subsystems localized in particular parts of the entire grid.
Therefore, instead of using the KS orbitals as in s(4)

i , the bath operator s(2)
i uses Foster-Boys

orbitals in the projector that are computed from localization of the occupied ground-state
KS orbitals and projects onto the corresponding ground-state KS orbital, i.e.,

s
(2)
i =

K∑

κ=1

√
γ
|dk(t)− dk(t0)|

D
|ϕi(t0)〉〈ϕloc

κ (t0)|. (D.43)

The dipole-moment-sensitive factor guarantees for the dependence of the action of this bath
operator on the dipole moment. Alternatively, bath operator s(3)

i resembles the previous
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operator, but does not include the dipole-moment-sensitive factor. Instead, it uses Foster-
Boys orbitals computed not only from the occupied GS orbitals, but also takes unoccupied
KS orbitals into account. Among these, PARSEC selects all Z orbitals ϕloc

ζ (t0) that are
localized in a prede�ned part of the grid. The bath operator reads

s
(3)
i =

Z∑

ζ=1

√
γ|ϕi(t0)〉〈ϕloc

ζ (t0)|. (D.44)

Yet, to the best of my knowledge, the application of bath operators that rely on localized
orbitals computed from ground-state KS orbitals in the context of stochastic TDDFT is not
based on a solid theoretical proof. The �rst tests of these operators revealed di�culties that
might be related to the interplay of localized Foster-Boys and delocalized KS orbitals in
single-particle projection operators. Nevertheless, using localized orbitals to design spatially
localized bath operators might be a promising route for further bath-operator development
based on projection operator formalisms. In particular, it might be interesting to investi-
gate the application of localized orbitals computed from the TD KS orbitals during time
propagation.

For bath operators that relax the excited system back to its ground state, some prac-
tical advantages appear in the quantum-jump algorithm of Sec. 5.2.2: If no TD external
perturbations occur after the initial excitation, the system remains in the ground state after
each quantum jump. As a consequence, the time evolutions of all orbitals of the stochastic
ensemble follow the same pattern: The KS system evolves deterministically until a quan-
tum jump occurs. Then, back in the ground state, the system propagates trivially with TD
phases according to the KS eigenvalues as acting with the bath operator on the ground state
does not change the system. Therefore, the entire statistical ensemble can be generated
from a single deterministic evolution of Eq. (5.16) alongside with the determination of the
waiting-time distribution:

(i) calculate a su�ciently long deterministic evolution together with the norm decay of the
auxiliary system

(ii) draw random numbers, �nd the points of time of a large number of quantum jumps,
and determine the waiting-time distribution

(iii) generate single trajectories of the ensemble where the time evolution up to the jump
is determined by the deterministic evolution and GS values are used for the time after
the jump

The physical quantities of interest follow from averaging over the observables calculated from
the thus obtained statistical ensemble. Finally, note that I perform orthogonalization at the
end of each time step as suggested in Ref. [ADV11] in case of bath operators s(1)

i to s(3)
i ,

whereas orthogonality is preserved in bath operator (4).

D.3.3 PARSEC features and input parameters

The �nal section of this appendix is dedicated to an explanation of the PARSEC input
parameters related to the stochastic TDDFT (STDDFT) implementation. Additional general
remarks concerning the PARSEC input and especially the input data types are compiled in
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Sec. E.1. All STDDFT functionalities may be (de)activated by the boolean �ag Use_stddft.
When STDDFT calculations are performed, the most important choice is the selection of
the bath operator via the integer input parameter Bath_Type. The numbers that specify the
di�erent operators correspond to the numbers in parenthesis that I used in the superscripts
of Eqs. (D.41) to (D.44) to label the di�erent operators in the previous section. One needs
to specify these numbers using the integer input parameter Bath_operators to choose among
the bath operators. Yet, in the current version only a single type of bath operator can be
used per PARSEC run. Either the decay rate or the decay time need to be set for this bath
operator using the input parameters Decay_rate (double precision) or Decay_time (physical).
In the cases of bath operators (2)-(4) that involve either dipole moments of local subsystems
or Foster-Boys localized orbitals, one needs to specify the grid partition to which the bath
operator is supposed to be sensitive. This information may be provided via the input block
Damping_centers, where PARSEC expects the index of the desired partition (see Sec. D.1) in
the �rst column and, in the second column, the normalization factor D corresponding to the
molecule that is located in the indicated partition. The determination of this normalization
factor is explained in Sec. 5.3.2. If localized orbitals are involved, the localization threshold
may be set via the parameter Localization_threshold (double precision).

A partition-selective excitation may be performed as explained in Sec. D.1.3. Alterna-
tively, in case of bath operator (1), excitation may be performed within the KS system by
replacing one of the occupied orbitals of the KS GS con�guration by one of the energetically
higher lying unoccupied orbitals. The present PARSEC implementation provides means to
replace the HOMO orbital by the LUMO. This feature can be (de)activated by the boolean
�ag Switch_orb. A partition-selective observation (see Sec. D.1.3) is automatically active
if partition-selective excitation or damping are used. Additionally, one may also request
output of the time evolution of the projection of each TD KS orbital onto the GS KS or-
bitals via the boolean input �ag Overlap_output. This option is not active by default. More
output can be generated during STDDFT calculations if one is interested also in details
of the norm decaying auxiliary system. This output may be selected via the boolean �ag
Decaying_system_output but is inactive by default.

Last but not least, the determination of the quantum-jump times is based on random
numbers. However, working with random numbers causes di�culties during the implemen-
tation phase of such a stochastic code as one likes to preform identical calculations to test
the in�uence of changes in the code. Apart from this, for some of the calculations, I prefer to
set up the random numbers outside the PARSEC code, thus perform PARSEC calculations
with preset random numbers. For such cases, I introduced the integer input parameter Ran-
dom_seed, that can be used to specify the initialization and thus predetermine the outcome
of the random number generator.



Appendix E

PARSEC miscellaneous

This appendix comprises a collection of PARSEC functionalities that I implemented during
the work on this thesis and that do not belong to the topics covered in the previous appen-
dices. Sections E.2 to E.4 contain PARSEC features related to the real-time propagation
routines, whereas in Secs. E.5 and E.6 I present some implementations to the ground-state
section of the code. For a more general introduction to the PARSEC input, see the PAR-
SEC documentation and Ref. [KMT+06]. In the following section, I start with some general
comments about the design of the PARSEC input script.

E.1 General comments on the PARSEC input

The PARSEC input involves di�erent structures and data types that may be used for a case-
speci�c de�nition of input variables 1. Therefore, in the following I brie�y introduce the data
types that are relevant for the input options added during the work on this thesis. Control
parameters that determine speci�c functionalities of the code are typically based on the data
types integer (int), boolean (bool), or string. For typical physical and numerical parameters,
the data types integer, double precision (dp), and physical are used. The di�erence between
double and physical is that in case of variables that are indicated to be physical, a physical
unit corresponding to the speci�c input parameter may be added to the input value. If no
physical unit is speci�ed explicitly in the input �le, PARSEC reads the parameter value
nevertheless and assumes default units. The PARSEC input block structure (block) allows
for the input of data arrays in terms of the lines and columns between the block-structure
indicators. In such structures, all numbers are assumed to be of double precision value. If
necessary, I indicate these data types during the explanations about the input parameters
that are relevant for this work.

E.2 Determining the midpoint Hamiltonian during propaga-

tion via extrapolation

To perform real-time propagation with the PARSEC code, two numerical realizations of the
propagator [CMR04] are implemented [MKHM06, Mun07, Mun09]: the Taylor algorithm

1More information about the PARSEC input is available in the PARSEC User's Guide
(http://parsec.ices.utexas.edu).
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based on a fourth order Taylor expansion of the exponential function and the so-called split-
operator algorithm where the KS Hamiltonian is split into Hartree and xc contributions on
the one hand and kinetic and external contributions on the other hand. The advantage of
the latter approach is that per time step only a single evaluation of each contribution to
the total Hamiltonian is needed [Mun09]. Instead, the Taylor method relies on a Hamilto-
nian determination with a predictor scheme that �rst computes the so-called midpoint KS
Hamiltonian hKS(r, t + ∆t/2) after half of the time step and only then performs the full
Taylor time step [CMR04, MKHM06, Mun07, Mun09]. This scheme requires two evalua-
tions of the KS Hamiltonian. The prize one has to pay for the reduced numerical e�ort
in the split-operator scheme is that numerical stability of this propagation method is not
guaranteed and, therefore, the time step needs to be chosen small enough to avoid spurious
self-excitation e�ects. The fourth order Taylor scheme is known to be conditionally stable
[CMR04], yet numerically more involved.

However, during propagation of orbital functionals where the evaluation of the potential
� especially its xc contribution � is the most cost-pushing factor, one likes to avoid as many
potential evaluations as possible. Therefore, I implemented an extrapolation scheme that
saves most of the potential evaluations for the midpoint Hamiltonian as it extrapolates the
midpoint Hartree-xc potential vHxc(r, t + ∆t/2) from previous time steps via second order
polynomial interpolation based on the polynomial

vHxc(r, t+ ∆t) = m∆t2 + n∆t+ o. (E.1)

The coe�cients m, n, and o can be computed from the potentials of three previous time
steps at t− 2∆t, t−∆t, and t by solving the corresponding set of equations. One obtains

m =
1

2∆t2
[vHxc(r, t) + vHxc(r, t− 2∆t)− 2vHxc(r, t−∆t)] , (E.2)

n =
1

2∆t
[vHxc(r, t− 2∆t)− 4vHxc(r, t−∆t) + 3vHxc(r, t)] , (E.3)

o = vHxc(r, t). (E.4)

Inserting these coe�cients into the interpolation formula of Eq. (E.1) yields the new midpoint
potential

vHxc(r, t+ ∆t/2) = 0.375vHxc(r, t− 2∆t)− 1.25vHxc(r, t−∆t) + 1.875vHxc(r, t). (E.5)

In this procedure, all potentials at integer multiples of ∆t are computed by explicit potential
evaluation, whereas most of the midterm potentials are determined via Eq. (E.5). As this
scheme requires at least two Hartree-xc potentials of times earlier than t, it can not be
applied during the �rst two steps of the propagation. In this case, the midpoint potentials
are computed explicitly by a predictor step [CMR04, MKHM06, Mun07, Mun09].

The extrapolation scheme can be (de)activated in the PARSEC input using the �ag
Prop_extrapolation, which is of boolean data type. The default is �false�. It applies only
for the Taylor propagation method. Numercial tests of the extrapolation procedure on
Na5 revealed minor deviations to the original Taylor method of the dipole signal only at
maxima and minima of the TD dipole moment. These deviations did not a�ect the Fourier
transformation of the dipole signal. However, propagation times of orbital functionals are
reduced to almost half of the propagation time of the full Taylor algorithm as now the most
cost-intensive procedures need to be performed only once per time step.
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E.3 On the �y Fourier transformation of the time-dependent

density

In this section, I explain how the customized PARSEC version determines transition densities
introduced in Sec. 2.3, i.e., the Fourier transformations of the TD density. In principle, if
one likes to compute the full frequency dependence of the density, one should compute a
long enough time evolution of the latter, store the density with a reasonable time resolution
on each grid point one is interested in, and �nally perform a three dimensional Fourier
transformation of the full signal. However, this proceeding is prohibitive as it would require
a huge amount of memory to store all signal with a reasonable resolution. Therefore, to
calculate transition densities corresponding to speci�c excitation energies, I implemented
an on the �y procedure to compute the Fourier integral at preset frequencies during time
propagation: I use a simple trapezoidal rule to integrate

ρ(r, ωn) ∝
∫ T

0
(n(r, t)− n(r, 0))eiωnt dt (E.6)

step by step during the time run at �xed frequencies ωn. Thus, one needs to store only
ρ(r, ωn), i.e., one array over the entire grid for each frequency ωn. This frequency dependent
Fourier transformation can be activated by the �ag TD_Fourier_Trafo_number that should
equal the total number of frequencies where the Fourier transformation shall be performed.
It is active when TD_Fourier_Trafo_number is positive and di�ers from zero. The speci�c
frequencies at which Fourier transformation is supposed to be performed can to be indi-
cated using the PARSEC block structure TD_FT_frequencies. There, one needs to list all
frequencies in eV units.

E.4 Propagation miscellaneous

This �nal chapter on implementations to the propagation section of the PARSEC code
includes all features that are not related to a concrete area or speci�c results of this thesis
but were implemented to test some ideas and properties during propagation.

The �rst feature involves a test of how much the orbitals di�er from the GS orbitals
multiplied by the TD phase factor exp(−iεjt) using the eigenvalue εj of each orbital j.
To this end, when the option Prop_check_linear_response (boolean) is activated, the code
determines how much the TD orbitals ϕj(r, t) di�er from ϕj(r, 0) exp(−iεjt) in terms of
the maximum di�erence, the integral of the absolute di�erence, and the integral over the
absolute square of their di�erence. From the output per orbital, one can estimate how much
the orbitals change during propagation due to some arbitrary excitation process.

The second propagation feature was implemented to test if enhancement of the ef-
�ciency of the propagation algorithm can be achieved by freezing some of the orbitals
during propagation. This option may be (de)activated by the �ag Use_sel_orb_prop
(boolean). I implemented the PARSEC block structures Sel_up_orb_prop_block and
Sel_dn_orb_prop_block to be able to indicate the active and frozen orbitals separately
for spin up and down. These block structures consist of two columns requiring the number
that refers to orbitals in the PARSEC code in the �rst and indicators for the orbitals in the
second column. Active orbitals, labeled by �1�, are propagated regularly by application of
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the KS Hamiltonian and frozen orbitals that remain at their GS values need to be labeled by
�0�. First numerical tests of orbital freezing on small molecules showed that as soon as one of
the orbitals was frozen, the dipole signal di�ered notably from the true dipole moment time
evolution. Yet, this idea was never checked for sizable molecules where potentially some of
the lower lying orbitals contribute less to the TD dipole signal.

Finally, if one likes to use static electric �elds in dipole approximation during time prop-
agation, this may be achieved by choosing �Laser_shape = rampnola� in the PARSEC input
as implemented by Anne Klimach. In this case, the potential of the external �eld may grow
to unphysically large numbers at the outer part of the real-space grid. Therefore, in some
cases it may appear reasonable to set the external potential constant outside a certain vol-
ume around the system. To this end, I implemented the physical PARSEC input parameter
Const_�eld_radius. It reads a distance to the origin of the grid that determines a boundary
outside which the potential is set constant to the value of the potential on this boundary.
Note that this feature works only if the polarization of the external �eld is chosen to point
exactly into the direction of the coordinate system. This option is turned o� (default) when
Const_�eld_radius is set to be zero.

E.5 Adaptation of the diagonalization tolerance during the

ground-state procedure

Most of the computation time of the PARSEC ground-state iterations goes into the diago-
nalization of the Hamiltonian matrix. Comparison of the performances of PARSEC and the
octopus code [MCBR03, CAO+06] in collaboration with Heiko Appel revealed that partic-
ularly much time gets lost in PARSEC when diagonalization is performed during the �rst
iterations of the self-consistency procedure. There is one striking di�erence between PAR-
SEC and octopus: To my understanding, the octopus code limits the maximum number
of matrix times vector multiplications in the diagonalization routine 2. Thus, with a rea-
sonable choice of this limit, it accepts a reduction of the accuracy of the diagonalization
during the �rst iteration steps where typically a larger number of matrix times vector mul-
tiplications are needed for high diagonalization accuracy. PARSEC performs high accuracy
diagonalization from the �rst iteration step on. Yet, during the �rst steps of the KS self-
consistency procedure, the KS Hamiltonian may notably deviate from the �nal self-consistent
KS Hamiltonian. Hence, it appears worthless computing the orbitals already with the �nal
diagonalization accuracy as they come from a Hamiltonian that is not converged.

Therefore, I implemented an adaptation scheme that adjusts the diagonalization tolerance
to the self-consistency residual error measured via the integral over changes of the charge
weighted potential. From the �rst iteration until the SRE drops below 105 times the preset
convergence threshold c, a diagonalization solver tolerance t of 1× 10−3 is used. Then, the
diagonalization tolerance is reduced towards the �nal tolerance f in four steps i when the
SRE drops below 105−ic according to

t = 10−3+ i
4

(3+log10(f)). (E.7)

2The information about the limitation of matrix times vector multiplications in the octopus code came
up in discussions with Heiko Appel.
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This choice of the SRE and the solver-tolerance thresholds relies on practical experience and
yields reasonable performance enhancement, while for most systems the �nal results are not
in�uence by adaptive solver settings as long as su�ciently low convergence parameters are
guaranteed in the end. Therefore, using this scheme the detection of the convergence of
the self-consistency procedure is allowed only when the solver tolerance has dropped to its
�nal value f . This diagonalization tolerance adaptation can be activated by the boolean �ag
Adaptive_diag_tolerance. Yet, it is deactivated automatically when the (G)OEP or GKLI
are used, �poissonsolver = 1�, or Förster-type potential evaluation is applied, because in
these cases experience shows that high accuracy of the diagonalization is preferable from the
start.

E.6 Ground-state miscellaneous

The last section of this appendix contains a list of extensions to the GS PARSEC code that
are not covered by the previous appendices.

In the original version, PARSEC moves all nuclei of the system to center the outermost
nuclei with respect to the planes of the coordinate system. Yet, for some applications this
centering procedure of the nuclei positions is not desired. Therefore, I added the boolean �ag
Centering_atom_position to control the centering option. The position centering is applied,
when the �ag is set to its default value �true� and vice versa.

To investigate all contributions of the OEP potential and/or its KLI approximation
separately, I implemented the option OEP_potential_output (boolean). When this �ag is
�true�, the OEP or KLI potential is split into Slater and all contributions beyond Slater.
These are written to separate output �les along all coordinate axis, on the planes of the
coordinate system, and as a cube �le on the three dimensional grid.

Last but not least, a static electric �eld in dipole approximation may be applied during
GS calculations using the boolean �ag Apply_electric_�eld. In the current implementation,
this �eld applies only in x-direction of the coordinate system. The �eld strength may be
de�ned by the physical PARSEC input parameter Electric_Field.
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TDSLA Slater approximation in TDDFT



LIST OF ABBREVIATIONS, FUNCTIONALS, AND METHODS 111

S system
se single-electron
SIC self-interaction correction
SIE self-interaction error
sl semilocal
SLA Slater approximation
SRE self-consistency residual error
SSE stochastic Schrödinger equation
STDDFT stochastic time-dependent density functional theory
xc exchange-correlation





Bibliography

[ADV09] H. Appel and M. Di Ventra, Stochastic quantum molecular dynamics, Phys.
Rev. B 80 (2009), 212303.

[ADV11] H. Appel and M. Di Ventra, Stochastic quantum molecular dynamics for
�nite and extended systems, Chem. Phys. 391 (2011), 27.

[AEK09] T. Abrudan, J. Eriksson, and V. Koivunen, Conjugate gradient algorithm for
optimization under unitary matrix constraint, Signal Processing 89 (2009),
1704.

[AGB03] H. Appel, E. K. U. Gross, and K. Burke, Excitations in Time-Dependent
Density-Functional Theory, Phys. Rev. Lett. 90 (2003), 043005.

[AKK08] R. Armiento, S. Kümmel, and T. Körzdörfer, Electrical response of molecular
chains in density functional theory: Ultranonlocal response from a semilocal
functional, Phys. Rev. B 77 (2008), 165106.

[Aut09] J. Autschbach, Charge-Transfer Excitations and Time-Dependent Density
Functional Theory: Problems and Some Proposed Solutions, Chem. Phys.
Chem. 10 (2009), 1757.

[BCG05] K. Burke, R. Car, and R. Gebauer, Density Functional Theory of the Electri-
cal Conductivity of Molecular Devices, Phys. Rev. Lett. 94 (2005), 146803.

[BCOR04] R. A. Broglia, G. Colò, G. Onida, and H. E. Roman, Solid State Physics of
Finite Systems, Springer, 2004.

[Bec88] A. D. Becke, Density-functional exchange-energy approximation with correct
asymptotic behavior, Phys. Rev. A 38 (1988), 3098.

[Bec93] A. D. Becke, A new mixing of Hartree�Fock and local density-functional
theories, J. Chem. Phys. 98 (1993), 1372.

[BLS10] R. Baer, E. Livshits, and U. Salzner, Tuned Range-Separated Hybrids in
Density Functional Theory, Annu. Rev. Phys. Chem. 61 (2010), 85.

[Boy60] S. F. Boys, Construction of Some Molecular Orbitals to Be Approximately
Invariant for Changes from One Molecule to Another, Rev. Mod. Phys. 32
(1960), 296.

113



114 BIBLIOGRAPHY

[BP95] H.-P. Breuer and F. Petruccione, Stochastic dynamics of quantum jumps,
Phys. Rev. E 52 (1995), 428.

[BP06] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems,
Clarendon Press, 2006.

[Bra81] A. Brandt, Multigrid solvers on parallel computers, Elliptic Problem Solvers,
pp. 39 � 83, Academic Press New York, 1981.

[BSK+03] W. R. Burdick, Y. Saad, L. Kronik, I. Vasiliev, M. Jain, and J. R. Che-
likowsky, Parallel implementation of time-dependent density functional the-
ory, Comput. Phys. Commun. 156 (2003), 22.

[Büt86] M. Büttiker, Four-Terminal Phase-Coherent Conductance, Phys. Rev. Lett.
57 (1986), 1761.

[BWLT07] P. Bauer, H. Wietasch, S. M. Lindner, and M. Thelakkat, Synthesis and
characterization of donor-bridge-acceptor molecule containing tetraphenyl-
benzidine and perylene bisimide, Chem. Mater. 19 (2007), 88.

[CA80] D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a
Stochastic Method, Phys. Rev. Lett. 45 (1980), 566.

[CAO+06] A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen,
M. A. L. Marques, E. K. U. Gross, and A. Rubio, octopus: a tool for the
application of time-dependent density functional theory, physica status solidi
(b) 243 (2006), 2465.

[Cap02] K. Capelle, A bird's-eye view of density-functional theory, 2002.

[Cas95] M. E. Casida, Time-Dependent Density Functional Response Theory for
Molecules, Recent Advances in Density Functional Methods 1 (1995), 155.

[Cas96] M. E. Casida, Time-Dependent Density Functional Response Theory of
Molecular Systems: Theory, Computational Methods, and Functionals, Re-
cent Developments and Applications in Modern Density-Functional Theory
4 (1996), 391.

[CBKR07] K. Capelle, M. Borgh, K. Kärkkäinen, and S. M. Reimann, Energy Gaps
and Interaction Blockade in Con�ned Quantum Systems, Phys. Rev. Lett.
99 (2007), 010402.

[CEVV06] C.-L. Cheng, J. S. Evans, and T. Van Voorhis, Simulating molecular con-
ductance using real-time density functional theory, Phys. Rev. B 74 (2006),
155112.

[CF09] Y.-C. Cheng and G. R. Fleming, Dynamics of Light Harvesting in Photo-
synthesis, Annu. Rev. Phys. Chem. 60 (2009), 241.

[CGB02] D. P. Chong, O. V. Gritsenko, and E. J. Baerends, Interpretation of the
Kohn-Sham orbital energies as approximate vertical ionization potentials, J.
Chem. Phys. 116 (2002), 1760.



BIBLIOGRAPHY 115

[CHG07] J.-D. Chai and M. Head-Gordon, Systematic optimization of long-range cor-
rected hybrid density functionals, J. Chem. Phys. 128 (2007), 084106.

[CHR12] M. E. Casida and M. Huix-Rotllant, Progress in Time-Dependent Density
Functional Theory, Annu. Rev. Phys. Chem. 63 (2012), 287.

[CK09] B. Champagne and B. Kirtman, Polarizabilities and second hyperpolariz-
abilities of hydrogen chains using the spin-component-scaled Møller-Plesset
second-order method, Int. J. Quantum Chem. 109 (2009), 3103.

[CMLM+09] C. Curutchet, A. Muñoz-Losa, S. Monti, J. Kongsted, G. D. Scholes, and
B. Mennucci, Electronic Energy Transfer in Condensed Phase Studied by a
Polarizable QM/MM Model, J. Chem. Theory Comput. 5 (2009), 1838.

[CMR04] A. Castro, M. A. L. Marques, and A. Rubio, Propagators for the time-
dependent Kohn�Sham equations, J. Chem. Phys. 121 (2004), 3425.

[CMVA95] B. Champagne, D. H. Mosley, M. Vra�cko, and J.-M. André, Electron-
correlation e�ects on the static longitudinal polarizability of polymeric
chains, Phys. Rev. A 52 (1995), 178.

[CRS97] F. Calvayrac, P. G. Reinhard, and E. Suraud, Spectral Signals from Elec-
tronic Dynamics in Sodium Clusters, Ann. Phys. 255 (1997), 125.

[CTDF99] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantenmechanik Teil 1, Walter
de Gruyter, 1999.

[CTS94] J. R. Chelikowsky, N. Troullier, and Y. Saad, Finite-di�erence-
pseudopotential method: Electronic structure calculations without a basis,
Phys. Rev. Lett. 72 (1994), 1240.

[DCM92] J. Dalibard, Y. Castin, and K. Mølmer, Wave-function approach to dissipa-
tive processes in quantum optics, Phys. Rev. Lett. 68 (1992), 580.

[DDV08] R. D'Agosta and M. Di Ventra, Stochastic time-dependent current-density-
functional theory: A functional theory of open quantum systems, Phys. Rev.
B 78 (2008), 165105.

[DDV09] R. D'Agosta and M. Di Ventra, Comment on �Time-dependent current-
density functional theory for generalized open quantum systems" by J.
Yuen-Zhou, C. Rodriiguez-Rosario and A. Aspuru-Guzik, arXiv:0911.3932v1
(2009).

[DG90] R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach
to the Quantum Many-body Problem, Springer, 1990.

[DHG04] A. Dreuw and M. Head-Gordon, Failure of Time-Dependent Density
Functional Theory for Long-Range Charge-Transfer Excited States: The
Zincbacteriochlorin-Bacteriochlorin and Bacteriochlorophyll-Spheroidene
Complexes, J. Am. Chem. Soc. 126 (2004), 4007.



116 BIBLIOGRAPHY

[DHL03] C. C. Douglas, G. Haase, and U. Langer, A Tutorial on Elliptic PDE, Society
for Industrial and Applied Mathematics, 2003.

[DKK+11] M. Dauth, T. Körzdörfer, S. Kümmel, J. Ziro�, M. Wiessner, A. Schöll,
F. Reinert, M. Arita, and K. Shimada, Interpretation of the Kohn-Sham or-
bital energies as approximate vertical ionization potentials, Phys. Rev. Lett.
107 (2011), 193002.

[DL11] I. Dreissigacker and M. Lein, Adiabatic approximation within time-dependent
density functional theory using inversion of the ground-state spin-density
Kohn-Sham formalism, Chem. Phys. 391 (2011), 143146.

[DV05] R. D'Agosta and G. Vignale, Non-V -representability of currents in time-
dependent many-particle systems, Phys. Rev. B 71 (2005), 245103.

[DVD07] M. Di Ventra and R. D'Agosta, Stochastic Time-Dependent Current-
Density-Functional Theory, Phys. Rev. Lett. 98 (2007), 226403.

[DWHG03] A. Dreuw, J. Weisman, and M. Head-Gordon, Long-range charge-transfer
excited states in time-dependent density functional theory require non-local
exchange, J. Chem. Phys. 119 (2003), 2943.

[EAS98] A. Eldemann, T. A. Arias, and S. T. Smith, The Geometry of Algorithms
with Orthogonality Constraints, SIAM J. Matrix Anal. Appl. 20 (1998), 303.

[EBF07] P. Elliott, K. Burke, and F. Furche, Excited states from time-dependent
density functional theory, arXiv:cond-mat/0703590v1 (2007).

[ER63] C. Edmiston and K. Ruedenberg, Localized Atomic and Molecular Orbitals,
Rev. Mod. Phys. 35 (1963), 457.

[EVV09] J. S. Evans, O. A. Vydrov, and T. Van Voorhis, Exchange and correlation
in molecular wire conductance: Nonlocality is the key, J. Chem. Phys. 131
(2009), 034106.

[FB60] J. M. Foster and S. F. Boys, Canonical Con�gurational Interaction Proce-
dure, Rev. Mod. Phys. 32 (1960), 300.

[FJ00] R. D. Falgout and J. E. Jones, Multigrid on massively parallel architectures,
Multigrid Methods VI, pp. 101�107, Springer, 2000.

[FKH+08] B. Fückel, A. Köhn, M. E. Harding, G. Diezemann, G. Hinze, T. Basché, and
J. Gauss, Theoretical investigation of electronic excitation energy transfer in
bichromophoric assemblies, J. Chem. Phys. 128 (2008), 074505.

[FO05] G. W. Ford and R. F. O'Connell, Limitations on the utility of exact master
equations, Ann. Phys. 319 (2005), 348.

[För46] T. Förster, Energiewanderung und Fluoreszenz, Naturwiss. 33 (1946), 166.

[För48] T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann.
Phys. 437 (1948), 55.



BIBLIOGRAPHY 117

[För65] T. Förster, Delocalized Excitation and Excitation Transfer, Modern Quan-
tum Chemistry Part III: Action of light and organic crystals, pp. 93�138,
Academic Press, 1965.

[FPM93] E. S. Fois, J. I. Penman, and P. A. Madden, Self-interaction corrected density
functionals and the structure of metal clusters, J. Chem. Phys. 98 (1993),
6352.

[Fre90] W. R. Frensley, Boundary conditions for open quantum systems driven far
from equilibrium, Rev. Mod. Phys. 62 (1990), 745.

[FRM11] J. I. Fuks, A. Rubio, and N. T. Maitra, Charge transfer in time-dependent
density-functional theory via spin-symmetry breaking, Phys. Rev. A 83

(2011), 042501.

[GB01] O. V. Gritsenko and E. J. Baerends, Orbital structure of the Kohn-Sham
exchange potential and exchange kernel and the �eld-counteracting potential
for molecules in an electric �eld, Phys. Rev. A 64 (2001), 042506.

[GB04] O. Gritsenko and E. J. Baerends, Asymptotic correction of the exchange�
correlation kernel of time-dependent density functional theory for long-range
charge-transfer excitations, J. Chem. Phys. 121 (2004), 655.

[GDP96] E. K. U. Gross, J. F. Dobson, and M. Petersilka, Density functional theory
of time-dependent phenomena, Top. Current. Chem. 181 (1996), 81.

[GGB02] M. Grüning, O. V. Gritsenko, and E. J. Baerends, Exchange potential from
the common energy denominator approximation for the Kohn�Sham Green's
function: Application to (hyper)polarizabilities of molecular chains, J. Chem.
Phys. 116 (2002), 6435.

[GGS09] P. Gori-Giorgi and A. Savin, Study of the Discontinuity of the Exchange-
Correlation Potential in an Exactly Soluble Case, Int. J. Quantum Chem.
109 (2009), 2410.

[GKG97] T. Grabo, T. Kreibich, and E. K. U. Gross, Optimized E�ective Potential
for Atoms and Molecules, Mol. Eng. 7 (1997), 27.

[GKKG00] T. Grabo, T. Kreibich, S. Kurth, and E. K. U. Gross, Orbital Functionals
in Density Functional Theory: The Optimized E�ective Potential Method,
Advances in Condensed Matter Science, pp. 203�297, Gordon and Breach
Science Publishers, 2000.

[GN99] P. Gaspard and M. Nagaoka, Non-Markovian stochastic Schrödinger equa-
tion, J. Chem. Phys. 111 (1999), 5676.

[GND00] J. Garza, J. A. Nichols, and D. A. Dixon, The optimized e�ective potential
and the self-interaction correction in density functional theory: Application
to molecules, J. Chem. Phys. 112 (2000), 7880.



118 BIBLIOGRAPHY

[GPZ92] C. W. Gardiner, A. S. Parkins, and P. Zoller, Wave-function quantum
stochastic di�erential equations and quantum-jump simulation methods,
Phys. Rev. A 46 (1992), 4363.

[GU97] S. Goedecker and C. J. Umrigar, Critical assessment of the self-interaction-
corrected�local-density-functional method and its algorithmic implementa-
tion, Phys. Rev. A 55 (1997), 1765.

[GvGSB00] O. V. Gritsenko, S. J. A. van Gisbergen, P. R. T. Schipper, and
E. J. Baerends, Origin of the �eld-counteracting term of the Kohn-Sham
exchange-correlation potential of molecular chains in an electric �eld, Phys.
Rev. A 62 (2000), 012507.

[GvLB94] O. V. Gritsenko, R. van Leeuwen, and E. J. Baerends, Analysis of electron
interarction and atomic shell structure in terms of local potentials, J. Chem.
Phys. 101 (1994), 8955.

[Hac81] W. Hackbusch, Bemerkungen zur iterierten Defektkorrektur und zu ihrer
Kombination mit Mehrgitterverfahren, Rev. Roumaine Math. Pures Appl.
26 (1981), 1319.

[Hac85] W. Hackbusch,Multi-Grid Methods and Applications, Springer-Verlag, 1985.

[HDRS98] X. C. Hu, A. Damjanovic, T. Ritz, and K. Schulten, Architecture and mech-
anism of the light-harvesting apparatus of purple bacteria, Proc. Natl. Acad.
Sci. U.S.A. 95 (1998), 5935.

[HFHGHG01] C.-P. Hsu, G. R. Fleming, M. Head-Gordon, and T. Head-Gordon, Excita-
tion energy transfer in condensed media, J. Chem. Phys. 114 (2001), 3065.

[HG12] M. Hellgren and E. K. U. Gross, Discontinuities of the exchange-correlation
kernel and charge-transfer excitations in time-dependent density-functional
theory, Phys. Rev. A 85 (2012), 022514.

[HJ97] B. Heise and M. Jung, Parallel solvers for nonlinear elliptic problems, Par-
allel Computing 22 (1997), 1527.

[HK64] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136
(1964), B864.

[HKMR05] F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde, Parallel geometric
multigrid, Numerical Solution of Partial Di�erential Equations on Parallel
Computers, pp. 165�208, Springer, 2005.

[Hof08] D. Hofmann, Anregung und Energietransfer in molekularen Systemen, Diplo-
marbeit, Universität Bayreuth, 2008.

[HPB99] P. Hessler, J. Park, and K. Burke, Several Theorems in Time-Dependent
Density Functional Theory, Phys. Rev. Lett. 82 (1999), 378.



BIBLIOGRAPHY 119

[Hsu03] C.-P. Hsu, Theoretical Study of Photosynthetic Light-Harvesting Processes:
Application of Time-Dependent Density Functional Theory, J. Chin. Chem.
Soc. 50 (2003), 745.

[IF09] A. Ishizaki and G. R. Fleming, On the adequacy of the Red�eld equation and
related approaches to the study of quantum dynamics in electronic energy
transfer, J. Chem. Phys. 130 (2009), 234110.

[IHG10] A. Ipatov, A. Heÿelmann, and A. Görling, Molecular excitation spectra
by TDDFT with the nonadiabatic exact exchange kernel, Int. J. Quantum
Chem. 110 (2010), 2202.

[Jan78] J. F. Janak, Proof that ∂E/∂ni = ε in density-functional theory, Phys. Rev.
B 18 (1978), 7165.

[JCRE08] S. Jang, Y.-C. Cheng, D. R. Reichman, and J. D. Eaves, Theory of coherent
resonance energy transfer, J. Chem. Phys. 129 (2008), 101104.

[JFTL02] C. Jamorski, J. B. Foresman, C. Thilgen, and H.-P. Lüthi, Assessment of
time-dependent density-functional theory for the calculation of critical fea-
tures in the absorption spectra of a series of aromatic donor�acceptor sys-
tems, J. Chem. Phys. 116 (2002), 8761.

[JJS02] S. Jang, Y.J. Jung, and R. J. Silbey, Nonequilibrium generalization of
Förster-Dexter theory for excitation energy transfer, Chem. Phys. 275
(2002), 319.

[Jou07] D. P. Joubert, Alternative derivation of an exchange-only density-functional
optimized e�ective potential, Phys. Rev. A 76 (2007), 042503.

[Jun97] M. Jung, On the parallelization of multi-grid methods using a non-
overlapping domain decomposition data structure, Appl. Numer. Math. 23
(1997), 119.

[KAK09] A. Karolewski, R. Armiento, and S. Kümmel, Polarizabilities of Polyacety-
lene from a Field-Counteracting Semilocal Functional, J. Chem. Theo. Com-
put. 5 (2009), 712.

[KAR01] S. Kümmel, K. Andrae, and P.-G. Reinhard, Collectivity in the optical re-
sponse of small metal clusters, Appl. Phys. B 73 (2001), 293.

[KBE06] M. Koentopp, K. Burke, and F. Evers, Zero-bias molecular electronics:
Exchange-correlation corrections to Landauer's formula, Phys. Rev. B 73

(2006), 121403.

[KBY07] S.-H. Ke, H. U. Baranger, and W. Yang, Role of the exchange-correlation
potential in ab initio electron transport calculations, J. Chem. Phys. 126
(2007), 201102.

[KK06] S. Kümmel and L. Kronik, Hyperpolarizabilities of molecular chains: A real-
space approach, Comput. Mater. Sci. 35 (2006), 321.



120 BIBLIOGRAPHY

[KK08] S. Kümmel and L. Kronik, Orbital-dependent density functionals: Theory
and applications, Rev. Mod. Phys. 80 (2008), 3.

[KK10] T. Körzdörfer and S. Kümmel, Single-particle and quasiparticle interpreta-
tion of Kohn-Sham and generalized Kohn-Sham eigenvalues for hybrid func-
tionals, Phys. Rev. B 82 (2010), 155206.

[KK11] T. Körzdörfer and S. Kümmel, Self-interaction correction in the Kohn-Sham
framework, Theoretical and Computational Developments in Modern Den-
sity Functional Theory, chap. 9, Nova Science Publishers, 2011.

[KKM08] T. Körzdörfer, S. Kümmel, and M. Mundt, Self-interaction correction and
the optimized e�ective potential, J. Chem. Phys. 129 (2008), 014110.

[KKMK09] T. Körzdörfer, S. Kümmel, N. Marom, and L. Kronik, When to trust pho-
toelectron spectra from Kohn-Sham eigenvalues: The case of organic semi-
conductors, Phys. Rev. B 79 (2009), 201205.

[KKP04] S. Kümmel, L. Kronik, and J. P. Perdew, Electrical Response of Molecular
Chains from Density Functional Theory, Phys. Rev. Lett. 93 (2004), 213002.

[KLI92] J. B. Krieger, Y. Li, and G. J. Iafrate, Systematic approximations to the op-
timized e�ective potential: Application to orbital-density-functional theory,
Phys. Rev. A 46 (1992), 5453.

[KMK08] T. Körzdorfer, M. Mundt, and S. Kümmel, Electrical Response of Molecu-
lar Systems: The Power of Self-Interaction Corrected Kohn-Sham Theory,
Phys. Rev. Lett. 100 (2008), 133004.

[KMT+06] L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany, M. Jain, X. Huang,
Y. Saad, and J. R. Chelikowsky, PARSEC - the pseudopotential algorithm
for real-space electronic structure calculations: recent advances and novel
applications to nano-structures, Phys. status solidi B 243 (2006), 1063.

[KN12] C. König and J. Neugebauer, Quantum chemical description of absorp-
tion properties and excited-state processes in photosynthetic systems, Chem.
Phys. Chem. 13 (2012), 386.

[KNOC11] A. Kolli, A. Nazir, and A. Olaya-Castro, Electronic excitation dynamics
in multichromophoric systems described via a polaron-representation master
equation, J. Chem. Phys. 135 (2011), 154112.

[Kör09] T. Körzdörfer, Self-interaction and charge transfer in organic semiconduc-
tors, Ph.D. thesis, Universität Bayreuth, 2009.

[Kör11] T. Körzdörfer, On the relation between orbital-localization and self-
interaction errors in the density functional theory treatment of organic semi-
conductors, J. Chem. Phys. 134 (2011), 094111.



BIBLIOGRAPHY 121

[KP03a] S. Kümmel and J. P. Perdew, Optimized e�ective potential made simple: Or-
bital functionals, orbital shifts, and the exact Kohn-Sham exchange potential,
Phys. Rev. B 68 (2003), 035103.

[KP03b] S. Kümmel and J. P. Perdew, Simple Iterative Construction of the Optimized
E�ective Potential for Orbital Functionals, Including Exact Exchange, Phys.
Rev. Lett. 90 (2003), 043004.

[KP03c] S. Kümmel and J. P. Perdew, Two avenues to self-interaction correction
within Kohn-Sham theory: unitary invariance is the shortcut, Mol. Phys.
101 (2003), 1363.

[KS65] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and
Correlation E�ects, Phys. Rev. 140 (1965), A1133.

[KSA+05] S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, and E. K. U. Gross,
Time-dependent quantum transport: A practical scheme using density func-
tional theory, Phys. Rev. B 72 (2005), 035308.

[KSBK11] A. Karolewski, T. Stein, R. Baer, and S. Kümmel, Communication: Tailor-
ing the optical gap in light-harvesting molecules, J. Chem. Phys. 134 (2011),
151101.

[KSK+10] S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U. Gross,
Dynamical Coulomb Blockade and the Derivative Discontinuity of Time-
Dependent Density Functional Theory, Phys. Rev. Lett. 104 (2010), 236801.

[KSRS08] H. Köstler, R. Schmid, U. Rüde, and C. Scheit, A parallel multigrid acceler-
ated Poisson solver for ab initio molecular dynamics applications, Comput.
Visual. Sci. 11 (2008), 115.

[KSSB11] T. Körzdörfer, J. S. Sears, C. Sutton, and J.-L. Brédas, Long-range cor-
rected hybrid functionals for π-conjugated systems: Dependence of the range-
separation parameter on conjugation length, J. Chem. Phys. 135 (2011),
204107.

[KTRH95] B. Kirtman, J. L. Toto, K. A. Robins, and M. Hasan, Ab initio �-
nite oligomer method for nonlinear optical properties of conjugated poly-
mers. Hartree�Fock static longitudinal hyperpolarizability of polyacetylene,
J. Chem. Phys. 102 (1995), 5350.

[Küh95] W. Kühlbrandt, Many wheels make light work, Nature 374 (1995), 497.

[Lan57] R. Landauer, Spatial variation of currents and �elds due to localized scat-
terers in metallic conduction, IBM J. Res. Dev. 1 (1957), 223.

[LB07] E. Livshits and R. Baer, A well-tempered density functional theory of elec-
trons in molecules, Phys. Chem. Chem. Phys. 9 (2007), 2932.



122 BIBLIOGRAPHY

[LBBS12] Z.-F. Liu, J. P. Berg�eld, K. Burke, and C. A. Sta�ord, Accuracy of density
functionals for molecular electronics: The Anderson junction, Phys. Rev. B
85 (2012), 155117.

[LK05] M. Lein and S. Kümmel, Exact Time-Dependent Exchange-Correlation Po-
tentials for Strong-Field Electron Dynamics, Phys. Rev. Lett. 94 (2005),
143003.

[LM83] D. C. Langreth and M. J. Mehl, Beyond the local-density approximation in
calculations of ground-state electronic properties, Phys. Rev. B 28 (1983),
1809.

[Löw50] P.-O. Löwdin, On the Non-Orthogonality Problem Connected with the Use
of Atomic Wave Fuctions in the Theory of Molecules and Crystals, J. Chem.
Phys. 18 (1950), 365.

[LYP88] C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron density, Phys.
Rev. B 37 (1988), 785.

[Mai05] N. T. Maitra, Undoing static correlation: Long-range charge transfer
in time-dependent density-functional theory, J. Chem. Phys. 122 (2005),
234104.

[May02] I. Mayer, On Löwdins Method of Symmetric Orthogonalization, Int. J. Quan-
tum Chem. 90 (2002), 63.

[MB01] N. T. Maitra and K. Burke, Demonstration of initial-state dependence in
time-dependent density-functional theory, Phys. Rev. A 63 (2001), 042501.

[MBW02] N. T. Maitra, K. Burke, and C. Woodward, Memory in Time-Dependent
Density Functional Theory, Phys. Rev. Lett. 89 (2002), 023002.

[MCBR03] M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, octopus: a �rst-
principles tool for excited electron-ion dynamics, Comp. Phys. Comm. 151
(2003), 60.

[MCR01] M. A. L. Marques, A. Castro, and A. Rubio, Assessment of exchange-
correlation functionals for the calculation of dynamical properties of small
clusters in time-dependent density functional theory, J. Chem. Phys. 115
(2001), 3006.

[MDRS08] J. Messud, P. M. Dinh, P.-G. Reinhard, and E. Suraud, Time-Dependent
Density-Functional Theory with a Self-Interaction Correction, Phys. Rev.
Lett. 101 (2008), 096404.

[MDRS09a] J. Messud, P. M. Dinh, P.-G. Reinhard, and E. Suraud, On the exact treat-
ment of time-dependent self-interaction correction, Ann. Phys. (N.Y.) 324
(2009), 955.



BIBLIOGRAPHY 123

[MDRS09b] J. Messud, P. M. Dinh, P.-G. Reinhard, and E. Suraud, Simpli�cation of the
time-dependent generalized self-interaction correction method using two sets
of orbitals: Application of the optimized e�ective potential formalism, Phys.
Rev. A 80 (2009), 044503.

[MDRS11] J. Messud, P. M. Dinh, P.-G. Reinhard, and E. Suraud, The generalized SIC-
OEP formalism and the generalized SIC-Slater approximation (stationary
and time-dependent cases), Annalen der Physik 523 (2011), 270.

[MG04] M. A. L. Marques and E. K. U. Gross, Time-dependent density functional
theory, Annu. Rev. Phys. Chem. 55 (2004), 427.

[Mit97] W. F. Mitchell, A Parallel Multigrid Method Using the Full Domain Parti-
tion, Electronic Transactions on Numerical Analysis 6 (1997), 224.

[MK05] M. Mundt and S. Kümmel, Derivative Discontinuities in Time-Dependent
Density-Functional Theory, Phys. Rev. Lett. 95 (2005), 203004.

[MK06] M. Mundt and S. Kümmel, Optimized e�ective potential in real time: Prob-
lems and prospects in time-dependent density-functional theory, Phys. Rev.
A 74 (2006), 022511.

[MK07] M. Mundt and S. Kümmel, Photoelectron spectra of anionic sodium clusters
from time-dependent density-functional theory in real time, Phys. Rev. B 76

(2007), 035413.

[MKHM06] M. Mundt, S. Kümmel, B. Huber, and M. Moseler, Photoelectron spectra of
sodium clusters: The problem of interpreting Kohn-Sham eigenvalues, Phys.
Rev. B 73 (2006), 205407.

[MKK11] A. Makmal, S. Kümmel, and L. Kronik, Dissociation of diatomic molecules
and the exact-exchange Kohn-Sham potential: The case of LiF, Phys. Rev.
A 83 (2011), 062512.

[MKvLR07] M. Mundt, S. Kümmel, R. van Leeuwen, and P.-G. Reinhard, Violation of
the zero-force theorem in the time-dependent Krieger-Li-Iafrate approxima-
tion, Phys. Rev. A 75 (2007), 050501.

[MLCGM08] A. Muñoz-Losa, C. Curutchet, I. Fdez. Galván, and B. Mennucci, Quantum
mechanical methods applied to excitation energy transfer: A comparative
analysis on excitation energies and electronic couplings, J. Chem. Phys. 129
(2008), 034104.

[MMN+12] M. A. L. Marques, N. T. Maitra, F. M. S. Nogueira, E. K. U. Gross, and
A. Rubio (eds.), Fundamentals of Time-Dependent Density Functional The-
ory, Lecture Notes in Physics, Springer, 2012.

[MNMB07] R. Metivier, F. Nolde, K. Müllen, and T. Basché, Electronic excitation en-
ergy transfer between two single molecules embedded in a polymer host, Phys.
Rev. Lett. 98 (2007), 047802.



124 BIBLIOGRAPHY

[MSCY06] P. Mori-Sánchez, A. J. Cohen, and W. Yang, Many-electron self-interaction
error in approximate density functionals, J. Chem. Phys. 125 (2006),
201102.

[MSWY03] P. Mori-Sánchez, Q. Wu, and W. Yang, Accurate polymer polarizabilities
with exact exchange density-functional theory, J. Chem. Phys. 119 (2003),
11001.

[MT96] L. R. Matheson and R. E. Tarjan, Parallelism in Multigrid Methods: How
Much Is Too Much?, Int. J. Parallel Program. 24 (1996), 397.

[MT06] N. T. Maitra and D.G. Tempel, Long-range excitations in time-dependent
density functional theory, J. Chem. Phys. 125 (2006), 184111.

[Mul50] R. S. Mulliken, Structures of Complexes Formed by Halogen Molecules with
Aromatic and with Oxygenated Solvents, J. Am. Chem. Soc. 72 (1950), 600.

[MUN+06] M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, and
E. K. U. Gross (eds.), Time-Dependent Density Functional Theory, Lecture
Notes in Physics, Springer, 2006.

[Mun07] M. Mundt, Orbital functionals in time-dependent density-functional theory,
Ph.D. thesis, Universität Bayreuth, 2007.

[Mun09] M. Mundt, Real-time approach to time-dependent density-functional theory
in the linear and nonlinear regime, J. Theor. Comp. Chem. 8 (2009), 561.

[MVO+11] M. A. L. Marques, J. Vidal1, M. J. T. Oliveira, L. Reining, and S. Botti,
Density-based mixing parameter for hybrid functionals, Phys. Rev. B 83

(2011), 035119.

[Neu07] J. Neugebauer, Couplings between electronic transitions in a subsystem for-
mulation of time-dependent density functional theory, J. Chem. Phys. 126
(2007), 134116.

[Neu08] J. Neugebauer, Photophysical properties of natural light-harvesting com-
plexes studied by subsystem density functional theory, J. Phys. Chem. B
112 (2008), 2207.

[New91] M. D. Newton, Quantum chemical probes of electron-transfer kinetics: the
nature of donor-acceptor interactions, Chem. Rev. 91 (1991), 767.

[NFM03] F. Nogueira, C. Fiolhais, and M. A. L. Marques (eds.), A Primer in Density
Functional Theory, Lecture Notes in Physics, Springer, 2003.

[OCL97] S. Ö�güt, J. R. Chelikowsky, and S. G. Louie, Quantum Con�nement and
Optical Gaps in Si Nanocrystals, Phys. Rev. Lett. 79 (1997), 1770.

[ORR02] G. Onida, L. Reining, and A. Rubio, Electronic excitations: density-
functional versus many-body Green's-function approaches, Rev. Mod. Phys.
74 (2002), 601.



BIBLIOGRAPHY 125

[PAZ01] S. Patchkovskii, J. Autschbach, and T. Ziegler, Curing di�cult cases in mag-
netic properties prediction with self-interaction corrected density functional
theory, J. Chem. Phys. 115 (2001), 26.

[PBE96] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approxi-
mation Made Simple, Phys. Rev. Lett. 77 (1996), 3865.

[PBHT08] M. J. G. Peach, P. Ben�eld, T. Helgaker, and D. J. Tozer, Excitation energies
in density functional theory: An evaluation and a diagnostic test, J. Chem.
Phys. 128 (2008), 044118.

[PDV08] Y. V. Pershin, Y. Dubi, and M. Di Ventra, E�ective single-particle order- N
scheme for the dynamics of open noninteracting many-body systems, Phys.
Rev. B 78 (2008), 054302.

[Per86] J. P. Perdew, Density-functional approximation for the correlation energy of
the inhomogeneous electron gas, Phys. Rev. B 33 (1986), 8822.

[Per90] J. P. Perdew, Size-Consistency, Self-Interaction Correction, and Deriva-
tive Discontinuity in Density Functional Theory, Adv. Quantum Chem. 21
(1990), 113.

[PFD+11] C.-H. Park, A. Ferretti, I. Dabo, N. Poilvert, and N. Marzari, Variational
Minimization of Orbital-dependent Density Functionals, arXiv:1108.5726v1
(2011).

[PGG96] M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Excitation Energies from
Time-Dependent Density-Functional Theory, Phys. Rev. Lett. 76 (1996),
1212.

[PHL84] M. R. Pederson, R. A. Heaton, and C. C. Lin, Local-density Hartree�Fock
theory of electronic states of molecules with self-interaction correction, J.
Chem. Phys. 80 (1984), 1972.

[PHL85] M. R. Pederson, R. A. Heaton, and C. C. Lin, Density-Functional The-
ory with self-interaction correction - application to the lithium molecule, J.
Chem. Phys. 82 (1985), 2688.

[PL83] J. P. Perdew and M. Levy, Physical Content of the Exact Kohn-Sham Orbital
Energies: Band Gaps and Derivative Discontinuities, Phys. Rev. Lett. 51
(1983), 1984.

[PL88] M. R. Pederson and C. C. Lin, Localized and canonical atomic orbitals in
self-interaction corrected local density functional approximation, J. Chem.
Phys. 88 (1988), 1807.

[PM89] J. Pipek and P. G. Mezey, A fast intrinsic localization procedure applicable
for ab initio and semiempirical linear combination of atomic orbital wave
functions, J. Chem. Phys. 90 (1989), 4916.



126 BIBLIOGRAPHY

[PPLB82] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Density-Functional
Theory for Fractional Particle Number: Derivative Discontinuities of the
Energy, Phys. Rev. Lett. 49 (1982), 1691.

[PSB08] C. D. Pemmaraju, S. Sanvito, and K. Burke, Polarizability of molecular
chains: A self-interaction correction approach, Phys. Rev. B 77 (2008),
121204(R).

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer-
ical Recipes in FORTRAN, Cambridge University Press, 1992.

[PW92] J. P. Perdew and Y. Wang, Accurate and simple analytic representation of
the electron-gas correlation energy, Phys. Rev. B 45 (1992), 13244.

[PY86] J. P. Perdew and W. Yue, Accurate and simple density functional for the
electronic exchange energy: Generalized gradient approximation, Phys. Rev.
B 33 (1986), 8800.

[PZ81] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional
approximations for many-electron systems, Phys. Rev. B 23 (1981), 5048.

[RG84] E. Runge and E. K. U. Gross, Density-Functional Theory for Time-
Dependent Systems, Phys. Rev. Lett. 52 (1984), 997.

[RL98] M. Rohl�ng and S. G. Louie, Excitonic E�ects and the Optical Absorption
Spectrum of Hydrogenated Si Clusters, Phys. Rev. Lett. 80 (1998), 3320.

[RL00] M. Rohl�ng and S. G. Louie, Electron-hole excitations and optical spectra
from �rst principles, Phys. Rev. B 62 (2000), 4927.

[RLG10] D. Rocca, D. Lu, and G. Galli, Ab initio calculations of optical absorption
spectra: Solution of the Bethe�Salpeter equation within density matrix per-
turbation theory, J. Chem. Phys. 133 (2010), 164109.

[RMAG09] P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, Role of Quantum Coher-
ence and Environmental Fluctuations in Chromophoric Energy Transport,
J. Phys. Chem. B 113 (2009), 9942.

[RPC+06] A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E. Scuseria,
Spurious fractional charge on dissociated atoms: Pervasive and resilient self-
interaction error of common density functionals, J. Chem. Phys. 125 (2006),
194112.

[RPC+08] A. Ruzsinszky, J. P. Perdew, G. I. Csonka, G. E. Scuseria, and O. A. Vy-
drov, Understanding and correcting the self-interaction error in the electrical
response of hydrogen chains, Phys. Rev. A 77 (2008), 060502(R).

[RSA+06] P.-G. Reinhard, P. D. Stevenson, D. Almehed, J. A. Maruhn, and M. R.
Strayer, Role of boundary conditions in dynamic studies of nuclear giant
resonances and collisions, Phys. Rev. E 73 (2006), 036709.



BIBLIOGRAPHY 127

[Saa03] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial
and Applied Mathematics (2003), 187.

[SAF98] L. Serrano-Andrés and M. P. Fülscher, Theoretical Study of the Electronic
Spectroscopy of Peptides. III. Charge-Transfer Transitions in Polypeptides,
J. Am. Chem. Soc. 120 (1998), 10912.

[Sav95] A. Savin, Beyond the Kohn-Sham Determinant, Recent Advances in Density
Functional Methods 1 (1995), 129.

[Sch84] S. Scha�er, Higher Order Multi-Grid Methods, Math. Comp. 43 (1984), 89.

[Sch03] G. D. Scholes, Long-range resonance energy transfer in molecular systems,
Ann. Rev. Phys. Chem. 54 (2003), 57.

[SDCF94] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, Ab Initio
Calculation of Vibrational Absorption and Circular Dichroism Spectra Using
Density Functional Force Fields, J. Phys. Chem. 98 (1994), 11623.

[SFK09] E. Sagvolden, F. Furche, and A. Köhn, Förster Energy Transfer and Davydov
Splittings in Time-Dependent Density Functional Theory: Lessons from 2-
Pyridone Dimer, J. Chem. Theory Comput. 5 (2009), 873.

[SG01] F. Della Sala and A. Görling, E�cient localized Hartree�Fock methods as
e�ective exact-exchange Kohn�Sham methods for molecules, J. Chem. Phys.
115 (2001), 5718.

[SGV+96] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy, Generalized
Kohn-Sham schemes and the band-gap problem, Phys. Rev. B 53 (1996),
3764.

[SH53] R. T. Sharp and G. K. Horton, A Variational Approach to the Unipotential
Many-Electron Problem, Phys. Rev. 90 (1953), 317.

[Sil11] R. Silbey, Description of quantum e�ects in the condensed phase, Procedia
Chemistry 3 (2011), 188.

[SKB09a] T. Stein, L. Kronik, and R. Baer, Prediction of charge-transfer excitations
in coumarin-based dyes using a range-separated functional tuned from �rst
principles, J. Am. Chem. Soc. 131 (2009), 244119.

[SKB09b] T. Stein, L. Kronik, and R. Baer, Reliable Prediction of Charge Transfer
Excitations in Molecular Complexes Using Time-Dependent Density Func-
tional Theory, J. Am. Chem. Soc. 131 (2009), 2818.

[Sla51] J. C. Slater, A Simpli�cation of the Hartree-Fock Method, Phys. Rev. 81
(1951), 385.

[SP08] E. Sagvolden and J. P. Perdew, Discontinuity of the exchange-correlation
potential: Support for assumptions used to �nd it, Phys. Rev. A 77 (2008),
012517.



128 BIBLIOGRAPHY

[SPB+06] C. Scharf, K. Peter, P. Bauer, C. Jung, M. Thelakkat, and J. Köhler, To-
wards the characterization of energy-transfer processes in organic donor-
acceptor dyads based on triphenyldiamine and perylenebisimides, Chem.
Phys. 328 (2006), 403.

[Spe96] S. Speiser, Photophysics and Mechanisms of Intramolecular Electronic En-
ergy Transfer in Bichromophoric Molecular Systems: Solution and Super-
sonic Jet Studies, Chem. Rev. 96 (1996), 1953.

[SS83] L. J. Sham and M. Schlüter, Density-Functional Theory of the Energy Gap,
Phys. Rev. Lett. 51 (1983), 1888.

[�ST03] M. �Sterk and R. Trobec, Parallel Performances of a Multigrid Poisson
Solver, International Symposium on Parallel and Distributed Computing
(2003), 238.

[Ste78] H. J. Stetter, The Defect Correction Principle and Discretization Methods,
Numer. Math. 29 (1978), 425.

[Str78] L. Stryer, Fluorescence energy-transfer as a spectroscopic ruler, Ann. Rev.
Biochem. 47 (1978), 819.

[SV09] N. Schuch and F. Verstraete, Computational complexity of interacting elec-
trons and fundamental limitations of density functional theory, Nat. Phys.
5 (2009), 732.

[TAH+99] D. J. Tozer, R. D. Amos, N. C. Handy, B. O. Roos, and L. Serrano-Andrés,
Does density functional theory contribute to the understanding of excited
states of unsaturated organic compounds?, Mol. Phys. 97 (1999), 859.

[TC98a] X.-M. Tong and S.-I Chu, Time-dependent density-functional theory for
strong-�eld multiphoton processes: Application to the study of the role of
dynamical electron correlation in multiple high-order harmonic generation,
Phys. Rev. A 57 (1998), 452.

[TC98b] X.-M. Tong and S.-I Chu, Time-dependent density-functional theory with
optimized e�ective potential and self-interaction correction: Application to
the study of coherent control of multiple high-order harmonic generation of
He atoms in mixed laser �elds, Int J. Quantum Chem. 69 (1998), 293.

[TFSB05] C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Self-Interaction Errors in
Density-Functional Calculations of Electronic Transport, Phys. Rev. Lett.
95 (2005), 146402.

[TK09] M. Thiele and S. Kümmel, Photoabsorption spectra from adiabatically exact
time-dependent density-functional theory in real time, Phys. Chem. Chem.
Phys. 11 (2009), 4631.

[TM91] N. Troullier and J. L. Martins, E�cient pseudopotentials for plane-wave
calculations, Phys. Rev. B 43 (1991), 1993.



BIBLIOGRAPHY 129

[TMM09] D. G. Tempel, T. J. Martínez, and N. T. Maitra, Revisiting Molecular Dis-
sociation in Density Functional Theory: A Simple Model, J. Chem. Theo.
Comput. 5 (2009), 770.

[TOS01] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic
Press, 2001.

[Toz03] D. J. Tozer, Relationship between long-range charge-transfer excitation en-
ergy error and integer discontinuity in Kohn-Sham theory, J. Chem. Phys.
119 (2003), 12697.

[TS76] J. D. Talman and W. F. Shadwick, Optimized e�ective atomic central po-
tential, Phys. Rev. A 14 (1976), 36.

[TS07] C. Toher and S. Sanvito, E�cient Atomic Self-Interaction Correction
Scheme for Nonequilibrium Quantum Transport, Phys. Rev. Lett. 99 (2007),
056801.

[TS08] C. Toher and S. Sanvito, E�ects of self-interaction corrections on the trans-
port properties of phenyl-based molecular junctions, Phys. Rev. B 77 (2008),
155402.

[TTdM+95] T. T. Toto, J. L. Toto, C. P. de Melo, M. Hasan, and B. Kirtman, Ab initio �-
nite oligomer method for nonlinear optical properties of conjugated polymers.
E�ect of electron correlation on the static longitudinal hyperpolarizability of
polyacetylene, Chem. Phys. Lett. 244 (1995), 59.

[UGG95] C. A. Ullrich, U. J. Gossmann, and E. K. U. Gross, Time-dependent opti-
mized e�ective potential, Phys. Rev. Lett. 74 (1995), 872.

[vBH72] U. von Barth and L. Hedin, A local exchange-correlation potential for the
spin polarized case: I, J. Phys. C 5 (1972), 1629.

[vFdBvL+02] M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger, and J. G.
Snijders, Ultranonlocality in Time-Dependent Current-Density-Functional
Theory: Application to Conjugated Polymers, Phys. Rev. Lett. 88 (2002),
186401.

[vGSG+99] S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends,
J. G. Snijders, B. Champagne, and B. Kirtman, Electric Field Dependence
of the Exchange-Correlation Potential in Molecular Chains, Phys. Rev. Lett.
83 (1999), 694.

[Vig95] G. Vignale, Center of Mass and Relative Motion in Time Dependent Density
Functional Theory, Phys. Rev. Lett. 74 (1995), 3233.

[Vig04] G. Vignale, Mapping from current densities to vector potentials in time-
dependent current density functional theory, Phys. Rev. B 70 (2004), 201102.

[vK07] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier,
2007.



130 BIBLIOGRAPHY

[vL98] R. van Leeuwen, Causality and Symmetry in Time-Dependent Density-
Functional Theory, Phys. Rev. Lett. 80 (1998), 1280.

[vL99] R. van Leeuwen, Mapping from Densities to Potentials in Time-Dependent
Density-Functional Theory, Phys. Rev. Lett. 82 (1999), 3863.

[vL01] R. van Leeuwen, Key concepts in time-dependent density-functional theory,
Int. J. Mod. Phys. B 15 (2001), 1969.

[vLGB95] R. van Leeuwen, O. V. Gritsenko, and E. J. Baerends, Step structure in the
atmoic Kohn-Sham potential, Z. Phys. D 33 (1995), 229.

[VOC02] I. Vasiliev, S. Ö�güt, and J. R. Chelikowsky, First-principles density-
functional calculations for optical spectra of clusters and nanocrystals, Phys.
Rev. B 65 (2002), 115416.

[VOC06] I. Vasiliev, S. Ö�güt, and J. R. Chelikowsky, Optical excitations in organic
molecules, clusters, and defects studied by �rst-principles Green's function
methods, Phys. Rev. B 73 (2006), 205334.

[VS06] O. A. Vydrov and G. E. Scuseria, Assessment of a long-range corrected
hybrid functional, J. Chem. Phys. 125 (2006), 234109.

[VSP+06] O. A. Vydrov, G. E. Scuseria, J. P. Perdew, A. Ruzsinszky, and G. I. Csonka,
Scaling down the Perdew-Zunger self-interaction correction in many-electron
regions, J. Chem. Phys. 124 (2006), 094108.

[VSP07] O. A. Vydrov, G. E. Scuseria, and J. P. Perdew, Tests of functionals for
systems with fractional electron number, J. Chem. Phys. 126 (2007), 154109.

[Wei08] U. Weiss, Quantum Dissipative Systems, World Scienti�c, 2008.

[WT79] C.-Y. Wong and H. H. K. Tang, Dynamics of nuclear �uid. V. Extended
time-dependent Hartree-Fock approximation illuminates the approach to
thermal equilibrium, Phys. Rev. C 20 (1979), 1419.

[WU08] H. O. Wijewardane and C. A. Ullrich, Real-Time Electron Dynamics with
Exact-Exchange Time-Dependent Density-Functional Theory, Phys. Rev.
Lett. 100 (2008), 056404.

[YB96] K. Yabana and G. F. Bertsch, Time-dependent local-density approximation
in real time, Phys. Rev. B 54 (1996), 4484.

[YB99a] K. Yabana and G. F. Bertsch, Optical response of small silver clusters, Phys.
Rev. A 60 (1999), 3809.

[YB99b] K. Yabana and G. F. Bertsch, Time-dependent local-density approximation
in real time: Application to conjugated molecules, Int. J. Quantum Chem.
75 (1999), 55.



BIBLIOGRAPHY 131

[YF02] M. Yang and G. R. Fleming, In�uence of phonons on exciton transfer dy-
namics: comparison of the Red�eld, Förster, and modi�ed Red�eld equa-
tions, Chem. Phys. 275 (2002), 355.

[YTH04] T. Yanai, D. P. Tew, and N. C. Handy, A new hybrid exchange-correlation
functional using the Coulomb-attenuating method (CAM-B3LYP), Chem.
Phys. Lett. 393 (2004), 51.

[YZTRRAG10] J. Yuen-Zhou, D. G. Tempel, C.A. Rodríguez-Rosario, and A. Aspuru-
Guzik, Time-Dependent Density Functional Theory for Open Quantum Sys-
tems with Unitary Propagation, Phys. Rev. Lett. 104 (2010), 043001.

[ZS80] A. Zangwill and P. Soven, Density-functional approach to local-�eld e�ects
in �nite systems: Photoabsorption in the rare gases, Phys. Rev. A 21 (1980),
1561.

[ZSK+09] T. Ziegler, M. Seth, M. Krykunov, J. Autschbach, and F. Wang, Is charge
transfer transitions really too di�cult for standard density functionals or are
they just a problem for time-dependent density functional theory based on a
linear response approach, J. Mol. Struc.: THEOCHEM 914 (2009), 106.

[ZY98] Y. Zhang and W. Yang, A challenge for density functionals: Self-interaction
error increases for systems with a noninteger number of electrons, J. Chem.
Phys. 109 (1998), 2604.





Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe. Die Arbeit wurde weder
in gleicher noch in ähnlicher Form bei anderen Prüfungsbehörden zur Erlangung eines
akademischen Grades vorgelegt.

Ich erkläre, dass ich keine Hilfe von gewerblichen Promotionsberatern bzw. -vermittlern
oder ähnlichen Dienstleistern in Anspruch genommen habe und auch nicht beabsichtige
diese zukünftig in Anspruch zu nehmen.

Weiterhin erkläre ich, dass ich bisher keinen anderweitigen Promotionsversuch unternommen
habe.

Bayreuth, den 06. September 2012 Dirk Hofmann

133





Pub1

Publication 1

Energy transfer and Förster's dipole coupling

approximation investigated in a real-time

Kohn-Sham scheme

D. Hofmann, T. Körzdörfer, and S. Kümmel
Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

Physical Review A 82, 012509 (2010)

c©2010 The American Physical Society
DOI: 10.1103/PhysRevA.82.012509

available at: http://link.aps.org/doi/10.1103/PhysRevA.82.012509

ABSTRACT

We present a scheme to investigate energy transfer by real-time propagation of the Kohn-
Sham equations. The scheme's purpose is to check and go beyond the dipole coupling
approximation underlying a Förster-type energy transfer, and to obtain information about
the coupling on the grounds of the density-functional theory. We observe deviations from
the dipole coupling approximation for small molecules.





PHYSICAL REVIEW A 82, 012509 (2010)

Energy transfer and Förster’s dipole coupling approximation investigated
in a real-time Kohn-Sham scheme

D. Hofmann, T. Körzdörfer, and S. Kümmel
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I. ENERGY TRANSFER AND TIME-DEPENDENT
DENSITY FUNCTIONAL THEORY

Energy transfer is one of the most fundamental processes on
the molecular scale, governing light-harvesting in biological
systems [1,2] and energy conversion in electronic devices such
as organic solar cells [3–5] or light-emitting diodes [6]. The
design principles of natural light-harvesting complexes [7–9]
have found considerable interest, as hopes are high that the
principles realized in nature can be mimicked in the design of
artificial organic devices [3,10,11].

One standard method to interpret experimental data of
excitation energy transfer between a donor (D) and an acceptor
(A) molecule separated by the distance R is the so-called
Förster resonance energy transfer (FRET) theory [9–21].
Förster theory describes the nonradiative energy transfer
mediated by a (quantum-mechanical) coupling between the
transition dipoles of the donor and acceptor molecules [13–15].
One of the central assumptions in FRET is that the coupling
between D and A can be described by a (point)-dipole-dipole
interaction, falling as 1/R3. Furthermore, FRET theory is
formulated for the weak coupling regime (i.e., the isolated D
and A excited states do not change significantly on coupling).
Based on these assumptions Förster derived an expression for
the energy transfer rate showing a characteristic R−6 distance
dependence, with the nuclear vibrations being subsumed into
a spectral overlap factor between donor emission and acceptor
absorption spectra. The resulting, rather simple expression for
the energy transfer rate, see Sec. II for details, allows for
determining the intermolecular distance R by spectroscopy of
the coupled D-A system, and D as well as A individually.

Thus, FRET has gained tremendous importance as it
establishes a spectroscopic ruler on the nanoscale [22,23].
Typically it is applied in a range of distances from about 10
to 100 Å [24,25]. However, in recent years the applicability
of the dipole coupling approximation underlying FRET has
been questioned in many applications [25–33] as frequently
the intermolecular distance R is comparable to the molecules’
extension, or the D and A molecules are connected by bridging
units.

Theoretical insight into the validity of the dipole coupling
approximation is, therefore, of great importance. As the
molecules of practical relevance often contain many elec-
trons, (time-dependent) density functional theory (TD)DFT
appears as a natural choice to study the problem on a
first-principles scale at bearable computational cost. Recently,

TDDFT has been applied to Förster-type excitation energy
transfer questions [34–41] in the Casida-type linear response
formalism [42]. As a complementary approach to the Casida
formalism, real-time implementations [43–52] of TDDFT are
finding increasing attention due to their accuracy and favorable
scaling, which allows one to apply them to large systems
[53–55]. In addition, they do not require computation of the
exchange-correlation kernel, which can be advantageous when
advanced functionals that explicitly employ the orbitals are
used [47,49,56–58].

In the following we present a real-time TDDFT scheme
for investigating energy transfer and the dipole coupling
approximation. After shortly reviewing the pertinent concepts
of FRET theory in Sec. II, we discuss in Sec. III how the dipole
coupling can be incorporated into the real-time methodology.
This leads to a very general scheme for qualitatively checking
the validity of the dipole coupling approximation, as demon-
strated in Sec. IV. Under certain conditions that are explained
in Sec. V one can also determine the coupling matrix element
quantitatively. We stress that in all instances we deliberately
do not use the Kohn-Sham Slater determinant as an approx-
imation to the true wave function, staying truly on TDDFT
grounds.

II. THE DIPOLE COUPLING APPROXIMATION

In the following we briefly review the aspects of Förster
theory that are crucial for the further considerations. Starting
with Fermi’s Golden Rule, the energy transfer rate kET can be
written as [15]

kET = 2π |V |2
∫ ∞

0
dε J (ε), (1)

where J (ε) is the spectral overlap between the normalized
donor emission and acceptor absorption spectra. Hartree
atomic units are used throughout. V is the electronic coupling
matrix element

V = 〈DA∗|V̂ C|D∗A〉, (2)

where the Coulomb interaction V̂ C mediates between the
initial and final wave functions. Förster theory is based on
the assumption that the wave function of the total system can
be separated into D and A parts due to negligible electronic
coupling between D and A. Initially, the acceptor is in its
ground state denoted by |A〉 and the donor is in an excited

1050-2947/2010/82(1)/012509(9) 012509-1 ©2010 The American Physical Society
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state |D∗〉. The final wave function corresponds to the inverse
situation. Thus, the states in Eq. (2) are written as

〈DA∗| = 1√
2

(〈D̃A∗| − 〈Ã∗D|),
(3)

|D∗A〉 = 1√
2

(|D̃∗A〉 − |ÃD∗〉),

where |D̃A∗〉 abbreviates the product state |D〉|A∗〉, respec-
tively. Accordingly, the coupling matrix element splits into
the Coulomb contribution (i.e., D and D∗ having the same
coordinates)

V C = 〈D̃A∗|V̂ C|D̃∗A〉 (4)

and the so-called exchange contribution

V x = 〈Ã∗D|V̂ C|D̃∗A〉 (5)

(i.e., A∗ and D∗ having the same coordinates) [14,59,60]. As
the overlap between states falls exponentially with increasing
R, V x is neglected in FRET and only the Coulomb term
contributes to the Förster rate-of-excitation energy transfer.
(The exchange contribution gives the so-called Dexter-type
energy transfer [59].)

Under the assumption that the extension of the D and
A molecules is small compared to R

|rA|
|R| � 1 and

|rD|
|R| � 1, (6)

(see Fig. 1 for the notation), the Coulomb interaction between
the electrons of D and A is expanded in a multipole series.
Expanding up to powers R−3, the interaction is written as∑

j,k

1∣∣R + (
rA
k − rD

j

)∣∣
=

∑
j,k

{
1

|R| −
(
rA
k − rD

j

)
R

|R|3 + 3

2

[(
rA
k − rD

j

)
R

]2

|R|5

−
(
rA
k − rD

j

)2

2|R|3 + · · ·
}

, (7)

where the k sum runs over all electrons of the acceptor, and
the j sum runs over all electrons in the donor. Introducing the
orientation factor

κDA = êDêA − 3(êDR)(êAR), (8)

with the vectors êi = ri

|ri | , the transition dipole moments

µD = 〈D|
∑

j

rD
j |D∗〉

(9)
µA = 〈A|

∑
k

rA
k |A∗〉,

and assuming orthogonality of D and A states, one finds the
coupling matrix element of FRET theory

V FRET = κDA |µA||µD|
|R|3 . (10)

V FRET features the characteristic R−3 dependence of Förster
theory. Together with Eq. (1) this yields the rate of the Förster-
type excitation energy transfer.

III. A DIPOLE COUPLING SCHEME IN THE
TDDFT CONTEXT

The previously presented concept relies on using the states
|A〉 and |D〉. For the typical molecules of interest involving
tens to hundreds of electrons, the computational cost of
calculating these many-particle states with ab initio wave
function methods is prohibitive. (TD)DFT allows one to
determine the electronic structure of systems of that size, yet
again, the many-particle states are not accessible: Even if the
ultimate exchange-correlation functional were known, there
is no reason to believe that generally the Kohn-Sham Slater
determinant will be close to the true correlated wave function.
Therefore, a TDDFT scheme that is intended to investigate
the dipole coupling approximation that is inherent to Förster
theory must be based solely on the variable that is reliable in
(TD)DFT, namely the density. One way of how this can be
achieved is presented in the following.

The real-time formalism of TDDFT that we want to apply
is based on the time-dependent Kohn-Sham (KS) equations
[43,45,48,50]

i
∂

∂t
ϕj (r,t) = hKS(r,t)ϕj (r,t), (11)

where hKS is the time-dependent KS Hamiltonian given by

hKS(r,t) = −∇2

2
+ vH(r,t) + vxc(r,t) + vext(r,t). (12)

The potential vext(r,t) represents all external contributions
(e.g., nuclei and a laser field). The electron interaction is taken
into account via the Hartree potential

vH[n](r,t) =
∫

n(r′,t)
|r − r′| d3r ′ (13)

and the exchange-correlation (xc) potential vxc(r,t). Whereas
vH[n](r,t) is known explicitly as the functional derivative of
the classical Hartree energy

EH[n] = 1

2

∫
n(r,t)n(r′,t)

|r − r′| d3rd3r ′, (14)

the xc potential has to be approximated as its exact form is
unknown.

The real-time KS equations lend themselves very naturally
to a general and straightforward scheme for checking the
dipole coupling approximation that is at the heart of FRET:
One can explicitly implement the multipole expansion of
Förster into the TDDFT equations and compare the orbital
propagation with the multipole expansion to another one
without (i.e., with the usual full KS Hamiltonian). The details
of this strategy are explained in the following.

In accordance with the assumption of an appreciable spatial
separation of the D and A systems that is underlying FRET
theory, we divide the full density into a D and an A part. For
the sake of being as explicit in our notation as possible, we
assume in all of the following that the D and A densities
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( ( () ) )

( )( )( )

FIG. 1. Donor and acceptor are separated by the distance R = |R|
and can thus be localized in the half-spaces with negative and positive
x coordinate, for the sake of an explicit notation. Each system
is characterized by its multipole moments Ni , di and Qi

jk , where
i = {D,A} labels the system, respectively. Distances with respect to
the center of D and A, respectively, are denoted by rD and rA.

are localized in the half spaces of negative and positive
x coordinates, respectively, as shown in Fig. 1

nD(r) = �(−x)n(r),
(15)

nA(r) = �(x)n(r),

where �(x) is the Heaviside step function.
As reviewed previously, Förster’s concept is based on using

the exact states for the separate molecules, but only taking the
classical (Hartree) interaction between the transition dipoles
of D and A into account for the intermolecular coupling.
Consequently, a TDDFT analog of Förster’s approach should
take all electron interaction effects into account [i.e., use
vH and the (unknown) exact vxc] within each molecule, but
use only the Hartree potential for the coupling between D
and A, and the latter only to low order in a multipole
expansion.

In the following we describe how this expansion can be
incorporated into a TDDFT scheme in practice, and we start
by noting that there are two possible paths to implement the
dipole coupling approximation for the Hartree coupling. The
first is to start with the Hartree energy of Eq. (14), perform
the multipole expansion, and then take the functional derivative
to obtain the potential. The second is to start from the Hartree
potential itself and perform the dipole approximation on the
level of Eq. (13).

Following the first route, the Hartree energy splits into three
components

EH[n] = EH[nD] + EH[nA] +
∫

nA(r)nD(r′)
|r − r′| d3rd3r ′, (16)

where the first two contributions separate in D and A, whereas
the third term contains the interaction between the D and
A systems. The expansion (7) is used in the third term on
the right-hand side (rhs) of Eq. (16) to obtain the Hartree
energy Edd

H in the dipole coupling approximation. Calculating
the functional derivative of Eq. (16) we use the functional

chain rule to take the separation in D and A densities into
account

vH[n](r) =
∑

i=D,A

∫
δEdd

H [nD,nA]

δni(r′)
δni(r′)
δn(r)

d3r ′. (17)

Consequently, the potential in the dipole coupling approx-
imation (superscript dd) as derived from the energy (thus
superscript index E) can be written as

v
ddE
H [nD,nA] = (

vH[nD] + v
ddE,D
H [nA]

)
�(−x)

+ (
vH[nA] + v

ddE,A
H [nD]

)
�(x), (18)

where vH[nD(A)] is the Hartree potential of D(A) and
v

ddE,D(A)
H [nA(D)] is the potential resulting from the third term of

Eq. (16) in the D(A) half-space. With the help of the multipole
moments of the D(A) density,

Ni =
∫

ni(ri) d3ri, di =
∫

rini(ri) d3ri,

(19)
Qi

jk =
∫

ni(ri)
(
3ri

j r
i
k − ri 2δjk

)
d3ri,

where i = D,A, the Förster potential that the donor density
generates in the half space of A (cf. Fig. 1) is

v
ddE,A
H [nD](rA) = ND

|R| − (NDrA − dD)R
|R|3 + rAdD

|R|3

+ ND

2

3∑
j,k=1

(
3rA

j rA
k − rA 2

δjk

)RjRk

|R|5

+
3∑

j,k=1

QD
jkRjRk

2|R|5 − 3(RrA)(RdD)

|R|5 . (20)

The corresponding potential v
ddE,D
H [nA](rD) is obtained from

Eq. (20) by interchanging the D and A superscripts and
replacing R by −R.

As an alternative to this derivation we can take the second
route. To this end we start directly at the level of the potential
and write the Hartree potential on the A side as

vA
H[nD,nA] =

∫
nA(r′)

|rA − r′| d3r ′ +
∫

nD(rD)

|rA + R − rD| d3rD.

(21)

This expression leads to another natural way of translating
Förster’s Hartree dipole coupling concept into a TDDFT
scheme: The contribution from the A density to the Hartree
potential in A’s own half space is taken into account fully,
whereas the contribution from the D density to the Hartree
potential in A’s half space [the second term on the rhs of
Eq. (21)] is expanded in analogy to Eq. (7). The latter leads to
the potential

v
ddv,A
H [nD] = ND

|rA + R| + dD(rA + R)

|rA + R|3 +
3∑

j,k=1

QD
jkRjRk

2|rA + R|5 ,

(22)
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FIG. 2. (Color online) Comparison of the usual Hartree potential
vH[n] (black solid line) with the Hartree potentials v

ddv

H [nD,nA] (red
dotted line) and v

ddE
H [nD,nA] (blue dashed line). The potentials are

plotted along the axis that runs through the centers of the two sodium
dimers, while the position of the molecules is −10 and +10 bohr.

on the A side (where the superscript index v indicates that
we approximated the potential directly, not the energy as in
route 1). The corresponding potential on the D side is

v
ddv,D
H [nA] = NA

|rD − R| + dA(rD − R)

|rD − R|3 +
3∑

j,k=1

QA
jkRjRk

2|rD − R|5 .

(23)

Using these expressions instead of v
ddE,A
H and v

ddE,D
H in

Eq. (18) defines the potential v
ddv

H .
Let us pause for a moment to compare the two routes. The

first one, starting from the energy, appears more natural if one
has in mind Förster’s original work, which was based on the
energy. However, the second one, directly using the potential,
seems to be more natural in the context of KS (TD)DFT in
which the potential is readily available. However, both are
valid translations of Förster’s concept into a real-time TDDFT
context, and it is thus not clear a priori which one should
be preferred. To get a better understanding of the differences
between v

ddE
H and v

ddv

H we plot them in Fig. 2 for a transparent
example, a system of two sodium dimers [61] aligned in
parallel and separated by R = 20 a.u..

While v
ddv

H is rather similar to the full Hartree potential,
the potential v

ddE
H is considerably too low in the central

region between the dimers and rises unphysically far away
from the dimers. This behavior can be traced back to the
fact that, in calculating v

ddE
H , we always divide by powers

of the fixed R [see denominators of Eq. (20)] while the
numerators rise with growing distance r to the corresponding
molecule. In contrast, in potential v

ddv

H the distance r enters
in the denominator. Therefore, v

ddv

H decays with the growing
distance to the corresponding dimer. As this is the behavior
one naturally expects from a potential, we used v

ddv

H in our
calculations [62].

IV. REAL-TIME INVESTIGATION OF THE DIPOLE
COUPLING APPROXIMATION

Our focus so far was on the conceptual work of translating
Förster’s dipole coupling idea into the (TD)DFT context. For
using the scheme in practical calculations, we have to address
the question of which influences the approximation that is used
for the description of the xc effects will have.

The excitation spectrum of two identical molecules at a
separation large enough for the individual molecular densities
to not overlap can qualitatively be described as being similar to
the spectrum of a single molecule, but with possibly an ener-
getic splitting of the monomer excitations (Davydov splitting,
see Sec. V), and with additional charge-transfer excitations
from one monomer to the other that carry practically zero
oscillator strength.

It is a well known problem of many commonly used density
functionals, in particular (semi)local ones, that they seriously
underestimate the energy of charge-transfer excitations. In the
KS framework, this failure is closely related to the absence
of step-like structures in the xc potential that result from
discontinuities [63] in TDDFT, see Ref. [64] for a detailed
discussion. It has been shown that xc approximations using
a large fraction of exact exchange [39], or range-separated
hybrid functionals [65], or self-interaction corrections [66]
can describe charge transfer well. Using a functional that
accurately describes charge transfer is mandatory for an
accurate description of two monomers at close distance [67].

In the propagation setup the movement of charge is recorded
in real-time and this can be used to directly monitor for charge
transfer from one molecule to the other. This built-in warning
allows one to check against leaving the “large separation”
situation which was described in Sec. II and which is the focus
of interest here [68]. At large separation, the energy transfer
is completely dominated by the Hartree coupling. It remains
mandatory in any case that the xc functional approximation one
uses describes the excitation spectrum of the single molecules
with reasonable accuracy, as otherwise the time-dependent
density and transition dipoles will be incorrect.

Starting from two molecules at a large separation R and
decreasing the distance, our aim is to check when the dipole
coupling approximation breaks down. Our calculations are
performed with our real-time TDDFT extension [51,52] of
the real-space code PARSEC [69]. The two molecules are
placed in two different half-spaces of the real-space grid. All
investigations are performed in the so-called supermolecular
approach [70], where we consider D and A as a combined
system. To distinguish between a coupling of excited states
that fulfills the assumptions leading to expansion (7) and a
coupling that does not, we compare the time-dependent dipole
moments of D and A obtained by a DFT plus TDDFT run with
the full Hartree potential, to the ones obtained in a second run
using the potential v

ddv

H . The dipole moments are calculated
using the D and A centers of density in the DFT ground state
as reference points.

Our proceeding is as follows: (1) determine the spectrum
of one single molecule, (2) choose the excitation of interest,
(3) perform a real-time TDDFT calculation using the full
Hartree potential with a short laser pulse as the initial
excitation, (4) repeat step (3) with v

ddv

H , (5) compare the
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time-dependent dipole moments obtained in steps (3) and (4).
The laser pulse is added as an external potential during the first
steps of the real-time propagation only within the half-space
of D. The frequency, length, and shape of the pulse are tuned
to excite the system only in a narrow frequency band around
the excitation chosen in step (2). (See Appendix A for details.)

In the following we demonstrate the use of this approach
in calculations for dimers of Na2 and C7H6O, respectively.
These systems are transparent enough to allow for a clear
explanation and demonstration of our concept and they are
established reference systems [36,71]. We employ the time-
dependent local density approximation (TDLDA) as it well
describes the excitations of Na2 and C7H6O [72,73] that are of
interest in our study. The possible underestimation of charge-
transfer excitations that was discussed at the beginning of this
section is not of concern here as we are specifically interested in
the major excitations carrying dipole oscillator strength. These
are described well by TDLDA for the systems that we study.

We first investigate the coupling between two sodium
dimers with parallel alignment of the two Na2 axes as a
function of the distance R between the two Na2 molecules.
As the excitation of interest we choose the one that is at
2.1 eV in the Na2 spectrum [71,72]. A typical time evolution of
the acceptor dipole moment is shown in Fig. 3. At the chosen
distance, R = 15 bohr, there are obvious deviations between
the time-dependent dipole moment that is obtained using the
full Hartree potential and the one that is obtained using v

ddv

H .
The deviations are a manifestation of the breakdown of

the dipole coupling approximation at 15 bohr. A systematic
analysis of the deviations in the dipole moment at a range of
distances from 45 to 15 bohr is depicted in Fig. 4. Qualitatively,
we see in Fig. 4 three regimes: For very large distances (45
and 35 bohr) the differences vanish and one is clearly in the
dipole regime. At smaller distances (around 25 bohr in the

FIG. 3. (Color online) Acceptor dipole moment along the
Na2 molecular axis, recorded as a function of time, for a system
of two Na2 with a separation of R = 15 bohr. The time evolution was
calculated using the full Hartree potential (solid, red) and the potential
v

ddv

H (dotted, black). The coupling between D and A manifests itself
in the beat frequency ωbeat of an oscillation between D and A
(cf. Sec. V). This beat frequency can be extracted from the A dipole
moment via ωbeat = 2π/Tbeat.
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FIG. 4. (Color online) Difference between the acceptor dipole
moments obtained in a calculation using the full Hartree potential
and another one using v

ddv

H for an Na2 dimer, for different values of
R: 15 bohr (dot dashed, red), 25 bohr (dashed, blue), 35 bohr (dotted,
green) and 45 bohr (solid, black).

present example) one starts to observe deviations, and for yet
smaller distances (15 bohr) the dipole moments differ very
significantly during their time evolution—although the density
overlap is still small. Here the dipole approximation clearly
fails and higher multipoles are relevant.

The same effects are seen in the second example in which
we examine the coupling between two C7H6O molecules that
are aligned in parallel as depicted in Fig. 5. We again focus on
the lowest excitation with appreciable oscillator strength. The
dipole moment time evolution was calculated for a range of
distances from R = 40 bohr to R = 12 bohr, again using the
two different potentials as discussed previously. Characteristic
results (distances of 24 to 12 bohr) are shown in Fig. 6. The
differences at R = 12 bohr and R = 16 bohr significantly
exceed the differences at the larger separations. Therefore,
one can argue qualitatively that up to 16 bohr separation
one cannot speak of a Förster-type coupling. From 20 bohr
on, the differences in the dipole moment time evolution are
notably smaller and the Förster-type dipole approximation can
be considered valid [74].

As our analysis has so far focused on the total dipole
moments, it is rather general and the concept can

FIG. 5. (Color online) System of two C7H6O molecules, where
the distance R is varied from 40 to 12 bohr.
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D. HOFMANN, T. KÖRZDÖRFER, AND S. KÜMMEL PHYSICAL REVIEW A 82, 012509 (2010)

-6e-05

-4e-05

-2e-05

 0

 2e-05

 4e-05

 6e-05

 0  5  10  15  20  25  30 d
if

fe
re

nc
e 

of
 a

cc
ep

to
r 

di
po

le
 m

om
en

ts
 [

a.
u.

]

time [fs]

FIG. 6. (Color online) Difference of acceptor dipole moment in
a system of two C7H6O between a calculation using the full Hartree
potential and another one with the potential v

ddv

H . The molecules
are separated by 12 bohr (dot dashed, red), 16 bohr (dashed, blue),
20 bohr (dotted, green), and 24 bohr (solid, black).

straightforwardly be extended, e.g. to unequal dimers. Com-
paring characteristic features of the dipole moment evolution
obtained with full coupling and with dipole coupling, one can
assess the trust range of the dipole approximation.

If the excitations of interest have the special feature of
being rather well separated from all other excitations so that
one can think about the coupling as a coupling in a two-
level system, then one can also determine the coupling matrix
element quantitatively from the TDDFT calculation—despite
the fact that one does not explicitly know the states in TDDFT.
This is the topic of the next section.

V. EXTRACTING THE COUPLING MATRIX ELEMENT
FROM A REAL-TIME PROPAGATION

A coupling matrix element of type (2) enters the energy
transfer rate (1), and it is a close-lying question whether and
how it can be evaluated. In principle, one could calculate the
initial and final states and evaluate Eq. (2) directly. However,
as discussed previously, the states are hard to compute from
first principles and there is no rigorous reason to identify the
KS Slater determinant with the true wave function. Therefore,
if one wants to stay on the safe formal grounds of (TD)DFT
by not using the KS Slater determinant as an approximation to
the true wave function, one has to think about alternative ways
to determine the coupling matrix element.

The Davydov splitting [75–77] is such an alternative
[34–39,41]. In the case of two equal molecules, the Davy-
dov splitting 	
 equals the energy splitting 	E of the
(nearly) degenerate excitation energies of the monomers in the
supermolecule [34,36,37,39]. In the discussed situation 	
 is
proportional to the coupling matrix element (2)

V = 	


2
. (24)

This observation can be exploited in TDDFT by calculating
the spectrum [50,78–80] and deducing the coupling matrix

element from the energy splitting. In the real-time approach
to TDDFT spectra are usually determined by initially exciting
the system with a momentum boost [45,81], propagating the
time-dependent KS equations [82] using the dipole moment
as observable, and calculating the dipole spectrum via a
Fourier transformation [81]. As the energy splitting is typically
much smaller than the excitation energies themselves, high
resolution and thus comparably long propagation times are
needed to resolve the splitting.

Therefore, we consider an alternative way of extracting the
relevant information by observing the D and A dipole moments
separately. It considerably reduces the computational load. We
note that the Davydov splitting 	
 and consequently also the
coupling matrix element V manifests itself as a frequency
ωbeat in the time-dependent D (and A) dipole moment. This
frequency can be extracted as a beat frequency ωbeat of an
oscillation between D and A. (See Appendix B for details.)
From it one obtains

V = ωbeat. (25)

Apart from the beat the dipole moment of the system oscillates
only at frequencies close to the laser frequency that was used
for the excitation. Hence the beat frequency can be determined
easily from the D and A dipole moments (see Fig. 3). The
essential observation now is that for doing so, the dipole
moment time evolution only has to be recorded long enough
to capture one half cycle of the beat. This is a much shorter
time than the time needed to obtain an accurate spectrum from
the Fourier transformation. Thus, the coupling strength can be
determined with moderate simulation times.

We used this approach to determine the coupling of the
lowest excitation of the two sodium dimers. Figure 7 shows
the thus obtained distance dependence of the coupling matrix
element. One observes significant differences from the dipole
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FIG. 7. (Color online) Coupling matrix element between the
excited states at 2.1 eV of two Na2 versus the dimer separation.
Red crosses show the results from our real-time and real-space
implementation. As a guide to the eye we plotted a dotted line
with slope −3 which corresponds to a Förster-type coupling. As
a confirmation of our implementation we also report results that we
obtained using linear response TDDFT from a commercial program
package [83–85] (black crosses).

012509-6
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coupling behavior for distances below 20 bohr. Above 25 bohr
the coupling falls with the expected 1/R−3 dependence.

As a test of our real-time and real-space implementation
we followed Ref. [39] and computed linear response TDDFT
spectra for a couple of dimer distances with the TURBOMOLE

package [83–85] using the local density approximation and
Fully Optimized Contracted Gaussian Basis Sets of Triple
Zeta Valence Quality (def2-TZVP) [86]. The coupling matrix
elements (see Fig. 7) are calculated according to Eq. (24)
exploiting the Davydov splitting. The agreement between the
two methods is very good and the observed small differences
can be attributed to technical differences such as the use of
pseudopotentials and basis sets versus real space.

For putting our findings into perspective one should
compare the distance of 25 bohr to the bond length of the
sodium dimer, which is 5.78 bohr. The ratio of the extension of
the molecular systems to their separation indicates that one has
to be careful in relying on the dipole coupling approximation
for extended systems that are not very far apart.

VI. CONCLUSION

We have presented a qualitative and a quantitative scheme
for investigating the coupling behavior of two molecules
within the real-time approach to TDDFT. The approach allows
one to distinguish between a Förster-type dipole coupling and
a non-dipole coupling on very general grounds. If the coupled
excitations that are of interest can be considered as a two-level
system (i.e., large energetic separation from other excitations),
then the coupling matrix element can be determined efficiently
in the real-time scheme by evaluating the Davydov splitting
from a beat frequency.

Already the small molecules investigated in this manuscript
show notable deviations from the Förster-type dipole coupling
at moderate distances. For larger molecules such as typically
used for spectroscopic labeling or in molecular electronics,
the question at which distances FRET can be relied on is
thus of great significance. Theoretical tools such as the one
discussed here can play an important role, as they enable us to
check whether the FRET dipole coupling approximation can
be applied or not.
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APPENDIX A: EXCITATION WITH A LASER PULSE

Here we briefly explain how we excite the system by a
laser pulse in the real-time investigation of the dipole coupling

approximation in Sec. IV. The laser acts as a time-dependent
external potential in dipole approximation

EL(t) = Eenv(t) sin(ωLt), (A1)

where Eenv(t) is the pulse envelope. The frequency ωL of
the pulse was chosen to equal the excitation energy we were
interested in. We used the envelope Eenv(t) = Emax sin2( πt

TL
)

as this form leads to a Fourier spectrum in which the side
maxima are much lower than the main peak (typically the
height of the first side maximum is less than 3% of the
height of the main peak). The length TL of the pulse is
tuned by comparing the Fourier spectrum of the pulse with
the excitation spectrum of the molecule: TL was chosen such
that the first side maximum of the pulse’s spectrum lay
closer to the pulse’s main frequency than the neighboring
peak in the molecule’s excitation spectrum. In all cases we
investigated, the excitations of the single molecules were
sufficiently separated from each other to dominantly excite
just one excited state of the system. This could be verified
from the time-dependent dipole signal.

APPENDIX B: BEAT OSCILLATION IN THE
TIME-DEPENDENT ACCEPTOR DIPOLE MOMENT

In this Appendix we briefly explain why ωbeat can be
extracted from the dipole moment. We start by noting that
Eq. (24) is derived in a two-state model [35,36], where
|D̃∗A〉 and |D̃A∗〉 are a pair of resonant states. The time
evolution

|�(t)〉 = a1(t)|D̃∗A〉 + a2(t)|D̃A∗〉, (B1)

of the two-state system with initial state |�(0)〉 = |D̃∗A〉 is
given by the coefficients a1(t) and a2(t) [87]

|a1(t)|2 = cos2(V t),
(B2)

|a2(t)|2 = sin2(V t).

The coefficients oscillate with the beat frequency ωbeat, see
Eq. (25). The corresponding time-dependent dipole moment
dA(t) = 〈�(t)|rA|�(t)〉 on the A side can be calculated as

dA(t) = |a1(t)|2〈A|rA|A〉 + |a2(t)|2〈A∗|rA|A∗〉, (B3)

where we exploited the orthogonality of |D〉 and |D∗〉. If the
static dipole moment 〈A|rA|A〉 of A vanishes, (B3) simplifies
to

dA(t) = |a2(t)|2〈A∗|rA|A∗〉. (B4)

Therefore, the resonance oscillation of the coefficients can
be observed in the time evolution of the dipole moment dA(t).
Both Eqs. (B3) and (B4) can be used to determine the coupling
matrix element V via the beat frequency (25).
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[86] A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829
(1994).

[87] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantenmechanik
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In the rapidly evolving fields of nano science and mo-
lecular electronics, progress has been fueled by the inter-
play between experiment and first principles calculations.
Time-dependent density functional theory (TDDFT) has
emerged as one of the most powerful and most frequently
used theories for calculating electronic excitations.
TDDFT’s success rests on its excellent ratio between ac-
curacy and computational cost, allowing us to predict and
understand electron dynamics in systems of experimen-
tally relevant complexity [1,2]. However, the many great
successes of TDDFT based on commonly used exchange-
correlation (xc) approximations such as the time-
dependent adiabatic local density approximation
(TD-LDA) or global hybrid functionals are overshadowed
by serious and systematic failures. Excitations that involve
orbitals that experience the long-range behavior of the
Kohn-Sham (KS) potential, excitonic excitations, and ex-
citations of charge-transfer (CT) character are in error even
qualitatively when calculated with commonly used xc
functionals. In particular, the failure to describe CT exci-
tations is a very serious limitation, as it precludes TDDFT’s
use in many of the most exciting areas of nano science such
as light harvesting [3] and transport [2].

The source of these failures is well understood, as the
time-dependent xc potential of functionals such as the TD-
LDA is qualitatively wrong in several ways. It has no
memory—i.e., vxcðr; tÞ does not depend on the density
nðr; t0Þ for t0 � t [4,5]—it does not show the proper 1=r
asymptotic decay, and it lacks the steplike structures that
reflect particle number discontinuities [6,7]. The close
relation between the latter and the proper description of
charge transfer has repeatedly been stressed [2,8–10] and
points to the ultimate origin of the problem: The absence or
existence of a physically meaningful particle number dis-
continuity is closely tied to electronic self-interaction or its
absence, respectively [11].

Based on this insight, it appears very natural to
generalize the idea of a self-interaction correction (SIC)
from ground-state DFT [12], where it typically is

written in the form ESIC
xc ½n"; n#� ¼ ELDA

xc ½n"; n#� �P
�¼";#

PN�

i¼1ðEH½ni�� þ Exc½ni�; 0�Þ, to the TD case.

Here, EH and Exc are Hartree and xc energy, respectively,
and N� occupied orbitals f’i�g define ni� ¼ j’i�j2 and

n� ¼ PN�

i¼1 ni�. TD-SIC schemes have been developed

successfully in the past [13–16] and are straightforward,
in principle: The orbital-specific potentials uxcj�ðr; tÞ ¼
vSIC
j� ðr; tÞ=’�

j�ðr; tÞ, where

vSIC
j� ðr; tÞ ¼ �ESIC

xc ½f’k�g�
�’j�ðr; tÞ ; (1)

are evaluated with the time-dependent orbitals obtained
from propagation and then are used either as separate,
orbital-specific potentials [16] or as ingredients to con-
struct the TD Krieger-Li-Iafrate (KLI) approximation to
the optimized effective potential (OEP) [13–15]. TD-SIC
has many attractive features: It is parameter-free, nonem-
pirical, and driven by the clear physical concept of relating
orbitals and electrons [17], which is approximate but in
practice very powerful [18,19].
However, SIC also has quite problematic aspects. As

integrating the full TD-OEP equation is possible but very
demanding already in one spatial dimension [20], and as a
generally applicable, three-dimensional TD-OEP scheme
is missing [21], KS TD-SIC calculations so far relied on
the KLI or even Slater approximations. However, there are
systems for which these approaches violate the zero-force
theorem seriously enough to prevent a stable propagation
[22]. Worse yet, comparison of OEP and KLI calculations
for SIC revealed that already the KLI ground-state elec-
tronic structure can be seriously in error [23]. These prob-
lems may be less relevant for atoms and small molecules in
very strong external fields, i.e., the situations that were
mostly studied with TD-SIC so far. However, they preclude
the use of KLI TD-SIC for more general cases and, in
particular, for the CT problem. The problems can be
sidestepped by using TD-SIC in a non-KS way with
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orbital-specific potentials, yet such approaches have their
own set of challenges [16].

In this work, we focus on the KS realization of TD-SIC.
By explicitly taking into account the unitary variance of the
SIC expression via the generalized OEP (GOEP) formal-
ism [17], we arrive at an accurate KS TD-SIC scheme.
We demonstrate that excitations of different character—
from the collective response of small metal particles, to
excitations that have been described as excitonic, up to
challenging CT excitations—are described reliably by KS
TD-SIC. Working with the KS potential not only allows us
to exploit technical advantages and thus apply TD-SIC to
systems of a complexity that was out of the range of
previous TD-SIC schemes, it also enables us to transpar-
ently analyze the time-dependent response: The TD xc
potential in CT systems develops a pronounced field-
counteracting behavior and exhibits a complicated re-
sponse at high frequencies. By analysis of transition den-
sities, we show that KS TD-SIC puts the response peaks at
the appropriate energies and represents the correct excita-
tion structure.

The fact that SIC is not unitarily invariant [12] has been
regarded as a weakness of SIC. Yet this weakness can be
turned into a strength. We first explain the idea in words
and then detail the approach with equations.

The well known problems with propagations using the
usual KLI approximation [16,22] are ultimately a conse-
quence of the KLI potential not being a functional deriva-
tive; i.e., the KLI solution is not variationally stable.
However, for unitarily variant functionals such as SIC, an
additional degree of freedom can be exploited to increase
the stability of the propagation. As different sets of orbitals
can yield the same density but different SIC energies, there
is more than one way to construct a rigorous KS SIC
potential. As has previously been explained for the
ground-state case [17], the most general KS approach for
unitarily variant functionals includes a unitary transforma-
tion among the occupied orbitals into the chain rule deri-
vation of the OEP. This leads to the GOEP equation. By
taking the usual steps [24,25], the GOEP can straightfor-
wardly be extended to TD situations. Thus also the gener-
alized KLI (GKLI) approximation is readily extended to
TD-GKLI. The crucial advantage here is that, for the SIC,
GKLI is a much better approximation to the GOEP than the
usual KLI is to the usual OEP. This is a consequence of the
additional minimizing step via the unitary transformation.
The quality of the GKLI potential has been confirmed for
the ground state [17,18], and the advantages of the gener-
alized approach directly carry over to the TD case. Thus,
although the GKLI is still an approximation, it is so close
to the GOEP that for our practical purposes it is not a
limitation. However, obtaining a sufficiently stable numeri-
cal propagation depends on performing all steps in the
propagation and, in particular, the unitary rotation very
accurately, as described in the following.

The usual TD-KLI potential [21,24] is defined by

vTD-SIC
xc� ðr; tÞ ¼ 1

2n�ðr; tÞ
�XN�

j¼1

nj�ðr; tÞfuxcj�ðr; tÞ

þ ½ �vTD-SIC
xcj� ðtÞ � �uxcj�ðtÞ�g

�
þ c:c:; (2)

where a bar denotes an orbital average, e.g., �vTD-SIC
xcj� ðtÞ ¼R

’�
j�ðr; tÞvTD-SIC

xc� ðr; tÞ’j�ðr; tÞd3r. Equation (2) goes over
into the TD-GKLI by replacing all orbital-specific poten-
tials uxcj� by the generalized orbital-specific potentials

uGxcj�ðr; tÞ ¼
1

’�
j�ðr; tÞ

XN�

i

U�
ijðtÞ~vSIC

i� ðr; tÞ: (3)

Here, ~vSIC
i� is defined in analogy to Eq. (1) but evaluated for

the set of orbitals f~’i�g that is obtained from the occupied
KS orbitals f’j�g by

~’ i�ðr; tÞ ¼
XN�

j¼1

U�
ijðtÞ’j�ðr; tÞ; (4)

where the unitary transformation U�
ijðtÞ is determined at

each time step to minimize the instantaneous SIC energy.
This criterion is fulfilled when the equations

h~’i�ðr; tÞj ~v
SIC
i� ðr; tÞ
~’�
i�ðr; tÞ

� ~vSIC
j� ðr; tÞ
~’�
j�ðr; tÞ

j~’j�ðr; tÞi ¼ 0 8 t

(5)

are satisfied [26] for all occupied orbitals. For a given set of
f’j�g, U�

ij can be found iteratively [27]. Such a TD-SIC

calculation thus proceeds by propagating the KS orbitals a
finite step �t (starting from the ground state), then deter-
mining the unitary transformation according to Eq. (5), and
finally calculating the new xc potential from Eq. (2) with
uxcj� replaced by uGxcj� from Eq. (3). For clear spectral

signals in the linear response that is of interest here, this
sequence has to be repeated until ca. 40 fm s of propagation
time are completed after an initial boost.
The approach thus appears like a straightforward exten-

sion of the ground-state concept to the time domain.
However, a huge challenge is hidden in the above descrip-
tion. Stability of the propagation hinges crucially on the
accuracy with which the transformation of Eq. (4) can be
calculated, because the latter contributes decisively to
keeping the propagation in the variationally stable regime.
Calculating U�

ij is already expensive for ground-state situ-

ations [26,27]. Yet, the general KS TD-SIC that we aim at
should be applicable to systems with tens of orbitals for
many ten thousands of time steps, at each of which Eqs. (4)
and (5) must be solved. The situation is further compli-
cated by the finding that U�

ijðtþ �tÞ is not well approxi-
mated by U�

ijðtÞ. Therefore, using the known ground-state

algorithms [26,27] for solving Eqs. (4) and (5) with the
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accuracy that is needed for the TD case would basically
render KS TD-SIC useless for larger and complex systems.
This problem can be overcome by realizing that the nu-
merical effort for iteratively finding the unitary transfor-
mation at time t can be significantly reduced by using the
ground-state KS eigenvalues "j to generate an initial guess

U�
ijðtÞ ¼ ei"j�tU�

ijðt� �tÞ: (6)

Here, we take into account the transformation from the
previous time step and the phase factors that the KS
orbitals would acquire if the Hamiltonian were time-
independent. By using this algorithm, KS TD-SIC be-
comes applicable to systems of a size and complexity
that has not been reached with previous TD-SIC schemes.

As a first test, we checked the stability of the propaga-
tion for the Na5 cluster, which is established as a difficult
system for obtaining a stable propagation [22,27], e.g.,
showing serious instabilities for the x-only KLI potential
and yet worse instabilities for regular KLI TD-SIC. We
find the two lowest pronounced excitation peaks at 2.0 and
2.2 eV. For this as well as for all other systems discussed
below, the desired spectral resolution is achieved without
being compromised by propagation instabilities.

Turning to systems that are physically more interesting,
we next investigate small hydrogenated Si clusters. These
are known for being only poorly described by the TD-
LDA, and it has been argued that an accurate description
of excitonic effects as, e.g., obtained from the Bethe-
Salpeter equation (GW-BSE), is needed. For SiH4 and
Si2H6 several GW-BSE reference calculations are avail-
able [28–30]. The left part of Fig. 1 shows the square root
of our dipole power spectrum [31], i.e., peaks reflect
excitation energies for TD-LDA and KS TD-SIC. Black
lines visualize the position of the GW-BSE excitation

energies [28–30,32]. Whereas the TD-LDA spectrum
does not resemble the GW-BSE results at all, the KS TD-
SIC excitation energies do and are well within the uncer-
tainty limits that the GW-BSE calculations themselves
have [32]. Also for Si2H6 the KS TD-SIC excitations at
7.8 and 9.1 eV compare favorably to the GW-BSE excita-
tions at 7.6 and 9.0 eV [28].
Finally, we turn our attention to the most interesting test

cases: the CT systems. It has been shown that range-
separated hybrids implemented in the non-KS way can
describe CT excitations [33–36] but at the cost of introduc-
ing fit parameters that can lead to failures in nonstandard
situations [36] or tuned parameters that render the func-
tionals non-size-consistent [35,36]. An improvement of
long-range CT excitations can typically also be achieved
by a hybrid mixing with large amounts of exact exchange
yet at the cost of reducing accuracy for more local excita-
tions. KS TD-SIC is size-consistent and parameter-free.
These are strong advantages from a fundamental perspec-
tive. However, in the light of the above, two issues that are
important for practical purposes must be checked: Does KS
TD-SIC describe long-range CT accurately, and does it not
spoil accuracy for more short-ranged excitations?
We first address the latter question by studying a para-

digm case. In the 4-(N,N-dimethylamino)benzonitrile
molecule [37], a local excitation that is seen experimen-
tally at 4.25 eVand an excitation that has been classified as
being of short-range CT character [38] at 4.56 eV are
described with moderate but acceptable accuracy by stan-
dard functionals. The time-dependent Perdew-Burke-
Ernzerhof generalized gradient approximation, e.g., yields
excitations at 4.02 and 4.30 eV [37], respectively. Here, KS
TD-SIC, if it works properly, should not ruin the accuracy
achieved at the local xc level. The right part of Fig. 1 shows
in the upper half the excitation spectrum obtained in TD-
LDA and KS TD-SIC. Both spectra show two peaks in the
relevant range: a rather small one reflecting the local
excitation and a higher one reflecting the CT. KS TD-SIC
shifts the 3.9 and 4.2 eV TD-LDA peaks to 4.1 and 4.4 eV,
respectively. Thus, the KS TD-SIC not only does not spoil
the local xc accuracy but improves agreement with experi-
ment further.
One may wonder whether KS TD-SIC really describes

the correct physics beyond just yielding reasonably look-
ing energies. It is known that the character of the CT
excitation in 4-(N,N-dimethylamino)benzonitrile is cor-
rectly described by local xc functionals, and it is desirable
to check whether KS TD-SIC preserves this feature. At first
sight, one may think that this is impossible in the real-time
approach, because the propagation does not yield an ex-
citation’s decomposition into orbital transitions as in ex-
plicit linear response [4]. However, we can analyze the
transition density

�!ðrÞ / �Imf�nðr; !Þg (7)

FIG. 1 (color online). Left: Peaks denote excitation energies in
TD-LDA (top) and KS TD-SIC (bottom) for SiH4; black vertical
lines indicate GW-BSE excitation energies. Right: Comparison
of TD-LDA and KS TD-SIC spectra for the 4-(N,N-dimethyla-
mino)benzonitrile molecule; transition densities (bottom) con-
firm that the character of the CT excitation is similar for both.
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by taking the Fourier transform �nðr; !Þ of the time-
dependent density fluctuations �nðr; tÞ ¼ nðr; tÞ � nðr; 0Þ
[39]. The transition densities evaluated at the respective CT
frequencies are shown in Fig. 1. KS TD-SIC clearly pre-
serves the character correctly.

Having seen the accuracy for short-range CTexcitations,
we proceed to investigating long-range CT, again using a
paradigm test case. The dipeptide molecule has become a
benchmark for the description of CT and a hallmark ex-
ample for the severe failure of usual TDDFT [37,40,41]. It
is known [41] that the dipeptide in addition to lower local
excitations shows a clear CT excitation from one peptide
to the other at 7.18 eV (complete active space perturbation
theory of second order reference). This excitation is
badly underestimated by ca. 2 eV by (semi)local xc func-
tionals [41].

Identifying this CT excitation in the spectra from real-
time calculations (left part of Fig. 2) is possible with the
help of the transition density. In an orbital picture the CT
excitation would correspond to a highest occupied molecu-
lar orbital—lowest unoccupied molecular orbital transition
(if the SIC orbital ordering is used). The upper inset in the
left part of Fig. 2 shows these orbitals and their product.
The latter would correspond to the transition density for an
idealized transition between static orbitals. We compare it
to the true �!ðrÞ that we calculated from the TD density
[Eq. (7)] for all peaks in the spectrum up to 8 eV. There is
unambiguously one �!ðrÞ that corresponds to the highest
occupied molecular orbital—lowest unoccupied molecular
orbital CT picture: In KS TD-SIC it appears at 7.2 eV (blue
arrow in Fig. 2) and in TD-LDA at 5.2 eV (red arrow).
Thus, we have identified the CT excitation and see that KS
TD-SIC yields a very realistic CT energy.

Taking advantage of working with a local potential, we
can analyze vxcðr; tÞ to reveal the reason for this success.
The right half of Fig. 2 shows snapshots of the external
potential vextðr; tÞ, vTD-LDA

xc ðr; tÞ, and vTD-SIC
xc ðr; tÞ of the

dipeptide at t ¼ 5:2 fm s during a sinusoidal dipole exci-
tation with 0.2 eV. There is a striking difference: TD-LDA

works with the external field, and KS TD-SIC works
against it. The TD field-counteracting behavior of
vTD-SIC
xc explains why KS TD-SIC correctly shifts the CT

excitations to higher energies, while CT is too easy in TD-
LDA. For stronger excitations (not shown in the plot for
clarity), TD-LDA still shows its simple behavior, and
vTD-SIC
xc develops additional structures that depend on ex-

citation details and may reflect nonadiabatic effects.
It has also been shown that SIC can benefit from spin-

symmetry breaking which may effectively model long-
range correlation [42,43]. In cases of broken spin symme-
try, the role or need of step structures in vxc is unclear.
However, in the cases studied here, spin symmetry is not
broken and the step structures in vxc are decisive.
Revealing in detail how such features and the fractional
particle number concept are linked to the unitary trans-
formation of the GOEP, possibly identifying nonadiabatic
effects by comparison with the adiabatically exact approxi-
mation [44], and possibly identifying semilocal mecha-
nisms for modeling step structures [45] are worthwhile
tasks for future work.
In summary, TD Kohn-Sham SIC based on the GOEP

reliably describes excitations of very different character,
from typical local excitations, over excitations that have
been described as excitonic, up to challenging charge-
transfer excitations. Analysis of the TD xc potential
showed that TD-SIC leads to qualitatively new features
such as a TD field-counteracting term that is absent in local
functionals. KS TD-SIC thus appears as a promising,
parameter-free approach for calculating excitations from
first principles.
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[17] T. Körzdörfer, S. Kümmel, and M. Mundt, J. Chem. Phys.

129, 014110 (2008).
[18] T. Körzdörfer, S. Kümmel, N. Marom, and L. Kronik,

Phys. Rev. B 79, 201205(R) (2009); 82, 129903(E)
(2010).

[19] M. Dauth, T. Körzdörfer, S. Kümmel, J. Ziroff, M.
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Kümmel, J. Chem. Theory Comput. 5, 712 (2009).

PRL 108, 146401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
6 APRIL 2012

146401-5





Pub3

Publication 3

Using complex degrees of freedom in the

Kohn-Sham self-interaction correction

D. Hofmann1, S. Klüpfel2, P. Klüpfel2, and S. Kümmel1
1Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany

2Science Institute, VR-III, University of Iceland, Reykjavik, Iceland

Physical Review A 85, 062514 (2012)

c©2012 The American Physical Society
DOI: 10.1103/PhysRevA.85.062514

available at: http://link.aps.org/doi/10.1103/PhysRevA.85.062514

ABSTRACT

The Perdew-Zunger self-interaction correction (SIC) to local and semilocal density function-
als systematically underestimates molecular bond lengths, yet improves many other ground-
state properties. An alternative de�nition of a SIC is reached by using the Perdew-Zunger
energy with a global, multiplicative Kohn-Sham potential instead of the orbital-speci�c po-
tentials of traditional SIC. Due to the unitary variance of the SIC energy, the most gen-
eral construction of the SIC Kohn-Sham potential involves a unitary transformation of the
Kohn-Sham orbitals. We systematically investigate the Kohn-Sham version of the SIC, in
particular with respect to the bond-length question, and present a detailed analysis of the
in�uence of di�erent unitary transformations. Using a complex-valued energy-minimizing
transformation appears to be the most favorable approach, and we explain this result by
analyzing orbital densities. We discuss how to calculate the transformations e�ciently.
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The Perdew-Zunger self-interaction correction (SIC) to local and semilocal density functionals systematically
underestimates molecular bond lengths, yet improves many other ground-state properties. An alternative definition
of a SIC is reached by using the Perdew-Zunger energy with a global, multiplicative Kohn-Sham potential
instead of the orbital-specific potentials of traditional SIC. Due to the unitary variance of the SIC energy, the
most general construction of the SIC Kohn-Sham potential involves a unitary transformation of the Kohn-Sham
orbitals. We systematically investigate the Kohn-Sham version of the SIC, in particular with respect to the
bond-length question, and present a detailed analysis of the influence of different unitary transformations. Using
a complex-valued energy-minimizing transformation appears to be the most favorable approach, and we explain
this result by analyzing orbital densities. We discuss how to calculate the transformations efficiently.
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I. INTRODUCTION

Numerous applications of density functional theory (DFT)
during the past decades document its power in predicting
ground-state properties of atoms, molecules, and other large-
scale many-particle systems at a reasonable computational
cost. However, DFT using local or semilocal density func-
tionals is also well known for some notorious failures [1–23]:
wrong prediction of dissociation limits [6,7] and chemical
reaction barriers [8,9], as well as missing Rydberg series
and instability of anions [10,11]. Standard functionals tend
to overestimate charge-transfer properties, as, for example,
polarizabilities of molecular chains [12,13,24–27] and charge
transport in molecular devices [14–16]. Moreover, local and
semilocal DFT show deficiencies with regard to electron
localization effects in transition metals and their oxides
[17–20] and molecular semiconductors [21–23].

These shortcomings do not come as a surprise if one keeps
in mind that the reliability of DFT in predicting ground-
state properties strongly depends on the quality of the used
exchange-correlation (xc) density functional. The previously
mentioned drawbacks of commonly used xc functional ap-
proximations are frequently ascribed to the self-interaction
error (SIE) of such density functionals. Getting a handle on
the SIE is considered as one promising route to improve the
performance of approximate functionals. Therefore, the desire
to find a correction scheme to this error and assess its predictive
power in many-particle systems is great.

Correction of the SIE, however, is not a unique concept,
as many different approaches to self-interaction correction
(SIC) have been proposed [1,28–39]. The first well-established
correction scheme is the SIC introduced by Perdew and Zunger
(PZ) [1]:

ESIC
xc [n↑,n↓] = Eapp

xc [n↑,n↓]

−
∑

σ=↑,↓

Nσ∑
j=1

(
EH[njσ ] + Eapp

xc [njσ ,0]
)
. (1)

Here, EH is the Hartree energy, orbital densities njσ (r) can
be calculated from the Nσ occupied orbitals ϕjσ (r) accord-
ing to njσ (r) = |ϕjσ (r)|2, and spin densities are defined as

nσ = ∑Nσ

j=1 njσ . The PZ correction can be applied to any
arbitrary xc functional approximation E

app
xc [n↑,n↓]. In practice,

the first PZ SIC calculations were performed by direct
minimization of the energy functional with respect to the
orbitals. This results in a set of single-particle Schrödinger
equations with an orbital-specific potential.

Within the framework of the traditional PZ approach, a
variety of comprehensive studies on ground-state properties
are available [1,40–47]. It is a general finding that PZ SIC is
capable of improving ground-state properties if it is built on
top of the local spin-density approximation (LSDA). Vydrov
et al. [45] showed the advantages of self-interaction corrected
LSDA (LSDA-SIC) explicitly for total energies of atoms,
atomization energies, barrier heights of chemical reactions,
ionization potentials, and electron affinities. In contrast, PZ
SIC of semilocal functionals such as generalized gradient
approximations (GGAs) tends to be more unfavorable, since
mean deviations from experiment for representative test sets
have a tendency to be larger for the corrected functional than
for its uncorrected version [44,45].

However, new insights into the SIC have emerged recently
from different perspectives. On the one hand, the generalized
optimized effective potential (GOEP) equation [4] makes it
possible to bring the SIC functional rigorously under the
Kohn-Sham umbrella while explicitly taking into account
the unitary variance of the energy expression by a unitary
transformation in the space of occupied orbitals. This can
be seen as the formal Kohn-Sham foundation of earlier
works that combined a global SIC potential with localizing
transformations [31,32]. On the other hand, using complex
orbitals in the unitary transformation has appeared as a
necessity [47,48]. Accurate time-dependent SIC calculations,
in which the orbitals become complex due to the propagation,
revealed that also the ground state must be calculated with
complex orbitals because otherwise one observes a sudden
decrease of the energy even in a stationary propagation [48].
Focusing on ground-state properties a detailed study [47]
recently included complex unitary transformations in the PZ
SIC. It was shown that this procedure yields total energies
and highest occupied orbital eigenvalues for atoms from
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H to Ar in better agreement with experiment than those
obtained using real orbitals if the SIC is applied to the Perdew,
Burke, and Ernzerhof (PBE) functional [49] (PBE-SIC) [47].
Thus, the performance of the SIC in ground-state calculations
must clearly be re-evaluated under several points of view:
How different is GOEP SIC, which is formally a different
density functional, in practice from traditional Perdew-Zunger
SIC? How do SIC results change when complex- instead of
real-valued unitary transformations are used? Was the earlier
reported finding of the poor performance of PBE-SIC generally
just a consequence of the restriction to real-valued orbital
transformations?

In this paper we address these questions. We are, in
particular, investigating molecular bond lengths, as these
represent a well-examined paradigm example of a ground-state
property where PZ LSDA-SIC is inferior to bare LSDA
[40,41,45]. Bare LSDA bond lengths are in astonishingly good
agreement with the experiment, with errors of typically less
than 0.05 bohrs [50]. As a general trend LSDA slightly overes-
timates bonds between hydrogen and main-group elements and
underestimates bonds between nonhydrogens [50]. Looking at
a GGA one notes that the PBE, for example, is known to have a
slight tendency to overestimate bond lengths, while PBE-SIC,
in general, yields too-short bonds [45]. However, to the best
of our knowledge, all SIC-related bond-length investigations
focused on the PZ SIC implementation with orbital-specific
potentials and no information is available for (G)OEP SIC.

With this paper we start filling this gap. To this end, we first
discuss the peculiarities of the theoretical concept of SIC in
KS DFT. We give an overview of SIC in the standard KS and
the GOEP KS method and describe three different choices of
the unitary transformation that is part of the scheme. More
insight into the practical implementation of our algorithm
for the determination of the corresponding transformations
is given in Appendix B. On this theoretical basis we then
investigate the influence of different SIC approaches and
unitary transformation choices on total energies and bond
lengths of a test set of dimers and small molecules that covers
different bonding situations. We employ the SIC for both the
LSDA and the PBE functional. A comparison and assessment
of the total energies and bond lengths shows that real and
complex transformations lead to different results: Complex
transformations give lower total energies than real ones and
improve bond lengths of double- and triple-bond systems.
Finally, we provide insight into these differences by analyzing
the orbital densities obtained from the different approaches.

II. KOHN-SHAM SELF-INTERACTION CORRECTION

From a Kohn-Sham [51] DFT perspective, implementation
of the SIC of Perdew and Zunger is far from trivial. First,
one has to deal with a functional that depends on the orbitals
explicitly and therefore is only an implicit functional of
the density. In KS DFT, such explicit, orbital-dependent
functionals can be handled by the OEP method [2,3]. Second,
the SIC energy functional of Eq. (1) is not invariant under
unitary transformation of the orbitals. This means that starting
from a given set of occupied orbitals one can construct further
orbital sets by unitary transformations that give the same
density but result in different SICs. The GOEP scheme [4]

takes this ambiguity into account by considering the freedom
of unitary transformations in the space of occupied orbitals
in the derivation of the OEP equation. The generalization
manifests itself in the existence of two sets of orbitals [4],
where the occupied canonical KS orbitals {ϕjσ (r)} solve the
KS equations and a second orbital set {ϕ̃iσ (r)} is used to set
up the SIC xc energy and the corresponding potential. Both
orbital sets are connected by a unitary transformation Uijσ

according to

ϕ̃iσ (r) =
Nσ∑
j=1

Uijσ ϕjσ (r). (2)

Note that for our investigations we always choose real
canonical KS orbitals {ϕjσ (r)} without loss of generality.

To take the unitary transformation into account in the GOEP
method one has to add an additional step in the derivation of
the OEP potential by virtue of the functional chain rule (for
details, see Ref. [4]). This leads to the generalized OEP integral
equation, where, compared to the standard OEP equation,
the orbital-specific potentials uxcjσ (r) are replaced with the
generalized orbital-specific potentials,

uG
xcjσ (r) = 1

ϕ∗
jσ (r)

Nσ∑
i=1

Uijσ ϕ̃∗
iσ (r)ṽSIC

iσ (r), (3)

where

ṽSIC
iσ (r) = δESIC

xc [{ñkτ }]
δñiσ (r)

. (4)

Reference [4] shows that solutions of the GOEP equation
can be obtained with well-known methods invented for the
standard OEP case. Yet, finding solutions can be a numerically
expensive task. Therefore, often the approximation of Krieger,
Lee, and Iafrate [52] is used, where uxcjσ (r) has to be replaced
by the generalized uG

xcjσ (r) to obtain the generalized KLI
(GKLI) potential,

vGKLI
xcσ (r) = vGSL

xcσ (r) + 1

2nσ (r)

Nσ∑
j=1

njσ (r)

× [(
v̄GKLI

xcjσ − ūG
xcjσ

) + c.c.
]
. (5)

Here, the orbital-density averaged potentials are given by

v̄GKLI
xcjσ =

∫
d3r ϕ∗

jσ (r)vGKLI
xcσ (r)ϕjσ (r) (6)

and

ūG
xcjσ =

∫
d3r ϕ∗

jσ (r)uG
xcjσ (r)ϕjσ (r). (7)

The first term of Eq. (5) is the generalized Slater contribution

vGSL
xcσ (r) = 1

2nσ (r)

Nσ∑
j=1

njσ (r)
[
uG

xcjσ (r) + uG ∗
xcjσ (r)

]
, (8)

whereas the second term is the response potential with the
characteristic (v̄GKLI

xcjσ − ūG
xcjσ ) contribution.

However, still the question about how to treat the unitary
transformation remains. First considerations of incorporating
a unitary transformation into the PZ SIC scheme go back to
Pederson, Heaton, and Lin [53–55]. In their original work,
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they suggested an energy-minimization criterion for the total
energy Etot,

(
∂Etot

∂Sijσ

)
Sijσ =δij

= 0 ∀ i,j occupied, (9)

to pinpoint the unitary transformation. Here, Sijσ is a trial
transformation that takes the set {ϕ̃jσ } to a test set {ϕ̃′

iσ } and
deviates only slightly from the unit matrix abbreviated by the
Kronecker symbol δij . The criterion can be reformulated [53]
and leads to a set of equations,

〈ϕ̃iσ |ṽSIC
iσ (r) − ṽSIC

jσ (r)|ϕ̃jσ 〉 = 0 ∀ i,j occupied, (10)

that are fulfilled only when the SIC energy is minimized.
This strategy of Pederson et al. can also be applied in KS
DFT [4,56]. The central idea is to find an orbital set {ϕ̃iσ }
and the corresponding unitary transformation that leaves the
density unchanged, minimizes the energy, and determines the
xc potential. Using real canonical KS orbitals and taking
definitions (2) and (9) into consideration, there are two possible
choices of the orbitals {ϕ̃iσ } and the transformation Uijσ :
They can be chosen either both real or both complex. At the
same time, the potential remains a real potential in GOEP, as
well as in its GKLI approximation. The two different sets of
numbers valid for the orbitals and the transformation lead to
two definitions of the unitary transformation: Uijσ is defined
according to Eq. (9) with numbers either restricted to be real
or free to be complex.

A further definition of the unitary transformation is based on
the observation that typically real energy-minimizing orbitals
are much more localized in space than KS orbitals are [4].
This is because the Hartree contribution to the SIC in Eq. (1)
increases with increasing degree of localization of the orbitals
[23], while the SIE vanishes only at a certain degree of
localization that strongly depends on the system. Therefore,
spatially localizing transformations introduced by Foster and
Boys [57,58], Edminston and Ruedenberg [59], and Pipek and
Mezey [60] were suggested as a numerically less expensive
alternative to the energy-minimizing transformations. The
corresponding orbitals are typically called localizing or Foster-
Boys orbitals. Reference [4] already investigated the difference
between spatially localizing and real energy-minimizing or-
bitals and found good agreement for the studied cases and
observables.

In summary, we consider four different versions of the SIC:
one version (1) based on the standard KLI approach (KLI-SIC)
and three versions (2–4) based on the GKLI concept. The
three different versions of the GKLI approach result from
three different definitions of the unitary transformation: (2) a
real spatially localizing (FOBO), (3) a real energy-minimizing
(real Emin), and (4) a complex energy-minimizing transfor-
mation (complex Emin). All approaches are implemented in
the Bayreuth version [61] of the PARSEC real-space program
package [62]. In PARSEC, core electrons are treated by the
pseudopotential (PP) approximation (see Appendix A for
details). We use a gradient algorithm with an optimized step
size that takes the unitary constraint of the transformation into
account explicitly to determine the energy-minimizing unitary
transformations and corresponding orbitals (see Appendix B).

The Foster-Boys localization is carried out by a method of
Edminston and Ruedenberg [59].

Having established the conceptual basis of our study, we
finally note that Ref. [4] already assessed the performance
of the GKLI approximation compared to full GOEP and
concluded that both approaches yield ground-state energies
and spin densities in close agreement. Since those are the
properties needed in our investigations, for computational
reasons, all results presented in the following were obtained
by the GKLI approach.

III. RESULTS AND DISCUSSION

We applied the standard KLI and the GKLI to investigate the
total energy and bond-length situation for a test set of dimers
and small molecules. The test set comprises H2O and CH4

as typical single-bond representatives, O2 with a bond order
of two, and the triple-bond representatives CO and N2. We
determined the lowest-energy configuration by means of bond-
length variation followed by quadratic interpolation around the
minimum [45]. During this procedure, the bond angles of H2O
and CH4 were kept constant at the experimental value. The
results are compiled in Table I. The quadratic fit of the applied
interpolation procedure leads to errors less than 0.001 bohrs.
Possible uncertainties due to the use of PPs are discussed in
Appendix A.

As a first aspect of our work, we discuss total energy results
of our test set of molecules at experimental geometries. To
this end, total energies relative to the corresponding LSDA
result are shown in Fig. 1(a) for the four different LSDA-SIC
implementations discussed in Sec. II. At first glance we can
distinguish between two situations: In case of H2O and CO
all total energy results decrease in the order LSDA, standard,
FOBO, real Emin, and complex Emin SIC, whereas for CH4, O2,
and N2 we first observe a total energy increase from LSDA to
KLI-SIC followed again by a decrease of the total energy in the
preceding order. Moreover, all total energies calculated with
a localizing or energy-minimizing transformation are lower
than the uncorrected LSDA result. The total energy decrease
does not come as a surprise if one keeps in mind that in the
given order additional variational degrees of freedom play
a role. While LSDA is an explicit density functional that
is derived from the homogeneous density limit, in the SIC
scheme variation of the orbitals provides additional means for
energy minimization. Beyond that, in the GKLI approach the
unitary transformation can be used to further reduce the total
energy. Here, localizing orbitals yield total energies that are
almost equal to the ones obtained from real energy-minimizing
orbitals. Finally, due to the additional complex degrees of
freedom the space of variational energy minimization grows
further and allows for another reduction of the total energy.
This energy decrease is less pronounced only in the case
of CH4. The thus unexpected increase of KLI-SIC total
energies for CH4, O2, and N2, however, reflects the problem
of the SIC functional being unitarily variant and the KLI
potential not being a functional derivative of the original
energy expression. In case of the SIC energy functional, this
can lead to pronounced differences between KLI SIC and OEP
SIC results [4,26]. Deviations between KLI SIC and OEP SIC
total energies, where the KLI LSDA-SIC result is larger than

062514-3
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TABLE I. Comparison of bond lengths (bohrs) of several dimers and small molecules calculated with LSDA, PBE, and different SIC
implementations of the two functionals. GKLI SIC calculations are performed with three different definitions of the unitary transformation
(see text). As a reference, experimental (Expt.) bond lengths are given.

LSDA-SIC PBE-SIC

Molecule LSDA KLI-SIC FOBO real Emin complex Emin PZ SIC PBE KLI-SIC FOBO real Emin complex Emin PZ SIC Expt.

H2O 1.829 1.769 1.758 1.758 1.750 1.759 [40] 1.825 1.799 1.787 1.786 1.774 1.809 [65]
CH4 2.073 2.044 2.009 2.009 2.009 2.002 [40] 2.072 2.083 2.046 2.045 2.045 2.043 [45] 2.052 [66]
O2 2.289 2.090 2.157 2.159 2.163 2.155 [45] 2.326 2.140 2.204 2.205 2.196 [45] 2.281 [67]
CO 2.152 2.006 2.068 2.070 2.086 2.032 [40] 2.169 2.019 2.104 2.107 2.129 2.083 [45] 2.132 [67]
N2 2.080 1.999 1.994 1.993 2.006 1.984 [40] 2.091 2.037 2.023 2.023 2.039 2.026 [45] 2.074 [67]

FIG. 1. (Color online) Panel (a) shows the relative total energy
�E = (Efunc − ELSDA)/|ELSDA| for the four different definitions of
a KS SIC to the LSDA energy [63]. On the horizontal axis are
the following functionals (func) from left to right: LSDA, KLI
SIC without unitary transformation (KLI-SIC), GKLI SIC with
FOBO transformation (FOBO), GKLI SIC with real-valued energy-
minimizing transformation (r Emin), and GKLI SIC with complex-
valued energy-minimizing transformation (c Emin), as introduced in
Sec. II. For each of these functionals the total energy has been
calculated for the five molecules listed in the inset. The lines serve
only as a guide for the eye. Panel (b) shows the corresponding relative
total energies for the PBE GGA functional and the corresponding
four versions of a KS SIC to the PBE energy. All calculations were
performed at experimental bond lengths (see Table I).

the LSDA one, are known in the literature [4]. Therefore, our
results point once more toward the need of a generalized KLI
scheme with an additional localizing or energy-minimizing
transformation if KLI SIC calculations are performed.

One notable difference to this picture appears in the
PBE-SIC case in Fig. 1(b). Whereas LSDA total energies are
above all GKLI LSDA-SIC results, bare PBE gives the lowest
total energies followed by an increase to KLI PBE-SIC and a
subsequent decrease to GKLI PBE-SIC results. This finding
may reflect the fact that for all systems investigated here,
PBE yields total energies that are lower than coupled-cluster
[singles, doubles and perturbative triples, CCSD(T)] reference
results, as one can check using, for example, the NIST Compu-
tational Chemistry Comparison and Benchmark Database [64].
Therefore, the positive PBE-SIC energy correction points
toward the right direction and the additional variational degrees
of freedom of the unitary transformation guarantee for energy
minimization within the PBE-SIC approach. The differences
between LSDA, PBE, and the corresponding SIC schemes are
a manifestation of the different theoretical concepts behind
LSDA and PBE and are discussed more extensively at the end
of this section.

We stress that our implementation in the PARSEC program
package is based on real-space grids. Therefore, it can be
excluded that differences due to real and complex numbers
appear just as a consequence of basis set effects. They represent
true features of the GOEP approach. Thus, as a first result of
our paper, we conclude that complex energy-minimizing trans-
formations need to be considered if one wants to perform the
most rigorous energy-minimizing SIC calculations in KS DFT.

We now turn our discussion to the bond lengths and begin
with the LSDA and LSDA-SIC results in Table I. Note that bare
LSDA gives the overall best results in good agreement with
previous findings based on all-electron (AE) calculations [45].
Possible deviations between PP and AE bond lengths can be
explained by the PP approximation and are discussed in further
detail in Appendix A. As previously found for PZ SIC, an
underestimation of the bond lengths can be observed also in
KS SIC. Here, however, one has to keep in mind that KLI-SIC
suffers from unitary variance problems and the KLI not being
a functional derivative. Because of that and because of the
different numerical approaches of PPs and AE calculations, a
direct comparison of the PZ SIC and our KS standard KLI SIC
results is difficult.

A classification into two groups of results occurs if one
examines the trend while passing through the different levels

062514-4



USING COMPLEX DEGREES OF FREEDOM IN THE . . . PHYSICAL REVIEW A 85, 062514 (2012)

of the SIC implementation. In the case of single-bond systems
one observes a decrease in bond length when going from
KLI-SIC via FOBO SIC and real Emin SIC to complex Emin

SIC. Yet, in the same order, the trend is reversed for the
double- and triple-bond systems. Here FOBO and real Emin

SIC improve upon standard SIC while a further increase toward
the experimental result can be obtained with complex Emin

SIC. The only result that breaks ranks here is the N2 KLI-SIC
bond length that is between real Emin and complex Emin SIC
results. This observation, however, is likely to occur again
as an artifact of the KLI-SIC approach. Moreover, as already
observed in the total energies, there is no difference in the CH4

results for different definitions of the unitary transformation.
In case of the PBE our results show a bond-length overesti-

mation in accordance with previous findings in the literature.
The LSDA classification into two groups of results reoccurs in
PBE-SIC and again the N2 KLI-SIC bond length is outside the
general trend. Comparing LSDA-SIC and PBE-SIC results
one observes that PBE-SIC bond lengths are all larger than
the corresponding LSDA-SIC values. This finding cannot be
explained by an overall shift that equals the difference between
bare LSDA and PBE bond lengths. Interestingly, the changes
from real energy-minimizing transformations to complex ones
appear to be larger in PBE-SIC calculations than in LSDA-SIC.
Therefore, we conclude that there are intricate differences
in how the SIC acts on the LSDA and the PBE functional,
respectively, and that these differences are also related to
the use of real or complex transformations. Furthermore, we
observe, in accordance with previous findings, that FOBO SIC
and real Emin SIC results for the bond lengths of all systems
and both functionals investigated are in good agreement. This
is one further confirmation of the use of FOBO SIC as a
reasonable approximation to the real Emin SIC procedure.

Note that in the case of O2 with complex Emin PBE-SIC, we
faced convergence problems and therefore are not able to give
a well-founded number for the corresponding bond length:
Although the system converges well up to 0.01% of the total
energy, the remaining uncertainties in the total energy are still
on the order of energy changes due to bond-length variation.
We understand this problem as a delicate interplay between
degeneracies in the O2 KS system and the KLI expression itself
not being invariant with respect to unitary transformations of
the canonical KS orbitals. The missing invariance of the KLI
potential was already observed in Ref. [68] in the context
of the exact exchange (EXX) functional, where the Slater
contribution is invariant but the KLI response potential may
change due to unitary transformations of the orbitals. However,
in case of SIC the problem is even more involved: In standard
KLI SIC, the unitary variance appears already on the level
of the Slater potential. While this problem is solved in the
generalized Slater approximation because vGSL

xcσ (r) is invariant
under unitary transformations among KS orbitals as long as
the transformed orbitals yield the same minimizing orbitals
{ϕ̃iσ (r)}, the KLI response term remains variant in SIC and in
all three GSIC versions.

At first glance, this does not seem to be an issue as the KS
orbitals are fixed by solution of the KS equation. However, the
problem with the unitary variance of the KLI potential is that,
in the case of degeneracies, arbitrary unitary transformations
can be performed within the space of degenerate KS orbitals

without changing the structure of the KS system. As a
consequence, the variant KLI potential may be ill defined in
such situations. In the spin-polarized O2, twofold degeneracies
occur at the highest occupied orbitals in both spin channels.
Additionally, with complex Emin PBE-SIC an almost threefold
degeneracy appears at energetically lower-lying orbitals in one
of the spin channels, where the orbital eigenvalues differ by
only 0.002 Ry. Moreover, we observe rotations of (almost)
degenerate orbitals during the self-consistency iteration. Addi-
tional convergence problems can be introduced by limitations
in the numerical accuracy with which the minimizing unitary
transformation is calculated. However, in our calculations, we
carefully minimized such influencing factors by examination
of a broad range of numerical parameters. Thus, we find that
the convergence problems in O2 complex Emin PBE-SIC are
related to the missing invariance of the KLI potential under
unitary transformations of degenerate occupied orbitals.

We further note that already the complex Emin LDA-SIC
exhibits difficult convergence in terms of the charge-weighted
potential that we use as a self-consistency measure [62].
However, in contrast to the PBE-SIC case, the convergence
issue here is less severe as the total energy converges up
to an accuracy way below the variations due to changes of
the bond length. The energetic spread of the three almost
degenerate orbitals is about 0.013 Ry and thus about one
order of magnitude larger than in PBE-SIC. Furthermore, the
convergence problem does not occur in case of standard KLI,
FOBO, and real Emin SIC because, due to a different structure
of the KS system, there is no almost threefold degeneracy and
the twofold degeneracies do not seem to be problematic.

Finally, comparing our KS SIC to the PZ SIC results from
the literature we find that the complex Emin SIC yields the
closest agreement with experimental bond lengths for double-
and triple-bond systems of all self-interaction corrected func-
tionals considered here. For single-bond systems complex
Emin SIC overcorrects even more and yields less favorable
bond lengths. Therefore, as a second result of our work,
we find that application of a complex energy-minimizing
transformation leads to notable shifts in the bond length
compared to real transformations. In a double- and triple-bond
situation the bond-length shifts point toward the experimental
result and therefore improve upon standard KLI-SIC and real
transformation GKLI SIC approaches.

In order to examine the difference between real [69]
and complex energy-minimizing orbitals further, we compare
isosurface plots of the corresponding orbital densities [47]
illustrated with the CO dimer in Fig. 2. While the energy-
minimizing orbital densities 1 and 5 in Fig. 2 are qualitatively
similar, striking differences are observed for orbital densities
2–4. Real Emin orbital densities 2–4 show pronounced nodal
planes, whereas complex Emin orbital densities do not. The
order of the energy-minimizing orbitals does not have any
physical significance as they are not eigenfunctions of the
Hamiltonian. We introduced the energy-minimizing orbital
numbering just for the sake of being explicit in our assignment.
Real orbitals need to form nodal planes in order to make
orthogonality between different orbitals possible. These nodal
planes are passed on to the corresponding orbital densities.
If, however, complex degrees of freedom are permitted,
the complex numbers can be exploited to guarantee for
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FIG. 2. (Color online) Orbital densities of real and complex
energy-minimizing orbitals of CO at the experimental bond length
of 2.132 bohrs.

orthogonality without or with reduced nodal planes, and thus
nodal planes are also avoided in the corresponding orbital den-
sities [47,70]. Our investigations indicate as a further result of
our work that the complex energy-minimizing transformation
in the generalized SIC KS approach leads to notably smoother
energy-minimizing orbital densities where nodal planes are
avoided compared to the real Emin case. The smoother orbital
densities without nodal planes are much closer to true electron
densities and therefore closer to the realm where (semi-)local
functionals as, for example, the LSDA and the PBE, are
considered to be appropriate [45–47,70]. This gives an idea
why complex Emin LSDA-SIC and PBE-SIC, where smoother
orbital densities are used, result in an improved energy mini-
mization. Moreover, it also gives an explanation for the more
pronounced changes from real to complex transformations
in PBE-SIC than LSDA-SIC: The PBE functional is more
sensitive to changes of the (orbital) density due to its gradient
terms [49]. Notable density changes, however, occur close to
nodal planes. Therefore, the PBE functional is expected to

show a more pronounced reaction on emerging or vanishing
nodal planes than the LSDA does [47,70].

IV. CONCLUSIONS

In conclusion, we recapitulated the implementation of
the SIC functional with a unitary transformation in the KS
world of DFT and discussed three possible definitions of the
transformation. The GKLI approach was applied to determine
the total energy and bond length of a representative set of
dimers and small molecules. We found that additional degrees
of freedom corresponding to different definitions of the SIC
approach lead to decreasing total energies. Complex degrees
of freedom in the energy-minimizing transformation play a
prominent role. The key difference between real and complex
energy-minimizing orbitals seems to be the formation of nodal
plains. Real energy-minimizing orbitals form nodal plains
also in the corresponding orbital densities, while complex
orbitals give smoother orbital densities. This allows for
further energy minimization in the cases of LSDA-SIC and
PBE-SIC. We confirmed in KS DFT the general notion that
SIC underestimates bond lengths. However, whereas in the
case of single-bond systems SIC with increasing degrees of
freedom leads to increasing underestimation, for double- and
triple-bond systems complex energy-minimizing generalized
KS SIC yields the best self-interaction corrected results. This
reduces standard SIC bond-length underestimation. Our results
show that, in general, both the xc functional as well as the
definition of the unitary transformation have a strong influence
on the performance of SIC. In this spirit, one can conclude that
the unitary transformation is a worthwhile starting point for
improving self-interaction corrected DFT.
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APPENDIX A: PSEUDOPOTENTIALS

Throughout the paper we use norm-conserving PPs of
Troullier-Martins [71] type for all atoms except hydrogen. The
LSDA and all LSDA-SIC calculations were carried out with
LSDA PPs, while we used PBE PPs for the PBE and PBE-SIC
calculations. For hydrogen a Giannozzi-type PP according to
Gygi [72] was used.

Since the PPs were constructed consistently only for the
corresponding LSDA or PBE functional their performance
in combination with the self-interaction corrected functionals
is not clear at first glance. However, the applicability of
LSDA PPs together with other xc energy functionals was
investigated before [40,73]. Goedecker et al. [40] examined the
application of PPs in the context of traditional PZ LSDA-SIC
and found close similarity between LSDA and LSDA-SIC
PPs. They report that without major effects on their results,
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TABLE II. Core cutoff radii rc of the LSDA and PBE PPs of C,
N, and O in bohrs.

LSDA-PP PBE-PP

2s rc 2p rc 2s rc 2p rc

C 1.09 1.09 1.09 1.09
N 0.99 0.99 0.99 0.99
O 1.09 1.09 1.09 1.09

LSDA-SIC PPs could be substituted by LSDA PPs in LSDA-
SIC calculations [40]. Based on this finding, we used PPs from
(semi-)local functionals with small core cutoff radii rc to keep
the influence of the PPs low. The core cutoff radii of the PPs
used in our calculations are compiled in Table II.

However, an influence on bond-length results can be
expected from the PP construction itself. Therefore, we
compare the bond lengths obtained from the bare LSDA and
PBE functionals using the PPs of Table II to AE calculations
from the literature in Table III.

While differences between PP and AE results are negligible
for the single-bond systems, we observe deviations between
the two approaches of 0.026 bohrs at the maximum for the
double- and triple-bond systems. Deviations of that size can
be expected due to the PP construction. Therefore, we further
estimated the influence of the PP parameters on the bond
lengths by repeating the bond-length investigations using
different PPs constructed with different core cutoff radii.
In case of the CO molecule, for instance, we can perfectly
reproduce the AE LSDA result using a softer C (2s rc = 1.29
and 2p rc = 1.29) and O (2s rc = 1.45 and 2p rc = 1.45)
PP. Here, also all LSDA-SIC results are shifted downward by
about 0.02 bohrs and, most importantly, all trends discussed
in Sec. III remain. PP parameters with a similar behavior can
be found for N2 and O2.

In order to further assess the influence of the PPs on
bond-length results, we repeated all calculations using PPs
constructed for the EXX functional (EXX-PP) in the KS OEP
scheme [74] and compared to our previous results. EXX-PPs
were proven to yield reliable KS band gaps in the OEP and
KLI scheme [75–77]. One may argue that the EXX functional
represents the extreme case of a perfectly self-interaction free
functional without correlation. Therefore, if LSDA-PPs and
EXX-PPs both yield results in good agreement one would be
rather safe in assuming that all PPs also give reasonable results
in the explicitly self-interaction corrected LSDA calculations.
In practical application, however, we find that the convergence

TABLE III. LSDA and PBE bond lengths (bohrs) obtained from
our PP approach in comparison to AE calculations, respectively.

LSDA PBE

LSDA-PP AE PBE-PP AE

H2O 1.829 1.825
CH4 2.073 2.073 [45] 2.072 2.071 [45]
O2 2.289 2.274 [45] 2.326 2.300 [45]
CO 2.152 2.130 [45] 2.169 2.147 [45]
N2 2.080 2.071 [45] 2.091 2.085 [45]

behavior of EXX-PP LSDA-SIC calculations is, by far,
less favorable and leads to errors up to 0.01 bohrs in the
bond-length interpolation procedure. Moreover, already LSDA
bond lengths from EXX PPs are in error by 0.031 bohrs at
the maximum. Deviations of this size can be explained by
the construction procedure of EXX-PPs, where long-range
effects of the EXX functional are treated explicitly [74]. Our
investigations indicate that EXX-PPs cannot be transferred
carelessly to calculations with other functionals because they
are tailored to the peculiarities of the EXX functional. Yet,
the general trends of bond-length shifts due to different
SIC implementations are clearly visible also in the EXX-PP
LSDA-SIC results.

In summary, we estimate an absolute bond-length error
(excluding core-valence interaction effects) due to the use of
PPs of 0.02 bohrs in this study. This error is on the scale
where also other details of the numerical implementation start
to matter. Results beyond the given accuracy are outside the
interest of our investigation. The trends discussed in Sec. III
are very robust and can thus be regarded as a valid general
finding.

APPENDIX B: UNITARILY CONSTRAINED ALGORITHM
FOR THE ENERGY-MINIMIZING TRANSFORMATION

The purpose of this appendix is the description of the
algorithm that we use in PARSEC for the determination of the
energy-minimizing unitary transformation. The algorithm is
based on a conjugate gradient (CG) method where the unitary
constraint of the energy-minimizing transformation is taken
into account explicitly. To this end, we apply an algorithm
of Abrudan et al. [78] that exploits the group properties of
unitary matrices [79] and was recently proposed for application
in self-interaction corrected DFT [80,81]. In this algorithm,
the computational cost can be reduced notably by optimizing
the search direction and step size by means of CGs and a
line search on the Lie group of unitary matrices. A general
overview of the CG algorithm is provided in Table III of
Ref. [78]. We describe the application of this algorithm in
the context of SIC in two steps: First, we explain the basic
algorithm that performs energy minimization constrained to
unitary transformations of the occupied orbitals. In a second
step, we illustrate performance enhancements of the basic
algorithm by using CGs and step-size optimization.

The algorithm discussed in the following is supposed to
minimize the SIC energy functional of Eq. (1) with respect to
its freedom of unitary transformations. It starts from a fixed
set of occupied orbitals {ϕ̃(0)

jσ } determined by the initial unitary
transformation U (0)

σ . For this initial guess, multiple options are
possible: (i) Take the occupied KS orbitals where U

(0)
ijσ = δij ,

(ii) use the minimizing transformation of the previous step of
the KS self-consistency procedure, or (iii) determine the initial
orbitals and transformation by a criterion different to energy
minimization, for example, the FOBO localization. We find
that as long as the orbitals do not change much during a KS
self-consistency iteration, best performance can be obtained
by the energy-minimizing transformation of the last KS step.
In all other cases, we use FOBO localizing orbitals as an initial
guess.
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In each step (k) of our iterative procedure we need to find
a unitary transformation S(k)

σ that determines a new orbital set
{ϕ̃(k+1)

iσ },

ϕ̃
(k+1)
iσ (r) =

Nσ∑
j=1

S
(k)
ijσ ϕ̃

(k)
jσ (r), (B1)

with lower SIC energy. Thus, S(k)
σ also needs to modify the

unitary transformation U (k)
σ according to

U
(k+1)
ijσ =

Nσ∑
n=1

S
(k)
inσU

(k)
njσ (B2)

so that U (k+1)
σ yields the new energy-minimizing orbitals from

the occupied KS orbitals,

ϕ̃
(k+1)
iσ (r) =

Nσ∑
j=1

U
(k+1)
ijσ ϕjσ (r). (B3)

Therefore, as a first step we determine how the SIC energy
changes due to small variations of the transformation Sσ from
the unit matrix starting from a fixed orbital set {ϕ̃(k)

jσ } [81]:
Linear order changes of the SIC energy due to deviations of Sσ

from the unit matrix are given by the anti-Hermitian gradient
matrix,

G
(k)
ijσ = ∂ESIC

xc

[{
ϕ̃(k)

nσ

}
,Smnσ

]
∂S∗

ijσ

∣∣∣∣
S∗

ijσ =δij

= 〈
ϕ̃

(k)
jσ

∣∣ṽSIC (k)
iσ (r) − ṽ

SIC (k)
jσ (r)

∣∣ϕ̃(k)
iσ

〉
. (B4)

Here, the SIC potentials ṽ
SIC (k)
jσ (r) are computed from the

energy-minimizing orbitals ϕ̃
(k)
jσ (r).

The gradient can be applied straightforwardly as a steepest
descent search direction with a step size l(k)

σ to find the new
transformation Ũ

(k+1)
ijσ = U

(k)
ijσ − l(k)

σ G
(k)
ijσ . Note that the step

size carries a spin index and the iteration number as later we
perform optimization of the step size per spin channel in each
step of the iteration. Here, the step size is a fixed real number.
However, this application of the energy gradient violates the
unitary constraint and unitarity of Ũ (k+1)

σ has to be reconstituted
a posteriori. To this end, in the first version of our algorithm we
used the so-called Löwdin-orthogonalization method [82] that
yields a unitary transformation U (k+1)

σ as close as possible to
Ũ (k+1)

σ . The a posteriori orthogonalization, however, renders
an optimization of the step size difficult.

Therefore, the idea of Ref. [78] is to perform the gradient
step in a reduced space, where the unitarity constraint is
guaranteed by choice of the parameter space [79]. Thus, the
optimization problem can be turned into an unconstrained one
by suitable restriction of the parameter space to the Lie group of
n × n unitary matrices U (n) [78]. Due to the anti-Hermiticity
of the gradient matrix, the exponential map

S(k)
σ

(
l(k)
σ

) = exp
{−l(k)

σ G(k)
σ

}
(B5)

with step size l(k)
σ constitutes a unitarity conserving transfor-

mation when it is applied to the unitary transformation U (k)
σ

as in Eq. (B2). Here, G(k)
σ corresponds to the steepest descent

search direction but due to the exponential map unitarity of S(k)
σ

is guaranteed. The exponential map of Eq. (B5) needs to be

interpreted by the series expansion of the exponential function.
In practical calculations, we compute the unitary matrix M (k)

σ

and the diagonal matrix D(k)
omσ = λ(k)

mσ δom with eigenvalues
λ(k)

mσ [81] by diagonalization of the Hermitian matrix

−iG(k)
σ = M (k) †

σ D(k)
σ M (k)

σ . (B6)

Hence, Eq. (B2) can be reformulated as

U
(k+1)
ijσ =

Nσ∑
n,m=1

M
(k) ∗
miσ exp

{−il(k)
σ λ(k)

mσ

}
M (k)

mnσU
(k)
njσ . (B7)

So far we have described the basic steepest descent algorithm
were the unitary constraint is taken into account explicitly.
It allows for the determination of the energy-minimizing
unitary transformation by iteration of Eq. (B7) together with
the gradient of Eq. (B4), the orbitals of Eq. (B3), and the
diagonalization of Eq. (B6).

Yet, the numerical performance of this algorithm can be
notably increased. In the following, we describe how such a
performance enhancement can be obtained by using CGs and
an optimization of the gradient step size. The idea of the CG
approach [78] is to determine the new search direction H (k)

σ

based on the current gradient G(k)
σ and the search direction

H (k−1)
σ of the last step of the iteration. In the PARSEC CG

implementation, we employ the new search direction,

H
(k)
ijσ = G

(k)
ijσ + γ (k)

σ H
(k−1)
ijσ , (B8)

where γ (k)
σ is the Polak-Ribière weighting factor [78],

γ (k)
σ =

〈
G(k)

σ − G(k−1)
σ ,G(k)

σ

〉
〈
G

(k−1)
σ ,G

(k−1)
σ

〉 . (B9)

The brackets are defined by

〈X,Y 〉 = 1
2 Re{Tr(XY †)}, X,Y ∈ Cn× n. (B10)

To constitute the CG version of our iterative algorithm, the new
conjugate search direction of Eq. (B8) replaces the gradient
G(k)

σ in the basic steepest descent algorithm. For a transparent
overview, we summarized our CG algorithm together with the
initialization of the algorithm in Table IV. Note that in some
cases the CG of the iterative procedure does not perform better
than the steepest descent. Comments and a criterion about
when the CG should be abandoned can be found in Ref. [78].

Thus far, the gradient step l(k)
σ was chosen to be a fixed real

number. However, an optimization of l(k)
σ further improves

the numerical performance. To this end, we approximate the
energy as a function of l(k)

σ by a second-order polynomial
and use the step size corresponding to the minimum of the
polynomial as an optimum step size l

opt (k)
σ . The optimum can

be calculated from the slope

m(k)
σ

(
l(k)
σ

) = dESIC
xc (lσ )

dlσ

∣∣∣∣
lσ =l

(k)
σ

(B11)

of the polynomial at l(k)
σ = 0 and after some trial step l(k)

σ = ltrial

according to

lopt (k)
σ = −m(k)

σ (0)ltrial

m
(k)
σ (ltrial) − m

(k)
σ (0)

. (B12)
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TABLE IV. CG algorithm with step-size optimization for the
minimization of the SIC energy functional. The CG version of
the algorithm without step-size optimization can be obtained by
neglecting steps (2 iii), (4), and (5) and choosing a fixed step size
lσ in the beginning.

(1) Initialization:

(i) k = 0, H
(−1)
ijσ = 0, ϕ̃

(0)
iσ (r) = ∑Nσ

j=1 U
(0)
ijσ ϕjσ (r)

(ii) set real number ltrial

(2) Compute:

(i) G
(k)
ijσ = 〈ϕ̃(k)

jσ |ṽSIC (k)
iσ (r) − ṽ

SIC (k)
jσ (r)|ϕ̃(k)

iσ 〉
(ii) H

(k)
ijσ = G

(k)
ijσ + γ (k)

σ H
(k−1)
ijσ

(iii) m(k)
σ (0) = −2〈H (k)

σ ,G(k)
σ 〉

(3) Determine M (k)
σ and D(k)

omσ = λ(k)
mσ δom from

diagonalization of −iH (k)
σ = M (k) †

σ D(k)
σ M (k)

σ

(4) Perform the trial step with step size ltrial and compute:

(i) U trial
ijσ = ∑Nσ

n,m=1 M
(k) ∗
miσ exp{−iltrialλ(k)

mσ }M (k)
mnσ U

(k)
njσ

(ii) ϕ̃trial
iσ (r) = ∑Nσ

j=1 U trial
ijσ ϕjσ (r) and {ṽSIC trial

iσ }
(iii) Gtrial

ijσ = 〈ϕ̃trial
jσ |ṽSIC trial

iσ (r) − ṽSIC trial
jσ (r)|ϕ̃trial

iσ 〉
(iv) m(k)

σ (ltrial) = −2〈H (k)
σ ,Gtrial

σ 〉
(v) lopt (k)

σ = −m
(k)
σ (0)ltrial

m
(k)
σ (ltrial)−m

(k)
σ (0)

(5) Determine the step size:
compute lcut (k)

σ = π

2×maximum of{λ(k)
mσ } :

If 0 � lopt (k)
σ � lcut (k)

σ : choose l(k)
σ = lopt (k)

σ

Else: choose l(k)
σ = 0.2lcut (k)

σ

(6) Perform a CG step with step size l(k)
σ and compute:

(i) U
(k+1)
ijσ = ∑Nσ

n,m=1 M
(k) ∗
miσ exp{−il(k)

σ λ(k)
mσ }M (k)

mnσ U
(k)
njσ

(ii) ϕ̃
(k+1)
iσ (r) = ∑Nσ

j=1 U
(k+1)
ijσ ϕjσ (r) and {ṽSIC (k+1)

iσ }
(7) Check convergence:

If convergence is fulfilled: stop
Else: k := k + 1 and go to step (2)

We obtain the needed slopes based on the derivative of the
energy with respect to lσ in two steps [81]

m(k)
σ (l(k)

σ ) =
Nσ∑

i,j=1

∂ESIC
xc

(
l(k)
σ

)
∂Sijσ

∣∣∣∣
Sijσ =δij

dSijσ (lσ )

dlσ

∣∣∣∣
lσ =0

, (B13)

where the first factor represents the gradient and the second
factor the negative search direction at lσ = 0. The gradient
needs to be computed at l(k)

σ = 0 and after the trial step at
l(k)
σ = ltrial. In case of the CG method, the second factor gives
H (k)

σ for the search direction and one obtains

m(k)
σ (0) = −2

〈
H (k)

σ ,G(k)
σ

〉
, (B14)

m(k)
σ (ltrial) = −2

〈
H (k)

σ ,Gtrial
σ

〉
, (B15)

where we used the bracket of Eq. (B10).

Numerical tests of this polynomial line search revealed that
it is advisable to introduce an upper limit of the optimized step
size. We determine this upper limit based on the observation
that the exponential map of Eq. (B5) results in an almost
periodic variation of the transformation with frequencies
determined by the eigenvalues λ(k)

mσ [78,81]. The idea is to avoid
periodic oscillations by choosing step sizes that are smaller
than the first quarter of the period of the highest-frequency
component given by λmax (k)

σ = maximum of {λ(k)
mσ }

0 � l(k)
σ � lcut (k)

σ , lcut (k)
σ = π

2λ
max (k)
σ

. (B16)

If the step size violates this condition, we choose l(k)
σ =

0.2lcut (k)
σ .

Finally, we determine the convergence of our algorithm by
monitoring the Pederson criterion of Eq. (10). Convergence is
reached when the absolute value of the largest matrix element
of the matrix in Eq. (10) is smaller than a given threshold
which is typically less than 10−5 Ry. In all calculations
for the present paper we used a threshold of 10−6 Ry. The
CG algorithm with step-size optimization is summarized in
Table IV.

We applied the gradient line search unitary optimization
algorithm also for systems that are much larger than the ones
studied in this paper. For instance, applying it to molecular
semiconductors where SIC plays an important role [22,83]
yields notably reduced computation times as compared to the
algorithm used previously by some of us [4,22,83]. A further
detailed presentation and numerical assessment of the new
algorithm including, for example, C20 and diamond will be
given elsewhere [84].

Note that the algorithm described here can also be used to
optimize the Foster-Boys [57,58] spatial localization criterion
in the form [60,85]

B[{ϕ̃jσ }] =
Nσ∑
i=1

[〈ϕ̃iσ |r2|ϕ̃iσ 〉 − 〈ϕ̃iσ |r|ϕ̃iσ 〉2] (B17)

under the constraint of unitary transformations. To this end,
one needs to substitute the energy gradient of Eq. (B4) with
the gradient of the Foster-Boys criterion,

G
(k)
ijσ = ∂B

[{
ϕ̃(k)

nσ

}
,Smnσ

]
∂S∗

ijσ

∣∣∣∣
S∗

ijσ =δij

= 〈
ϕ̃

(k)
jσ

∣∣ṽFOBO (k)
iσ (r) − ṽ

FOBO (k)
jσ (r)

∣∣ϕ̃(k)
iσ

〉
, (B18)

where

ṽ
FOBO (k)
iσ (r) = r2 − 2r · 〈

ϕ̃
(k)
iσ

∣∣r∣∣ϕ̃(k)
iσ

〉
. (B19)
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[80] P. Klüpfel, S. Klüpfel, K. Tsemekhman, and H. Jónsson, Lect.
Notes Comput. Sci. 7134, 23 (2012).

[81] C.-H. Park, A. Ferretti, I. Dabo, N. Poilvert, and N. Marzari,
arXiv:1108.5726v1.

[82] I. Mayer, Int. J. Quantum Chem. 90, 63 (2002).
[83] M. Dauth, T. Körzdörfer, S. Kümmel, J. Ziroff, M. Wiessner,
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We present a real-time Kohn-Sham propagation scheme for the self-interaction correction (SIC). The
multiplicative Kohn-Sham potential is constructed in real-time and real-space based on the gener-
alized optimized effective potential equation. We demonstrate that this approach yields promising
results for a wide range of test systems, including hydrogen terminated silicon clusters, conjugated
molecular chains, and molecular charge-transfer systems. We analyze the nature of excitations by cal-
culating transition densities from the time evolution and by evaluating the time-dependent exchange-
correlation potential. A properly constructed Kohn-Sham SIC potential shows a time-dependent field-
counteracting behavior. These favorable characteristics of the exchange-correlation potential may
be lost in approximations such as the SIC-Slater potential. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4742763]

I. INTRODUCTION

Predicting and understanding the electronic structure
and excitations of nanoscale materials requires reliable first-
principles approaches. In principle, (time-dependent) den-
sity functional theory ((TD)DFT) appears as the ideal choice
for this task due to its attractive ratio of accuracy to com-
putational effort. However, most standard density function-
als suffer from deficiencies that limit their applicability. The
wrong asymptotic behavior of the potential,1 the incorrect
prediction of dissociation limits,2 and the overestimation of
the static electric response3 are well-known problems. In
semiconductor nanoclusters, where quantum confinement and
excitonic effects are known to play an important role,4–9

standard functionals tend to underestimate low-lying opti-
cal excitations.10 Charge transfer (CT) is overestimated in
transport11 and the energy of long-range CT excitations is
badly underestimated.12, 13 These problems are particularly
severe as questions of CT play a decisive role in the efforts
to tap new sources of energy by constructing artificial light-
harvesting systems.

There is a close relation between these deficiencies and
the self-interaction error of density functionals. Accurate re-
sponse properties, e.g., polarizabilities of molecular chains,
can be obtained with Kohn-Sham (KS) DFT using the exact
exchange (EXX) functional.14 Partial inclusion of exact ex-
change as, for example, in range-separated hybrid function-
als improves CT excitations.15–19 In the latter approaches, a
careful adjustment of the range-separation parameter seems
to be necessary for accurate results.20 Tuning17, 18 instead of
fitting can be a successful non-empirical way of determining
the range-separation parameter. Unfortunately, the tuning pro-
cedure violates the size consistency requirement.21

Promising improvements of response properties22–24

were also obtained with a Perdew-Zunger (PZ) self-

a)URL: http://www.tp4.uni-bayreuth.de.

interaction correction (SIC).1 In particular, when used within
KS theory SIC polarizabilities were found to be very
accurate.24 Besides its appealing feature of being parameter
free and non-empirical, PZ SIC fulfills important exact con-
straints on the xc energy functional as it is exact for one-
electron densities and for uniform spin-densities. Moreover,
PZ SIC includes full Hartree self-interaction correction. The
potential of self-interaction corrected functionals shows the
correct 1/r asymptotic decay1, 25 and develops step-like struc-
tures that reflect particle number discontinuities.3, 14, 24, 26–28

The SIC approach leads to orbital functionals and therefore,
when used in TDDFT, introduces an explicit dependence on
the TD orbitals. Since the TD orbitals at time t depend on the
entire history of the density n(r, t ′) for t′ ≤ t,29 KS orbital
functionals in principle contain so-called memory effects in a
natural way.29–31 The particle number discontinuity is crucial
for the proper description of CT, and it has also been argued
that memory effects play a role.11, 13, 29, 32–34 As both are in
principle included in TD KS SIC, the latter is a promising
candidate for curing the well-known deficiencies of TDDFT,
while at the same time keeping a qualitatively correct descrip-
tion of many ground-state (GS) properties.35

In this paper, we demonstrate that TD SIC in the KS
framework can noticeably improve the TDDFT based descrip-
tion of even difficult excitations. We first discuss the concept
of GS SIC in Sec. II, followed by a description of TD SIC in
Sec. III. Section IV presents real-time (RT) TDDFT calcula-
tions of absorption spectra. There, we also introduce an anal-
ysis tool based on the transition density that allows to analyze
absorption spectra and to visualize the nature of electronic ex-
citations. Section V A gives an overview of how the methods
that were introduced before perform for the established test
case of hydrogen chains. Finally, we report and discuss results
obtained for typical real systems of different character: small
metal particles in Sec. V B, semiconducting hydrogenated sil-
icon clusters in Sec. V C, π -conjugated polyacetylene chains
in Sec. V D, and molecular CT systems in Sec. V E. These

0021-9606/2012/137(6)/064117/17/$30.00 © 2012 American Institute of Physics137, 064117-1
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results demonstrate that our SIC scheme shows appealing fea-
tures, e.g., a TD field-counteracting behavior of the xc poten-
tial, and that it is able to correctly predict excitations that were
considered too difficult for standard TDDFT.

II. THE SELF-INTERACTION CORRECTION
IN DENSITY FUNCTIONAL THEORY

A. The self-interaction correction energy expression

In their seminal work, Perdew and Zunger1 introduced
a self-interaction correction where single orbital densities
njσ (r) = |ϕjσ (r)|2 of Nσ occupied orbitals {ϕjσ (r)} from a
DFT single particle approach are interpreted to represent the
Nσ electrons of the system. The idea of the correction is to
subtract the energy of the interaction of every electron with
itself from the xc energy of some xc functional approxima-
tion E

app
xc [n↑, n↓] according to

ESIC
xc [n↑, n↓] = Eapp

xc [n↑, n↓] −
∑

σ=↑,↓

Nσ∑
j=1

[EH[njσ ]

+ Eapp
xc [njσ , 0]].

(1)

Here, EH is the classical Hartree energy and σ denotes the
spin index.

This scheme has long been known, yet it has aspects that
have rarely been discussed in the past. First, it has frequently
been assumed that the SIC vanishes for the ultimate Exc. How-
ever, the exchange-correlation energy is defined for GS den-
sities, and these are typically smooth and nodeless. This is
not necessarily true for orbital densities, which may exhibit
complicated nodal structures. Therefore, the statement that
the SIC of Eq. (1) vanishes for the ultimate xc functional im-
plies the additional assumption that the orbital densities that
are used in Eq. (1) are GS densities of some potential.

Second, one might wonder if the relation between orbital
densities and electrons is a unique one. Indeed a peculiarity
is built into the SIC energy functional as it is not invariant
under unitary transformation of the orbitals. This means that
starting from a given set of occupied orbitals, one can con-
struct further orbital sets by unitary transformations that give
the same density but result in different orbital densities. Dif-
ferent orbital densities, however, represent different identifi-
cations of orbitals with electrons and therefore yield different
self-interaction corrections. Suggestions to solve this “unitary
variance problem” emerged in the past and are based on two
orbital sets35–42 that take different roles:43 The canonical or-
bital set {ϕjσ (r)} of Nσ occupied orbitals solves the single
particle equations and a second orbital set {ϕ̃jσ (r)} is used to
set up the SIC xc energy (1) uniquely. By definition, both or-
bital sets give the same density and, therefore, are connected
by a unitary transformation Uσ

ij according to

ϕ̃iσ (r) =
Nσ∑
j=1

Uσ
ijϕjσ (r). (2)

We call such approaches generalized SIC (GSIC) schemes.
At first sight, the unitary variance of the SIC energy func-

tional appears to be a weakness of the SIC approach. Yet, this

weakness can be turned into a strength in GSIC as the de-
grees of freedom of the unitary transformation provide means
to include additional constraints into the energy functional.
Exploiting this feature, promising improvements have been
obtained in GS DFT.35–38, 44 In the present TDDFT context,
we explain the idea of exploiting the unitary degrees of free-
dom in Sec. III B and then detail the approach with equations
from Sec. III C throughout to Sec. III E.

Recent investigations of GSIC schemes45, 46 stress the
importance of complex orbitals and unitary transformations
in GS DFT. Therefore, throughout the paper we used real
GS canonical orbitals without loss of generality, but complex
TD canonical orbitals, complex unitary transformations, and
complex orbitals {ϕ̃jσ }.

B. Local density approximation (LDA) vs generalized
gradient approximation (GGA) SIC

As the SIC can, in principle, be applied to all xc func-
tional approximations, the question arises on top of which ap-
proximate E

app
xc [n↑, n↓] SIC should be performed. Perdew and

Zunger already advocated the use of the LDA as it is on av-
erage a good model for the xc hole and exactly satisfies the
related sum rule.1, 47 The combination of GGAs with SIC us-
ing real orbitals in GS calculations has been reported to be
doubtful.48 The GS SIC applied to GGAs gives more promis-
ing results if complex orbitals and unitary transformations are
taken into account.45, 46 Yet, the strong spatial variations of
TD orbital densities may be ill suited for being combined
with the gradient corrections that were derived for the much
smoother GS total densities. Therefore, for the TD case that is
of interest here we focus exclusively on self-interaction cor-
rected LDA.

C. Perdew-Zunger vs Kohn-Sham approach

The SIC xc energy expression depends explicitly on the
orbitals and not on the density itself, i.e., it is an implicit den-
sity functional. Therefore, there are two options for choos-
ing a single-particle scheme: first, the traditional PZ scheme,
where one performs variations δ/δϕ∗

iσ (r) with respect to the
canonical orbitals, and second, the KS scheme, where the
functional derivative is performed with respect to the den-
sity, i.e., δ/δn(r). The traditional scheme is close to Hartree-
Fock theory in its variational ansatz and one ends up with
orbital-specific potentials that can be computationally tedious.
In contrast, the KS approach results in a local multiplicative
potential, raising hopes that the approach is not as “Hartree-
Fock like” as traditional PZ SIC.28 Moreover, the KS ap-
proach has further advantages: it leads to Janak’s theorem,49

exact KS eigenvalues are good approximations to relaxed ver-
tical ionization potentials,50 using a local potential has numer-
ical advantages, and the local multiplicative potential allows
for a transparent analysis of the response behavior and in-
terpretability of orbitals and eigenvalues.44 Yet, it must also
be said that the construction of the local potential is not free
from difficulties as it requires use of the optimized effective
potential (OEP) method25, 51 or the generalized OEP (GOEP)
formalism.35
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III. TIME-DEPENDENT KOHN-SHAM
SELF-INTERACTION CORRECTION

A. Time-dependent optimized effective potential

Already in GS DFT determining the OEP is an involved
procedure, and the TDOEP equation52 is yet more demand-
ing to solve.53, 54 One attempt at a solution scheme in RT
was inspired by the GS concept of using the so-called or-
bital shifts.55 With the help of these, the standard TDOEP
equation can be transformed into a set of coupled partial-
differential equations for the occupied TD KS orbitals and
their corresponding TD orbital shifts. Yet, propagating the
coupled equations showed numerical instabilities. A success-
ful RT solution of the TDOEP equation was achieved in
Ref. 54 by direct integration, but the calculation was restricted
to a one-dimensional model problem. RT implementations of
orbital functionals for more complex systems so far relied on
the extension of the Krieger-Li-Iafrate (KLI) approximation56

to the TD case.52, 53 The time-dependent KLI (TDKLI) poten-
tial, however, can be problematic in terms of stability,57 as
discussed in detail later.

B. Adiabatic interpretation of the time-dependent
generalized self-interaction correction

Tong and Chu58, 59 already extended the GS SIC method
to the TD (propagation) case. They used the SIC in an orbital-
adiabatic sense with the SIC (KLI) potential derived from the
GS SIC energy. However, as in the GS case, TD SIC suffers
from not being invariant under unitary transformations. More-
over, the usual KLI approximation and particularly the SIC
approach are well known for suffering from stability prob-
lems during time propagation57, 60–62 (see also the Appendix).
The instability of the KLI approximation is a consequence of
the KLI potential not being a functional derivative and the SIC
functional not being unitarily invariant. In GS DFT, the gen-
eralized KLI (GKLI) approximation compares well to the full
GOEP, whereas the standard KLI is a poor approximation to
the standard OEP for SIC.35, 63 Therefore, it appears natural
to treat the unitary variance problem in TD situations in anal-
ogy to the GS case, i.e., extend the GOEP approach of GS
DFT to TDDFT by using the GS formalism at every instant of
time.

With the GSIC approach, we use the degrees of freedom
that are provided by the unitary transformation for increas-
ing the propagation stability. The KLI propagation instabil-
ity manifests itself, e.g., in energy variations that occur even
when no external field is applied. Thus, during time propaga-
tion the system leaves the path of the lowest energy evolution.
In the GS case, the unitary transformation helps to obtain the
lowest energy configuration. In the same spirit, the unitary
transformation can be exploited in TD situations to keep the
system on a stable energy path during propagation. This ap-
proach is orbital-adiabatic in the same sense as the SIC func-
tional is, if the definition of the unitary transformation at every
instant of time depends on the orbitals at the same instant of
time. Such definitions of the unitary transformation are dis-
cussed in Sec. III E.

C. Generalized time-dependent SIC potential

In this section, we recapitulate the time-dependent KLI
approximation and introduce our generalization of the TDKLI
scheme to deal with unitarily variant functionals. TD SIC cal-
culations of the orbital-adiabatic kind10, 58, 59, 64–66 have been
carried out successfully based on the TDKLI potential53, 58, 59

vTDKLI
xcσ (r, t) + fσ (r, t)

= 1

2nσ (r, t)

⎧⎨
⎩

Nσ∑
j=1

njσ (r, t)
[
uxcjσ (r, t)

+ (
v̄TDKLI

xcjσ (t) − ūxcjσ (t)
)]⎫⎬⎭ + c.c., (3)

where

fσ (r, t) = − i

4nσ (r, t)

Nσ∑
j=1

∇2njσ (r, t)

×
∫ t

−∞
dt ′(ūxcjσ (t ′) − ū∗

xcjσ (t ′)) (4)

and the orbital density averaged potentials are given by

v̄TDKLI
xcjσ (t) =

∫
d3r ϕ∗

jσ (r, t)vTDKLI
xcσ (r, t)ϕjσ (r, t) (5)

and

ūxcjσ (t) =
∫

d3r ϕ∗
jσ (r, t)uxcjσ (r, t)ϕjσ (r, t). (6)

In the standard TDKLI approach to SIC, the orbital-specific
potentials uxcjσ equal the SIC potentials

vSIC
jσ (r, t) = δESIC

xc [{nkτ }]
δnjσ (r, t)

. (7)

The first term on the right-hand side of Eq. (3) plus its
complex conjugate is commonly denoted as the Slater (SLA)
approximation60–62, 67, 68

vTDSLA
xcσ (r, t) = 1

2nσ (r, t)

×
Nσ∑
j=1

njσ (r, t)[uxcjσ (r, t) + u∗
xcjσ (r, t)] (8)

to the TDOEP potential.
The central idea of the generalization in case of unitarily

variant functionals is to replace the orbital-specific potentials
uxcjσ by the generalized orbital-specific potentials60, 69

uG
xcjσ (r, t) = 1

ϕ∗
jσ (r, t)

Nσ∑
i

Uσ
ij (t)ϕ̃∗

iσ (r, t)ṽSIC
iσ (r, t) (9)

in the TDKLI Eq. (3), where

ṽSIC
iσ (r, t) = δESIC

xc [{ñkτ }]
δñiσ (r, t)

(10)

using the orbital densities {ñkτ (r, t)}. The generalized orbital-
specific potentials of Eq. (9) are known from GS GOEP, but
need to be evaluated with TD orbitals here. Moreover, in the
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generalized TD approach the transformation Uσ
ij (t) turns into

a TD function that connects the two orbital sets according to

ϕ̃iσ (r, t) =
Nσ∑
j=1

Uσ
ij (t)ϕjσ (r, t). (11)

In summary, Eq. (3) together with Eqs. (9) and (11) constitute
our TD SIC GKLI (TDGKLI) scheme. A generalized Slater
(GSLA) approximation60 is introduced by substituting uG

xcjσ

into Eq. (8).

D. Memory contributions in the
time-dependent potential

The function fσ (r, t) of Eq. (4) depends on the full his-
tory of uxcjσ (t ′), i.e., on all times t′ ≤ t and therefore intro-
duces a memory dependence into the TDKLI scheme. Yet,
for a large class of xc functionals, where the orbital depen-
dence appears only via combinations ϕ∗

jσ (r, t)ϕjσ (r′, t), as,
e.g., in the EXX and the SIC functional, this memory depen-
dence vanishes.30, 52, 53, 58, 59 It should be kept in mind, though,
that a memory dependence in terms of the density n(r, t ′) re-
mains due to the use of the KS orbitals29–31 in the TD SIC
KLI potential, as stated in Sec. I.

However, one peculiarity occurs in TDGKLI: It is not
clear from the start that the memory dependence in the TD-
KLI of Eqs. (3) and (4) vanishes. The use of the second orbital
set in the GSIC scheme introduces a mixing of KS orbitals via
the unitary transformation of Eq. (9) and; therefore, the pre-
vious argument using orbital combinations ϕ∗

jσ (r, t)ϕjσ (r′, t)
does not hold. Thus, the explicit memory contribution sur-
vives in the TDGKLI and Eq. (4) gives

fσ (r, t) = − 1

2nσ (r, t)

Nσ∑
j=1

∇2njσ (r, t)
∫ t

−∞
dt ′

∫
d3r ′

× Im

(
ϕjσ (r′, t ′)

Nσ∑
k=1

Uσ
kj (t ′)ϕ̃∗

kσ (r′, t ′)ṽSIC
kσ (r′, t ′)

)
.

(12)

E. Definitions of the unitary transformation

In order to complete the TD GSIC scheme, we need to
specify how the unitary transformation is defined during the
time evolution. In the following, we discuss and classify sev-
eral possibilities.

1. Energy-minimization criterion

To pinpoint the unitary transformation in GS DFT, Peder-
son et al.36–38 suggested energy minimization of the total en-
ergy Etot with respect to changes of Uσ

ij . This criterion leads
to the set of equations

〈ϕ̃iσ (r)|ṽSIC
iσ (r) − ṽSIC

jσ (r)|ϕ̃jσ (r)〉 = 0 (13)

for all i and j of occupied orbitals.36, 46 The equations are ful-
filled only when the SIC energy is minimized. The very same
criterion was also introduced as a symmetry condition in a re-
cent implementation of original PZ SIC with orbital-specific

potentials.41, 42 The strategy of Pederson et al. can also be
applied in KS DFT.35, 43, 60 The idea is to find an orbital set
{ϕ̃jσ (r)} and the corresponding unitary transformation that
leaves the density unchanged, minimizes the energy, and de-
termines the xc potential. Orbitals {ϕ̃jσ } obtained from the
Pederson criterion are called energy-minimizing orbitals.

As we intend to support variational stability by a suit-
able choice of the TD unitary transformation it appears nat-
ural to fix Uσ

ij (t) by an extension of the Pederson energy-
minimization criterion to the TD case, i.e.,

〈ϕ̃iσ (r, t)|ṽSIC
iσ (r, t) − ṽSIC

jσ (r, t)|ϕ̃jσ (r, t)〉 = 0 (14)

for all i and j of occupied orbitals and all times t.69 With this
choice, the total energy Etot(t) is minimized at every instant
of time in the spirit of the orbital-adiabatic TD SIC approach,
cf. Sec. III B. In the following, we name this SIC propaga-
tion scheme with energy minimization at every instant of time
“GKLI.”

The energy-minimization criterion has an interesting in-
fluence on the memory term of the TDGKLI potential:60 With
Eq. (14) the memory term vanishes. To demonstrate this ex-
plicitly, we start from Eq. (4) and calculate the difference

ūG
xcjσ (t ′) − ūG ∗

xcjσ (t ′)

= 〈ϕjσ (r, t ′)|uG
xcjσ (r, t ′) − uG ∗

xcjσ (r, t ′)|ϕjσ (r, t ′)〉 (15)

using definition (6). Then, insert the orbital-specific potentials
of Eq. (9), replace all KS orbitals by

ϕjσ (r, t) =
Nσ∑
i=1

Uσ ∗
ij (t)ϕ̃iσ (r, t), (16)

and obtain

ūG
xcjσ (t ′) − ūG ∗

xcjσ (t ′)

=
Nσ∑
k=1

Nσ∑
i=1

(
Uσ ∗

ij (t ′)Uσ
kj (t ′)〈ϕ̃kσ (r, t ′)|ṽSIC

kσ (r, t ′)|ϕ̃iσ (r, t ′)〉

−Uσ
ij (t ′)Uσ ∗

kj (t ′)〈ϕ̃iσ (r, t ′)|ṽSIC
kσ (r, t ′)|ϕ̃kσ (r, t ′)〉) . (17)

By switching indices i and k of the second term, we find

ūG
xcjσ (t ′) − ūG ∗

xcjσ (t ′)

=
Nσ∑
k=1

Nσ∑
i=1

Uσ ∗
ij (t ′)Uσ

kj (t ′)〈ϕ̃kσ (r, t ′)|ṽSIC
kσ (r, t ′)

− ṽSIC
iσ (r, t ′)|ϕ̃iσ (r, t ′)〉. (18)

If the Pederson criterion is fulfilled for all times, Eq. (18) van-
ishes and with it the memory dependence. Thus, starting from
a consistent energy-minimizing GSIC GS, the Pederson crite-
rion and related memory dependencies vanish from the initial
time on.

For ensuring that the memory contribution vanishes, it is
essential to converge the energy-minimization condition (14)
below a threshold chosen so small that the remaining devia-
tions from zero are of no physical and numerical relevance.
Yet, already in GS calculations optimization of the Pederson
criterion requires notable numerical effort.36, 42, 70 In the TD
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case, high quality of Uσ
ij (t) is required to keep the propaga-

tion in the variationally stable regime and Eq. (14) must be
fulfilled at each time step for a total time of ca. 40 fs. A
time evolution of this length is required for obtaining a rea-
sonable spectral resolution after Fourier transformation of the
TD dipole signal.

In order to reduce the computational effort for determin-
ing the unitary transformation in the TD case we developed
a special scheme.69 The unitary transformation can be deter-
mined notably more efficiently during propagation when we
use

Uσ
ij (t) = eiεj �tUσ

ij (t − �t) (19)

as an initial guess for the numerical unitary optimization.
(The numerical optimization is discussed below.) This ini-
tial guess takes the transformation from the previous time
step Uσ

ij (t − �t) and phase factors with the KS eigenvalues
εj into account. The choice is motivated by considering a
time propagation of the GS orbitals without external pertur-
bation: For this case, Eq. (19) provides the exact transfor-
mation. Or, stated the other way round: If one would fix the
GS unitary transformation and would not take the phase fac-
tors into account in Uσ

ij (t) when propagating, then the orbitals
{ϕ̃jσ } would change immediately. This would lead to spurious
changes of the xc potential and therefore to deviations from
the GS. As a consequence, spurious self-excitation and prop-
agation instability would occur.

2. Foster-Boys localization scheme

Alternatives to the energy-minimization condition can be
obtained by using other definitions for Uσ

ij (t) than Eq. (14). It
is known from the GS GOEP approach that spatial localiza-
tion according to Foster and Boys71, 72 (FOBO) is numerically
less expensive, but close to real-valued energy-minimizing
transformations.35, 46 Therefore, we introduce FOBO localiza-
tion in the generalized TD SIC approach. The Foster-Boys
criterion62, 73 measures the spatial extent of the localizing or
FOBO orbitals. In analogy to the energy-minimization case,
we enforce the FOBO criterion at each time step of the propa-
gation starting from a SIC GS with FOBO localization. In the
FOBO scheme, the TDGKLI memory contribution does not
vanish as explained before. Moreover, already in the GS the
FOBO orbitals do not fulfill the Pederson criterion and thus
even at the initial time the contribution of the memory term is
unclear as the time integral in the memory term starts at minus
infinity. Therefore, we define the FOBO propagation scheme
such that we set fσ (r, t) = 0. The initial guess of Eq. (19) can
again be used. Thus, the abbreviation FOBO in the following
refers to a (TD)GKLI propagation with Foster-Boys localiza-
tion in the GS and at every instant of time, and fσ (r, t) = 0.

3. Fixed phase factor approximation

Equation (19) can serve as the basis for yet another TD
SIC scheme. Starting from an energy-minimizing GS trans-
formation, one can use Eq. (19) without subsequent unitary
optimization to define Uσ

ij (t). We call this approach the fixed

phase factor TD transformation approximation (GKLIpf). It is
motivated by the hope that in the linear response regime the
KS orbitals and potential may stay close to their respective GS
values, except for trivial phase factors in the orbitals. There-
fore, the unitary transformation of Eq. (19) may yield a TD
transformation close to the true energy-minimizing transfor-
mation. As linear order changes of the KS orbitals lead to lin-
ear order changes in the potential, and as higher order effects
due to Uσ

ij (t) are excluded, the phase factor TD transforma-
tion may be seen as a linear response approximation to the
true energy-minimizing transformation. However, since the
memory contribution again does not vanish, one has to make
a choice. Either one takes the memory term into account by
time integration of Eq. (12), or one neglects the memory con-
tribution completely. We discuss differences between the two
options in the Appendix but mostly focus on the fσ (r, t) = 0
scheme.

4. Discussion

From a theoretical point of view using the energy-
minimizing Uσ

ij (t) at every time step appears as the most rig-
orous of the various schemes for several reasons. First, it is
consistent with the energy-minimizing GS. Second, it follows
the lines of the orbital-adiabatic definition and thus hope-
fully leads to propagation along a stable minimal energy path.
Third, the memory contribution vanishes and, therefore, the
history of the orbital-specific potentials uG

xcjσ (r, t) does not
need to be calculated. From this perspective, the FOBO and
the GKLIpf schemes appear as approximations to the energy-
minimizing TDGKLI that are motivated by their lower com-
putational costs. However, the practical performance of the
different schemes needs to be investigated. Therefore, we as-
sess the different approaches in Sec. V.

IV. ANALYZING THE REAL-TIME RESPONSE

A. Time-dependent self-interaction correction
propagation scheme

One of the most important applications of TDDFT is the
determination of optical excitation spectra. In RT TDDFT,
one calculates dipole spectra from the Fourier transforma-
tion of the TD dipole moment.74, 75 To determine the dipole
moment time evolution, we propagate the KS system after
an initial boost excitation within the linear response regime.
The GSIC propagation scheme for such calculations based on
two orbital sets is implemented in the Bayreuth version76, 77

of the PARSEC program package.78 In our approach, the fol-
lowing steps have to be taken at each time step: (i) prop-
agate the KS orbitals a finite time step �t using the KS
potential of the previous time step, (ii) determine the unitary
transformation according to Eq. (14), (iii) calculate the new
potential using Eq. (3) together with Eqs. (9) and (12). This
general propagation scheme can be refined by propagation
techniques explained in Ref. 79. We employ a fourth-order
Taylor expansion combined with the exponential midpoint
rule,76, 77 where the potential needs to be determined twice per
time step. The unitary optimization of the Pederson criterion
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can be performed iteratively and we implemented algorithms
of Fois et al.,80 Messud et al.,42 and Abrudan et al.81 Whereas
first GSIC propagations69 used the former two approaches, we
now obtain the best performance with the algorithm of Abru-
dan et al.,81 based on minimizing the SIC energy contribution
via conjugate gradients and a line search for gradient step-size
optimization (for more details, see Ref. 46). For the FOBO
unitary optimization, we use the same algorithm tailored to
the FOBO criterion.46

The stability of propagation schemes using the TDKLI
potential has been a topic of debate as the occurrence of in-
stabilities is well known in the particularly difficult case of
Na5.57, 60–62 We find that our GSIC propagation scheme using
the TDGKLI approximations improves upon this drawback
of the standard TDKLI.60, 69 We discuss the stability issue for
the special case of Na5 in the Appendix. For all other sys-
tems studied here, no notable instability occurs on the rele-
vant time scales. Summarizing our experience from a practi-
cal point of view we can state that a time evolution of about
40 fs is needed for a reasonable spectral resolution of ca.
0.1 eV. Generally speaking, all GSIC variants remain re-
markably stable during propagation within this time range if
the numerical parameters are chosen reasonably. This distin-
guishes the TD GKLI approaches from standard TDKLI for
which we could not calculate a clean spectrum in some cases.

B. Transition density diagnostic tool

When a system’s response is calculated from the analyt-
ically linearized TDDFT equations,82 one readily obtains the
decomposition of each excitation into occupied to unoccu-
pied orbital transitions. Analysis of these orbital transitions
and their associated weighting factors gives insight into the
nature of an excitation, helping, e.g., in identifying CT exci-
tations. In principle, the same information is available in the
RT propagation and could be extracted from the explicitly TD
orbitals. However, the technical and computational effort to
do so is non-negligible. Therefore, we here introduce a rela-
tively easy to implement RT evaluation tool that also allows to
explore the nature of excitations. It is based on the transition
density, which is directly related to the TD density and thus
well defined in the framework of TDDFT.83–85

We exemplify this idea with the 4-(N,N-
dimethylamino)benzonitrile (DMABN) (Refs. 86, 87,
and 88) adiabatic TD LDA dipole power spectrum76, 89–91

shown in Fig. 1, where we used the geometry of Ref. 88.
The transition density ρω(r) corresponding to an excitation at
frequency ω is proportional to the negative of the imaginary
part of the Fourier transformation δn(r, ω) of the TD density
fluctuations δn(r, t) = n(r, t) − n(r, 0),84, 85 i.e.,

ρω(r) ∝ −Im{δn(r, ω)}. (20)

Thus, it can be calculated readily from RT propagation and is
depicted in the right part of Fig. 1 for the two lowest excita-
tions of DMABN, which are at 3.9 eV and 4.2 eV with the TD
LDA. We calculated the Fourier transformation step by step
during time propagation for preset frequencies. The obtained
transition densities are a fingerprint of the corresponding
excitation.

FIG. 1. DMABN spectrum and transition densities from density
propagation.

The transition density can alternatively be calculated
as the weighted sum of occupied and unoccupied orbital
products84

ρω(r) ∝
occup.∑

i

unoccup.∑
j

aω
ijϕi(r)ϕ∗

j (r) (21)

with weighting factors aω
ij . In the DMABN system, the char-

acter of the excitations is well described by (semi)local xc
functionals and well known to be dominated by transitions
from one occupied to one unoccupied orbital.87 One of the
low lying transitions is understood to be a highest occupied
molecular orbital (HOMO) to lowest unoccupied molecular
orbital (LUMO) transition, whereas the other excitation is
dominantly of HOMO to LUMO+1 character. The corre-
sponding orbital products are shown in Fig. 2.

Comparing the transition densities from RT propagation
and the ones calculated from orbital products clearly shows

FIG. 2. Orbital products calculated from LDA GS orbitals of the DMABN
molecule.
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that the excitation at 3.9 eV is of HOMO to LUMO+1 and
the excitation at 4.2 eV of HOMO to LUMO type. In the
DMABN system, the HOMO-LUMO+1 excitation has been
characterized as being local and the HOMO-LUMO excita-
tion as short-range CT.87, 88

Close inspection reveals that especially in the 3.9 eV ex-
citation case the agreement between the HOMO-LUMO+1
product and the transition density from RT density evolution
is not perfect. There are at least two possible explanations for
this finding. A first technical aspect is related to the resolu-
tion of the Fourier transformation: It is limited by the length
of the numerical density time evolution. Here, the two peaks
are energetically very close and, therefore, the signal of the
lower peak at 3.9 eV may be “contaminated” by the response
of the close lying higher peak at 4.2 eV. Second, from a physi-
cal point of view, the transition is not necessarily of pure “one
occupied to one unoccupied orbital” character. However, even
with these small differences, the signal is clear enough to un-
ambiguously distinguish between the two excitations.

In an attempt to allow for an objective transition density
comparison that goes beyond “visual inspection” we intro-
duce quantitative criteria. As the transition density carries in-
formation about the oscillator strength and, therefore, cannot
be normalized easily, we suggest two different comparison
criteria. First, we define

κ1 =
∫

d3r ρω1ρω2∫
d3r |ρω1ρω2 |

(22)

as a criterion that is not sensitive to the proportionality fac-
tors of Eqs. (20) and (21) but analyzes the spatial pattern of
the corresponding transition densities. It varies between −1
< κ1 < 1 and takes its maximum value κ1 = 1 only if the spa-
tial structure of the transition densities ρω1 and ρω2 is equal.
Note that proportionality factors do not affect the fingerprint
pattern but influence the absolute values. However, absolute
values of transition densities would be influenced by the exci-
tation process and are not our aim here anyhow as we do not
calculate the weighting factors of Eq. (21). Instead we rely on
the fact that in the cases that we study here the transition den-
sity is always dominated by a single occupied to unoccupied
transition.

As a second comparison criterion, we use

κ2 =
∫

d3r |ρω1ρω2 |, (23)

which measures the absolute overlap of transition densities.
The κ2-value is useful for comparisons in which one transition
density is fixed and one would like to compare this transition
density to several others that have all been calculated by the
same method. For example, one may want to test which of
several TD transition densities that have all been obtained by
the same excitation process is closest to a certain product of
GS orbitals.

As an example Table I lists κ1 and κ2 for several
DMABN excitations. The κ1 criterion confirms the transition
density correspondence that we had found before by look-
ing at transition density iso-surface plots. Corresponding tran-
sition densities show a κ1 greater than 0.9, whereas non-
corresponding transition densities show κ1 lower than 0.6.

TABLE I. Quantitative transition density comparison for DMABN
molecule excitations using the criteria κ1 of Eq. (22) and κ2 of Eq. (23).
Labels TD followed by an excitation energy denote transition densities ob-
tained from RT propagation (Eq. (20)), whereas labels GS followed by letters
H, L, etc., denote transition densities calculated as a GS orbital product. H
stands for HOMO and L for LUMO.

ρω1 ρω2 κ1 κ2 (× 10−5)

TD 3.93 eV GS H-L+1 0.91044 0.5582
TD 4.21 eV GS H-L 0.92061 4.6795
TD 3.93 eV GS H-L 0.57421 0.4739
TD 4.21 eV GS H-L+1 − 0.03861 1.4217
GS H-L GS H-L+1 − 0.01571 0.1601
TD 3.93 eV TD 4.21 eV 0.59535 3.6365

The κ1 values of almost 0.6 that are seen in Table I are in
line with the previously made argument that the excitations at
3.93 eV and 4.21 eV show some similarity. Yet, the difference
between κ1 = 0.6 and κ1 = 0.9 is noticeable enough to allow
for a clear identification of the corresponding transitions. We
also see that the HOMO-LUMO and the HOMO-LUMO+1
orbital products are clearly identified as being dissimilar with
a κ1 of less than 0.02.

Table I further shows why the bare κ2 criterion is lim-
ited in its predictive power: κ2 exhibits the same picture as
κ1 when comparing the GS HOMO-LUMO transition den-
sity to the TD transition densities, but it fails when comparing
the GS HOMO-LUMO+1 to the TD transition densities. The
reason for this failure is the notably higher signal strength of
the TD transition density at 4.21 eV that leads to a greater
total overlap with the HOMO-LUMO+1 transition density,
although the spatial structure is obviously different. Neverthe-
less, in cases of consistent excitation processes, similar signal
strength, and similar κ1 values, κ2 can help to clarify com-
plicated situations. One example of this kind is discussed in
Sec. V E. Consequently, in the following we base our investi-
gations on κ1 and use κ2 only if κ1 alone does not give a clear
picture.

V. RESULTS AND DISCUSSION

In the following, we apply the methods introduced so far
to study different systems: on the one hand systems that allow
for transparently analyzing the response and xc effects, on the
other hand systems that are practically relevant and known
to be challenging for TDDFT. We first investigate hydrogen
chains and assess response features of SIC and GSIC in TD
situations. Then, we address real systems that are paradigm
examples for different types of excitations: metal clusters
with a comparatively homogeneous density and “collective”
excitations, semiconductor clusters that exhibit effects that
were classified as excitonic, oligo-acetylene chains with ex-
tended π -conjugation, and molecular chromophores with CT
excitations.

A. Dynamical effects in hydrogen chains

We first investigate the SIC and GSIC TD response of hy-
drogen chains with alternating H-distances of 2 bohrs and 3
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FIG. 3. (a) Slope m(t) of �vxc(x, t) for an electrical field (“laser”) excitation
of frequency 0.2 eV/¯ for LDA, GKLI, and GSLA. The field was scaled by a
factor of 0.1 for the plot. (b) Corresponding snapshot of �vxc(x, t) along the
H8 chain (x-direction) at the first maximum of the field at 5.2 fs.

bohrs.89–91 Such chains have frequently been studied in GS
DFT (Refs. 3, 14, 22–24, 28, and 92–97) and it has been
shown that a field-counteracting term in the xc potential is de-
cisive for the description of static response properties such as
polarizabilities.3, 14, 24, 97 Therefore, we are now interested in
such spatial structures in the dynamical response. We study
the linear TD response by applying an external sinusoidal
electrical field of 10−4 Ry/bohr/e with different frequencies.
The field is along the backbone of a H8 chain. For a trans-
parent analysis, we need to reduce the data of vxc(r, t) to a
manageable amount. Therefore, for each instant of time, we
compute the slope m(t) of the difference

�vxc(x, t) = vxc(x, t) − vxc(x, 0) (24)

by least squares linear regression along the H8 backbone (x-
direction). Figure 3(a) shows the result obtained for an excita-
tion of frequency 0.2 eV/¯ and different xc potential approx-
imations. The bottom panel shows snapshots of �vxc(x, t) at
the first maximum of the field at 5.2 fs. The slope m(t) clearly
reveals the general trend of the potential’s response to the ex-
ternal perturbation. For the low frequency excitation studied
here the TD LDA and GSLA potentials unambiguously fol-
low the external field, while the TD GKLI potential shows a

FIG. 4. Slope m(t) of �vxc(x, t) of the LDA and GSLA potential to-
gether with the electrical field amplitude for different excitation frequencies:
0.5 eV/¯ (upper panel), 1.0 eV/¯ (middle panel), and 1.5 eV/¯ (lower panel).

field-counteracting behavior, in analogy to the GS case. The
snapshots in Fig. 3(b) confirm this finding.

Analysis of the frequency dependence of the response of
the xc potential reveals that the LDA and GSLA xc potentials
follow the external potential also at higher frequencies. We
exemplify this finding for frequencies of 0.5 eV/¯, 1.0 eV/¯,
and 1.5 eV/¯ in Fig. 4. Yet, the GKLI response changes no-
tably at higher excitation frequencies (see Fig. 5): While at
low frequencies the GKLI xc potential clearly works against
the external field, the response structure develops complicated
features at higher frequencies. For the 1.0 eV excitation for in-
stance, the GKLI potential is no longer in phase with the ex-
ternal potential and the slope of �vxc(x, t) increases notably
in time. At 1.5 eV vGKLI

xc (r, t) seems to work with the external

FIG. 5. Slope m(t) of �vxc(x, t) of the GKLI, the FOBO, and the GKLIpf

potential together with the electrical field amplitude for different excitation
frequencies as in Fig. 4. m(t) is almost identical for the GKLI and FOBO
response.
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field and is, apart from minor deviations, in phase with the
external perturbation.

Figure 5 also demonstrates that the field-counteracting
behavior at low frequencies is lost if one applies the
fixed phase factor TD transformation approximation of
Sec. III E 3: In the first quarter cycle of the external field
GKLIpf always works with the field for all excitation fre-
quencies considered here. At low frequencies, also the overall
trend of the xc potential response follows the external pertur-
bation. At higher frequencies it develops complicated struc-
tures with phase shifts and elevated amplitude.

Using FOBO localization during the propagation at every
instant of time does not spoil the field-counteracting trend of
GKLI at low frequencies. Even at higher excitation frequen-
cies, the overall trend of the FOBO potential is very similar
to the GKLI one (see Fig. 5). Yet, analysis of the FOBO po-
tential along the chain axis at single time steps reveals dif-
ferences in the details of the potential response compared to
the GKLI. FOBO localization implemented with fixed phase
factors does not show the favorable behavior of the full TD
FOBO scheme and, therefore, is not investigated further in the
following.

Also the standard KLI potential shows a field-
counteracting behavior during propagation at low frequen-
cies. However, we did not investigate KLI in detail as the
propagation had serious stability problems57 already after
15 fs (see also the Appendix).

We believe that the field-counteracting behavior is an
important feature of the xc potential and necessary for a
proper description of response properties especially in situ-
ations where the density distribution changes notably, as it is
the case in CT. Without the field-counteracting term response
properties will be overestimated and CT will be too easy. The
analysis in this section reveals that two features of the poten-
tial are important for the proper response: (i) The potential
needs to include the response term that makes the difference
between KLI and SLA. (ii) The unitary transformation crite-
rion has to be enforced at every instant of time. As the GKLI
with an energy-minimizing transformation at each time step
is a well defined scheme that fulfills these criteria, we regard
the GKLI approach as the best justified and most trustworthy
(G)SIC implementation in TDDFT. Our investigations on hy-
drogen chains reveal that FOBO localization applied at every
instant of time is a promising alternative to the energy mini-
mization as it is computationally less expensive and close to
the GKLI performance. Therefore, FOBO needs to be inves-
tigated further in the following.

We now turn to the determination of the lowest excita-
tion energy of short hydrogen chains. The results are reported
in Table II and can be categorized into three groups: First,
the LDA numbers which confirm TD LDA’s known trend
to underestimate excitation energies in confined chain like
systems.99 Second, the KLI results that show an erroneous
downward shift of about 0.3 eV to 0.5 eV with respect to the
LDA excitation energies. We had to estimate many of the KLI
excitation energies from a relatively short time propagation
due to early onset of propagation instability. Third, all gen-
eralized SIC schemes which correct the LDA result towards
higher energies by about 0.3 eV to 0.5 eV. There is a small

TABLE II. Lowest excitation energy of hydrogen chains with alternating H
atom distances of 2 bohrs and 3 bohrs. Listed are results for LDA, KLI, and
GKLI as well as for three approximations to the GKLI: FOBO, GSLA, and
GKLIpf. B3LYP and CC2 excitation energies are given as a reference.a

LDA KLI GKLI FOBO GSLA GKLIpf B3LYP CC2

H4 7.70 7.45 8.30 8.25 8.30 8.35 8.36 9.26
H6 6.75 6.4a 7.10 7.05 7.10 7.10 7.33 8.47
H8 6.00 5.5a 6.35 6.30 6.35 6.40 6.70 8.00
H10 5.50 5.1a 5.85 5.85 5.85 5.90 6.29 7.70
H12 5.15 4.8a 5.60 5.50 5.55 5.60 6.01 7.50

aNumbers are estimated from a time evolution of notably less than 40 fs as obvious
propagation instability occurred already within this time span.

trend of rising excitation energies from FOBO via GKLI and
GSLA to GKLIpf, but overall all GSIC energies are similar. In
view of the earlier observed differences between the different
GSIC schemes the similarity of the results here may come as
a surprise. However, the similarity is explained by the special
nature of the excitation that we study here. It is build from
local contributions on each of the H2 segments and has al-
most no component of CT from one H2 unit to the next. Thus,
the situation is notably different from the previous case where
the TD external field could generate a charge flow along the
chain’s backbone.

To finally assess our GSIC schemes in comparison
to other methods, we computed Becke three-parameter
Lee-Yang-Parr hybrid functional (B3LYP) and approximate
coupled-cluster singles-and-doubles model (CC2) (Ref. 98)
excitation energies with TURBOMOLE (Refs. 100 and 101)
using Gaussian basis sets of quadruple zeta valance qual-
ity (def2-QZVP).102 We find that B3LYP gives higher exci-
tation energies than GSIC with differences between B3LYP
and GSIC on the order of about 0.3 eV. However, B3LYP
and all GSIC schemes are off the CC2 numbers by at least
0.9 eV with rising deviation for larger chains. Although we
are aware of possible deviations between CC2 and higher
level reference calculations,103 we interpret this finding as
being in line with earlier observations of the peculiar na-
ture of the hydrogen chains. Already in earlier works it
has been observed, e.g., that current DFT taking ultranon-
local xc effects into account leads to large improvements
for real conjugated polymers, whereas in hydrogen chain
models the improvements are small.104 Moreover, in hydro-
gen chains only full OEP SIC gives polarizabilities close
to the coupled-cluster reference while one observes no-
table differences between GKLI and full OEP.28 Thus, al-
though hydrogen chains are a transparent test system, they
are only a limited indicator for functional performance in
realistic situations for true molecules and solids. There-
fore, we draw two conclusions from the hydrogen chain
tests. First, due to the favorable features that the GKLI
vxc showed for the hydrogen chains, hopes are high that
GKLI may also describe real molecules well. Second, how-
ever, we are aware of the limitations of the hydrogen chain
test and, therefore, have to assess the trustworthiness of
GKLI thoroughly for real molecules. This is what we do
in Secs. V B–V E.
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FIG. 6. Na+
9 spectrum calculated with LDA, standard KLI, and GKLI.

B. Metal clusters

Metal clusters are known for their collective response
properties that are well described with (semi)local xc func-
tionals. Here, we focus on Na+

9 that was reported to be well
described by both the TD LDA and TD EXX functional. Na5

as a more difficult case is discussed in the Appendix.
The Na+

9 time propagation behaves well in terms of prop-
agation stability and excitation spectra can be determined
easily.89–91 The spectra obtained from LDA, standard KLI,
and GKLI are compared in Fig. 6. All three spectra show sim-
ilar excitation features. The only difference occurs at the main
peak, where LDA and standard KLI give an excitation energy
of 2.8 eV and GKLI gives 2.9 eV. Thus, the SIC approach
does not spoil the good accuracy that TD LDA reaches for
Na+

9 , i.e., it behaves as hoped for. Similar observations are
made for other Na clusters.

C. Hydrogenated silicon clusters

Hydrogen terminated silicon cluster4–10, 105 belong to a
class of confined systems where the excitations have been de-
scribed as being of excitonic nature. In these systems, the
qualitative shift of the lowest excitation to lower energies
with increasing cluster size is well described with (semi)local
functionals.8 However, for small hydrogenated silicon clus-
ters (semi)local functionals considerably underestimate the
position of the lowest excitation peak in comparison to GW
Bethe-Salpeter equation (GW-BSE) and experimental results.
This discrepancy vanishes with increasing cluster size.9 It
has further been reported that for silane (SiH4) and disilane
(Si2H6) the standard KLI SIC does not improve the spectrum,
but underestimates excitation energies and distorts the struc-
ture of some excitation peaks,10 whereas EXX within the TD-
KLI yields reasonable excitation energies.10

We first discuss our results for silane89–91 and compare to
results obtained from GW-BSE (Refs. 6, 7, and 9) and the ex-
perimental spectrum.106 Consistent with previous findings,10

we confirm that the standard KLI SIC spectrum does not im-
prove upon LDA. However, GSIC shifts the total spectrum to
higher energies in agreement with the GW-BSE results. Dif-

ferent GW-BSE results have been reported in the literature
for the first excitation energy of SiH4: 9.0 eV,6 9.16 eV,7 and
9.4 eV.9 We regard the real-space approach of Ref. 9 con-
ceptionally closest to our real-space implementation, and our
TD GSIC results indeed come close to it. A comparison to
the experiment106 shows that the GKLI reproduces the ex-
perimentally observed trends and compared to TD LDA also
greatly improves the peak positions. Yet, there remains a dis-
crepancy of about 0.5 eV between theoretical and experimen-
tal excitations energies (experimental peaks are reported at
8.8 eV, 9.7 eV, and 10.7 eV (Refs. 6 and 106)). We performed
our calculations with the experimental geometry of Ref. 107,
yet also assessed the influence of the Si–H bond length on ex-
citation energies. We found that an increase of the bond length
can explain a couple of 0.1 eV shift downwards in the exci-
tation energies. As the experimental spectrum is rather broad
and molecular vibration effects may play a role in silane, we
believe that the significance of the comparison to the exper-
iment is limited and rather focus on the comparison to GW-
BSE. There we find good agreement and TD GKLI excita-
tions are within the uncertainty limits that the GW-BSE cal-
culations themselves have.9

The situation is qualitatively similar for disilane (Si2H6).
The spectra shown in Fig. 8 were obtained89–91 for the ex-
perimental geometry.108 Experimental excitation energies are
reported at 7.6 eV, 8.4 eV, and 9.5 eV.106 Whereas TD LDA
and KLI SIC excitation energies are systematically too low,
TD GKLI shifts the total spectrum to higher energies, thus
greatly improving the agreement with GW-BSE and the ex-
periment. Our excitation energies at 7.8 eV and 9.1 eV com-
pare favorably to the GW-BSE excitations at 7.6 eV and 9.0
eV. However, in the GKLI approach a low intensity peak ap-
pears at 8.5 eV. Such a peak has not been reported for the
GW-BSE. On the other hand, there is a GKLI excitation at
9.9 eV with almost vanishing signal strength that is close to
the 9.7 eV GW-BSE excitation.

FIG. 7. SiH4 spectra calculated with different functionals. Black verti-
cal lines indicate GW-BSE excitation energies at 9.4 eV,9 10.2 eV,6 and
11.2 eV.6 The upper panel shows LDA and standard KLI SIC, whereas in
the lower panel we compare GKLI, FOBO, and GKLIpf.
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FIG. 8. Si2H6 spectra calculated with different functionals. Black vertical
lines indicate GW-BSE excitation energies at 7.6 eV, 9.0 eV, and 9.7 eV.6

The upper panel shows LDA and standard KLI SIC, where in the lower panel
we compare GKLI, FOBO, and GKLIpf.

For silane and disilane, we included also spectra of GKLI
with phase factor approximation and FOBO in Figs. 7 and 8.
Generally speaking, all three methods yield very similar re-
sults. However, a deviation occurs at the 9.1 eV disilane ex-
citation: GKLI has one pronounced peak, while GKLIpf gives
an additional structure at 9.2 eV. We observe such spurious
features of the phase factor approximation in different sys-
tems, and see this is another reason for cautioning against the
use of GKLIpf.

D. Polyacetylene chains

Table III presents excitation energies for polyacetylene
(PA). PA played a prominent role in the early work on con-
ducting polymers109, 110 and is a paradigm system for strong
confinement in two directions, but π -conjugated delocalized
electrons in the third (along the chain’s backbone). PA has
been used for testing for deficiencies of (semi)local DFT and
TDDFT in previous studies.99, 111–113

The lowest excitation energy of acetylene oligomers de-
creases with increasing chain length because of an increase of
the conjugated electronic system, but saturates at some finite
chain length.99 The qualitative trend for small chains is repro-
duced by the TD LDA. This indicates that the excitation stud-
ied here is not of the pronounced CT character which TD LDA

TABLE III. Lowest excitation energy of short polyacetylene chains. The
table compares TD LDA and SIC results to linear response TDDFT calcu-
lations of Varsano et al.99 (Va) and to B3LYP excitation energies calculated
with TURBOMOLE using the def2-QZVP basis set.

LDA KLI GKLI FOBO GKLIpf Va B3LYP

C4H6 5.45 5.31 5.68 5.85 5.72 5.75 5.67
C6H8 4.47 4.41 4.62 4.75 4.55,4.69 4.83 4.71
C8H10 3.86 3.79 3.93 4.00 3.99 4.12 4.09
C10H12 3.38 3.31 3.42 3.52 3.45 3.67 3.66

severely underestimates. Judging the quality of the absolute
numbers is not as easy, as comparison with experiment114–117

is notoriously difficult and there is no established theoreti-
cal benchmark. One may take the TDDFT calculations of
Varsano et al.99 as a reference. The latter employed an xc
kernel that was developed based on input from the BSE and
yields excitations that are close to the ones obtained with the
B3LYP functional. TD LDA excitations are lower than these
references by about 0.3 eV. TD GKLI stays somewhat be-
low the B3LYP results, but shifts the excitations upwards as
expected.

We use the PA oligomers to further test the performance
of different approximations to the GKLI. In accordance with
our previous findings, we observe that standard TD KLI SIC
erroneously reduces the TD LDA excitation energies. FOBO
on the other hand gives broad and slightly higher excitation
energies than the energy-minimizing GKLI. As the Foster-
Boys criterion enforces spatial localization, this result may
indicate that spatial localization effects play a role in the de-
scription of the excitations of the PA segments. The GKLIpf

results are very close to the GKLI ones but show a peculiarity
for C6H8: The prominent first excitation peak of the spectrum
is split into two peaks separated by 0.14 eV.

E. Molecular charge-transfer systems

Finally, we come to the most challenging test for the TD
GKLI schemes and investigate CT excitations. First, we take
up the DMABN example of Sec. IV B. The second lowest
DMABN excitation is of HOMO to LUMO type and exhibits
short-range CT character. The CT transition is understood to
promote one electron from the methyl group as the donor to
the nitrogen side of the benzene ring as the acceptor87 (see
the transition density in the upper panel of Figs. 2 and 9).
The lowest excitation is described as a HOMO to LUMO+1
excitation localized on the benzene ring. Experimentally, the
local excitation is seen at 4.25 eV and the CT excitation at
4.56 eV.88 LDA underestimates both excitations by about
0.35 eV. Semilocal functionals improve upon LDA. The TD
Perdew, Burke, and Ernzerhof functional,118 e.g., yields ex-
citation energies of 4.02 eV and 4.30 eV (Ref. 88) for the
two lowest DMABN excitations. It is also known that the
character of the excitations in DMABN is well described by
(semi)local functionals.

FIG. 9. TD LDA and GKLI SIC spectra of DMABN and transition densities
calculated from RT propagation.
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TABLE IV. Quantitative transition density comparison of DMABN using
κ1 and κ2 of Sec. IV B. We indicate the functional and the method of calcu-
lation as in Table I.

ρω1 ρω2 κ1 κ2 (× 10−5)

LDA GS H-L GKLI GS H-L 0.99994 0.8945
GKLI TD 4.40 eV GKLI GS H-L 0.92145 4.0776

The GKLI spectrum of Fig. 9 for the low lying excita-
tions is similar to the LDA spectrum, but shifted to higher en-
ergies by about 0.2 eV. Thus, the GKLI spectrum looks very
promising. Yet, we need to check whether the TD GKLI spec-
trum only superficially “looks right,” or whether the charac-
ter of the transition is truly preserved. The transition density
analysis of Sec. IV B offers the ideal tool for that purpose.
Figure 9 shows iso-surface plots of the short-range CT transi-
tion densities obtained from LDA and GKLI in RT propaga-
tion. The picture shows a striking similarity between the LDA
and GKLI transition densities.

For a quantitative comparison, we further compiled the
values of κ1 and κ2 in Table IV. Comparing the GS HOMO
to LUMO transition from LDA with the corresponding GKLI
transition, one finds almost perfect agreement. This shows
that the GS LDA orbitals, i.e., their shape and energetic or-
dering, are not changed by the SIC procedure. We further find
that the κ1 criterion for the TD transition density of GKLI at
4.40 eV and the GKLI GS HOMO to LUMO transition indi-
cates as good an agreement as the corresponding κ1 in LDA.
In conclusion, the DMABN excitation energies are improved
by the GKLI SIC approach, while the good description of
the character of the transition that is reached with (semi)local
functionals is correctly preserved by TD GKLI.

Note that we did not include FOBO data in our discus-
sion as propagation with FOBO minimization at every instant
of time spoils the spectrum of DMABN. The problem that
arises in the FOBO propagation can be related to the fact that
FOBO localization is not necessarily energy minimizing. In
the case of DMABN, we observe energy fluctuations during
the propagation that are by at least a factor of two larger than
similar fluctuations in energy-minimizing or fixed phase fac-
tor propagation. Theses fluctuations can be related uniquely
to the influence of the FOBO minimization. They spuriously
drive the system and lead to artificial peaks in the spectrum.
As a side remark, we note that the combination of FOBO lo-
calization in the GS and fixed phase factors during the prop-
agation calculation gives a reasonable spectrum for DMABN
with peaks at 4.3 eV and 4.6 eV.

In contrast to the DMABN molecule, which is described
with moderate but acceptable accuracy by semi-local func-
tionals, the model dipeptide that is our final test case is a hall-
mark example for the serious CT failure of standard density
functionals. Polypeptides119 show transitions of interpeptide
CT character between 7.3 eV and 7.5 eV, and intrapeptide
excitations near 5.6 eV and 6.5 eV. In the dipeptide model
system of Refs. 69, 88, 105, 119, and 120, the calculated po-
sition of the CT state depends on the functional used. The
(semi)local functionals strongly underestimate the CT excita-
tion energy. B3LYP upshifts the CT states, but still leads to

FIG. 10. LDA, GKLI, and FOBO spectra of the dipeptide model system with
LDA and GKLI CT transition densities (see text).

a notable underestimation with respect to the complete active
space with second-order perturbation theory (CASPT2) ref-
erence values and experimental findings. CASPT2 finds the
lowest CT state at 7.18 eV.88

We calculated spectra of the model dipeptide89–91, 121, 123

by RT propagation. The corresponding Fig. 10 clearly shows
that TD LDA yields a significant signal already from 5.1 eV
on, while the lowest excitation in the TD GKLI spectrum can
be found at about 5.36 eV and higher excitations differ largely
between the two approaches. It is of particular interest that a
noticeable feature appears around 7.2 eV in the GKLI spec-
trum. However, based on the LDA and GKLI spectra alone,
well founded characterizations of the excitations and con-
clusions about the description of CT states are not possible.
Therefore, we once again resort to analysis of the transition
densities.

We determined and examined the transition densities of
all peaks in the spectral range of interest of the LDA and
GKLI spectra according to Eq. (20). The transition density
corresponding to the first peak in the LDA spectrum that car-
ries notable oscillator strength is shown in Fig. 10. When
comparing the iso-surface plot of this TD LDA RT transition
density to the plots of occupied to unoccupied orbital transi-
tions between LDA GS orbitals, one finds that there is a close
similarity to the LDA HOMO-1 to LUMO transition. This
LDA transition corresponds to an excitation from the occu-
pied HOMO-1 that is mainly localized on one of the peptide
units to the unoccupied LUMO that is mainly localized on the
other peptide unit (see Fig. 11). Thus, it is of interpeptide CT
character.

However, the labeling of the orbitals as HOMO-1 and
LUMO depends on the functional used to determine the GS:
the order of HOMO and HOMO-1 changes if one goes from a
LDA to a GKLI calculation, and changes again when one goes
from GKLI to FOBO. In Fig. 11, we used the GKLI orbital or-
dering. Note that GKLI HOMO and LUMO have the same
spatial distribution as LDA HOMO-1 and LUMO. HOMO
and HOMO-1 eigenvalues are close in energy in the GSIC
calculations, and this explains why the ordering changes again
when going from GKLI to FOBO. Our assignment of which
transition is to be identified with the interpeptide CT excita-
tion is supported by the transition density comparison criteria
in Table V. For example, the criteria indicate close similarity
between the LDA 5.15 eV RT transition density and the LDA
GS HOMO-1 to LUMO transition, and there is no match with
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FIG. 11. HOMO to LUMO transition density in the dipeptide model system
calculated from the GKLI GS KS orbitals. This corresponds to a HOMO-1 to
LUMO transition in LDA and FOBO.

any of the other transition densities up to 7.4 eV. Furthermore,
the discussed transition can be identified with the lowest CT
transition of the CASPT2 calculations88 based on the orbital
assignment. There is thus no doubt that the lowest CT tran-
sition of the dipeptide that we are interested in is found at
5.15 eV in the LDA spectrum122 and corresponds to the GKLI
HOMO-LUMO transition.

Having thus identified the CT excitation and TD LDA’s
failure we now proceed to investigate how TD GKLI performs
in this case. To this end, we analyzed the RT transition densi-
ties of all excitations found in the GKLI RT propagation and
compared them to the GKLI HOMO-LUMO GS orbital tran-
sition density. Looking at the iso-surface plots shows that the
GKLI excitation that appears at 7.22 eV (see Fig. 10) is asso-
ciated with a transition density that is similar to the HOMO-
LUMO one. In an effort to make sure that we are not fooled
by just “visual similarity” we again evaluated the quantitative
comparison criteria κ1 and κ2. Table V shows that only the
excitation at 7.22 eV yields significant overlap, i.e., high val-

TABLE V. Transition density comparison of the low lying dipeptide exci-
tations calculated from RT propagation and orbital to orbital transitions with
LDA, GKLI, and FOBO. We use the criteria κ1 and κ2 of Sec. IV B and
indicate the functional and the method of calculation as in Table I.

ρω1 ρω2 κ1 κ2 (× 10−5)

GKLI GS H-L LDA GS H-1-L 0.9997 0.3021
GKLI GS H-L FOBO GS H-1-L 0.9997 0.3156
LDA TD 5.15 eV LDA GS H-1-L 0.9212 0.1656
LDA TD 6.07 eV LDA GS H-1-L − 0.8774 0.1124
LDA TD 6.55 eV LDA GS H-1-L 0.0213 0.8355
LDA TD 7.02 eV LDA GS H-1-L 0.1240 0.8304
LDA TD 7.38 eV LDA GS H-1-L − 0.2598 0.0876
GKLI TD 5.36 eV GKLI GS H-L 0.2290 0.3346
GKLI TD 6.37 eV GKLI GS H-L − 0.2045 1.2824
GKLI TD 6.95 eV GKLI GS H-L 0.6845 0.4200
GKLI TD 7.22 eV GKLI GS H-L 0.7536 1.3437
GKLI TD 7.53 eV GKLI GS H-L 0.4432 0.2456
GKLI TD 7.22 eV LDA TD 5.15 eV 0.7404 0.9516
FOBO TD 7.20 eV FOBO GS H-1-L − 0.4218 2.4135
FOBO TD 7.40 eV FOBO GS H-1-L 0.9086 1.2322
GKLI TD 7.22 eV FOBO TD 7.40 eV 0.9356 13.346

ues, in both κ1 and κ2. We can, therefore, truly identify the
TD GKLI peak at 7.22 eV with the CT excitation.

This finding bears at least two messages. First and most
importantly, it shows that TD GKLI can well describe even
“difficult” CT excitations: The TD GKLI excitation energy is
in very good agreement with the CASPT2 reference. Second,
we note that in the TD description the excitation is no longer
of a character that can purely be associated with a transition
between static orbitals: There is a clear correspondence be-
tween the dynamical TD GKLI transition density at 7.22 eV
and the GKLI GS HOMO-LUMO transition, but there are also
differences. The dynamical transition density of TD GKLI
shows more structure, and this finding is in line with our ex-
pectations about what TDDFT should do.

Finally, we again shortly assess the performance of ap-
proximations to the energy-minimizing TD GKLI scheme.
The FOBO spectrum is shifted by about 0.2 eV with respect to
the GKLI spectrum, yet qualitatively similar. For the FOBO
scheme, we find the CT excitation energy at 7.40 eV and
the calculations again support our assignment via the transi-
tion density comparison (see Table V): The FOBO transition
density clearly corresponds to the GKLI transition density at
7.22 eV as well as the CT transition density calculated from
static KS orbitals.

VI. CONCLUSIONS

In conclusion, we have presented a generalized SIC time-
dependent KS scheme using the TDGKLI approximation. In
the TD GKLI approach, a TD unitary transformation guaran-
tees for energy minimization at every instant of time. We fur-
ther discussed and tested several computationally less expen-
sive approximations. The numerical stability of the schemes
was investigated.

Our TD GSIC approach was tested for a range of
paradigm test systems that exhibit very different sorts of exci-
tations. First, we investigated model hydrogen chains. A reli-
able description of the static polarizabilities of these systems
is known to be related to the field-counteracting behavior of
the xc potential. In dynamical situations, we observed a simi-
lar field-counteracting trend of the TD GKLI potential at low
excitation frequencies. For higher frequency excitations the
response develops complicated structures. We showed that ap-
proximations to the TD GKLI do not necessarily show the
same positive features and the field-counteracting term is lost,
e.g., in the generalized Slater approximation. Of all the possi-
ble approximations that we tested the FOBO approach comes
closest to the energy-minimizing scheme.

Our further tests comprised small sodium clusters, hydro-
genated silicon clusters, short segments of polyacetylene, and
molecular charge-transfer systems. We showed that transition
densities can be a powerful tool for analyzing real-time cal-
culations. Our results demonstrate that Kohn-Sham TD GSIC
yields reliable results also for excitations for which standard
functionals fail badly, such as so-called excitonic excitations
and difficult CT situations. It is thus an attractive, parame-
ter free approach for predicting electronic excitations with
TDDFT.
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APPENDIX: STABILITY ANALYSIS OF THE
PROPAGATION SCHEME FOR Na5

The calculations presented in the main body of the pa-
per demonstrated that our RT SIC approach based on the
TDGKLI equation is numerically stable and efficient enough
to be a truly powerful tool for investigating the optical re-
sponse. Yet, in this Appendix we want to take a careful look
at propagation stability for a particularly malevolent system.
This is done with the aim of discussing a worst case scenario
which may be of little relevance for many practical applica-
tions, but which is studied here nevertheless for the sake of
completeness.

The small metal cluster Na5 has developed a sort of his-
tory as a problematic system for propagation approaches.
When investigating propagation of the KS equations with the
TDKLI potential corresponding to the exact-exchange func-
tional it was found that the propagation was not stable for Na5,
and it was pointed out that the (TD)KLI potential violates the
zero-force theorem.57 Stability problems were also discussed
for other approaches.60–62 Yet, in some sense Na5 appears as
a “pathological case” because for many other systems stan-
dard TDKLI calculations have been reported without men-
tioning problems.10, 58, 64, 65, 124 However, as violation of the
zero-force theorem and corresponding energy-conservation
problems are in principle expected for any potential that is not
a functional derivative, stability problems may occur for po-
tentials that only approximate the true functional derivatives
OEP or GOEP, such as the KLI and GKLI approximations,
or model potentials.113, 125 The good news of this Appendix
is that although Na5 continues to be a problematic case, all
GSIC propagation schemes greatly improve stability as com-
pared to the plain TDKLI scheme even for this system. This
may be attributed to the energy-minimization condition (14)
that is enforced at every time step.

As a first and serious57 test, we propagated the Na5 GS
without additional perturbation using different SIC versions
based on the regular TDKLI and our TDGKLI approximation.
In this case, during the time evolution all physical properties
should remain at their GS values. We observe in Fig. 12(a)
that already after about 30 fs, the KLI SIC total energy no-
tably deviates from the GS energy. The onset and size of this
KLI SIC instability is worse than the KLI instability observed
earlier for Na5 with the EXX functional.57

Great improvements are obtained with all GSIC propa-
gation schemes, and a time span of several tens of fs can be
safely covered. Yet, deviation from energy conservation oc-
curs at later times. Details of the time evolution and the onset
of propagation instability depend on the way how the unitary
transformation is treated during the time propagation.

For the question of stability it is worthwhile to first take
a close look at the GKLIpf and explicit treatment of the mem-
ory contribution (GKLIpf mem) approximations. The fixed
phase factor approximation by construction should be cor-
rect for the GS propagation situation: It is designed such that
the xc potential should not change during propagation with-
out excitation. Moreover, we start from a GS that was cal-
culated quite accurately with the Pederson criterion guaran-
teed to be fulfilled below a threshold of 1 × 10−7 Ry. Thus
on the scale given by this threshold also the memory contri-
bution vanishes. This coincides with the finding that up to a
propagation time of about 200 fs no noticeable differences
between GKLIpf and GKLIpf mem occur. Yet after about 200
fs, the GKLIpf calculation starts to show energy deviations. In
GKLIpf mem, we observe a first drift of the total energy that
is larger than the energy scale set by the Pederson criterion
after about 300 fs. In both cases, if all the numerics were con-
ducted with perfect accuracy, no deviations from the GS en-
ergy should appear. Therefore, we understand the instability
of GKLIpf and GKLIpf mem as a delicate interplay between
unavoidable numerical inaccuracies and the GKLI potential
not being a functional derivative.

This interplay is crucial here because Na5 is a very spe-
cial system in so far as the zero-force theorem is quite no-
ticeably violated already in the (G)KLI GS. Small deviations
from the GS potential, even if they are caused only by the
numerics, may result in spurious self-excitation. The GKLIpf

mem propagation is more stable because the memory term
explicitly takes deviations of the Pederson criterion into ac-
count. This explanation of the occurrence of the propagation
instability is supported by the observation that choosing a
less stringent Pederson criterion threshold leads to earlier and
more pronounced instability onset in both cases.

The finding that even the “analytically ground-state tai-
lored” approximations show energy deviations after long
enough propagation indicates the delicate nature of the Na5

test and sets an upper limit for what can be expected from the
TD GKLI with numerical energy minimization. GKLI shows
first energy deviations on the order of Fig. 12 at around 150 fs.
Deviations on the order of 1 × 10−6 % can be detected after
about 75 fs. The calculation with FOBO localization at every
time step behaves similar to TD GKLI, but energy deviations
at later times are higher than in the GKLI case.

The second test is how the different approaches perform
after an initial momentum boost. As there are no further ex-
ternal perturbations after the boost the energy should remain
constant. Figure 12(b) shows the energy as a function of time
after a 1 × 10−5 eV boost excitation. For standard KLI SIC,
the energy starts to drift after 22 fs. In the energy-minimizing
TD GKLI calculations, the unitary optimization algorithm
needs to perform a couple of iterations per time step to find
the TD transformation. Therefore, also in GKLI the numerical
procedure is now more involved and one expects a greater im-
pact of associated numerical inaccuracies. Notable energy de-
viations can be observed from about 150 fs on and the GKLI
energy exhibits first deviations from the GS energy on the or-
der of 5 × 10−6 % at about 50 fs. The phase factor approxi-
mations are now no longer exact, but nevertheless somewhat
more stable. Similar to the earlier discussed systems with

Downloaded 14 Aug 2012 to 132.180.92.189. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



064117-15 D. Hofmann and S. Kümmel J. Chem. Phys. 137, 064117 (2012)

FIG. 12. Energy deviation �E = |Eapp(t) − Eapp(0)|/|Eapp(0)| of several xc
functional approximations during propagation of (a) the Na5 GS, the Na5 GS
after an initial boost excitation of (b) 1 × 10−5 eV, and of (c) 1 × 10−2 eV.
The boost was oriented in x-, y-, and z-direction with equal distribution.

local excitations, they also for Na5 provide a quite reliable de-
scription of the excitations, where the two lowest pronounced
excitation peaks are at 2.0 eV and 2.2 eV.

Figure 12(c) shows the situation after a 1 × 10−2 eV
boost, i.e., a much stronger excitation. In this case, the drifts
are on a larger scale and also appear earlier than before. As a
boost of this magnitude results in sizable dynamical changes
of the electronic structure, deviations from the true potential
are more likely to occur and lead to more involved stability
problems. We note, in particular, that the energy-minimizing
GKLI total energy after some point in time drifts away with
a steeper slope. This indicates that if the propagation has lost
the path of stable energy evolution up to a certain extend, ef-
fects due to the zero-force theorem violation take over and
explicit energy minimization at each time step is no longer
able to support stability for the Na5 system. Similar findings
hold for the TD scheme with FOBO localization.

In summary, our stability analysis has shown that the Na5

cluster is a difficult case for all propagation schemes. Even
schemes in which the unitary transformation is chosen analyt-
ically in such a way that it should lead to an exact propagation
show energy drifts after long propagation times. The accuracy
with which the Pederson criterion is numerically fulfilled has
a notable influence on the propagation stability. These find-
ings indicate that for systems that are as delicate as Na5 al-
ready the accuracy with which the GS can be achieved plays
a role and the problem is thus to some extent independent
of the propagation scheme. However, it is a reassuring finding

that the TDGKLI schemes show much better stability than the
standard TDKLI scheme. As a general rule, we recommend
that whenever propagation schemes are used in combination
with orbital functionals and the TDKLI or TDGKLI approx-
imations, one should test for stability of the scheme and one
should be aware of that instabilities may result in spurious
spectral features. A recent suggestion for evaluating real-time
signals126 may allow to reduce the necessary length of the
time evolution below the 40 fs that we aimed at so far.
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The large error that “standard density functionals”
such as the local density approximation, generalized gra-
dient approximations, and regular hybrids show for long-
range charge-transfer (CT) problems has been one of
the most serious and most limiting deficiencies of (time-
dependent) density functional theory ((TD)DFT). The
fact that standard functionals seriously overestimate CT
has long been known [1–5], and the CT problem shows
up in many guises. Yet, the various manifestations of
TDDFT’s CT problem typically fall into one of two im-
portant areas. The first one is the calculation of CT
excitations that are part of linear response absorption
spectra. Great progress has been made in this field in
recent years [6]. The second is the area of quantum
transport and molecular electronics. In the latter field
the performance of (TD)DFT in practice is still debated.
DFT has frequently been combined with non-equilibrium
Green’s function theory for calculating transport charac-
teristics. However, it has been argued that this approach
can be severely in error [3–5, 7, 8] due to the limited in-
terpretability of DFT eigenvalues. The latter is due to
the self-interaction error [3, 4, 7] and the lack of a deriva-
tive discontinuity [9, 10] in standard density functionals
[3, 5, 7, 8].

Therefore, alternative schemes have been proposed
that aim at exploiting the power of real-time propagation
methods [11, 12]. These works have shown the conceptual
strengths of approaching the conductance CT problem in
real space and real time by devising ways of how leads
can be modeled. With the open system quantum prob-
lem set up in such a way that real-time propagation in
the central molecular region has a solid theoretical basis
[11], the molecular conductance problem of TDDFT has
been reduced to finding exchange-correlation (xc) func-
tional approximations that incorporate the physics that
is decisive for this type of CT.

This is still a very considerable challenge, as there is
a huge and even qualitative gap between the transport
characteristics that standard functionals deliver, and the
characteristics that are found in reality. With the present
work we take a step towards closing this gap. We demon-

strate that a Kohn-Sham (KS) self-interaction correction
(SIC) not only remedies the large overestimation of the
response that is obtained with (semi)local functionals,
but can also enforce the principle of integer preference in
CT. Integer preference can be seen in relation to Coulomb
blockade [13] and has long been considered a correlation
phenomenon that would be beyond the abilities of readily
applicable functionals. By analyzing the local KS poten-
tial, we can pinpoint step and reverse-step structures in
the xc potential that are crucial for enforcing the inte-
ger preference. The results not only encourage the use of
KS SIC. They stress the important role of spin-symmetry
breaking and provide guiding insights for the further de-
velopment of functionals that should yield reliable trans-
port characteristics.

Due to the decisive role that self-interaction and
the derivative discontinuity play in the conductance
problem, it is a close lying idea to employ the
SIC of Ref. [1] for studying the CT question. By
its very definition, ESIC

xc [n↑, n↓] = Eapp
xc [n↑, n↓] −∑

σ=↑,↓
∑Nσ

j=1 [EH [njσ] + Eapp
xc [njσ, 0]], i.e., by subtract-

ing Hartree energy EH and xc energy Eapp
xc contributions

for all occupied orbital densities njσ(r) = |ϕjσ(r)|2 from
a given xc approximation, the SIC energy is one-electron
self-interaction free and incorporates a derivative discon-
tinuity. Using recently developed ground-state [14] and
TD KS SIC schemes [15] we can employ the SIC as a KS
functional with one multiplicative potential. Thus, we
can study the potential structure that develops during
electron transfers in real space and real time, allowing to
gain insight into the functioning of KS theory.

We use real-valued ground-state KS orbitals, but for
the reasons explained in [15, 16] the energy minimizing
orbitals, TD KS orbitals, and orbital transformations are
complex and we use SIC only in combination with the lo-
cal spin density approximation (LSDA). All calculations
were done with the Bayreuth version [17] of the PAR-
SEC real-space program package [18], with parameters
chosen in analogy to Ref. [15]. Our SIC studies use the
Generalized Optimized Effective Potential (GOEP) and
the Generalized Krieger-Lee-Iafrate (GKLI) approxima-
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FIG. 1. (Color online) Upper panel: Charge on the left (ac-
ceptor, A) hydrogen chain as a function of an external electric
field that is applied to the model CT system of H atoms de-
picted in the inset. Triangles represent LSDA, crosses GKLI-
SIC results. In each case, the charge on A is obtained by in-
tegration of the density in the left half space of our real-space
grid. The two lower panels show the up-spin vxc of GKLI-
SIC along the x-axis for three field strengths before (left) and
after (right) the first electron jump. The six field strengths
are indicated by vertical lines in the upper panel. Observe
how vxc first builds a pronounced step that works against the
electron transfer to A, and then a reverse step that ensures
that the electron stays on A.

tion (GKLI-SIC) [14, 15] to the GOEP.

Hydrogen chains have frequently served as model sys-
tems that provide tough challenges in terms of a cor-
rect description of the CT physics while being technically
transparent. We here use the setup [4] that is depicted
in the upper part of Fig. 1. Two hydrogen chains, both
containing eight H atoms separated by 1 Å, are aligned
along the x-axis with a separation of 8 Å. We apply an
electric field along the x-axis and monitor how charge is
transferred from the right H chain (donor, D) to the left
H chain (acceptor, A) depending on the field strength.
As the distance between the H chains is large, the inter-
chain coupling is small and physical electron transfer oc-
curs by integer electron jumps [4]. Thus, up to a certain
field strength no charge flow should take place. As soon
as the field exceeds a specific strength, one electron, i.e.,
one (integer) unit of e should jump from D to A and re-
main there unless the field strength is reduced. Increasing
the field strength further, further integer electron jumps
should occur.

However, the CT that one obtains from standard func-
tionals as exemplified by LSDA (triangles in the upper
panel of Fig. 1) is completely different and qualitatively
wrong [4]. In LSDA, fractional CT occurs from a field
strength of 1.5 × 109 V/m on. With increasing field

strength there is a gradual transfer of charge to A un-
til one unit of e has been transferred at a field strength
of 4.0 × 109 V/m. Further increasing the field strength
leads to further gradual CT until the electron number
on A reaches a short plateau at a field strength of about
6.5×109 V/m which indicates the second transferred unit
of e. Using a hybrid functional, the plateaus are broader,
but overall one obtains a similarly wrong CT picture [4].

The picture changes completely as one goes from LSDA
to SIC. Straightforward SIC of the LSDA functional
within the KS framework is sufficient to recover the de-
cisive physical principle of integer preference in CT. In
the GKLI-SIC data (crosses in the upper panel of Fig. 1)
one observes only integer numbers of electrons on the H
chains with electron jumps occurring at field strengths of
about 2.5 × 109 V/m and 5.7 × 109 V/m. We also per-
formed full GOEP calculations up to 3.5×109 V/m. They
yield the same results as GKLI, i.e., the GKLI approxi-
mation is well justified. The electron jumps in GKLI-SIC
occur at about the same field strengths at which half of
an electron is transferred from D to A in LSDA.

Further insight into how the different xc approxima-
tions realize the CT can be gained by analyzing the cal-
culations in detail. Restricting the occupation numbers
of the KS scheme to integers leads to non-convergent cal-
culations for LSDA. The self-consistent LSDA iterations
converged only when fractional occupation numbers were
allowed, and the converged calculations then showed frac-
tional charges on each of the H8 subunits. In the gener-
alized SIC scheme, however, integer occupation numbers
are natural as the unitary transformation that connects
KS orbitals and energy minimizing orbitals is intrinsi-
cally defined only for integer occupations [19], and the
integer occupation calculations converge.

Looking at the situation in which the electrons are ini-
tially equally distributed over D and A and in which spin
is treated explicitly, there are in principle four possibili-
ties for realizing a single integer electron jump: (i) one D
spin-up (↑) electron jumps to A ↑, (ii) one D spin-down
(↓) electron jumps to A ↓, (iii) one D ↑ electron transfers
to the ↓ channel of A, and (iv) one D ↓ electron transfers
to the ↑ channel of A. Out of these four possible real-
izations, (i) and (ii) are analogous with respect to vxc
features and so are (iii) and (iv). Therefore, it suffices to
discuss explicitly only one of each class. One may argue
that cases (iii) and (iv) are unphysical as the transfer-
ring electric field can hardly induce a spin-flip. Yet, we
deliberately discuss this situation because it contributes
to revealing how the SIC describes CT.

Our calculations show that all four realizations in
GKLI-SIC give the same total energy, and the electron
jumps occur at the same field strengths. Also, the two
different CT scenarios both lead to a weak aufbau princi-
ple violation [22]: Although the aufbau principle is guar-
anteed within both spin channels separately, one electron
should be transferred between the spin channels to fulfill



3

the aufbau principle in the entire system. In other words,
there is an unoccupied KS eigenstate in one of the spin
channels that is lower in energy than the highest occu-
pied orbital of the other spin channel. In this way, one
type of realization “points back” to the other one, and
vice versa. This reflects that physically the transfer of
one ↑ electron is as likely as the one of one ↓ electron.
The situation is thus reminiscent of the “static correla-
tion” situations that are notoriously difficult for DFT.
Yet, GKLI-SIC successfully realizes a one-electron CT
by breaking the spin symmetry. The important observa-
tion is that the spin-symmetry breaking here occurs in a
system with a considerable number of electrons (not just
two) and that it is systematic: When we average over (i)
and (ii), or (iii) and (iv), or all four possible realizations –
which are energetically degenerate – then there remains
no spin-polarization. Thus, KS SIC yields the physically
correct picture. We therefore argue that spin-symmetry
breaking [20, 21] can be seen as a powerful feature of KS
theory, not a bug.

How exactly KS theory with its multiplicative, local
potential realizes the integer CT is an important ques-
tion. The two lower panels of Fig. 1 depict the GKLI-SIC
xc potential of the spin-up channel in which the electron
jump occurs (i.e., realization (i)) for three external fields
of increasing strength before (left) and after (right) the
electron jump. As the field increases, a step structure of
increasing height builds up in between the two H chains,
together with a relative shift of the potential between
D and A sides (lower left panel). With these features
the SIC xc potential works against a spurious fractional
CT. After the field has become so strong that an electron
transfers from D to A, another important feature man-
ifests: a reverse step and potential shift appear, keep-
ing the newly arrived electron on A (lower right panel).
With a further increase of the external field these fea-
tures become less pronounced, “making room” for the
next electron transfer.

Figure 2 extends the picture by showing and comparing
both spin channels for a larger range of external fields and
for the different realizations that were discussed above.
Part (a) shows the realization in which both spin channels
contain eight electrons throughout, i.e., this is the type of
situation that we just looked at in the lower half of Fig.
1. As just discussed, with increasing external field the
potential on the A side is shifted upwards with respect
to the potential on the D side and a step appears in
vxc. As long as no electron transfer has occurred both
spin channels are the same. But as the external field
goes beyond 2.5 × 109 V/m, spin symmetry breaks as
one electron transfers in one of the spin channels. For
the sake of this discussion and consistent with Fig. 1 we
assume that the transferred electron has up-spin. Then,
the up-spin xc potential (left part of Fig. 2 (a)) builds up
the reverse step that we already discussed in the lower
right panel of Fig. 1, and the right part of Fig. 2 (a)

FIG. 2. (Color online) Panel (a) depicts the GKLI-SIC xc
potential along the x-axis for external fields of strengths from
2.0 × 109 V/m to 7.0 × 109 V/m. The up-spin vxc is shown
in the left two figures and the down-spin one in the right
two figures. Both spin channels contain eight electrons. Step
structures develop in vxc of different spin channels and at
different field strengths (see discussion in the main text). Part
(b) depicts xc potentials similar to (a), but for the situation
that after the first electron jump nine electrons are in the
spin-down and seven in the spin-up channel. Panel (c) shows
vxc of LSDA, which is identical for both spin channels and
shows no step structures.

shows that the step simply vanishes in the down-spin
potential. As the external field is further increased the
step in the up-spin vxc decreases as discussed in Fig. 1,
but a new step rises in the spin-down channel. This new
step counteracts the second electron transfer, until finally
a spin-down electron is transferred to A. After this second
transfer, we observe a step in both spin channels that
supports both electrons to stay on A.

Fig. 2 (b) depicts the GKLI-SIC xc potential for the
situation that after the first electron jump nine electrons
are in the spin-down and seven in the spin-up channel,
i.e., number (iii) of the four realizations that were dis-
cussed above. In this case, the electron changes spin
assignment when it hops from D to A and one more elec-
tron of each spin channel is on A than on D after the first
electron jump. Therefore, the reverse step discussed in
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FIG. 3. (a) Change of charge ∆Q of the acceptor (A), the
donor (D), and the sum of A and D during time propagation
using the GKLI-SIC and LSDA potentials and an external
field of 8.0×109 V/m (see text). (b) Snapshots of the TD vxc
taken at different times. Left: GKLI-SIC. Right: LSDA. The
small insets in each case enlarge the xc potential in between
the two chains. See main text.

the previous situation builds up in both spin channels to
counteract back-transfer of the electron, but is less pro-
nounced. These steps decrease as the field strength in-
creases further, and new steps counteracting the second
electron jump gradually emerge in vxc of spin up and
down. With the second electron jump, the symmetric
distribution of eight electrons per spin channel is recov-
ered and steps in both spin channels keep the electrons
on A.

Fig. 2 (c) demonstrates that the step structures are
missing completely in vxc of the LSDA functional. This
explains why the LSDA leads to a gradual transfer of
charge instead of realistic integer electron jumps.

Finally, we investigate the CT behavior of our model
system time-dependently. To this end, we apply an ex-
ternal field in dipole approximation along the x-axis and
increase the field strength linearly within the first two fs
of the propagation from zero to 8.0× 109 V/m and then
keep it constant. As part of the density may be accel-
erated to the boundary of our grid, we use an absorbing
boundary to prevent this density from being spuriously
reflected back to the system. Figure 3 (a) reveals notable
differences between LSDA and GKLI-SIC already at the
early stages of the time evolution: In LSDA, almost from
the start a notable fraction of charge transfers from D to
A. In addition we observe ionization of the system at
later times as fractions of the density arrive at the left
boundary. GKLI-SIC shows a different behavior, as the
integrated charges differ only slightly from their initial

values [23]. This behavior may again be understood in
terms of vxc structures. Figure 3 (b) shows snapshots of
the TD xc potential. In analogy to the previously dis-
cussed figures, for GKLI-SIC a TD step that counteracts
spurious CT emerges between the chains, here now as a
function of time. Similar steps occur at the outer system
boundaries and prevent the system from being ionized.
The LSDA vxc misses such structures. Instead, the po-
tential barrier decreases when charge moves so that CT is
too easy and spurious ionization occurs. Observing trans-
fer of an integer charge is not possible with the present
setup in either case, as the absorbing boundary changes
the norm of the density and we thus observe not only
effects of the transfer, but also effects of the boundary.
Schemes such as the one of Ref. [11] can overcome this
hurdle. Yet, our setup here already shows that also in a
truly TD simulation the KS SIC approach cures deficien-
cies that standard functionals have with respect to the
type of CT that is relevant for transport scenarios.

In conclusion, we investigated static and dynamic CT
and found that KS SIC enforces the important principle
of integer preference in CT. We discussed the role of spin-
symmetry breaking and analyzed the local xc potential.
The interplay of step structures and reverse-step struc-
tures appearing in turn in the different spin channels is
decisive for enforcing integer CT. These insights not only
let KS SIC appear as a readily applicable, parameter-free
functional that cures decisive transport deficiencies, but
they may also serve as guiding lines in the further de-
velopment of functionals. TDDFT using real-time tech-
niques is thus a promising route for an accurate first-
principles description of transport phenomena.

We acknowledge financial support by the DFG Gradu-
iertenkolleg 1640 and the German-Israeli Foundation.
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