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Summary 

 

In the course of global and climate change humankind has to face extreme weather events 

with increased intensity and frequency and it has to deal with feeding an increasing number 

of people which is accompanied by shortage of resources such as water. Since half of 

humankind directly depends on freshwater and other ecosystem services provided by 

mountainous areas, it is essential to study such complex terrains and how natural as well as 

agricultural systems react to climatic and other anthropogenic changes.  

Emissions of greenhouse gases like Nitrous oxide (N2O) and Methane (CH4) are of global 

concern, too, because they are involved in global warming and therewith: climate change. 

Major sources of N2O are agriculturally managed soils, and very important sources of CH4 

are rice paddies. Thus, it is of great importance to study intensively managed agricultural 

systems and the effects of the management practices on greenhouse gas emissions.  

The major focus of this thesis is to quantify dry crop fields’ and forests’ N2O emissions as 

well as rice paddies’ N2O and CH4 emissions and to identify climatic as well as management 

related factors and underlying processes which are driving the N2O fluxes in a complex 

terrain.  

A prolonged early summer drought in 2010 led to significant N2O consumption in soil of three 

different forest sites. The following above-average monsoon rainfall period indeed turned the 

N2O consumption into emission but could not turn the N2O balance of a forest on sandy-loam 

substrate from negative into a positive one, which means that for the first time a negative 

N2O balance was observed for a forest soil during the growing season. The N2O emissions of 

those forest sites were clearly driven by soil moisture and temperature and there appeared to 

be an effect of the substrate on N2O emissions as well, as it is increasingly often observed 

that sandy-loam soils show significant N2O consumption. 

Plastic mulching – a worldwide used method in agriculture to increase crop production by 

enhancing soil temperature, creating more stable soil moisture conditions and restricting 

arable weed growth – turned out to have a mitigating effect on N2O emissions. DNDC 

(Denitrification and Decomposition) modeling results matched best with the measurement 

results when the maximum daily soil temperature and half of the daily precipitation was 

assumed to occur as dominating climate conditions underneath the impervious polyethylene 

(PE) film, suggesting that N2O production underneath the plastic cover was driven by soil 

moisture and temperature. N2O emissions from a non-fertilized soy bean field, which has 

Nitrogen fixation as an additional Nitrogen source, were similar to the N2O emissions from a 

radish field after application of an intermediate amount of N fertilizer of 200 kg ha-1. 
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Comparing N2O and CH4 emissions from rice paddies under different water management 

practices showed that intermittent irrigation (II) (no continuous flooding, no water logging) 

had the least global warming potential (GWP) which was only 30% of the global warming 

potential (GWP) of a traditionally irrigated (TI) paddy (continuous flooding and water logging). 

Another practice of 2.5 months of continuous flooding, followed by midseason drainage and 

reflooding which created moist but non-water logged conditions (FDFM) lead to 66% of the 

traditionally irrigated paddies combined CH4 and N2O emissions. These results suggest that 

a trend towards less flooding has a great potential to mitigate greenhouse gas emissions 

from a sandy or sandy-loam substrate, respectively. Studying the three paddies’ subsoil 

conditions revealed that N2O production and consumption processes had mainly taken place 

between 25 and 50 cm soil depth judging by N2O concentrations  and δ15N-N2O values along 

the soil profiles of all the investigated paddies as well as gene abundances of denitrifying and 

nitrifying bacteria of the FDFM paddy. 

Apart from these important findings on N2O flux dynamics of three different land use 

systems, it is noticeable that the N2O emissions of the study region are in general very low 

which is very pleasing and implies that the area deals with global change challenges and 

associated intensive agriculture in a way that comparatively only small amounts of N2O 

degas. But this raises the question after the “why?” considering that large amounts of 

fertilizer are applied on the fields. This thesis does not have a final answer to that question 

but it discusses whether the sandy substrate may play a major role for the N dynamics of the 

whole area. There is evidence that NO3
- - as the substrate for denitrification - leaches easily 

due to the soil conditions. To finally figure out why the N2O emissions are that low a more 

detailed investigation on the fate of NO3- would be desirable. 
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Zusammenfassung 

 

Im Zuge von Globalem Wandel und Klimawandel muss die Menschheit sich mit immer 

häufiger und heftiger werdenden extremen Wetterereignissen auseinandersetzen, sowie sie 

auch versuchen muss, eine immer zahlreicher werdende Weltbevölkerung zu ernähren bei 

zunehmender Verknappung von Ressourcen. Da die Hälfte der Menschheit angewiesen ist 

Ökosystemdienstleistungen aus den bergigen Gebiete der Erde, ist es essentiell, solche 

komplexen Landschaften zu studieren und zu verstehen, wie natürliche sowie auch 

landwirtschaftliche Ökosysteme sich auf Klimaänderungen und veränderte anthropogene 

Einflüsse einstellen. 

Emissionen von Treibhausgasen wie Lachgas (N2O) und Methan (CH4) sind involviert in die 

Klimaerwärmung und den damit einhergehenden Klimawandel, was sie zu wichtigen 

globalen Angelegenheiten macht. Wichtigste Quellen von N2O sind landwirtschaftliche 

Böden, CH4 entstammt zu großen Anteilen aus Reisfeldern. Daher ist es von größter 

Wichtigkeit, solche landwirtschaftlichen Systeme, im Hinblick der Management-Praktiken und 

deren Einfluss auf Treibhausgasemissionen, zu studieren. 

Das Hauptaugenmerk dieser Arbeit ist es, N2O Emissionen von landwirtschaftlichen und 

Waldböden zu quantifizieren, sowie auch N2O und CH4 Emissionen von Reisfeldern und 

herauszufinden, welche Faktoren die Flüsse dieser Treibhausgase maßgeblich steuern. 

Die verlängerte Frühsommertrockenperiode des Jahres 2010 führte zu signifikanter N2O-

Konsumption in Böden dreier Waldstandorte. Die darauffolgenden überdurchschnittlich 

heftigen Monsunregenfälle verursachten dann zwar N2O-Emissionen, und leicht positive 

N2O-Bilanzen in zwei der Wälder, jedoch waren sie nicht ausreichend um die N2O-Bilanz des 

Waldes auf sandig-lehmigem Boden in eine positive umzukehren. Dies bedeutet, dass für 

einen Waldboden während der Vegetationsperiode zum ersten Mal eine negative N2O-Bilanz 

beobachtet wurde. Die N2O-Emissionen der Waldstandorte wurden gesteuert von 

Bodenfeuchte und Bodentemperatur und – wie zunehmend in der Literatur zu finden – 

schien es einen Einfluss der Bodentextur auf die N2O-Flüsse zu geben. 

Es stellte sich außerdem heraus, dass der Einsatz von Folie in der Landwirtschaft – eine 

weltweit immer häufiger eingesetzte Methode zur Steigerung der Ernten durch höhere 

Bodentemperaturen und stabilere Bodenfeuchte – eine lindernde Wirkung auf die N2O-

Emissionen der Felder hat. Modellierungen mit dem DNDC- (Denitrifikation und 

Dekomposition)-Model stimmten am besten mit den im Feld gemessenen N2O-Flüssen 

überein, wenn Tageshöchsttemperaturen und die Hälfte des Tagesniederschlages als 

dominierende Klimafaktoren unter der Folie angenommen wurden, was impliziert, dass die 

N2O-Produktion unter der Folie auch stark von Bodentemperatur und Bodenfeuchte 
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abhängig war. N2O-Emissionen eines ungedüngten Sojabohnenfeldes, waren ähnlich den 

N2O-Emissionen eines Rettichfeldes, welches eine mittlere Menge Stickstoff-Dünger von 200 

kg N ha-1 bekommen hatte.  

Ein Vergleich von N2O- und CH4-Emissionen von Reisfeldern mit unter 

Bewässerungsstrategien ergab, dass eine zeitweise Flutung mit mehreren Trockenphasen 

das geringste Klimaschädigungspotential hat, welches nur 30% dessen beträgt, was ein 

traditionell bewässertes Reisfeld (fünf Monate kontinuierliche Flutung). Eine Intermediäre 

Bewässerungsstrategie (2.5 Monate Flutung, Austrocknung, Bewässerung ohne Stauen von 

Wasser) brachte im Vergleich zum traditionell gefluteten Reisfeld ein 

Klimaschädigungspotential von 60%. Diese Ergebnisse implizieren, dass ein Trend hin zu 

weniger Stauwasser auf Reisfeldern effektiv Treibhausgasemissionen senken kann, 

zumindest auf sandigen oder lehmig-sandigen Böden. Eine akribische Untersuchung der 

Reisfeldböden ergab, dass N2O-Produktion und Konsumption hauptsächlich in 25 bis 50 cm 

Tiefe stattgefunden haben; die N2O-Konzentrationen und δ15N-N2O-Werte dieser Tiefen von 

allen untersuchten Reisfeldern sowie auch Gen-Häufigkeiten von Denitrifizierern und 

Nitrifizierern des Reisfeldes mit der Intermediären Bewässerungsstrategie deuten darauf hin. 

Abgesehen von diesen wichtigen Erkenntnissen über N2O-Fluss-Dynamiken von drei 

verschiedenen Landnutzungssystemen, fällt auf, dass die N2O-Flüsse des Studiengebietes 

generell niedrig sind. Dies ist erfreulich und zeigt, dass das Gebiet mit jenen 

Herausforderungen, die der Globale Wandel mit sich bringt und die mit Landwirtschaft 

assoziiert sind, so eingestellt ist, dass zumindest keine großen Mengen an N2O produziert 

werden, was allerdings verwunderlich erscheint, führt man sich vor Augen welche großen 

Mengen an Dünger auf den Feldern ausgebracht werden. Die vorliegende Arbeit diskutiert 

an, ob möglicherweise der sandige Boden der Region eine schnelle Auswaschung der 

hochmobilen NO3
--Ionen - dem Ausgangssubstrat für Denitrifikation - bewirken könnte, hat 

letztlich aber keine abschließende Antwort auf diese Frage. Um herauszufinden, wieso die 

N2O-Flüsse so gering sind, wäre es wünschenswert, NO3
--Flüsse und das Schicksal der NO3

-

-Ionen genauer zu untersuchen. 
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Background  

 

The most important greenhouse gases 

 

Greenhouse gases absorb infrared light in the atmosphere, thereby trap heat and cause a 

warming of the earth’s surface. In terms of their global warming potential the three important 

greenhouse gases are Carbon dioxide (CO2), Methane (CH4) and Nitrous oxide (N2O) (WMO 

2006). In a 100-year horizon, unit masses of N2O and CH4 are considered to have 298 and 

25 times the global warming potential, respectively, as a unit of CO2 because of their longer 

lifespan (IPCC 2007). Furthermore, N2O contributes to stratospheric ozone depletion 

(Cicerone 1987) and recently has even been identified as “the Dominant Ozone-Depleting 

Substance Emitted in the 21st Century” (Ravishankara et al. 2009). Other important gases 

are water vapor and halocarbon compounds but their emissions are not associated with 

agriculture and land use issues (Snyder et al. 2009). Even though the major greenhouse gas 

for the world’s economy is CO2, the most important greenhouse gas in agriculture is N2O 

(Snyder et al. 2009) as well as its emissions are of ongoing interest in forest research and 

therefore it becomes the major focus of this thesis.  

 

 

N2O 

 

N2O is released in relatively small amounts during the microbial soil processes denitrification, 

nitrification and nitrifier denitrification (Bange 2000, Snyder et al. 2009, Wrage et al. 2001, 

Kool et al. 2011) depending on Oxygen (O2) concentrations in the soil, soil temperature and 

moisture, soil texture, amount of nitrate (NO3
-) available for denitrification and amount of 

ammonium (NH4
+) available for nitrification (Firestone 1982, Granli and Bøckman 1994). 

Denitrification names the reduction from NO3
- into dinitrogen (N2) gas as described in the 

following pathway: NO3
- � NO2

- � NO � N2O � N2 in an anoxic environment (Firestone 

1982, Firestone and Davidson 1989, Robertson and Groffman 2007). The transformation of 

NO3
- can be complete but it can happen that a small portion of N is emitted as N2O gas. 

Nitrification is the name of the conversion of NH4
+ into NO2

- which is then transformed into 

NO3
- (Norton 2008). N2O as well as NO are by-products of the transformation from NO2

- 

under oxygen-limited conditions (IFA/FAO 2001), but N2O emissions resulting from 

nitrification have also been reported under fully aerobic conditions (Bremner and Blackmer 

1978). 

Nitrifier denitrification occurs when moisture conditions are suboptimal for denitrification, as a 

function of the soil moisture content, and likely of other environmental conditions as well. The 
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process is assumed to be a major contributor to N2O emission from soils with sandy texture 

and recently calls for more and more attention (Kool et al. 2011). 

Emissions of N2O mostly occur sporadic throughout the whole year and N2O emission peaks 

can be observed after previously well-aerated soils became moistened or saturated from 

precipitation or irrigation or during thawing of frozen soils (Snyder et al. 2009, Barton et al. 

2008a, Goldberg et al. 2009).  

Forest soils’ N2O emissions are known to be influenced by soil moisture and temperature, 

soil type and texture, aeration, tree species composition, pH, C:N ratio, atmospheric nitrogen 

deposition (Schindelbacher et al. 2004. Skiba et al. 2009, Butterbach-Bahl et al. 2002, 

Menyailo and Huwe 1999, Yamulki et al. 1997, Kesik et al. 2006, Morkved et al. 2007, 

Weslien et al. 2009, Klemedtson et al. 2005, Pilegaard et al. 2006). Soil moisture and 

temperature often explain most of the temporal variation of the N2O fluxes in daily to weekly 

timescales (Omerci et al. 1999, Schindelbacher et al. 2004, Kesik et al. 2006, De Bruijn et al. 

2009) but when it comes to comparing annual N2O emissions factors like nitrogen deposition 

and forest and soil type become much more important (Pilegaard et al. 2006). 

N2O emissions from croplands are known to be influenced by the amount of fertilizer applied 

(Cole et al. 1997, van Groeningen et al. 2010) and it is said that approximately 1% of the 

nitrogen fertilizer applied is emitted as N2O (IPCC 2006). In addition to those management 

related factors, which also include type of crop with major differences between legumes and 

other annual crops, environmental factors such as climate, soil texture, soil drainage and 

abundance of NO3
--N and pH have been identified as the most important drivers of N2O 

fluxes (Eichner 1990, IFA/FAO 2001).  

Recently, N2O consumption is becoming a focal point of interest. Since the global N2O 

balance is still not closed, knowing of soils which act as N2O sinks could contribute to closing 

that balance (Billings 2008). The mechanisms behind this sink function and environmental 

factors leading to the sink function are still poorly understood. Chapuis-Lardy et al. (2007) 

summarized that it has mostly been reported under conditions of low mineral nitrogen 

availability and high soil moisture. However, significant consumption of N2O in forest soils 

has also been observed by Kellman and Kavanaugh (2008), Goldberg and Gebauer (2009a, 

b), Inclán et al. (2012) under drought conditions. 
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CH4  

CH4 is produced by methanogenic bacteria during decomposition of organic material in a 

process which is called methanogenesis. Those bacteria use CO2 as terminal electron 

acceptor and convert it into CH4 (Thauer 1998). These bacteria require environments with no 

oxygen (a situation present in flooded soils) and abundant organic matter, both of which are 

characteristics of wetlands (Zehnder, 1978). The CH4 emitted into the atmosphere is only a 

small fraction of the much larger amounts of the gas that are consumed in the soils due to 

CH4 oxidation (Bartlett and Harriss 1993, Rothfuss et al. 1996, Gilbert and Frenzel 1998). 

Because CH4 is such an important greenhouse gas and by being responsible for 10-25% of 

the global CH4 emissions rice paddies are one of the major sources of CH4 (Cicerone and 

Oremland 1988, Bartlett and Harriss 1993, Neue et al. 1997, Bousquet et al. 2006), much 

work has been and is still being done on CH4 emissions from rice paddies. It turned out that 

CH4 emissions can vary a lot with different water management strategies, mineralogy, rice 

cultivar, fertilization and local climate (Cai et al. 2001, Denier van der Con 2000, Neue et al. 

1996, Liesack et al. 2000). 

 

 

Why studying in Korea? 

 

A huge percentage of humankind lives in mountainous areas, which account for 20% of the 

Earth’s terrestrial surface, and depends on freshwater and other ecosystem services 

provided by these regions (Millenium Ecosystem Assessment 2005). Studying complex 

terrain, its surface properties, gradients in climate, transfer of materials, soil properties, 

patterning of land use according to human preferences and the resulting impacts on the 

environment is crucial for management of Earth’s ecosystems and resources.  

The Republic of Korea is a predominantly hilly and mountainous, as well as densely 

populated and developed country with a very high Human Development Index (HDI) score 

and very high living standards (Human development report 2011). Large areas are under 

intensive agricultural use. In comparison to Germany, Korea houses 61% of Germany’s 

population on only 28% of Germany’s total area which leads to a high population density of 

491 inhabitants per km2 (Germany has 229 inhabitants per km2) (Statistische Ämter des 

Bundes und der Länder: Bevölkerung am Monatsende, Korean Statistical Information 

Service). Thus, Korea is an interesting place to study as it can be regarded as a country 

which has to face and to deal with Global Change effects prior to other countries with a 

smaller population density, lower living standards, a larger area to flee from climate change 

driven natural catastrophes and extreme weather events and which are less exposed to such 

weather events. From studying Korea we could learn lessons for the whole world. 
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The TERRECO (Complex TERRain and ECOlogical Heterogeneity) project - a joint 

education and research activity between Germany and South Korea - aims to combine both, 

an achievement of a better understanding of the functioning of different land use and 

ecosystems in a complex terrain as well as an assessment of the ecosystem performances 

in terms of what we - the people - derive from them or how they cause or maybe mitigate 

environmental problems.  

 

 

Study site 

 

All the fieldwork for this thesis has been conducted in the Haean basin (see figure 1), which 

is located in Yanggu-county, Kangwon-province in the north-eastern part of South Korea 

between longitude 128° 5' to 128° 11' E and latitud e 38° 13' to 38° 20' N. The punchbowl 

shaped area with an average altitude of about 400m at the valley-sites is surrounded by 

mountains reaching up to 1320 m. The average annual air temperature is ca. 7.5°C at the 

mountain ridges and 10.5°C at the valley sites and the average precipitation amounts to 

1577 mm (11-year average) with about 70% falling during the summer monsoon (Lee, 

Tenhunen, Geyer, Seo, Li and Kang, unpublished). The mountain ridges as well as the areas 

with steep slope are covered with forest vegetation dominated by Quercus dentata, Q. 

mongolica, Q. serrata, Betula davurica, and Tilia amurensis as major tree species and 

understory are Q. mongolica, Weigela florida, Stephanadra incisa, Ulmus laciniata, 

Symplocos chinensis, Euonymus alatus, Acer pseudosieboldianum, and Corylus 

heterophylla. The valley sites are very intensively agriculturally used. 25% of this cropland 

area is covered with rice paddies, dryland farms include radish (20% of cropland area), 

potato (15%), cabbage (15%), soy bean (5%) and Codonopsis pilosula and ginseng 

(together 5%) as well as relatively new plantings of fruit trees and miscellaneous other crops. 

The typical soils of the agriculturally used area as well as the forest soils are terric cambisols 

(IUSS Working group WRB 2006). Due to very high soil erosion in the cropland area during 

the monsoon season and in order to compensate for the resulting high soil loss, the local 

farmers add sandy soil on top of their fields every few years. This long-term agricultural 

management technique modifies the soils to anthrosols (IUSS Working group WRB 2006). 

With its landuse pattern (50% forest cover, rice accounting for 25% of the cropland area and 

other major crops accounting for the residual harvested area) the Haean basin is somewhat 

representative of the world’s pattern of landuse with 30% forest area and about 15% of the 

global cropland area used as rice fields (FAO 2005, Thenkabail 2010), which makes it a 

super study site when it comes to studying factors driving N2O emissions on a landscape 

scale, delivering meaningful results for the broader, global picture. 



 

Figure 1: Satellite pictures of South Korea and the Haean Basin, fotograph of the Haean Basin.

(Pictures were downloaded from http://www.worldofmaps.net/uploads/pics/satelliten

September, 2012; downloaded from google

http://www.bayceer.uni-bayreuth.de/terreco/de/top/gru/html.php?id_obj=67142 on 15 July, 2012)

 

 

Forest soil N 2O emissions as affected by environmental factors

 

Forest soils’ N2O emissions increase with soil moisture, soil temperature and nutrient 

availability (Davidson and Kingerlee 1997

1999, Brumme et al. 1999, Smith et al. 2003, 

al. 2004, Pilegaard et al. 2006, Kesik et al. 2006

stimulated by high amounts of nitrogen deposition, intermediated by increased 

inorganic N in the soil solution and a decrease in the soil C:N ratio (Butterbach

1998, Klemedtsson et al. 2005, Pilegaard et al. 2006, Horváth et al. 2006). In general one 

can say that deciduous forests have lower N

Bahl et al. 2002, Menyailo and Huwe 1999). pH causes maximum N

or lower, indicating that acid conditions favor N

al. 2006, Morkved et al. 2007, Weslien 

important role in terms of driving N

recent evidence that poor sandy soils have a lower capability to produce N

loamy soils have (Wlodarczyk et al. 

Gebauer (2009a, b), Inclán et al. (

fluxes on sandy loam soil, confirm that idea.

19 

: Satellite pictures of South Korea and the Haean Basin, fotograph of the Haean Basin.

http://www.worldofmaps.net/uploads/pics/satelliten-karte

September, 2012; downloaded from google-maps on 17 September, 2012; downloaded from 

bayreuth.de/terreco/de/top/gru/html.php?id_obj=67142 on 15 July, 2012)

O emissions as affected by environmental factors  

O emissions increase with soil moisture, soil temperature and nutrient 

Kingerlee 1997, Ormeci et al. 1999, Papen and Butterbach

t al. 1999, Smith et al. 2003, Butterbach-Bahl et al. 2004

Pilegaard et al. 2006, Kesik et al. 2006, De Bruijn et al. 2009), as well as they are 

stimulated by high amounts of nitrogen deposition, intermediated by increased 

inorganic N in the soil solution and a decrease in the soil C:N ratio (Butterbach

1998, Klemedtsson et al. 2005, Pilegaard et al. 2006, Horváth et al. 2006). In general one 

can say that deciduous forests have lower N2O emissions than coniferous ones (Butterbach

Bahl et al. 2002, Menyailo and Huwe 1999). pH causes maximum N2O fluxes at values of 5.9 

or lower, indicating that acid conditions favor N2O production (Yamulki et al. 1997, Kesik et 

al. 2006, Morkved et al. 2007, Weslien et al. 2009). Soil texture has been assumed to play an 

important role in terms of driving N2O fluxes, too (Skiba et al. 2009), and there is increasing 

recent evidence that poor sandy soils have a lower capability to produce N

ve (Wlodarczyk et al. 2011). Studies by Barton et al. (2008a

Gebauer (2009a, b), Inclán et al. (2012), who all reported on very low and even negative N

fluxes on sandy loam soil, confirm that idea. 
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Because there are predicted changes in precipitation and temperature regimes which go 

along with an increasing occurrence of heavy rain events or extreme drought periods in the 

course of climate change (IPCC 2007), N2O emissions are expected to be enhanced in the 

future (Potter et al. 1996; Skiba et al. 1998). Thus, studies of effects of such extreme weather 

events on N2O emissions are absolutely necessary. During a long-term climate manipulation 

experiment in Germany it was found that a prolonged summer drought not only decreased 

N2O emissions but even lead to significant N2O consumption (Goldberg and Gebauer 2009a, 

b). However, the mechanism of that N2O sink function in dry soils could not be found, yet. 

Chapuis-Lardy et al. (2007) summarized that the rate of N2O consumption in soils (reduction 

to N2 plus absorption by water) would depend on soil properties, such as the availability of 

mineral N (substrate for nitrification and denitrification), soil oxygen and water content, soil 

temperature, pH and redox conditions, and the availability of organic C and N, which are 

exactly the same parameters identified to drive N2O emissions. It is a current research 

challenge to clear up the processes and environmental factors responsible for the N2O 

uptake in soils. 

 

 

Dry crop fields’ soils’ N 2O emissions as affected by management and environme ntal 

factors 

 

The N2O emitted from arable soils is known to increase linearly with amount of fertilizer 

applied (Eichner 1990, Kaiser et al. 1998). However, there is not yet a consensus reached on 

the type of N fertilizer which contributes the most to N2O emissions (Eichner 1990, Granli and 

Bøckman 1994, Snyder et al. 2009). Tenuta and Beauchamp (2003) suggested that urea-

based N fertilizer would cause greater N2O emissions than other N fertilizers under aerobic 

conditions and that under conditions of higher soil moisture NH4
+-based fertilizers would 

produce greater amounts of N2O. In contrast to that Harrison and Webb (2001) suggested 

that N2O emissions from urea under warm and wet conditions may exceed those of NH4
+-

based sources and that N2O emissions from NO3
--based fertilizers would be greater than 

those from NH4
+-based fertilizers. Bouwman (2002a), Tenuta and Beauchamp (2003), 

Velthoff et al. (2003), Venterea and Stanenas (2008) agreed that there are lower emissions 

for NO3
--based fertilizer when compared to NH4

+-based fertilizers and organic or synthetic-

organic ones.  

Like for the fertilizer type’s influence on N2O emissions, there is no consensus yet on the 

tillage system’s influence on the amounts of N2O degassing from arable soils. Lal (2003), 

Gregorich et al. (2004), Venterea et al. (2005), Blanco-Conqui and Lal (2008) reported that 
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no or less tillage lead to increased N2O emissions when compared to conventional or intense 

tillage, whereas Robertson et al. (2000), Halvorson et al. (2008a, b) observed the opposite. 

Much work has been done on figuring out if N2 fixing legumes, which have an additional N 

source, causes higher N2O emissions from soils than other crops. In general one can say 

that during N2 fixation less N is available for nitrification and subsequent denitrification and 

the resulting N2O emissions during the time when the legumes are growing (Parkin and 

Kasper 2006) so that there are not necessarily greater N2O emissions from N fertilized non-

legume crops under similar climatic and management regimes (Helgason et al. 2005, 

Rochette and Janzen 2005, Parkin and Kaspar 2006, Stehfest and Bouwman 2006, Barton 

et al. 2008b). 

In addition to those management related N2O flux regulating factors, climatic factors also 

affect N2O emissions from dry crop fields. Soil moisture and temperature are known to 

increase N2O production (Dobbie et al. 1999, Ruser et al. 2006); however, it happened that 

no correlation between N2O emission rates and soil moisture or temperature is found (Flessa 

et al. 1995). Even if it has frequently been observed that rain events triggered N2O emissions 

from agricultural fields (Davidson et al. 1993, Scholes et al. 1997, Barton et al. 2008a), pH 

allows the most N2O production at slightly acidic values and less sandy soil texture does so, 

too (IFA/FAO 2001). 

Recently there is increasing use of an impervious polyethylene (PE) film (see figure 2) 

worldwide - but in East Asian countries such as Korea, China and Japan in particular - in 

order to increase crop production in the course of a growing world population and 

accompanying food scarcity  (Kwon et al. 2006, Kyrikou and Briassoulis 2007). Due to a 

higher soil temperature and moisture underneath the PE mulch, conditions as in a 

greenhouse are created which promote crop growth, but that also raises the important 

question whether this method has negative side effects on the environment such as an 

increased N2O production.  
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Figure 2: Impervious polyethylene (PE) film applied on an agricultural field. It covers the ridges and leaves only 

little holes open where the crops can emerge. 

 

 

N2O and CH 4 emissions from rice paddies as affected by managem ent practices 

 

Whereas rice paddies are one of the most important sources of atmospheric CH4 (IPCC 

1992, IPCC 2007), their contribution to global N2O emissions was considered to be rather 

insignificant (Granli and Bøckman 1994). Due to the strong anaerobic conditions of rice 

paddy soils under the traditional rice irrigation method of continuous flooding - which was the 

dominating practice until the early 1980s (Geng et al. 2001) - N2O as an intermediary product 

of denitrification would be further reduced to N2 (Granli and Bøckman 1994). However, 

increasing water scarcity made and still makes farmers change their traditional irrigation 

practice to water-saving irrigation practices, including midseason drainages and non-water 

logged periods (Geng et al. 2001). It is well documented that such drainage, and the 

presence of non-water logging periods, enhance N2O emissions in contrast to continuous 

flooding (Cai et al. 1997, Zeng et al. 2000, Jiang et al. 2003, Li et al. 2004, Xu et al. 2004, Li 

et al. 2005) because of changes in several N2O production regulating factors, such as soil 

oxygen status, soil redox potential, moisture, temperature (Smith and Patrick 1983, Cai et al. 
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2001, Zou et al. 2005b, Johnson-Beebout et al. 2009, Liu et al. 2010, Peng et al. 2011). The 

good news about the new irrigation practices is that they significantly reduce CH4 emissions; 

however, a clear trade-off relationship between CH4 and N2O emissions was found (Yagi et 

al. 1996, Hou et al. 2000), which is why it is scientists’ challenge to find an irrigation method 

which would minimize the combined greenhouse effect by the two gases while ensuring 

maximum amounts of rice yields. 

Obviously, some factors other than water regime also affect rice paddies’ N2O and CH4 

emissions, such as fertilizer type, soil moisture and soil temperature (Bouwman et al. 2002b, 

Granli and Bøckman 1994). So does the application of urea-based fertilizer cause the 

greatest CH4 emissions but less N2O emissions (Wang et al. 1992, Cai et al. 1997, Bufogle et 

al. 1998), in contrast to the effects of ammonium sulfate or ammonium bicarbonate fertilizer, 

which leads to higher N2O emissions but lower CH4 emissions (Cai et al. 1997, Zheng et al. 

2000) at identical water management systems. The lowest CH4 and N2O emissions were 

observed after application of NO3
--based fertilizer (Jugsujinda et al. 1995). This has to do 

with the redox potential which, after NO3
--N application, was higher than -100mV (where CH4 

emissions occur), but lower than +200mV (where N2O emissions occur) so that neither CH4 

nor N2O emissions were promoted (Hou et al. 2000, Snyder et al. 2009). 

Furthermore, a significant positive relationship between N2O emissions and the WFPS (water 

filled pore space) ranging from 62.2 to 83.5%, while increasing the WFPS over 83.5% 

apparently reduces N2O emissions, was observed by Khalil and Baggs (2005), Sey et al. 

(2008), Peng et al. (2011). At soil temperatures between 25 and 40°C there is increasing 

N2O production (Granli and Bøckman 1994). 
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Objectives 

 

This study was conducted within the framework of the International Research and Training 

Group (DFG-IRTG) TERRECO (Complex TERRain and ECOlogical Heterogeneity), 

comprising soil scientists, hydrologists, biologists and social scientists with the major aim of 

examining the way to carry out land management in mountain regions, in order to ensure 

sustainable yield of ecosystem services. The specific objectives of this thesis are: 

 

(1) to quantify the N2O emissions of the deciduous forests’ soils of the study area, to 

investigate how the East Asian summer monsoon affects the N2O fluxes and to 

identify the processes which drive those forests’ N2O fluxes 

Chapter 2 

 

(2) to quantify the N2O emissions of representative dry crop fields of the study area with 

respect to effects of PE mulching, fertilizer amount and crop type 

Chapter 3 

 

(3) to quantify the N2O and CH4 emissions from representative rice paddies of the study 

area, to investigate the different water management practices’ effect on N2O and CH4 

fluxes at the soil/atmosphere interface and to identify the underlying subsoil 

processes  

Chapter 4 

 

The following experiments were carried out by the Research group and aided me in 

achieving my objectives 1 and 2: 

 

(1) At four forest sites, of which three sites also served as my study sites, permanent sap 

flow measurements were carried out by Eunyoung Jung in addition to a meticulous 

recording of forest composition, vegetation type and structure, solar radiation, climate 

data, soil parameters such as soil moisture and soil temperature, which was mainly 

done by Eunyoung Jung, too, with my assistance. Furthermore, an intensive soil core 

and leave sampling was carried out by Eunyoung Jung and me for further analysis of 
13C and 15N abundances as well as C and N content; the soil samples were also 

analyzed with respect to bulk density, rock content, soil texture, root content, etc. 

 

(2) At a radish field, which also served as my dry crop field study site in 2010, an 

integrative experiment was carried out by Janine Kettering, Bora Lee, me, Steve 
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Lindner and Emily Martin, which was designed to investigate the effects of different 

amounts of N fertilizer on radish yields, and - with the help of a 15N tracer experiment 

- to follow the fate of the fertilizer in a PE mulched ridge cultivation cropping system. 

 

N2O fluxes at the soil atmosphere interface were measured in intervals of two to seven days 

at the forest sites, the radish field study site and the 2010 rice paddy study site between 14 

May and 24 October, 2010. At the three 2011 rice paddy study sites as well as at the bean 

field study site, N2O flux measurements were carried out every two to three days between 6 

May and 15 September, 2011. CH4 fluxes of the rice paddies were determined every two 

weeks between 20 May and 28 August 2011. 

In addition to the N2O flux measurements, N2O concentrations and N isotope signatures in 

soil air were determined from 10 to 60 cm soil depth at three points in time to identify areas 

along one forest and all of the rice paddies’ soil profiles where N2O was being produced or 

consumed.  

NO3
- concentrations as well as presence of O2 along the rice paddies’ soil profiles were 

analyzed once a week. Water levels and water temperatures of the 2011 rice paddy study 

sites were recorded from 1 June until 14 September, 2011. 
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Synopsis 

 

 

Forest soil N 2O emissions as affected by early summer drought, he avy monsoon rains 

and other environmental factors (Chapter 2) 

 

Unexpectedly the early summer drought led to significant negative N2O fluxes at the 

soil/atmosphere interface in all of the three investigation sites. It was particularly pronounced 

at a site with sandy-loam topsoil texture where not even two and a half months of heavy 

monsoon rains could turn the N2O balance into a positive one. Negative N2O fluxes were 

observed again in September and October after the monsoon had stopped, while the soils 

dried up, again. At two more investigation sites a similar N2O flux pattern was found, which 

was not that pronounced but still significant. Their N2O balances were very low, too, with 

0.084 and 0.063 mmol N2O m2. Since there is increasing evidence for the phenomenon of 

N2O consumption of soils under dry conditions (Donoso et al. 1993, Yamulki et al. 1995, 

Klemedtsson et al. 1997, Verchot et al. 1999, Flechard et al. 2005, Goldberg and Gebauer 

2009a, b), these findings also support this idea.  

These results indicate an underestimation of the sink strength of the monsoon affected 

forests and considering the remarkable forest cover of such monsoon affected areas 

worldwide, these findings are very important. 

One further aim was to identify processes and environmental factors responsible for the N2O 

fluxes at the soil/atmosphere interface. Soil moisture and temperature explained most of the 

measured N2O fluxes, which is not a surprise since Davidson and Kingerlee (1997), Ormeci 

et al. (1999), Papen and Butterbach-Bahl (1999), Brumme et al. (1999), Smith et al. (2003), 

Butterbach-Bahl et al. (2004), Schindlbacher et al. (2004), Pilegaard et al. (2006), Kesik et al. 

(2006) and De Bruijn et al. (2009) pointed at those factors as major drivers of N2O fluxes. 

What is exciting is that there appeared to be an effect of soil texture, as in sandy-loam soils 

significant N2O consumption has recently been observed, too (Barton et al. 2008a, Goldberg 

and Gebauer 2009a, b, Wlodarczyk et al. 2011, Inclán et al. 2012). The very low N2O 

balances could also be a result of the forest type at the sites, as oak forests are known to 

have very low N2O emissions (Brüggeman et al. 2005). 

A closer look into the soil by using stable 15N-N2O isotope abundances and N2O 

concentrations as tools to evaluate N2O production and consumption areas along the soil 

profile brought quite interesting results as the soil profiles looked very different from what 

literature provides so far. Goldberg and Gebauer (2009a, b) have found very high N2O 

concentrations as well as 15N-N2O abundances pointing at N2O production in the subsoil, 
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whereas the soil profiles of the Korean forest did not show such a pattern at all, suggesting 

that all the occurring N2O production and consumption took place in the topsoil.  

 

 

N2O emissions from dry crop fields as affected by PE mulching, amount of fertilizer, 

crop type and climate (Chapter 3) 

 

Despite of the wide use of plastic mulching as an agricultural method in Korea, if not in Asia 

and worldwide, hardly any investigations have been conducted concerning its influence on 

N2O emissions. The experiment which was conducted during the growing season of the first 

year at a radish field study site brought the result that there were significant differences 

between N2O emissions from plant holes of PE-mulched ridges and furrows. Extraordinarily 

low amounts of N2O degassed from those spots of the PE-mulched ridges which were totally 

covered with the plastic film, which raised the question whether less N2O production occurred 

underneath the PE mulch film or there was horizontal diffusion of N2O from the ridge soil 

covered with the mulch film to the adjacent furrows and plant holes, so that most of the N2O 

produced underneath the PE mulch would have degassed from the furrows and plant hole 

spots. To tackle that question an additional experiment was conducted during the growing 

season of the second year. Comparative N2O flux measurements of plant holes PE-mulched 

ridges and plant spots of non-PE-mulched ridges of a soy bean field brought the interesting 

but not statistically significant result that the N2O cumulatively emitted from PE-mulched 

ridges’ plant holes was only 68% (2.06 mmol m-2) of the N2O emitted from plant spots of non-

PE-mulched ridges (3.00 mmol m-2). These findings suggest that the use of plastic mulch in 

agriculture mitigates N2O emissions.  

The results are based on the assumption that the PE mulch is permeable for gas as Ou et al. 

(2007) and Nishimura et al. (2012) published, which was not tested by us. 

Based on the radish field experiment, a modeling approach - by using the process-based 

models agricultural-DNDC (Denitrification and Decomposition) (Li et al. 1992, Smith et al. 

2002, Giltrap et al. 2010) and PnET-N-DNDC (Photosynthesis and Evapotranspiration- 

Nitrification-Denitrification and Decomposition) (Li et al. 2000, Kesik et al. 2005, Kiese et al. 

2011) - delivered the interesting result that the simulations agreed the best with the field 

measurements after the input information was adjusted according to the following 

parameters: only half of the annual precipitation and the maximum temperature was used for 

simulation of PE-mulch covered row conditions, whereas the actual weather data were used 

for the furrow simulations. These results strongly suggest that soil moisture and temperature 

are the major drivers of N2O production even under the management practice of plastic 
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mulching, which is in agreement with earlier studies on agricultural fields without PE 

mulching (Dobbie et al. 1999, Ruser et al. 2006). 

Measured cumulative N2O emissions from the radish field increased with increasing N 

fertilization rates, ranging between 2.4 and 4.47 mmol m-2 (ridges) and 2.04 and 6.1 mmol m-2 

(furrows). However the result was not statistically significant, which is contrast to the 

literature stating that there is a linear increase of N2O emissions with amount of fertilizer 

applied (Eichner 1990, Kaiser et al. 1998). Compared with the IPCC approach (IPCC 2006) 

these values are also rather low which can be explained by high rates of by DNDC simulated 

and measured nitrate leaching across all N treatments (ridges: 214 - 240 kg N ha-1 yr-1; 

furrows: 259 - 263 kg N ha-1 yr-1). 

The cumulatively emitted N2O from the non-fertilized bean field amounted to 5.90 mmol m-2 

(2.06 mmol m-2 for the PE-mulched ridges and 3.90 mmol m-2 for the furrow), which is very 

similar to the amount of N2O that had degassed from the radish field site in 2010, when an 

intermediate amount Nitrogen fertilizer was applied. This supports the general finding that 

N2O fluxes from non-fertilized legume cropping systems, which have N fixation as an 

additional N source, do not necessarily exceed fluxes from N fertilized non-legume crops 

under similar climatic and management regimes (Helgason et al. 2005, Rochette and Janzen 

2005, Parkin and Kaspar 2006, Stehfest and Bouwman 2006, Barton et al. 2008). 

 

 

N2O and CH 4 emissions from rice paddies as affected by water m anagement  

(Chapter 4) 

 

The combined global warming potential (GWP) of N2O and CH4 calculated in units of CO2 

equivalents over a 100-year time horizon (based on a radiative forcing potential relative to 

CO2 of 298 for N2O and 25 for CH4 (IPCC 2001)) emitted from three investigated rice paddies 

was highest for the paddy undergoing traditional irrigation (TI) (5 months of continuous 

flooding) due to largest emissions of CH4 (363.1 mol CO2eq m-2). Intermittent Irrigation (II) 

turned out to have a GWP of 109 mol CO2eq m-2, which is only 30% of GWP of the 

Traditional Irrigation paddy. The paddy experiencing 2.5 months of flooding followed by 

midseason drainage and then reflooding-moist intermittent irrigation without water logging 

(FDFM) turned out to have a GWP of 240 mol CO2eq m-2. Thus, we conclude that the 

environmentally friendliest rice paddy water management practice is one with the least water 

use: Intermittent Irrigation. Among our rice paddy study sites it caused the lowest CH4 as well 

as the lowest N2O emissions. These results are somehow contrary to the literature which 

agrees on greatest CH4 but lowest N2O emissions from TI paddies, whereas less water 

use/logging is known to lead to less CH4 but great N2O emissions (Cai et al. 1997, Zeng et al. 
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2000, Jiang et al. 2003, Li et al. 2004, Xu et al. 2004, Li et al. 2005). These differences could 

be explained by the sandy soil texture where the highly mobile NO3
- leaches even quicker 

than in less porous soils. 

Besides looking at their soil/atmosphere exchange of greenhouse gases, more value was set 

on studying subsoil processes of the rice paddies. Considering that the fertilizer applied at all 

of the three paddies was composed of NH4
+-N and urea-N it seems not surprising that no 

correlation between NO3
- concentrations along the soil profile and N2O exchange at the 

soil/atmosphere interface was observed. Instead, δ15N-N2O values, N2O concentrations 

along the soil profiles of all the investigated paddies and data on gene abundances of 

denitrifying and nitrifying bacteria for the FDFM paddy (Seo, Jang, Gebauer and Kang 2012, 

unpublished data) suggest N2O production and consumption which led to the measured N2O 

fluxes at the soil surface occur in the subsoil (25 and 50 cm soil depth). Such an investigation 

has not been done before and its results give us an exciting insight into subsoil processes 

involved in N2O production and consumption occurring in rice paddies.  

 

 

Concluding remarks 

 

Even though the Haean Basin is an area under intensive agricultural use, cumulative N2O 

emissions from different land use systems as presented in figure 3 are lower than expected 

considering the intensive management practices and wasteful amounts of fertilizer applied. 

As possible explanations for these low emissions this thesis brings up: 

1) N2O gets further reduced to N2 gas which escapes into the atmosphere, or 

2) large amounts of the highly mobile NO3
- leach easily before a reduction to N2O or N2 gas 

can take place. 

Explanation 2 seems more plausible regarding the sandy and well aerated soils of the study 

area, but to finally figure out why the N2O emissions are that low, a more detailed 

investigation on NO3
- leaching and its origin and fate could be very helpful. 



 

Figure 3: Amounts of cumulatively emitted N

 

Just like large areas of the world, in the course of global and climate change the study area 

has to face extreme weather events such as more severe early summer drought

followed by heavier monsoon rains. This thesis showed that of such weather events were 

accompanied by very low and to some extent even negative N

during the growing season.  

Plastic mulching – a widely used practice in 

potential to mitigate N2O emissions, which should be subject to more studies. 

Intermittent irrigation was identified as the best water management practice for the study 

region’s investigated rice paddies as it 

the lowest N2O as well as CH

literature but might be explained by the sandy soils and a high NO

These findings are important 

climate change effects in a good way at least with regard to its greenhouse gas emissions.
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: Amounts of cumulatively emitted N2O presented in mmol m-2 measured at the different sites during the 

growing seasons of 2010 and 2011. 

Just like large areas of the world, in the course of global and climate change the study area 

has to face extreme weather events such as more severe early summer drought

followed by heavier monsoon rains. This thesis showed that of such weather events were 

accompanied by very low and to some extent even negative N2O balances of forest soils 

a widely used practice in agriculture worldwide – turned out to have a 

O emissions, which should be subject to more studies. 

Intermittent irrigation was identified as the best water management practice for the study 

region’s investigated rice paddies as it required the smallest amounts of water and caused 

O as well as CH4 emissions, which for the N2O emissions is contrary to the 

literature but might be explained by the sandy soils and a high NO3
- leaching potential.

These findings are important and also suggest that the study region deals with global and 

climate change effects in a good way at least with regard to its greenhouse gas emissions.

 

 

measured at the different sites during the 

Just like large areas of the world, in the course of global and climate change the study area 

has to face extreme weather events such as more severe early summer drought periods 

followed by heavier monsoon rains. This thesis showed that of such weather events were 

O balances of forest soils 

turned out to have a 

O emissions, which should be subject to more studies.  

Intermittent irrigation was identified as the best water management practice for the study 

required the smallest amounts of water and caused 

O emissions is contrary to the 

leaching potential. 

and also suggest that the study region deals with global and 

climate change effects in a good way at least with regard to its greenhouse gas emissions. 
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Record of contributions to this thesis 

 

Chapter 1 

 

Chapter 1 and the summary of this thesis were written by me. This dissertation includes four 

manuscripts of which three were written by me and one was written by Youngsun Kim. One 

of the manuscripts written by me is already published, the second one is resubmitted after 

revisions and the third one is submitted. The manuscript by Youngsun Kim is in preparation 

for submission. The contribution of me and all co-authors is listed below. 

 

Chapter 2 

 

Berger S, Jung E, Köpp J, Kang H, Gebauer G, 2013. Monsoon rains, drought periods and 

soil texture as drivers of soil N2O fluxes – soil drought turns East Asian temperate deciduous 

forest soils into temporary and unexpectedly persistent N2O sinks. Soil Biology & 

Biochemistry 57, 237-281. 

 

Berger S:  60% (concepts, field and laboratory work, interpretation, discussion and 

presentation of results, manuscript preparation) 

Jung E: 20% (concepts, field and laboratory work, discussion of results) 

Köpp J: 5% (laboratory work, interpretation and discussion of results) 

Kang H: 5% (field and laboratory work, logistics in Korea) 

Gebauer G: 10% (concepts, discussion of results, contribution to manuscript preparation) 

 

Chapter 3A 

 

Berger S, Kim Y, Kettering J, Gebauer G, 2012. Plastic mulching in agriculture - friend or foe 

of N2O emissions? Agriculture Ecosystems & Environment (Resubmitted after revisions, 12 

January 2013) 

 

Berger S: 70% (concepts, field and laboratory work, interpretation, discussion and 

presentation of results, manuscript preparation) 

Kim Y:  15% (field and laboratory work, logistics in Korea) 

Kettering J: 5% (field work) 

Gebauer G: 10% (concepts, discussion of results, contribution to manuscript preparation) 

 

 



32 

 

 

Chapter 3B 

 

Kim Y, Berger S, Kettering J, Tenhunen J, Kiese R, 2012. The simulation of N2O emissions 

and nitrate leaching from different rates of N fertilizer in the radish field with the Landscape-

DNDC model. (Manuscript in preparation) 

 

Kim Y:  55% (concepts, discussion of results, manuscript preparation) 

Berger S: 10% (field and laboratory work, discussion) 

Kettering J: 5% (filed and laboratory work) 

Tenhunen J: 5% (discussion of results) 

Kiese R: 25% (concepts, discusisons of reuslts, contribution to manuscript preparation) 

 

Chapter 4 

 

Berger S, Jang I, Seo J, Kang H, Gebauer G, 2012. A record of N2O and CH4 emissions and 

underlying soil processes of Korean rice paddies as affected by different water management 

practices. Biogeochemistry (Submitted, 19 September 2012) 

 

Berger S: 75% (concepts, field and laboratory work, interpretation, discussion and 

presentation of results, manuscript preparation) 

Jang I:  5% (field and laboratory work, logistics in Korea) 
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Abstract 

 

To quantify N2O fluxes between soil and atmosphere and understanding those processes 

driving them, is crucial if we aim to reliably predict one of earth’s important greenhouse 

gases’ origin and fate. Soil moisture has been identified as one major driver of N2O fluxes, 

drought has been observed to decrease soil N2O emissions and accounts for soil N2O 

consumption. We monitored N2O fluxes occurring at the soil/atmosphere interface of three 

temperate deciduous Korean forest sites experiencing a pronounced early summer drought 

followed by heavy East Asian monsoon rains. Because soil texture can enhance or mitigate 

soil drought effects, we selected sites which were different in top soil texture. Therefore, we 

took closed chamber measurements of N2O fluxes during the growing season 2010 and 
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determined N2O concentrations and δ15N values along soil profiles in the dry and monsoon 

season for a sandy loam site. We observed N2O consumption at all of our study sites during 

early summer drought, which turned into N2O emission during the monsoon season. The N2O 

balance of the sandy loam site remained slightly negative during the entire vegetation period. 

Soil moisture explained most of the measured N2O fluxes. For a sandy-loam forest soil we 

calculated a switch between N2O emission and consumption at an intermediate soil moisture 

(pF level of 3.02) which corresponds to a water filled pore space (WFPS) of 36.34%, but at 

half an order of magnitude moister soil (pF level: 2.57; WFPS 50.31%) at a loamy site. N2O 

concentration and δ15NN2O values along the soil profiles suggest that those processes driving 

the N2O fluxes at the soil/atmosphere interface most likely occurred in the topsoil.  Our 

results contribute to our knowledge on the global N2O budget, because monsoon affected 

forests cover large areas worldwide and their soils’ N2O emissions have so far been 

uninvestigated. 

 

Keywords : N2O emission, N2O consumption, soil profile, δ15N, heavy rainfall, sand, loam, 

Korea  
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1. Introduction 

 

N2O is a powerful greenhouse gas which contributes to the global warming effect (WMO 

2006) and is also involved in the destruction of the stratospheric ozone layer (Cicerone 

1987). Important sources of N2O are mainly agriculturally managed soils but also include 

(semi-)natural forest soils (Potter et al. 1996; Davidson and Kingerlee 1997; Pilegaard et al. 

2006). Microbial denitrification, nitrification and nitrifier denitrification are the N2O producing 

processes (Kool et al. 2011). However, a significant N2O sink function has recently been 

observed in managed northern forests in Canada (Kellman and Kavanaugh 2008), and in 

European forests (Goldberg and Gebauer 2009a, b; Inclán et al. 2012). Those findings are 

now of importance for further improvement of predictions on Earth’s climate specifically 

under conditions of global climate change (Billings 2008), as soils as N2O sinks had not been 

taken into account for global N2O balances before. 

 

Still little is known about the underlying processes of this N2O sink function, which can 

temporarily be observed in different soils. Soil moisture and temperature have been identified 

as the most important drivers of N2O fluxes between forest soils and atmosphere 

(Butterbach-Bahl et al. 2004; Pilegaard et al. 2006; Kesik et al. 2006). It is also known that 

and an increasing amount of rainfall as well as increasing soil temperature are predicted to 

enhance N2O emissions (Potter et al. 1996; Skiba et al. 1998; IPCC 2001). IPCC (2007) 

predicted changes in precipitation and temperature regimes, which raised the question how 

such changes actually affect N2O emissions from forest soils. Goldberg and Gebauer 

(2009b) showed that an experimentally induced drought of 46 days could temporarily turn the 

soil of a coniferous forest in Germany from a source into a transient N2O sink. East Asian 

climate is even more extreme than the simulated one: yearly recurring heavy monsoon 

rainfall periods after eight months of fair to extreme drought (Qian et al. 2002; Yihui and 

Chan 2005). This provides an extreme case of drying and rewetting cycles of soils and 

therefore we considered it as an adequate framework to field-test the above mentioned 

experimental results. And we intended to go one step further by investigating the effects of 

the those long drought and heavy rainfall periods on forest soils distinguished by different soil 

textures, which appears of great importance especially when considering most recent 

findings by Wlodarczyk et al. (2011), who explicitly reported on loamy soils having a greater 

capacity to N2O production and consumption than sandy soils.  

 

Here we report on a monitoring study, to our knowledge investigating for the first time, how 

the N2O fluxes of East Asian forests respond to the extreme fluctuations in soil moisture 

which we expected to be caused by heavy monsoon rains. Over and above the N2O fluxes, 
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we determined several additional parameters such as soil moisture, soil temperature, soil 

and vegetation properties, N deposition and C/N ratio to see if there were any relationships 

with the occurring N2O fluxes.  Because the soil texture can enhance or mitigate drought 

effects, due to differences in water holding capacity, aeration and O2 availability etc., the 

measurements were carried out on three forest sites differing in their top soil texture 

characteristics: each one predominantly consisted of sand, sandy-loam or loam, respectively. 

We hypothesized that the sandy site as the location with the most aerated and most quickly 

drying soil would show the least N2O fluxes whereas the loamy soil with a greater water 

retaining capacity was expected to show higher emissions and less declining N2O emissions 

during the drought period. Furthermore, we attempted to identify the switching point from 

N2O emission to consumption and vice versa for each one of these soils. 

 

2. Materials and Methods 

 

2.1 Experimental sites 

 

The measurements were taken in three forests in the Haean Basin which is located northeast 

of the city of Chuncheon in Yanggu County, South Korea, between longitude 128° 5' to 128° 

11' E and latitude 38° 13' to 38° 20' N, with a ran ge in altitude from ca. 400 to 1100 m a.s.l. 

The average annual air temperature is ca. 10.5°C at  valley sites and ca. 7.5°C at the 

northern ridge line. Average precipitation is estimated at 1200 mm with 70% falling during the 

summer monsoon (Lee et al 2010, unpublished). 

 

The most important characteristics of the three sites are summarized in Table 1. The solar 

radiation (provided by the TERRECO-site (http://www.bayceer.uni-bayreuth.de/terreco/), 

downloaded on 10 January 2011) at the sites is shown in figure 1. According to the FAO soil 

classification (IUSS Working Group WRB 2006) the soils of our research sites can be 

classified as Cambisols, even though they are different in soil texture of the first 20 cm 

topsoil layer.  

 



 

Figure 1. Daily sum of solar radiation during the entire year at the three study sites. The grey box 

indicates the time period when the N

 

2.2 Measurement of soil moisture and soil temperature and determination of pF levels

 

On the sandy-loam site two ECH2O loggers and one ECH2O logger at both sandy and 

loamy site (EM50 Data logger, Decagon Devices, WA, USA) were installed at 10 cm dept

logging volumetric soil water content [%] and soil temperature [°C] every 30 minutes from 10 

May until 31 October 2010. Afterwards the mean daily water content and mean temperature 

of the soils at 10 cm depth were calculated. 

 

In addition, on all of the three sites three top soil samples were collected using a soil corer. 

The samples’ sand-, silt- and clay contents as well as their bulk densities were determined in 

the laboratory of the Soil Physics Department at the University 

method was wet sieving for sand and laser particle analyzer "Mastersizer S MAM5004" 

(Malvern Instruments, Herrenberg, Germany) for silt and clay. The samples were prepared 

by humus destruction (H2O2) and dispersion ((NaPO

density data the computer program ROSETTA estimated the soil hydraulic parameters 

α and n which then defined the pF 

function (Schaap et al. 2001) for each site. Th

soil water content value was read out of that curve.

 

pF levels were determined because the topsoil characteristics of the study sites differed a lot 

and in order to make soil moisture site comparisons possible,

stating soil moisture was needed. pF levels serve that purpose because they include soil 

characteristics such as soil texture and bulk density. 
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indicates the time period when the N2O flux measurements were carried 

2.2 Measurement of soil moisture and soil temperature and determination of pF levels

loam site two ECH2O loggers and one ECH2O logger at both sandy and 

loamy site (EM50 Data logger, Decagon Devices, WA, USA) were installed at 10 cm dept

logging volumetric soil water content [%] and soil temperature [°C] every 30 minutes from 10 

May until 31 October 2010. Afterwards the mean daily water content and mean temperature 

of the soils at 10 cm depth were calculated.  

In addition, on all of the three sites three top soil samples were collected using a soil corer. 

and clay contents as well as their bulk densities were determined in 

the laboratory of the Soil Physics Department at the University of Bayreuth. The 

wet sieving for sand and laser particle analyzer "Mastersizer S MAM5004" 

(Malvern Instruments, Herrenberg, Germany) for silt and clay. The samples were prepared 

) and dispersion ((NaPO3)6). Based on the texture and bulk 

density data the computer program ROSETTA estimated the soil hydraulic parameters 

 and n which then defined the pF - water content - curve described by the Van

function (Schaap et al. 2001) for each site. The pF level for each corresponding mean daily 

soil water content value was read out of that curve. 

pF levels were determined because the topsoil characteristics of the study sites differed a lot 

and in order to make soil moisture site comparisons possible, a more independent factor 

stating soil moisture was needed. pF levels serve that purpose because they include soil 

characteristics such as soil texture and bulk density.  

 

 

Figure 1. Daily sum of solar radiation during the entire year at the three study sites. The grey box 

O flux measurements were carried out. 

2.2 Measurement of soil moisture and soil temperature and determination of pF levels 

loam site two ECH2O loggers and one ECH2O logger at both sandy and 

loamy site (EM50 Data logger, Decagon Devices, WA, USA) were installed at 10 cm depth 

logging volumetric soil water content [%] and soil temperature [°C] every 30 minutes from 10 

May until 31 October 2010. Afterwards the mean daily water content and mean temperature 

In addition, on all of the three sites three top soil samples were collected using a soil corer. 

and clay contents as well as their bulk densities were determined in 

of Bayreuth. The analysis 

wet sieving for sand and laser particle analyzer "Mastersizer S MAM5004" 

(Malvern Instruments, Herrenberg, Germany) for silt and clay. The samples were prepared 

Based on the texture and bulk 

density data the computer program ROSETTA estimated the soil hydraulic parameters θr, θs, 

curve described by the Van-Genuchten 

e pF level for each corresponding mean daily 

pF levels were determined because the topsoil characteristics of the study sites differed a lot 

a more independent factor 

stating soil moisture was needed. pF levels serve that purpose because they include soil 
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Table 1: Site characteristics of the studied forests, in Haean basin, South Korea. 

Site Location  Aspect 2010 Soil  Dominant  Subdominant Understory Average 

      monsoon precip. charac- species species Basal area tree 

      &mean air temp. teristics Basal area Basal area   height 

Sandy- 128°8'27.13"E  220° 1223 mm 60% sand 10.3 m
-2

 ha
-1

 10.15 m
-2

 ha
-1

 2.46 m
-2

 ha
-1

 9.9 m 

 loam 38°18'57.067"N   8.5°C 31% silt (Quercus mongolica) (Quercus dentata, (Q. dentata,   

  650 m a.sl     9% clay   Tilia mandshurica, Q. mongolica   

        BD: 0.90 g cm
-3

   & others) & others)   

Sandy 128°6'0.86"E 70° 1616 mm 80% sand 16.13 m
-2

 ha
-1

 6.25 m
-2

 ha
-1

 1.02 m
-2

 ha
-1

 4.9 m 

  38°14'43.374"N   7.5 °C 15% silt (Q. mongolica) (Fraxinus rhynchophylla, (Acer pseudosieboldianum,   

  950 m a.sl     5% clay   Euonymus hamilatonianus, Acer mono   

        BD: 1.11 g cm
-3

   & others) & others)   

Loamy 128°7'50.091"E 70° 1326 mm 45% sand 11.43 m
-2

 ha
-1

 4.38 m
-2

 ha
-1

 8.28 m
-2

 ha
-1

 9.6 m 

  38°17'18.636"N   10.5 °C 42% silt (Quercus serrata, Q. dentata,  (Rhododendron yedoense,   

  450 m a.sl.     13% clay Q. mongolica,  Ulmus lacinata Euonymus alatus,   

        BD: 1.07 g cm
-3

 Quercus aliena,  & others) Lespedeza cyrtotrya   

          Alnus japonica)   & others)   

As dominant species we identified those which accounted for at least half of the canopy area. 
Temperature and rainfall data were downloaded from the TERRECO-site (http://www.bayceer.uni-bayreuth.de/terreco/) on 31st of January, 2011. Sand, silt and 
clay were classified according to EN ISO 14688. 
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2.3 N2O flux measurements 

 

N2O fluxes were measured from 14 May to 24 October of 2010 twice a week at the sandy-

loam site and in weekly intervals at the sandy and loamy sites using the closed chamber 

technique in conjunction with a photoacoustic infrared gas analyser (Multigas Monitor 1312, 

INNOVA, Ballerup, Denmark) as described by Yamulki and Jarvis (1999) and Goldberg et al. 

(2008b). The sandy-loam site contained 8 polyvinylchloride (PVC) cylinders, with a total 

height of 15 cm and a diameter of 19.5 cm, which were installed 7 cm deep into the soil. The 

sandy and loamy site contained 5 of such PVC cylinders. Those cylinders served as 

connection pieces where the chamber heads were attached to. 4 of PVC cylinders of the 

sandy-loam site, and three cylinders of the sandy site contained only few small herbs. The 

other 4 PVC cylinders of the sandy-loam site, 2 cylinders of the sandy site and all five 

cylinders at the loamy site did not contain herbs. The cylinders were installed in a way that 

the herb abundance inside the cylinders was representative of the forest soil. The N2O 

concentrations in the chambers’ headspaces were measured after 0, 8, 16, 24 and 36 

minutes at the sandy-loam site and in 0, 10, 20, 30 and 40 minute intervals at the loamy and 

sandy site. The reproducibility of one single N2O concentration measurement was ± 32 ppb. 

From a linear increase or decrease of the N2O concentration in the chambers’ headspaces 

the N2O flux was calculated taking into account the total chamber volume which includes the 

chamber headspace volume (chamber head 4000 ml + each individual PVC cylinder’s 

volume of about 2000 ml), volume of the two 25 m long Teflon pipes (600 ml) and of the CO2 

and H2O gas traps (38.2 ml). 

 

According to the literature it is considered unlikely that daily or weekly measurements using 

manual chambers would sufficiently cover each after rain emission peak, especially in 

environments where N2O emissions are strongly influenced by a small number of rainfall 

events, which are particularly unpredictable; an accurate measurement of all the N2O fluxes 

ongoing would only be provided by an automated measurement system (Barton et al. 2008). 

We consider the climate that South Korea undergoes as suitable for N2O flux measurements 

using manual chambers as rain-events as well as dry after-rain periods lasted 3-4 days, so 

that there was sufficient time to measure N2O fluxes before, during and after each occurring 

and by weather forecast well-predicted weather-event. 

 

Cumulative N2O emissions were calculated as described by Tilsner et al. (2003), by 

multiplying the N2O emission rates of two consecutive measurement days with the 

corresponding time period. These time weighted N2O flux means were then summed up over 

the measurement period. 
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2.4 Gas sampling in the soil profiles 

 

Soil gas was collected from the sandy-loam site following the procedure described by 

Goldberg et al. (2008a) on 6 June in the early dry season, on 1 August in the monsoon 

season, and on 23 October 2010 during the autumn drought season. Sub-surface soil gas 

tubes were installed in 10, 30, 40 and 60 cm depth. There were three replicates for each 

depth. Three samples of ambient air were collected as well. Gas sampling glass bottles (with 

an inlet, an outlet, and a septum and defined volumes of about 100 ml) were first flushed with 

N2 gas, evacuated using a membrane vacuum pump (KNF Neuberger N026.3AN.18, 

Freiburg, Germany) and after measuring the vacuum by using a pressure gauge 

(TensioCheck TC 03S, Tensio-Technik, Geisenheim, Germany), connected to an opened 

stopcock of a soil gas tube before its inlet was opened.  

 

2.5 Measurement of soil air 15N/14N ratios and N2O concentrations 

 

To measure N2O concentrations and 15N/14N isotope ratios of the N2O in soil gas and air 

samples a gas chromatograph-isotope ratio mass spectrometer coupling was used which 

was linked to a pre-GC concentration device (PreCon-GC-IRMS) (IRMS: delta V plus; 

Thermo Fisher Scientific, Bremen, Germany; gas chromatograph: GC 5890 series II; 

Hewlett-Packard, Wilmington, USA; Pre-Con: Finnigan MAT, Bremen, Germany) as 

described in detail by Brand (1995). The method enables to determine isotope ratios with a 

precision of ± 0.15‰. They are presented as δ15N-values which are defined as: 

 

δ
15N = (R sample/R standard -1) • 1000  [‰],  (1) 

 

where R is the ratio of heavy isotope [atom percent, at %] to light isotope [at %] of the 

samples and the respective standard. The international standard is N2 in the atmosphere 

(Mariotti 1983).  

 

N2O concentrations were calculated from the volume of the gas samples and the peak area 

in m/z on mass 44 with the help of a calibration curve. For further details on this method see 

Goldberg et al. (2008a). 
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2.6 Estimate of N deposition 

 

N deposition data based on direct measurements are not available for the three forest sites 

of our investigation. For this reason we chose a correlation approach (Emmet et al. 1998) to 

estimate N deposition for the three sites from 15N enrichment factors. On each site five sun 

and five shade leaves from five tall Quercus mongolica trees which were present in the forest 

canopy were collected. Also, from five understory Q. mongolica trees five leaves which grew 

approximately 1.5 m above ground were sampled. The collected samples were herbarized 

immediately after the harvest, and two months later dried at 75°C for two days. Furthermore, 

at each site five top soil samples were collected with a soil corer. Roots were removed by 

hand and subsequently the samples were dried at 75°C. Afterwards both, leaf and soil 

samples were ground in a ball mill (Retsch Schwingmühle MM2, Haan, Germany), weighed 

into tin capsules and stored in a desiccator before further analysis. The relative N isotope 

abundance as well as C and N concentrations were measured with an elemental analyzer 

(Carlo Erba 1108, Milano, Italy) connected to a delta S isotope ratio mass spectrometer via a 

ConFlo III interface (both Finnigan MAT, Bremen, Germany). For further details see 

Bidartondo et al. (2004). From the soils’ C and N concentration C/N ratios were calculated. 

Isotope ratios are presented as δ values, which were calculated and defined according to the 

equation (1) given in 2.5. 

 

Mean 15N abundances of the leaves and soil samples from each site were identified and a N 

enrichment factor was calculated by subtracting the average δ15N value of the leaves and the 

average δ15N value of the soil from each other. To calculate N deposition the N enrichment 

factors were inserted into an equation empirically found for the relationship between N 

enrichment and N deposition in a set of European forest sites: y = 0.1484x – 9.9472 (Emmet 

et al. 1998).  

Because the equation was only tested for coniferous forests, the results we derived were 

used carefully. 

 

2.7 Statistical methods 

 

N2O flux curves were obtained by calculating mean N2O flux values ± 1SE for every day of 

measurement and linear interpolation between two consecutive measurement days. The 

mean flux is based on n=8 for the sandy-loam site and n=5 for the sandy and loamy sites. 

The soil profiles’ N2O concentrations and δ15N values are given as means of n=3 ± 1SE. 

Statistical analyses were performed using the software R 2.12.0 for Windows (R 

Development Core Team, 2010). Via t-Test (normally distributed data) or Mann-Whitney U-
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test (not normally distributed data) it was tested whether the measured N2O fluxes are 

significantly different from 0 and whether the δ15N and N2O concentration profiles are 

significantly different from ambient air’s 15N abundance and N2O concentration. Site 

comparisons with regard to N deposition and C and N concentrations were done via ANOVA 

or the non-parametric Kruskal-Wallis-test. A multiple regression analysis was used to identify 

significant correlations between N2O flux and other site parameters. Subsequently, Pearson 

correlations were done as posthoc tests. 

 

3. Results 

 

3.1 Soil moisture, soil temperature, C/N ratio and N deposition throughout the vegetation 

period 

 

Depending on their soil texture and their precipitation and temperature characteristics the 

three sites showed differences in soil moisture (Fig. 2, a-c; Table 2). With a mean pF level of 

3.02 the sandy-loam site turned out to be the driest site throughout the measurement period, 

during early summer drought reaching maximum pF levels of 3.62 on 11 June and 1 July 

2010. The loamy site had the moistest soil with a pF average of 2.52. On 10 and 29 June the 

site’s maximum pF level of 2.87 was reached, which means with a pF difference of 0.74 its 

soil was three-fourths orders of magnitude moister than the soils of the sandy-loam site 

during that drought period. The sandy site was of intermediate moisture (pF level 2.70). 

Whereas the sandy-loam and loamy sites showed huge moisture fluctuations throughout the 

measurement period, the sandy sites’ soil humidity remained more or less constant from 1 

May until 31 October. During the monsoon period (2 July until 13 September) the sandy-loam 

and loamy sites’ soil moisture increased stepwise which is reflected by decreasing pF levels. 

The minimum pF level determined at the sandy-loam site was 2.44 and 2.11 at the loamy 

site. After the 2 ½ months of heavy monsoon rains the study sites’ soils dried up again.  

 

The soil temperature at all three sites increased gradually from the beginning of the 

measurement period until mid August and decreased afterwards. The mean soil temperature 

from May until October was highest at the loamy site (17.1°C; 450 m a.s.l.) and lowest at the 

sandy site (15.5°C; 950 m a.s.l.). The average soil  temperature at the sandy-loam site (650 

m a.s.l.) was 16.6°C. 

 

The sites slightly differed in C/N ratio depending on the soil depth (Table 2).  

 



 

Estimated N deposition ranges from 24 ± 13.8 kg N ha

± 15.3 kg N ha-1 at the most agriculture

(Table 2). There is no statistically significant difference for N deposition between the three 

sites (P=0.102), but the difference between the N deposition of the loamy site and the other 

two site’s N deposition can be regarded as a trend.

 

Figure 2. Mean daily soil temperature [°C] and mean daily pF level [log cm] (
1] (d-f ) and cumulative N2O emission [mmol m

loamy site (g, h, i) as a function of time from 1 May until 31 October, 2010. The dashed vertical lines 

indicate beginning (2 July) and end (13 September) of the monsoon rains at the me

Error bars in N2O flux- and cumulative N

(n=8 at sandy-loam site, and n=5 at sandy and loamy site).
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Estimated N deposition ranges from 24 ± 13.8 kg N ha-1 at the most remote sandy site to 51 

at the most agriculture-affected loamy site in the middle of the Haean basin 

(Table 2). There is no statistically significant difference for N deposition between the three 

rence between the N deposition of the loamy site and the other 

two site’s N deposition can be regarded as a trend. 

Mean daily soil temperature [°C] and mean daily pF level [log cm] (a-c), N

emission [mmol m-2] (g-i ) at sandy-loam (a, d, g), sandy (

) as a function of time from 1 May until 31 October, 2010. The dashed vertical lines 

indicate beginning (2 July) and end (13 September) of the monsoon rains at the me

and cumulative N2O emission- graphs represent the standard error of the mean 

=5 at sandy and loamy site). 

at the most remote sandy site to 51 

affected loamy site in the middle of the Haean basin 

(Table 2). There is no statistically significant difference for N deposition between the three 

rence between the N deposition of the loamy site and the other 

 
), N2O flux [µmol m-2 h-

), sandy (b, e, h) and 

) as a function of time from 1 May until 31 October, 2010. The dashed vertical lines 

indicate beginning (2 July) and end (13 September) of the monsoon rains at the measurement sites. 

graphs represent the standard error of the mean 
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Table 2. C/N ratios and N deposition of the study sites. 

    

Sandy 

loam Sandy Loamy 

C/N at: 0-5 cm 14.35 ab 15.34 a 13.57 b 

  5-15 cm 15.23 b  14.21 ab 12.60 b 

  15-20 17.07 a 12.81 b 12.38 b 

N deposition [kg ha
-1

 yr
-1

] 31 ±2.14 a 24  ±13.8 a 51  ±15.3 a 

 

Different letters in each line indicate significant statistical differences (P < 0.05) for a comparison of 

C/N for each soil depth and they also state that there is no statistically significant difference between 

the N deposition at the three sites. 

 

3.2 N2O fluxes and cumulative N2O emissions throughout the vegetation period 

 

Before the monsoon, all three sites showed negative N2O fluxes from the atmosphere into 

the soil (Fig. 2, d-f). The highest flux of all fluxes measured was negative on 31 May and 6 

June at the sandy-loam site (-0.57 ± 0.05 µmol N2O m-2 h-1) which - in addition to the 

exclusively negative fluxes during the dry period - makes the N2O sink function at the sandy-

loam site the most distinctive one. The sandy site’s fluxes ranged between +0.32 ± 0.11 and 

-0.26 ± 0.02 µmol N2O m-2 h-1 and the loamy site’s fluxes ranged between +0.57 ± 0.05 and -

0.34 ± 0.02 µmol N2O m-2 h-1 during the pre-monsoonal drought period. The longer the 

drought period lasted the more pronounced the N2O sink function appeared at the sandy and 

loamy site. After the monsoon start few negative N2O fluxes could be observed.  The sandy-

loam and loamy sites’ soils turned from a pronounced N2O sink into an N2O source; the 

sandy site no longer showed any significant N2O fluxes. After the monsoon season, slightly 

negative net N2O fluxes could be detected again in the sandy-loam and loamy site. 

 

The mean N2O fluxes of the three sites integrated over time from 1 May to 31 October (Fig. 

2, g-i) are statistically significant (*P<0.05). The fluxes amounted to 0.084 mmol N2O m2 

(equals 6.97 g N2O ha-1 or 0.237 g N2O ha-1 d-1) at the loamy, 0.063 mmol m-2 (equals 27.73 

g N2O ha-1 or 0.178 g N2O ha-1 d-1) at the sandy and -0.07 mmol m-2 (equals -30.81 g N2O ha-

1 or -0.184 g N2O ha-1 d-1) at the sandy-loam site throughout 161 days of measurement 

period, respectively. Thus, the N2O balance during the entire growing season at the sandy-

loam site remained negative. 

 

 

 



 

3.3 Correlation of soil moisture and soil temperature with the N

 

The multiple linear regression analysis revealed that the N

best with soil moisture, soil temperature, bulk density and 

when conducted as an overall site comparison (

soil temperature: p = 0.055, δ15

Further Pearson analyses testing correlations between N

brought significant results for an influence of soil moisture on N

and loamy site (Fig. 3). With the soil moisture given as pF level instead of volumetric water 

content [%], the relation between N

R2=0.48 at the sandy-loam site and 

at the day of measurement explained 29% (

sandy-loam site. No significant relation between soil temperature and N

two sites could be found. Soil moi

prior to the measurement day have been correlated with the N

significant correlations were found. A statistical comparison of the soil moisture

regression lines of the sandy-

different (***P<0.001). 

Figure 3. Regressions and correlations for soil moisture (pF

N2O fluxes for the three sites (n

 

An attempt to determine the intersection point of the pF level/N

line which indicated the zero-

(which conforms to a volumetric water content (VWC) of 24%, water filled pore space 

(WFPS) 36.34%) and 2.57 (= 30% VWC, WFPS 50.31%) for the loamy site.
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3.3 Correlation of soil moisture and soil temperature with the N2O fluxes 

The multiple linear regression analysis revealed that the N2O fluxes would be explained the 

best with soil moisture, soil temperature, bulk density and δ15N values at 5 cm soil depth, 

when conducted as an overall site comparison (R2 = 0.53, ** p = 0.00013, pF: *** p < 0.001, 
15N: p = 0.10, bulk density: p = 0.064).  

Further Pearson analyses testing correlations between N2O fluxes and site parameters 

brought significant results for an influence of soil moisture on N2O fluxes for the sandy

and loamy site (Fig. 3). With the soil moisture given as pF level instead of volumetric water 

content [%], the relation between N2O flux and soil moisture is more pronounced (pF level 

loam site and R2=0.45 at the loamy site). Mean daily soil temperature 

at the day of measurement explained 29% (R2=0.29) of the measured N

loam site. No significant relation between soil temperature and N2O flux for the other 

two sites could be found. Soil moisture and temperature of one, two, three and seven days 

prior to the measurement day have been correlated with the N2O fluxes as well, but no 

significant correlations were found. A statistical comparison of the soil moisture

-loam and loamy sites showed that they are highly significantly 

Regressions and correlations for soil moisture (pF-level and VWC), soil temperature and 

n=30 at the sandy-loam site, n=16 at the sandy site and 

loamy site.) 

An attempt to determine the intersection point of the pF level/N2O flux regression line with the 

-N2O flux resulted in a pF level of 3.00 for the 

(which conforms to a volumetric water content (VWC) of 24%, water filled pore space 

(WFPS) 36.34%) and 2.57 (= 30% VWC, WFPS 50.31%) for the loamy site.

O fluxes would be explained the 

N values at 5 cm soil depth, 

0.00013, pF: *** p < 0.001, 

O fluxes and site parameters 

fluxes for the sandy-loam 

and loamy site (Fig. 3). With the soil moisture given as pF level instead of volumetric water 

O flux and soil moisture is more pronounced (pF level 

the loamy site). Mean daily soil temperature 

=0.29) of the measured N2O fluxes at the 

O flux for the other 

sture and temperature of one, two, three and seven days 

O fluxes as well, but no 

significant correlations were found. A statistical comparison of the soil moisture-N2O fluxes-

loam and loamy sites showed that they are highly significantly 

 

level and VWC), soil temperature and 

=16 at the sandy site and n=14 at the 

O flux regression line with the 

O flux resulted in a pF level of 3.00 for the sandy-loam site 

(which conforms to a volumetric water content (VWC) of 24%, water filled pore space 

(WFPS) 36.34%) and 2.57 (= 30% VWC, WFPS 50.31%) for the loamy site. 
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3.4 N2O concentration and isotope profiles during the dry and monsoon season at the sandy-

loam site 

 

The N2O concentrations along soil depth profiles at the drought periods differ from the 

monsoon seasons’ profile (Fig. 4). Whereas the N2O concentrations on 6 June and 23 

October (drought period) were slightly below the N2O concentration of ambient air (in 40 cm 

depth reaching a minimum value of 220 ppb on 6 June), on 1 August (monsoon season) the 

concentration of N2O in the soil air was slightly higher than in the ambient air (350 ppb) from 

30 to 60 cm depth with 327 ppb in 10 cm depth not statistically different from the ambient air.  

The differences in soil air N2O concentration between the first and the second sampling date 

are statistically significant (*P<0.05), whereas the N2O concentrations of the third sampling 

did not differ significantly from pre-monsoonal and monsoon seasons’ soil gas N2O 

concentrations (P>0.05).  

 

Even though the δ15N enrichment of N2O in June was slightly higher (3.3‰ in 10-30 cm 

depth) than in August (1.4‰ in 10-30 cm depth) and October (-1‰ in 10 cm depth but 

increasing up to 2‰ in 60 cm depth), the δ15N values of the three sampling dates did not 

differ significantly (P>0.05). 



 

Figure 4. N2O concentrations and 

period (6 June), monsoon season (1 

bars represent the standard error of the mean (

values of N

 

 

4. Discussion 

 

4.1 Site comparison of N2O fluxes 

moisture, soil temperature, C/N ratio, N deposition and vegetation related factors

 

Here we report for the first time on a forest soil that acts as a N

growing season. Up to now significant net N

been observed in various ecosystems under dry conditions from the tropics to temperate 

areas, in natural as well as in anthropogenic ecosystems (Chapuis
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O concentrations and δ15N values along soil profiles during the early summer drought 

period (6 June), monsoon season (1 August) and autumn drought season (23 October), 2010. Error 

bars represent the standard error of the mean (n=3). The dotted vertical lines indicate the respective 

values of N2O in the ambient atmosphere. 

O fluxes at the soil/atmosphere interface as influenced by soil 

moisture, soil temperature, C/N ratio, N deposition and vegetation related factors

Here we report for the first time on a forest soil that acts as a N2O sink throughout an entire 

now significant net N2O fluxes from the atmosphere into the soil have 

been observed in various ecosystems under dry conditions from the tropics to temperate 

areas, in natural as well as in anthropogenic ecosystems (Chapuis-Lardy et al. 2007; 

 

N values along soil profiles during the early summer drought 

August) and autumn drought season (23 October), 2010. Error 

=3). The dotted vertical lines indicate the respective 

at the soil/atmosphere interface as influenced by soil 

moisture, soil temperature, C/N ratio, N deposition and vegetation related factors 

O sink throughout an entire 

O fluxes from the atmosphere into the soil have 

been observed in various ecosystems under dry conditions from the tropics to temperate 

Lardy et al. 2007; 
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Kellman and Kavanaugh 2008; Goldberg and Gebauer 2009a, b; Inclán et al. 2012). For our 

study site with sandy-loam top-soil texture, soil moisture and soil temperature explained the 

measured N2O fluxes well, which is in accordance with other groups’ findings (Ormeci et al. 

1999; Schindlbacher et al. 2004; Pilegaard et al. 2006; De Bruijn et al. 2009). These groups 

agreed to the fact that soil temperature and moisture are the most important drivers of forest 

soil N2O emissions in daily to weekly timescales. In addition, our data indicate that soil 

temperature and moisture serve also as drivers for forest soil N2O consumption. So did the 

switching point between N2O emission and consumption at the sandy-loam site emerge at a 

pF level of 3.02 (VWC 24%, WFPS 36.34%). At the loamy site soil moisture explained 45% 

of the measured N2O fluxes (switching point between emission and consumption occurred at 

a pF of 2.57 (VWC 30%, WFPS 50.31%), which lies between “dewy” and “moist), but there 

was no significant relation between the loamy sites’ soil temperature and N2O fluxes, neither 

any significant correlation could be found between the sandy sites’ soil moisture, soil 

temperature and N2O fluxes.  

It is well known that a small C/N ratio and a high N deposition stimulate NO and most likely 

also N2O emissions (Fenn et al. 1996; Davidson and Kingerlee 1997; Butterbach-Bahl et al. 

1998; Papen and Butterbach-Bahl 1999; Brumme et al. 1999; Jones et al. 2005; 

Klemedtsson et al. 2005; Kitzler et al. 2006; Horváth et al. 2006). Therefore, it seems 

plausible that those two factors by increasing the available N to quite an amount could have 

affected the loamy site’s N2O emissions, because the loamy site has significantly different 

C/N ratios and by trend the highest N deposition (see table 2). For the sandy forest soil none 

of the mentioned factors, which are known to have an influence on N2O emissions, was 

found to have a significant effect on that sites’ N2O fluxes. Neither the highest amount of 

2010 monsoon precipitation, the highest amount of mean annual rainfall among the three 

sites nor soil nutrient availability and soil physical characteristics, respectively, affected 

significantly the forest soils’ N2O flux behavior.  

However, deciduous forests are known to have lower N2O emissions than coniferous forests 

(Menyailo and Huwe 1999; Butterbach-Bahl et al. 2002; Pilegaard et al. 2006; Inclán et al. 

2012), with mean N2O-N emissions ranging from 4.9 to 20.3 µg N2O-N m-2 h-1 (Butterbach-

Bahl et al. 1997, Kitzler et al. 2006, Pilegaard et al. 2006) for mainly beech forests. Oak 

forests were found to have lower N2O emissions (Brüggeman et al. 2005). Recently, Inclán et 

al. (2012) observed mean N2O-N emissions from oak forests in Spain that ranged between 

2.2 and 4.1 µg N2O-N m-2 h-1. Our results suggest a much lower mean emissions between -

0.07 and 0.084 mmol N2O m2 (equals -0.05 and 0.06 µg N2O-N m-2 h-1), which we assume to 

be explained by the fact that our study sites’ oak forests undergo that far more extreme 

climate in East Asia. With eight months of relative to extreme drought and 3-4 months of 

heavy rainfall (Qian et al. 2002; Yihui and Chan 2005) the soils are subject to an extreme 
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case of drying and rewetting cycles and thus, it seems not surprising that the N2O emission 

balances of our sites remain very low or even negative. Goldberg and Gebauer (2009a) 

reported that soil rewetting after 46 days of induced drought took twice the time of their 

preceding drought experiment to turn the cumulative N2O fluxes from negative into positive 

values.  

The N2O balances we calculated are based on six months of measurement and 31 

measurement dates for the sandy-loam site, 16 measurement dates for the sandy and 14 

dates for the loamy site and cover the entire growing season of the investigated forests; they 

also provide insights in how the forest soils N2O fluxes reacted to monsoonal caused 

changes in soil moisture in 2010, but they happened to have a significant temporal variability, 

depended on environmental factors and might look different during other years’ growing 

season with a different meteorological background. 

 

4.2 Soil texture as an important driver of N2O fluxes 

 

The introductory hypothesis was that there would be less capacity to N2O production in the 

sandy soil with the larger particles due to a smaller water holding capacity, whereas we 

expected a higher capacity to N2O production in soils with a smaller particle size due to their 

higher water holding capacity. It emerged to require more factors taken into account and a 

more educated point of view to properly assess soil textures’ influence on N2O exchange at 

the soil/atmosphere interface. 

Recently, there is an increasing number of studies reporting on very tiny or even negative 

N2O fluxes at a substrate with sandy loam soil texture, suggesting that soil texture - be it in 

interaction with other soil parameters such as gas diffusivity, N and O2 concentrations etc. - 

might also be an important driver of forest soils’ N2O fluxes (Goldberg and Gebauer 2009a, 

b, Wlodarczyk et al. 2011, Inclán et al. 2012). We are well aware that our study does not 

allow to draw the conclusion that soil texture does indeed drive N2O fluxes as the effect of 

soil texture is hard to separate from other parameters, but we want to emphasize that the 

very tiny N2O fluxes that we measured also occurred on a sandy loam substrate, which 

points at the importance of clarifying how soil texture actually affects N2O fluxes. 

 

4.3 N2O concentration and δ15N profiles along the sandy-loam sites’ soil profile 

 

Along the profile of the sandy-loam site we detected sub-ambient N2O concentrations (220 

ppb) during the early summer drought period down to 40 cm depth but an increasing 

concentration in 60 cm depth, which suggests that N2O consumption could have taken place 

down to 40 cm soil depth. The 15N abundance of the soil gas N2O was similar to the 15N 
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signature of ambient N2O, which suggests an N2O flux from the atmosphere into the soil. On 

1st of August (during the monsoon season) the N2O concentration and 15N abundance 

pattern along the soil profile is not that clear. N2O concentrations in the soil gas only slightly 

higher than the N2O concentrations of the ambient air, as well as a 15N-signature that was not 

significantly different from ambient-N2Os’ δ15N values allow the conclusion to be drawn that 

only very tiny N2O emissions have taken place on that sampling date, neither has occurred 

any N2O consumption along the soil profile. 

N2O concentrations and δ15N values along the soil profiles are in agreement with the N2O 

fluxes measured at the soil/atmosphere interface via chamber measurements and give 

further insights into the N2O production concerning processes, even though the values we 

observed are very different from other studies.  

Goldberg and Gebauer (2009a, b) detected N2O concentrations up to 5000 ppb and δ15N 

gradients between +7 and -24 ‰ in deeper soil layers (50 cm and deeper). Our study sites 

are exposed to fair or even severe drought during eight months a year, which means 

increased soil aeration and thus unfavorable conditions for N2O production by denitrification 

(Castaldi 2000) or nitrifier denitrification during most of the year. Drought is also known to 

reduce the amount of N cycled in the ecosystem by reducing the overall activity of N 

metabolizing microorganisms (Kieft et al. 1987). Given that the sandy-loam sites’ N2O 

emissions during the monsoon period were very low and that the fluxes at the 

soil/atmosphere interface result from dynamic production and consumption processes in the 

soil, it appears likely that just not much of such processes are going on in Korean deciduous 

forests’ soils and that a time span of 3-4 months of rainfall per year is too short to establish 

conditions favorable for N2O producing or consuming microorganisms at the site. 

Up to now there was the concept of not much of the N2O being produced within the soil 

column ever reaching the soil surface (Seiler and Conrad, 1981; Arah et al. 1991; Neftel et 

al. 2000; Goldberg and Gebauer, 2009a, b), but the concept of not having ongoing N2O 

production down to 60 cm soil depth is rather uncommon. Yoh et al. (1997) suggested that 

most of the N2O produced in the topsoil may easily escape to the atmosphere without 

residing in the soil for a long time, and since we identified the top-soil texture as a probable 

major factor driving our sites’ N2O fluxes between soil and atmosphere, since we detected 

N2O fluxes at the soil/atmosphere interface while neither having strongly increased or 

decreased N2O concentrations nor enriched or depleted 15NN2O abundances along the soil 

profile, our data agree with this hypothesis. 
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4.4 Concluding remarks 

 

Given Korea’s frontier-like location between Pacific Ocean and Asia, it is not surprising that 

climate change hits the country harder than for example Europe. The mean annual 

temperature in Korea increased not only by 1°C as g lobally observed but by 1.8°C during the 

last 100 years, summers are now two to three weeks longer, moister and extreme rainfall 

events are occurring more frequent (Lee et al. 2012). Considering those facts – which are 

known to increase N2O emissions (Potter et al. 1996; Skiba et al. 1998; IPCC 2001, 

Butterbach-Bahl et al. 2004; Pilegaard et al. 2006; Kesik et al. 2006) – and that the 2010 

monsoon season was unusually long and rain-laden (Zhao 2010, unpublished data), our data 

provide further insight in the N2O flux behavior of forest soils under global climate change. 

Taking into account all the previously discussed ideas and facts about dry forest soils acting 

as N2O sinks or at least not as huge N2O emitters, one would expect a climate change 

towards moister conditions to increase N2O emissions. But interestingly our study sites 

happened to have N2O balances which are extremely low or even negative which is an 

unexpected finding. Still 30% of the global N2O budget remains uncertain by either 

overestimating N2O sources or underestimating N2O sinks (Billings 2008). Our data now 

show that one year of extreme monsoon precipitation in Korea’s rapidly changing 

environments did not result in a strong N2O emission of forest soils which may suggest that 

forest soils as N2O sinks play a bigger role for the global N2O budget than considered up to 

now. Climate change is still proceeding and the development of Korea’s climate, which was 

observed during the last 100 years, will emerge in a more intensive way in the next 100 

years (Lee et al. 2012), so it would be of great interest to put more effort in studying the N2O 

flux behavior of Korean forest’s soils and to also study forests of other East Asian countries 

such as Japan or the Eastern regions of China, which undergo the same climate. 
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Abstract  

 

Polyethylene (PE) mulching is a very common method in agriculture worldwide because the 

use of PE films can improve product quality and yield by mitigating extreme weather 

changes, optimizing growth conditions and extending the growing season. Other than the 

problem with disposal of the plastics hardly any other of its effects on the environment are 

known. To determine whether covering fields with PE films affects N2O emission, we 
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conducted two experiments: first, comparing N2O emissions of furrows and PE-mulched 

ridges of a radish field which had received different amounts of N fertilizer and second, 

assessing whether PE mulching increases N2O emissions from PE-mulched ridges in 

comparison to non-PE-mulched ridges and furrows of a non-fertilized field. To achieve those 

aims we took comparative closed chamber measurements in conjunction with a 

photoacoustic infrared trace gas analyzer during the growing seasons of 2010 and 2011 at a 

radish and soy bean field site in South Korea. For the radish field site we found significant 

differences between the N2O emitted by furrows and PE-mulched ridges and found 

extraordinarily low N2O fluxes from those spots of the ridges which were totally PE-mulch-

covered between plant hole openings. At the soy bean field we observed that plant holes of 

PE-mulched ridges showed only 68% of the emission measured of soils around soy bean 

plants of non-PE-mulched ridges, implying that PE mulching may decrease N2O emissions. 

Since our result is contrary to very recent findings we consider the extremely low soil 

moisture at our sites as explanation for the differences. Because knowledge on how PE 

mulches affect production and emissions of greenhouse gases is very limited, our study 

contributes greatly to understanding N2O emission behavior of PE-mulched, poor sandy soils 

in a temperate monsoon climate. 

 

Keywords : N2O flux, polyethylene (PE) film, soil moisture, soil temperature, NH4
+ fertilizer 
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1. Introduction  

 

Nitrous oxide (N2O) is a greenhouse gas of special concern due to its high global warming 

potential per molecule (Rodhe, 1990), its high contribution to the observed global warming at 

present (WMO, 2006) and its involvement in the destruction of the ozone layer in the 

stratosphere (Cicerone, 1987), although its atmospheric concentration of 323 ppb (global 

mean concentration in 2005 (IPCC, 2007)) is rather low. Major sources of N2O are 

agriculturally managed soils (Vitousek et al., 1997), which produce and release N2O through 

microbial denitrification, nitrification and nitrifier denitrification (Wrage et al., 2001; Kool et al., 

2011). An overall aim should be to reduce N2O emissions from such soils. 

Plastic mulching - covering soil with polyethylene (PE) plastic films - is being established 

worldwide as a method in agriculture to increase crop production not only by keeping soil 

temperature and water content high but also by restricting arable weed growth. One obvious 

drawback of the method is the problem with the disposal of the plastic film (Kyrikou and 

Briassoulis, 2007), but other side effects of the method such as its influence on greenhouse 

gas emissions are still hardly investigated. 

N2O emissions from arable soils are known to increase both with fertilizer application and 

after heavy rainfall events (Flessa et al., 1995), but emissions are also driven by soil 

temperature and moisture parameters (Shepered et al., 1991). Many studies have been 

published on how plastic films increase soil temperature and improve soil water dynamics 

(e.g., Ban et al., 2009; Díaz- Pérez, 2010; Katan and Devay, 1991; Zhang et al., 2011), 

which in combination with high inorganic N and organic matter contents and low O2 

concentration in the soil (e.g., Akiyama and Tsuruta, 2003a, 2003b; Hayakawa et al., 2009; 

Yanai et al., 2011), may increase the N2O production of such covered soils. Recently, Arriaga 

et al. (2011) and Nishimura et al. (2012) reported on increased N2O production from 

agricultural soils covered with plastic mulch films. 

Here we present two consecutive experiments: the first attempts to provide an overview on 

the amounts of N2O emitted from agricultural soils under plastic mulching and second, 

assesses the effect of plastic mulching on N2O emissions from poor and rapidly drying sandy 

soils in a temperate monsoon climate. Therefore, in 2010 we took comparative 

measurements of N2O emissions at the soil/atmosphere interface of PE-mulched ridges and 

uncovered furrows of a radish field’s plots which had received different amounts of nitrogen 

fertilizer and because of unexpected results we conducted one further experiment in 2011, 

comparing the N2O emissions of PE-mulched and non-mulched ridges of an unfertilized soy 

bean field. Both experiments were conducted in East Asia (Korea), where plastic mulching is 

an extensively used method in agriculture. We hypothesized that the plastic mulching would 
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cause higher N2O emissions due to the mentioned conditions underneath the plastic film 

which are considered to be favorable for N2O production. 

 

2. Methods 

 

2.1 Study site 

 

The study sites were located in the Haean-myun Catchment in Yanggu County, Gangwon 

Province, South Korea . The agricultural soils of the catchment are mainly characterized as 

terric cambisols or even as anthrosols (IUSS Working Group WRB, 2007) because of an 

artificial long-term addition of sandy soil on the top of the fields. 

The 2010 experiment was conducted at the Punchball Tongil Agricultural Experimental Farm 

(38°17'42.471"N, 128°8'28.088"E, 420 m asl), the 20 11 experiment was conducted at a 

conventionally treated soy bean field (38°16'26.211 "N, 128°8'45.354"E, 452 m asl).  

The study area falls within the East Asian monsoon climate and has an 11-year (1999-2009) 

average annual air temperature of 8.5°C and an annu al precipitation of approximately 1577 

mm, with 70% of the precipitation occurring as heavy rainfall between June and August. In 

recent decades, a shortening of the monsoon season, as well as an increase in the amount 

of precipitation, and the number of heavy rainfall days, was observed (Chung et al., 2004).  

However, the months of June and July in 2010 had precipitation amounts of only 67 mm and 

216 mm, respectively, which were exceptionally low compared to the 11-year averages. Very 

dry periods, each with less than 20 mm precipitation in total, were observed from June 14 to 

July 1, July 6 to July 15, and from July 19 to August 1. In contrast, the months of August and 

September were extremely wet, with precipitation amounts of 458 mm and 415 mm, 

respectively. Due to clearly colder temperatures in March, April and May than during the 11-

year mean there was a delay in the start of cropping by approximately two to four weeks.  

The 2011 mean air temperature (8.4°C) was in accord ance with the 12-year (1999-2010) 

average whereas precipitation amounts (1440 mm) were slightly lower. Most precipitation 

occurred in June (372 mm), July (596 mm) and August (148 mm). 

 

2.2 Experimental design in 2010 

 

On May 15, the previously fallow field was tilled. On May 31, a commonly used basal 

fertilizer (30% mineral NPK fertilizer with 4.2-2-1, 70% organic fertilizer, with C/N ratio 4.1:1 

and an N content 186.7 kg / ha, SamboUbi, South Korea) was applied as granules and 

mixed in the top 15 cm of the soil to enhance soil fertility.On June 1, additional NH4
+-urea 

fertilizer in a ratio of 7:3 was applied as a one-time top dressing (mineral NPK fertilizer 11-8-9 
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+3MgO+0.3B, KG Chemicals, South Korea) at 4 fertilizer N rates on June 1: N50, N200, 

N250, and N350, reflecting the application of 50, 200, 250, and 350 kg N ha-1. The 

recommendations for highland radishes provided by the Rural Development Administration of 

Korea (RDA, 2006) was 250 kg/ha. The plots (7x7 m) were arranged in a randomized block 

design with three replicates for the applied fertilizer amounts N50, N250 and N350 and there 

was one more additional plot which received the N200 treatment (Fig. 1). On June 9, the top 

20 cm of the soil was ploughed, implementing a ridge system (35 cm width and about 15 cm 

height) with a distance of 70 cm between the rows. The ridges were covered with impervious 

black PE mulch (see Fig. 2) that contained one row of holes with a diameter of 6 cm every 25 

cm along the ridge. Finally, on June 14, radishes were sowed on the top ridges at a rate of 

two - three seeds for each hole (Hungnong Seeds, South Korea). Weeding during the 

experiment was performed manually without the application of herbicides. This is not the 

common practice in this area as farmers usually seem to apply herbicides, but in order not to 

add any more chemicals and potentially N2O-emission-causing substances, it was decided to 

do manually weed. The weeding was done weekly during the month after the seeding of the 

radish. On August 27, the radish was harvested, the PE mulch was removed and the field lay 

fallow.  

Each N50-, N250- and N350-radish field plot contained three polyvinylchloride (PVC) 

cylinders (see Fig. 1). There were two of those cylinders on the PE-mulched ridge: the first 

one surrounded a hole with one radish plant (plant hole cylinder) and the second one was 

installed on the PE mulch (PE mulch cylinder). The PE mulch cylinder was accomplished by 

cutting a hole of the size of the PVC cylinder in the PE mulch, installing the PVC cylinder and 

then placing the PE mulch in the PVC cylinder. The PE mulch which surrounded that PVC 

cylinder was placed on the PVC cylinder from its outside so that the PE mulch of the ridge 

remained impervious. The third cylinder of each plot was installed in the furrow (furrow 

cylinder). The N200 plot had nine PVC cylinders, three in the furrow, three in the PE mulch 

and three more surrounding plant holes. Prior to seeding and after the harvesting N2O flux 

measurements were taken on the fallow soil. 
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Figure 1: Schematic drawing of the experimental design of the radish field site in 2010. 
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Figure 2: Scheme of a typical ridge cultivation system with plastic mulching in a temperate South 

Korean area with summer monsoon (Kettering unpublished). Shown are the distribution of N fertilizer 

in the system and width, height and distance of the ridges. 

 

2.3 Experimental design in 2011 

 

Before the experiment started, the field in which radish had grown the previous year, was 

ploughed by the farmer without applying any fertilizer in 2011. The ridge and furrow system 

was implemented (35 cm wide and 15-20 cm high (Fig. 2)), the ridges were covered with 

impervious black PE mulch that contained one row of holes every 25 cm along the ridge with 

a diameter of 6 cm. On May 29, soy beans were sowed on top of the ridges at a rate of two - 

three seeds for each hole. Some ridges remained uncovered. Weeding during the 

experiment was performed manually without the application of herbicides. This is not the 

common practice in this area as farmers usually seem to apply herbicides, but in order not to 

add any more chemicals and potentially N2O-emission-causing substances, it was decided to 

manually weed. The weeding was done one time, on June 15, 2011. 

N2O fluxes were measured using nine PVC cylinders: three surrounded soy bean plants 

which grew on ridges covered with PE mulch, three  surrounded soy bean plants which grew 

on ridges which were not covered with PE mulch and three installed in the furrows which 

were randomly distributed next to PE-covered and non-PE-covered ridges. 

 

2.4 Measurements of N2O fluxes 

 

N2O fluxes were measured every three to seven days from May 13 through October 22, 2010 

at the radish field site and from May 16 through September 14, 2011 at the soy bean field 

site using the closed chamber method in conjunction with a photoacoustic infrared gas 

analyser (Multigas Monitor 1312, INNOVA, Ballerup, Denmark) as described by Yamulki and 
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Jarvis (1999) and Goldberg et al. (2008). Each site contained the amount of PVC cylinders 

described above with a diameter of 19.5 cm and a height of 15 cm, which were installed 7 cm 

deep in the soil. They served as connecting points to attach the chambers in whose 

headspaces the N2O concentrations were determined in 0, 10, 20, 30 and 40 minute 

intervals. The reproducibility of one single N2O concentration measurement was ± 32 ppb. 

From a linear increase or decrease of the N2O concentration in the chambers’ headspaces 

the N2O flux was calculated taking into account the total chamber volume which includes the 

chamber headspace volume, volume of the two 25 m long Teflon tubes and of the CO2 and 

H2O gas traps. 

Cumulative N2O emissions were calculated as described by Tilsner et al. (2003a), by 

multiplying the N2O emission rates of two consecutive measurement days with the 

corresponding time period. These time weighted N2O flux means were then summed up over 

the measurement period. 

 

2.5 Measurement of soil moisture and soil temperature 

 

To measure volumetric soil water content [%] and soil temperature [°C] ECH2O loggers 

(EM50 Data logger, Decagon Devices, WA, USA) were used. They logged soil moisture and 

temperature values every 30 minutes from May 13 through August 31, 2010 at the N200 

treatment of the radish field and from May 16 through September 14, 2011 at the soy bean 

field. 

At the N200 treatment of the radish field one sensor was installed 5 cm deep in the furrow 

and a second sensor was installed 5 cm deep in one of the holes of the PE mulch.  

At the soy bean field one sensor was installed 5 cm deep in a furrow, one more sensor was 

installed 5 cm deep in one of the plant holes of a ridge that was covered with PE mulch and a 

third sensor was installed next to a plant of a ridge which was not covered with PE mulch. 

 

2.6 Statistical methods 

 

N2O flux curves were obtained by calculating mean N2O flux values ± 1SE for every day of 

measurement and linear interpolation between two consecutive measurement days. The 

mean flux was based on n=3 for furrows, PE mulches and plant holes at each amount of 

fertilizer applied. Statistics were conducted with R 2.12.0. Via t-Test (normally distributed 

data) or Mann-Whitney U-test (not normally distributed data) it was tested whether the 

measured N2O fluxes are significantly different from zero and whether the soil moisture and 

temperature conditions underneath the PE mulch were different from those in the furrow. 

After the t-Test had not shown a difference between the soil temperatures of PE-mulched 
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ridges and furrows, a paired t-Test was conducted. To determine whether furrow-, PE mulch- 

and plant hole N2O fluxes of the radish field’s N50, N200, N250 and N350 plots and also the 

N2O fluxes of the soy bean field’s PE-mulched and non-PE-mulched ridges, as well as soil 

moisture or soil temperature of the soy bean field’s furrows, PE- and non-PE-mulched ridges 

were statistically different from each other, t-Tests, ANOVAs or the non-parametric Kruskal-

Wallis-tests were calculated. Pearson or Spearman analyses were performed to identify 

potential correlations between N2O fluxes and volumetric soil water content and soil 

temperature and between the cumulative N2O emissions and the amount of N fertilizer 

applied. 

 

3. Results 

 

3.1 N2O fluxes and cumulative N2O emissions at the radish field in 2010 

 

With increasing amount of fertilizer applied there appeared to be a higher N2O emission rate 

of the plant hole-spots at all the plots` ridges. The N2O-emissions of the furrow showed a 

more complicated pattern: for those plots which had received a lower amount of N fertilizer 

(N50 and N200), the N2O emissions of the furrows exceeded the emissions of the plant 

holes. For the N250 and N350 plots the opposite N2O emission pattern could be observed. 

The N2O fluxes of ridges with PE mulch were almost zero for all of the treatments during the 

time of the experiment, except for June 23, when they reached their maximum (N50: 3.15 

µmol m-2 h-1; N200: 1.85 µmol m-2 h-1; N250: 1.21 µmol m-2 h-1; N350: 2.84 µmol m-2 h-1). On 

that day, the plant holes and furrows also showed the highest N2O fluxes. 

Before June 16 and after July 24 only very tiny to zero N2O fluxes could be measured.  

There were significantly different N2O fluxes (*P<0.05) between PE mulch and plant holes in 

PE mulch as well as furrows for almost all of the plots (see Table 1 in the appendix for all 

statistical differences). No differences were found among ridges, furrows and PE mulches of 

the differently fertilized plots. 

The measurement period’s cumulative N2O emissions of the furrows and plant holes in PE 

mulch range between 2 to 6 mmol m-2 (equals 880.3 to 2640.8 g N2O ha-1 or 5.5 to 16.4 g 

N2O ha-1 d-1), whereas the highest cumulative N2O emissions degassed from the furrows of 

the N50 plots (6 mmol m-2, equals 2640.8 g N2O ha-1 or 16.4 g N2O ha-1 d-1). Among all of the 

different amounts of fertilizer applied the N2O fluxes of the PE mulches integrated over time 

amounted to comparably low values of 0.2 to -0.8 mmol m-2 (equals 88.0 to -352.1 g N2O ha-1 

or 0.5 to -2.2 g N2O ha-1 d-1). 
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Figure 3: N2O flux [µmol m-2 h-1] and cumulative N2O emission [mmol m-2] of the radish field site from 

May 13 until October 22, 2010. The first dotted line indicates the day when the N fertilizer was applied 

(June 1) and the second dotted line indicates the day when the radish was harvested, the PE mulch 

was removed and the ridge and furrow system was dissolved. Error bars in N2O flux- and cumulative 

N2O emission- graphs represent the standard error of the mean (n=3). 

 

 



 

3.2 Soil moisture and temperature of the PE

 

There appeared to be higher temperature 

furrows; however, the mean soil temperature during the time of the experiment was 24.80°C 

(±2.14) in PE-mulched ridges and 24.30°C (±1.58) and furrows (Fig . 4) which makes a very 

significant difference of 0.5°C (**P = 0.005). In contrast, the mean volumetri c soil water 

content in ridges and furrows differed with a mean value of 19.80% (ranging from 10% to 

32%) in the furrows and 15.62% (ranging from 5% to 15%) in the ridges underneath the PE 

mulch, which makes a highly significant difference (***P < 0.001) of 4.18%.

 

Figure 4: Mean daily volumetric water content [%] and mean daily soil temperature [°C] from June 14 

until August 31 of the N200 plot at the radish field site in 2010.
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the non-PE-mulched ridges amounted to 3 mmol m-2 (equals 1320.4 g N2O ha-1 or 10.9 g 

N2O ha-1 d-1), which is 50% more than the emission from the PE-mulched ridges. The highest 

cumulative N2O emissions were found for the furrows (3.9 mmol m-2 equals 1716.5 g N2O ha-

1 or 14.2 g N2O ha-1 d-1). 

 

 

Figure 5: N2O flux [µmol m-2 h-1] and cumulative N2O emission [mmol m-2] of the soy bean field site 

from May 15 until September 14, 2011. Error bars represent the standard error of the mean (n=3). 
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Table 2: N2O flux [µmol m-2 h-1] and Standard Error (n=3) as well as cumulative N2O emission [mmol 

m-2] and Standard Error (n=3) of the soy bean field site’s furrows from May 15 through September 14, 

2011. Those N2O fluxes are a mixture of N2O fluxes from furrows which were located next to PE-

mulched and such which were located next to non-PE-mulched ridges so that they cannot be included 

into Figure 5. 

Date 

Measured 

N2O flux  
[µmol m

-2
 h

-1
] 

±1SE   

Cumulative 

N2O emission 

[mmol m
-2

] 

±1SE 

16.05.2011 -0.29 0.18       

17.05.2011 0.40 0.56   0.00 0.00 

22.05.2011 7.83 4.62   0.50 0.09 

27.05.2011 0.23 0.41   0.98 0.19 

30.05.2011 1.24 0.69   1.03 0.20 

06.06.2011 3.03 2.12   1.34 0.32 

08.06.2011 0.42 0.15   1.42 0.36 

10.06.2011 0.95 0.09   1.46 0.39 

13.06.2011 0.55 0.18   1.51 0.42 

15.06.2011 1.02 0.08   1.55 0.43 

21.06.2011 0.97 0.54   1.69 0.45 

28.06.2011 1.95 1.58   1.93 0.50 

02.07.2011 1.35 1.37   2.09 0.53 

06.07.2011 3.30 2.53   2.31 0.54 

10.07.2011 0.52 0.18   2.50 0.54 

15.07.2011 0.50 0.43   2.56 0.56 

21.07.2011 0.05 0.05   2.60 0.57 

25.07.2011 -0.09 0.10   2.60 0.58 

29.07.2011 0.14 0.30   2.60 0.59 

02.08.2011 0.38 0.30   2.63 0.61 

10.08.2011 0.53 0.49   2.71 0.63 

15.08.2011 2.83 2.19   2.91 0.66 

19.08.2011 -0.05 0.47   3.05 0.67 

23.08.2011 2.16 1.09   3.15 0.69 

30.08.2011 2.19 1.91   3.51 0.84 

13.09.2011 0.15 0.36   3.91 1.09 

 

 

3.4 Soil moisture and temperature of the PE mulched ridges, the non-PE-mulched ridges and 

furrows at the soy bean field 

 

The lowest mean soil temperature (21.47°C ±2.44) as  well as the smallest temperature 

fluctuations occurred in the furrows (Fig. 6), whose soil temperatures were only by trend (P = 

0.103) different from mean daily soil temperatures in the PE mulched and non-PE-mulched 

ridges. The temperature fluctuations and averaged mean daily soil temperature were very 

similar in PE-mulched (21.96°C ±2.57) and non-PE-mu lched ridges (22.00°C ±2.56). 

Volumetric soil water content was very similar and statistically not differentiable in the furrows 

(30.22 ±0.11 %) and non-PE-mulched ridges (28.36 ±0.08 %), whereas the ridges which 



 

were covered with the PE film were much drier and statistically different (19.03 ±4.98 %), 

which is reflected in a highly significant statistical re

 

Figure 6: Mean daily volumetric water content [%] and mean daily soil temperature [°C] from May 15 

until September 14 at the soy bean field site in 2011.

3.5 Correlations between N2O fluxes and soil moisture, soil 

fertilizer applied 

 

Neither soil moisture nor soil temperature affected the N

field site significantly (R2<0.1, 

14 apparently triggered the N2

more, smaller, N2O peak at the radish field site in 2010.

No correlation could be found between applied N fertilizer amounts and sum of N

from the radish field. 

 

4. Discussion 

 

4.1 General comments on crop yields of the study region

 

The average yield of radish in the study area in 2010 was 33.1 t/ha and in 2011, 32.5 t/ha; 

average yield of soy beans was 1.85 t/ha in 2010 and 1.56 t/ha in 2011 (Yanggu County 

office statistic 2010, 2011, unpublished data sheets). For radish the average 

in the literature varies between 60 and 160 t/ha and for soy beans the average yields are 0.6

4.9 t/ha (Batti et al., 1983; Morgan and Midmore, 2003; Khairul Alam et al., 2010; Lindner, 

2012, personal communication). Therefore, the yields 

on average whereas radish yields were below average. For other crops of the study area 

which also experience the PE mulching practice such as potato and cabbage, the yields are 
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were covered with the PE film were much drier and statistically different (19.03 ±4.98 %), 

which is reflected in a highly significant statistical result of P < 0.001, H = 86.684.

Figure 6: Mean daily volumetric water content [%] and mean daily soil temperature [°C] from May 15 

until September 14 at the soy bean field site in 2011. 
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The average yield of radish in the study area in 2010 was 33.1 t/ha and in 2011, 32.5 t/ha; 

average yield of soy beans was 1.85 t/ha in 2010 and 1.56 t/ha in 2011 (Yanggu County 

office statistic 2010, 2011, unpublished data sheets). For radish the average yield data given 

in the literature varies between 60 and 160 t/ha and for soy beans the average yields are 0.6-

4.9 t/ha (Batti et al., 1983; Morgan and Midmore, 2003; Khairul Alam et al., 2010; Lindner, 

of soy beans of the study region were 

on average whereas radish yields were below average. For other crops of the study area 

which also experience the PE mulching practice such as potato and cabbage, the yields are 
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well on average in comparison to other areas’ yields (Horton et al., 1988; Hassal and 

Associates, 2003; Rahemi et al., 2005; Bohl and Johnson, 2010).  

Also, it is known that the PE mulch - through performing as a greenhouse - in general has a 

positive effect on the plant productivity, which is the main reason why it is widely used 

worldwide. The purpose of our study was not to reconfirm it but we took the already well-

investigated positive PE mulching effect on crop yields (Kyrikou and Briassoulis, 2007) as 

given and furthermore tried to broaden our knowledge on side effects of the PE mulch, such 

as its impact on N2O as its impact on N2O emissions.  

 

4.2 Discussion of the results 

 

An unexpected result was that the soil moisture of the PE-mulched ridges of the radish field 

as well as those of the soy bean field was much lower than we had expected and as other 

publications predict (Kyrikou and Briassoulis, 2007; Nishimura et al. 2012). Nishimura et al. 

(2012) observed that during the summer the soil moisture under the PE mulch at their 

experimental site ranged from 26% to 33%, which is in contrast to the considerably lower soil 

moisture values underneath the PE mulch that we found at our study sites: during the early 

summer drought period in 2010 it ranged from 9% to 22% at the radish field site and during 

the early summer drought of the year 2011 it ranged from 12% to 20%. The reason for those 

low soil moistures could be the soil conditions of the study area. According to Kettering et al. 

(2013), the soils of the study region were very sandy, as were the soils of our experimental 

sites. Such soils show a fast infiltration and seepage of water; thus due to quick seeping of 

water it appears plausible to us that the PE mulch at our experimental sites could not keep 

the soil moisture high and the soils of our experimental sites were dryer as in the previous 

studies. 

This unexpected finding may be the main reason why our initial hypothesis could not be 

corroborated. We were assuming that plastic mulch films covering agricultural fields would 

lead to increased N2O emissions due to higher soil temperatures and moisture but the two 

experiments which we conducted were not in line with this hypothesis.  

The 2010 experiment at the radish field site provided an indication that ridges which are 

being covered with PE mulch films show very tiny N2O emissions from the PE mulch surface 

whereas the adjacent plant hole spots and furrows showed quite high emissions. This raised 

the question whether less N2O production occurred underneath the PE mulch film or there 

was horizontal diffusion of N2O from the ridge soil covered with the mulch film to the adjacent 

furrows and plant holes, so that most of the N2O produced underneath the PE mulch would 

have degassed from the furrows and plant hole spots. Recently, Nishimura et al. (2012) 

published that the N2O flux by permeation through the mulch film was much higher than that 
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by horizontal diffusion to the furrow, that N2O permeates through PE mulch film and that its 

permeability increased with increasing ambient temperature in a way that extremely huge 

amounts of N2O degassed through the PE mulch film from the field during midday 

temperatures in the summer. Ou et al. (2007) also found that another gas the fumigant 

methyl bromide injected to the soil covered with a PE film was emitted to the atmosphere by 

permeation through the film to a great extend.  

Considering that the PE mulch is permeable for gas at high temperatures and the high mean 

daily soil temperatures of up to 30°C at our site, we conclude that the amount of N2O 

degassing from the PE mulch surface to a great extend must have been in accordance with 

the amount of N2O that had been produced underneath.  

 

To us it makes sense that low soil moistures as well as high soil temperatures (the conditions 

underneath the PE mulch at our study sites) lead to a decreased N2O production even 

though there are recent previous studies (Arriaga et al., 2011; Nishimura et al., 2012), that 

suggest otherwise, although at higher soil moistures. Assuming that N2O is mainly produced 

during microbial denitrification (Tilsner et al., 2003b) and the recently attention attracting 

process of nitrifier denitrification (Wrage et al., 2001; Kool et al., 2011), processes which are 

known to occur at conditions of low oxygen - however the first process mainly takes place at 

low soil moisture, whereas the latter process takes place when moisture conditions are sub-

optimal for denitrification (Linn and Doran, 1984; Kool et al., 2011) - there would be less 

production of N2O underneath the PE cover.  

Interestingly, we neither found significant correlations between N2O fluxes and soil moisture 

or temperature nor between N2O fluxes and amount of fertilizer applied, which would have 

been an expected result since soil water content, soil temperature and fertilization rates have 

been identified as main drivers of N2O fluxes (Dobbie et al., 1999; Ruser et al., 2006; Kool et 

al., 2011; Nishimura et al., 2012). A previous study which had been conducted in nearby 

forest sites had shown that there were significant correlations between N2O fluxes and soil 

moisture and temperature (Berger et al., 2013). 

However, despite not finding a correlation between moisture and N2O fluxes, it was obvious 

that the rain event from June 12 to June 14, 2010 had triggered the N2O fluxes of the radish 

field. This is consistent with previous studies reporting on greatest N2O fluxes after the first of 

summer rains (Davidson et al., 1993; Scholes et al., 1997; Barton et al., 2008).  

Because the 2010 experiment left so many questions unanswered, we conducted the soy 

bean field experiment in the following year in order to directly compare whether covered or 

uncovered ridges of a non-fertilized field would show higher N2O emissions. The interesting 

result was that the amount of N2O cumulatively emitted from plant holes of ridges which were 

covered with the PE mulch (2 mmol m-2) was only 68% of the emission of soils around soy 
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bean plants of non-PE-mulched ridges (3 mmol m-2) and it was only 50% of the N2O emitted 

from the furrows (3.9 mmol m-2) even though hardly any statistical significant differences 

could be found between N2O fluxes at both PE-mulch-covered and –non-covered ridges on 

the single measurement days. The difference between soil moisture of the PE-mulched 

ridges and the non-PE-mulched ridges and furrows was even more pronounced than the 

differences between furrows and PE-mulched ridges in 2010.  

 

Thus, our results suggest that PE mulch may reduce N2O emissions from agricultural fields 

on sandy soils in temperate areas with summer monsoon like in Korea because the PE 

mulch keeps the covered soils between the plant holes, where no water can infiltrate into the 

ridges, at lower soil moisture and higher soil temperatures.  

Only taking into account the radish field data, one may argue that there might have occurred 

a strong N2O diffusion to, and stack effect through, the adjacent plant holes and furrows. But 

since a direct comparison of N2O emissions of plant holes of PE-mulched ridges and plant 

spots of non-mulched ridges in the following year showed that mulched ridges certainly do 

not have higher emissions (if not even lower ones), we believe that PE mulches and the way 

they are used in Korea (application of fertilizer and PE mulching long before the most of the 

rainfall occurs, so that most of the fertilizer can get assimilated by the crops) can reduce N2O 

emissions from agricultural soils.  

To finally answer the title question: “Plastic mulching in Agriculture – friend or foe of N2O 

emissions?”, it would be necessary to take comparative N2O flux measurements of furrows 

located next to PE-mulched ridges would behave in comparison to furrows located next to 

non-PE-mulched ridges, which has not been done so far.  

Considering that the PE mulching is a very common method in agriculture in East Asian 

countries such as Korea, Japan and China, and that its use is increasing in Africa, in the 

Middle East and also in Germany by 15-20% annually (Kwon et al., 2006; Kyrikou and 

Briassoulis, 2007; FBAW information, 2007; unpublished data sheet), it is very important to 

acquire detailed knowledge on the PE mulch’s effects on the environment. 

 

Our results support the general finding that N2O fluxes from non-fertilized legume cropping 

systems, which have N fixation as an additional N source, are not necessarily greater than 

fluxes from N fertilized non-legume crops under similar climatic and management regimes 

(Helgason et al., 2005; Rochette and Janzen, 2005; Parkin and Kaspar, 2006; Stehfest and 

Bouwman, 2006; Barton et al., 2008). The N2O emitted from the non-fertilized soy bean field 

site in 2011 amounted to 5.90 mmol m-2 (2.06 mmol m-2 for the PE-mulched ridges and 3.90 

mmol m-2 for the furrow), which is very similar to the amount of N2O that had degassed from 
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the N200 plots at the radish field site in 2010, which had received an intermediate amount of 

nitrogen fertilizer.  

 

Conclusions 

 

Comparative N2O flux measurements were conducted at a radish field in 2010 and at a soy 

bean field in 2011 in order to elucidate if PE mulching of agricultural fields affected N2O 

emissions. Whereas the PE-mulched rows of the radish field showed rather low N2O 

emissions, the adjacent furrows and plant holes showed higher emissions among different 

amounts of nitrogen fertilizer applied, we considered the extremely low soil moisture at our 

study site to be responsible for the comparatively low N2O emissions which could neither be 

correlated with soil temperature and moisture, nor amount of fertilizer applied. The 

experiment at the soy bean field in 2011 brought the interesting result that PE-mulching 

might decrease N2O emissions from agricultural soils if applied on sandy soils located in a 

temperate climate including an early summer drought and monsoon rains. One additional 

result was that the N2O emitted by a non-fertilized PE-mulched legume field did not exceed 

the N2O emitted by a non-legume field which had received an intermediate amount of 

nitrogen fertilizer, which supports earlier findings which state that cultivation of nitrogen fixing 

plants does not cause N2O emissions above cultivation of non-nitrogen fixing plants and 

common nitrogen fertilizer use. 
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Appendix 

Table 1: Statistically significant differences between N2O fluxes of PE mulches, plant holes and 

furrows of the N50, N200, N250 and N350 plots of those measurement days when such differences 

occurred. * indicates P < 0.05, ** indicates P < 0.01 and *** indicates P < 0.001. 

 

N50 16.06. 2010   23.06. 2010   29.06. 2010   06.07. 2010   24.07. 2010   

 

  PE Plant     PE Plant     PE Plant     PE Plant     PE Plant   

 

  mulch hole   mulch hole   mulch hole   mulch hole   mulch hole 

 

Plant * P =   Plant     Plant P =   Plant P =   Plant     

 

hole 0.036   hole     hole 0.138   hole 0.173   hole     

 

Fur-     Fur-     Fur- * P = P = Fur- * P = P = Fur-     

 

row     row     row 0.044 0.158 row 0.017 0.093 row     

                N200 12.06. 2010   19.06. 2010   22.06. 2010   03.07. 2010   07.07. 2010   

 

  PE Plant     PE Plant     PE Plant     PE Plant     PE Plant   

 

  mulch hole   mulch hole   mulch hole   mulch hole   mulch hole 

 

Plant     Plant P =   Plant P =   Plant P =   Plant **P=   

 

hole     hole 0.063   hole 0.121   hole 0.131   hole 0.003   

 

Fur- P =   Fur- * P = * P = Fur-   * P = Fur-     Fur- P = P = 

 

row 0.163   row 0.029 0.029 row   0.036 row     row 0.151 0.074 

 

12.07. 2010   21.07. 2010   

         

 

  PE Plant     PE Plant   

         

 

  mulch hole   mulch hole 

         

 

Plant * P =   Plant     

         

 

hole 0.022   hole     

         

 

Fur- * P =   Fur- ***P< **P= 

         

 

row 0.018   row 0.001 0.006 

         
                N250 16.06. 2010   23.06. 2010   29.06. 2010   06.07. 2010   24.07. 2010   

 

  PE Plant     PE Plant     PE Plant     PE Plant     PE Plant   

 

  mulch hole   mulch hole   mulch hole   mulch hole   mulch hole 

 

Plant     Plant P =   Plant * P =   Plant P =   Plant     

 

hole     hole 0.057   hole 0.036   hole 0.056   hole     

 

Fur-     Fur- * P = * P = Fur- P = P = Fur-     Fur-     

 

row     row 0.029 0.011 row 0.109 0.167 row     row     

N350 16.06. 2010   23.06. 2010   29.06. 2010   06.07. 2010   24.07. 2010   

 

  PE Plant     PE Plant     PE Plant     PE Plant     PE Plant   

 

  mulch hole   mulch hole   mulch hole   mulch hole   mulch hole 

 

Plant * P =   Plant * P =   Plant **P<    Plant     Plant ***P<   

 

hole 0.021   hole 0.026   hole 0.005   hole     hole 0.001   

 

Fur-     Fur-   P = Fur- * P = ***P< Fur-     Fur-     

 

row     row   0.064 row 0.015 0.001 row     row     

 

Given are those p-values which indicate a statistically significant difference as well as P-values which 

indicate a trend (P =/< 0.1). There were more measurement days but the table only provides the 

statistical results of such measurement days on which statistical differences between plant holes, PE-

mulch and furrows could be found. 
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Abstract 

 

The Landscape-DNDC-model was used to estimate N2O emissions, nitrate concentrations 

and leaching from 50, 150, 250 and 350 kg N ha-1 fertilizer treatments of a radish field study 

site in Korea. Half of the daily precipitation and the daily average maximum temperature 

were assumed to be the climatic conditions in rows, which were covered with impervious 

black polytheylene (PE) mulch during the growing period of radish, in order to consider the 

effects of the plastic mulch on soil biogeochemistry in rows and differentiateN2O emissions, 

nitrate concentrations and leaching in interrows which were not covered with the plastic 

mulch. Simulation results showed that the model was capable of predicting the dynamics of 

N2O emissions, nitrate concentrations and leaching in rows and interrows. The simulated 

N2O emissions in rows were increased with increasing amount of N fertilizer applied but 

underestimated during the monsoon season. The model predicted more N2O emissions in 

rows than in interrows. About 0.94 and 0.97% of applied N fertilizer were lost by N2O 

emissions from rows and interrows, respectively. The simulation results of nitrate 
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concentrations at 45 cm depth in rows ranged from 137.1 (50 kg N ha-1) to 149.6 mg N l-1 

(350 kg N ha-1). Lower nitrate concentrations were simulated for 45 cm depth in interrows as 

compared with rows, ranging from 91.1 (50 kg N ha-1) to 124.7 mg N l-1 (350 kg N ha-1). 

These results were in good agreement with measured nitrate concentrations at 45 cm depth 

in rows and interrows. ME was positive (ME > O) for all N treatments and r2 was also high 

(eg., 0.89, 0.89 and 0.52 for 50, 150 and 250 kg N ha-1) at 45 cm depth of interrows. Nitrate 

leaching simulated by the model was increased following the rainfall events and applied N 

fertilizer rates. In general, interrows which were not covered with the plastic mulch show high 

nitrate leaching rates as compared with rows under the plastic mulch. The model simulated 

about 13.2% more nitrate leaching in interrows than in rows, ranging from 403.4 to 452.3 kg 

N ha-1 yr-1. About 72.2% of applied N loss by nitrate leaching from interrows and about 62.5% 

N loss from rows were predicted by the model. 

 

Keywords: Landscape-DNDC, N fertilizer, Plastic mulch, N2O, Nitrate leaching 
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Introduction 

Agriculture is the major anthropogenic source of nitrous oxide (N2O) (McCraw and Motes 

1991; Smith and Conen 2004). Of global anthropogenic greenhouse gas (GHG) emissions, 

agriculture accounts for about 60% of N2O (IPCC 2007b). N2O emissions are directly 

connected to the amounts of nitrogen application (Smith and Conen 2004) and have been 

increased by 11% since 1990, primarily due to the increase in fertilizer use and the 

aggregate growth of agriculture (IPCC 2007a). In Korea, agricultural N2O is estimated about 

12 x 103 tons, which accounts for about 24% of the total N2O emissions. Agricultural soils are 

the major source of N2O emissions, contributing about 58.3% to the total agricultural N2O 

emissions (KEEI 2009). N2O emissions are influenced by environmental factors such as soil 

temperature and water content, radiation, pH, Eh, and substrate concentration gradient, as 

well as management practices such as plastic mulch, tillage, manure and fertilizer application 

and incorporation of crop residues (LI 2007; Smith et al. 2002).  

For many years the use of impervious black and clear plastic (polyethylene) films as a mulch 

has been widely utilized for various crops. In the traditional plastic mulching system the crop 

is sown under the plastic film which is held tightly across the soil surface by covering the 

edges. The crop emerges through perforations in the plastic mulch, which are usually made 

at the time of seeding. The plastic mulch is discarded after harvest and new a mulch is laid in 

following season (Fisher 1995). In arid and semi-arid regions, crop growth is limited by water. 

Amount of available water in soil can be increased by mulching (Wang et al. 2009). The 

plastic mulch is effective in reducing 3 to 11% crop water use and improves its efficiency by 

25% (Chakraborty et al. 2010). The plastic mulch can also provide other benefits such as 

weed control, reduction in soil compaction and erosion, production of staple food crops 

(Fisher 1995), and an increase in soil temperature (Liakatas et al. 1986; Wan and El-Swaify 

1999). The plastic mulch performs like a glass house by capturing and retaining daytime 

solar radiation and reducing heat loss at night, producing a mini-greenhouse effect (Kwabiah 

2004). Many studies have reported that soil temperature is increased under the plastic 

mulch. The temperature of the black plastic mulch is greater than that of the soil surface 

during the day (Ham and Kluitenberg 1994). The net effect of the mulch is to increase the 

daily mean temperature of the soil by 3°C (Liakatas  et al. 1986) and the maximum 

temperature is increased by 7°C for soil due to the  plastic mulch (Kwabiah 2004). Less 

rainfall can pass through the root zoon under the plastic mulch because the rain that falls 

onto an impervious plastic film covering a planting bed can run into the furrows, immediately 

(Haraguchi et al. 2004). The total amounts of precipitation and surface runoff for two months 

under the full-mulching condition were 112.5 and 50.3 mm, respectively. Neglecting the 

water that is kept on leaves and the plastic film this result suggests that almost a half of the 
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rain that falls into the lysimeter infiltrated into the soil through a hole on a plastic film for 

seeding (Haraguchi et al. 2003).  

The black plastic mulch is the most commonly used for crop cultivation in Korea as well. The 

main purposes of using plastic mulch are weed control and water retention. The row is 

covered with the black plastic mulch before seeding or transplanting and the mulch is 

removed after harvest. The plastic mulch is one of the typical agricultural practices in Korea, 

however, the model is incapable of simulating the mulching effect, yet. Therefore, the daily 

mean maximum temperature as the daily mean temperature and a half of the precipitation as 

the total precipitation were hypothesized for the row condition. In contrast, the real climate 

information was used for the interrow condition. 

 

Objectives 

The process-based models can be used to predict the impact of various agricultural 

management practices on net greenhouse gas (GHG) emissions by analyzing the 

interactions between management practices, primary drivers such as climate, soil properties, 

crop types, etc., and biogeochemical reactions (Smith et al. 2010). So far the process-based 

model agricultural-DNDC (Denitrification and Decomposition) (Giltrap et al. 2010; Li et al. 

1992a; Smith et al. 2002) and PnET-N-DNDC (Kesik et al. 2005; Kiese et al. 2011; Li et al. 

2000) have been tested on the various types of ecosystems since its development. The 

Landscape-DNDC model, which is combined the Agricultural-DNDC with the Forest-DNDC, 

has been developed at Karlsruhe Institute of Technology (KIT), IMK-IFU in order to simulate 

the C and N turnover, GHG emissions, nitrate leaching and plant growth for arable, forest 

and grassland ecosystems on site and regional scales (Haas et al. 2012). However, little or 

no attention has been given to apply the DNDC model for arable or forest ecosystems of 

Korea. In this study, we applied the Landscape-DNDC to test the effects of different rates of 

N fertilizer on N2O emissions, nitrate concentrations and leaching and plant growth for arable 

fields in Korea.  

 

Materials and methods 

 

Site description   

 

The model was tested with data from summer radish fields (38.3°N, 128.14°E, 420 m a.s.l) in 

Haean-myun Catchment, located in the northeast of Yanggu County, Gangwon Province, 

South Korea. The annual average air temperature is 8.5°C and the annual precipitation is 
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approximately 1,500 mm (Fig. 1). More than half of the annual precipitation occurs during the 

monsoon season. 
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Fig. 1 Daily precipitation and daily average temperature at the study site. The data was collected from 

the automatic weather station on site in 2010. 

 

The soil is loamy sand at 0 - 40 cm depth and sandy loam from 40 - 60 cm (Kettering et al. 

Submitted to Nutrient Cycling in Agroecosystems 2012) and classified as Anthrosols (FAO 

2006) with 80.7% sand; 16.3% silt; 3.0% clay; pH 5.08; bulk density 1.64 g cm-3. The detailed 

information for soil characteristics of the study site is given in Table 1. 

Table 1  Soil properties for 50, 150, 250 and 350 kg N ha-1 treatments in radish fields at 0-20 cm depth 

soils 

N rates [kg N ha
-1

] OM [g kg
-1

] a pH BD [g cm
-3

] b SOC [%]c N [%] Sand [%] Silt [%] Clay [%] 

Average 29.7 5.08 1.64 0.21 0.038 80.7 16.3 3.0 

50 
   

0.29 0.037 80.3 16.7 3.0 

150 
   

0.20 0.036 79.5 17.4 3.2 

250 
   

0.21 0.041 81.6 15.6 2.8 

350 
   

0.20 0.038 81.6 15.5 2.9 
a Organic Matter 
b Bulk Density  
c Soil Organic Carbon 
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N fertilizer treatments   

186.7 kg N ha-1 fertilizer was manually applied to the total field as basal fertilizer two weeks 

before seeding and the field was plowed with about 15 - 20 cm depth at the time of the 

fertilizer application. To examine the impacts of different rates of N fertilizer on N2O 

emissions, nitrate leaching and crop growth, at first, the field was divided into four different N 

treatment plots with 196 m2 size. Each N treatment plot had 4 replicated subplots (49 m2 size 

in each). 50, 150, 250 and 350 kg N fertilizer were applied to the plots as a top dressing, 

respectively. All treatment plots were tilled again about one week after additional N fertilizer 

application in order to make rows and interrows. The rows were covered with the black 

plastic mulch prior to radish seeding and the mulch had continuously covered the row until 

harvest. About 2 or 3 seeds of summer radish (Raphanus sativus L.) were sown per one 

plant hole at rows in mid-June. Detailed information for crop management is shown in Table 

2. 

 

Table 2  Crop managements and four different rates of N fertilizer application 

Seeding date 

[dd/mm] 

Basal fertilization Tillage Additional fertilization 
Harvest date 

[dd/mm] Date 

[dd/mm] 

N rate  

[kg N ha
-1

] 

Date 

[dd/mm] 

Depth 

[cm] 

Date 

[dd/mm] 

N rate 

[kg N ha
-1

]
 a

 

14/06 31/05 186.7 
31/05 

09/06 
15 - 20 01/06 50/150/250/350 31/08 

a 50, 150, 250 and 350 kg N ha-1 were applied to each N treatment plot with 4 replicates. 
 
 

Field measurements  

The field measurements were conducted in the radish field in 2010. The N2O fluxes were 

measured by the closed chamber in conjunction with a photoacoustic infrared trace gas 

analyzer (Multigas Monitor 1312, INNOVA, Ballerup, Denmark) (Berger et al. Submitted to 

Agriculture, Ecosystems & Environment 2012) from May (before seeding) to October (after 

harvest) in rows and interrows of each N treatment plot with 3 replicates. ECH2O loggers 

(5TE Soil Moisture Sensor, Decagon Devices, USA) connected with data loggers (EM50, 

Decagon Devices, USA) were installed in each N fertilizer treatment row in order to measure 

soil temperature and water content at 15 and 30 cm depth every 30 minutes with 2 

replicates. Suction lysimeters connected with a soil hydrological monitoring network of 

standard tensiometers (Kettering et al. Submitted to Nutrient Cycling in Agroecosystems 

2012) were installed at 15 and 45 cm depth in rows and at 45 cm depth in interrows in 50, 

150, 250 and 350 kg ha-1 N treatment plots to estimate N losses in seepage water. The 

seepage samples were collected once a week. Suction lysimeters are able to be used to 
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determine the nitrate concentrations in seepage water but provide no information on water 

fluxes (Kettering et al. Submitted to Nutrient Cycling in Agroecosystems 2012).  

To examine the biomass production and the nutrient contents at different developmental 

stages, 8 radishes per each plot were randomly selected and harvested manually at 25, 50 

and 75 days after seeding. Fresh weight of radish was measured immediately after harvest 

and dry weight was determined after drying in the oven at 70°C for 48 hours. Daily 

meteorological data such as precipitation, average temperature, wind speed, relative 

humidity and radiation was collected from the automatic weather station on site.  

 

The Landscape-DNDC 

 

Model description 

The Landscape-DNDC is an ecosystem model developed at KIT, IMK-IFU to simulate 

biogeochemical C and N turnover, plant growth, and the water cycle at site and regional 

scales. Two main process-based models the Agricultural-DNDC (Giltrap et al. 2010; Li et al. 

1992a; Smith et al. 2002) and the Forest-DNDC (Kesik et al. 2005; Kiese et al. 2011; Li et al. 

2000) are incorporated and further developed into the Landscape-DNDC. The Landscape-

DNDC is able to simulate ecosystem C and N turnover, changes in soil C and N stocks and 

associated GHG emissions and nutrient leaching for agricultural, grassland and forest 

ecosystems. Daily meteorological data (eg., air temperature, precipitation, radiation, wind 

speed, etc) as well as management data (e.g, seeding and harvest dates, fertilizer rates and 

types, tilling date and depth, etc) as drivers and information on soil and vegetation properties 

(eg., soil texture, pH, crop types, etc) as initialization parameters are used in the model in 

order to calculate daily rates of plant N uptake, litter production, mineralization, nitrification 

and denitrification. In the model, the soil chemistry module explicitly considers nitrification, 

denitrification as well as chemo-denitrification as processes of N2O production and 

consumption in soils (Haas et al. 2012).  

The process-based Landscape-DNDC model is used to simulate N2O emissions, nitrate 

leaching and crop growth with different rates of N fertilizer application to the arable fields. To 

consider the effects of plastic mulch on N2O emissions and nitrate concentrations and 

leaching in rows and examine the differences between rows and interrows, weather 

conditions such as average air temperature and precipitation were modified in this study. As 

the rows were covered with the black plastic mulch from seeding (14th of June) to harvest 

(31st of August), a daily average maximum air temperature and half of the daily precipitation 

were assumed to be row conditions. Except for growing periods of radish, a daily average air 

temperature and a daily precipitation were used for the periods of before seeding and after 
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harvest. The actual weather data taken from the automatic weather station on site was 

applied for interrow conditions without the plastic mulch. 

  

Model evaluation 

The model performances were evaluated by the normalized root mean square prediction 

error (RMSPE), coefficient of determination (r2) and model efficiency (ME). The following 

equations were used to calculate RMSPE, r2 and ME: 
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Where meaX is the measured value and simX is the simulated value. meaX is the average value 

of field measurements and simX is the average value of model simulations. The coefficient of 

determination value of 1 indicates that there is strong correlation between measured and the 

simulated values (Chirinda et al. 2011). ME provides a comparison of the efficiency of the 

chosen model to the efficiency of describing the data as the mean of the measurements. A 

positive value of ME indicates that the simulated values describe the trend in the measured 

data better than the mean measured values (Smith et al. 1997).  

 

Model validation 

 

The Landscape-DNDC model was tested against the field measurement data: (1) soil water 

content and temperature, (2) N fluxes and leaching and (3) crop growth. The crop cultivation 

with row and interrow is the most common agricultural practice at dry fields in Korea. 

However, row and interrow are not implemented into the Landscape-DNDC model yet. 
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Therefore, the weather data was modified in order to examine the effects of row and interrow 

on soil biogeochemistry. The maximum temperature and a half of the precipitation were 

considered for the row conditions, since the row was covered with the black plastic mulch. 

On the other hand, the actual weather data was used for interrow conditions. As the radish 

was not grown in interrows but in rows, the radish cultivation was simulated only for rows. No 

crop was implemented into the simulation of interrows. Except the weather conditions and 

the radish cultivation, the simulations for rows and interrows were conducted under the same 

soil and management conditions. The radish field was simulated by the Landscape-DNDC 

model on a daily basis and simulation results were compared with daily mean measured 

data.  

 

Results 

 

Soil temperature and water content 

The Landscape-DNDC simulated daily mean soil temperature and water content at 15 and 

30 cm depth in rows for all N treatment plots. No measurements were at interrows and the 

model only simulated soil temperature and water content for rows.   

Fig. 2 shows the measured and the simulated soil temperature at 15 and 30 cm depth in 

rows. Soil temperature was simulated with the daily average maximum air temperature in 

order to consider row conditions which were covered with the black plastic mulch during the 

whole growing periods of radish. Except for periods between seeding and harvest, the daily 

average air temperature was used. To examine the ability of model to predict the effects of 

plastic mulch with the maximum air temperature on soil temperature, the model simulated 

soil temperature again with the average air temperature. Simulated soil temperature with the 

maximum and average air temperature were compared with the measurement values, 

respectively. Comparisons between measured soil temperature and simulated soil 

temperature with the maximum and average air temperature indicated that the model 

predicted soil temperature well with the maximum air temperature. The simulation results of 

soil temperature with the maximum air temperature showed higher coefficient of 

determination (r2) and more statistically significant for all N treatments than with the average 

air temperature (Table 3).   
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Table 3  Measured and simulated soil temperature at 15 and 30 cm depth in rows   

  

Mean r
2
 

Measured  
Simualted_max. 

temperaturea 

Simulated_avg. 

temperatureb 

Simualted_max. 

temperature  

Simulated_avg. 

temperature  

Soil temperature [°C] at 15 cm depth  
 

50 kg N ha
-1

 24.01 25.88 21.90 0.28
***

 0.03 

150 kg N ha
-1

 23.69 25.84 21.84 0.14
**

 0.00 

250 kg N ha
-1

 23.91 25.81 21.82 0.05
*
 0.03 

350 kg N ha
-1

 23.96 25.79 21.78 0.32
***

 0.03 

Soil temperature [°C] at 30 cm depth  

50 kg N ha
-1

 23.00 25.00 21.24 0.66
***

 0.38
***

 

150 kg N ha
-1

 22.85 24.95 21.15 0.39
***

 0.18
***

 

250 kg N ha
-1

 23.43 24.90 21.11 0.50
***

 0.20
***

 

350 kg N ha
-1

 23.37 24.86 21.05 0.37
***

 0.15
***

 
a Simulated soil water content with the maximum temperature from seeding to harvest 
b Simulated soil water content with the average temperature 
*P < 0.05, **P < 0.01, ***P < 0.001  
 
 

The model overestimated soil temperature for both 15 and 30 cm depth by 7.5% and 7.1%, 

respectively. As comparisons of simulated mean soil temperature between 15 and 30 cm 

depth, the model predicted soil temperature at 30 cm depth better than at 15 cm depth. The 

root mean square prediction error (RMSPE) was relatively low and r2 (eg., 0.66 and 0.50 for 

50 and 250 kg N ha-1) was high at 30 cm depth for all N treatments as compared with soil 

temperature at 15 cm depth (Table 6).  
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Fig. 2  Measured (circle) and simulated (line) soil temperature at 15 (a) and 30 cm (b) depth in rows 

with four different rates of N fertilizer. Solid lines represent the simulated soil temperature with the 

maximum air temperature which is assumed to be row conditions covered with the black plastic mulch 

during the whole growing periods of radish. Dotted lines indicate the simulated soil temperature with 

the average air temperature. 

 

The model simulated soil water content with a half of the daily precipitation due to less 

rainfall into the hole on the plastic mulch in rows. Except for growing periods of radish when 

rows were covered with the black plastic mulch, the daily precipitation was used for periods 

of before seeding and after harvest. Soil water content was simulated again with the daily 

precipitation. Simulated soil water content with 50% of the daily precipitation and with the 

daily precipitation were compared with the measured values (Fig. 3), respectively, in order to 

evaluate the reliability of the model to simulate soil water content with 50% of the daily 

precipitation. Although the model was not able to simulate soil water content for 250 kg N ha-

1 (r2 = 0.02) well, most simulation results indicated that the model generally predicted soil 
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water content with 50% of the daily precipitation better than with the daily precipitation. 

Simulated soil water content with 50% of the daily precipitation showed the relatively high r2 

as compared with values with the daily precipitation at 30 cm depth (Table 4). 

 

Table 4  Measured and simulated soil temperature at 15 and 30 cm depth in rows   

 

  

Mean r
2
 

Measured  
Simulated_50% 

precipitation
a
 

Simulated_annual 

precipitation
b
 

Simulated_50% 

precipitation 

Simulated_annual 

precipitation 

Soil water content [vol %] at 15 cm depth       

50 kg N ha
-1

  18.61 20.61 21.81 0.22
***

 0.33
***

 

150 kg N ha
-1

 19.30 22.37 24.21 0.32
***

 0.43
***

 

250 kg N ha
-1

 17.92 22.35 24.43 0.02 0.20
***

 

350 kg N ha
-1

 27.73 29.21 27.03 0.36
***

 0.36
***

 

Soil water content [vol %] at 30 cm depth 
  

50 kg N ha
-1

 25.06 25.28 25.56 0.33
***

 0.20
***

 

150 kg N ha
-1

 24.49 25.16 26.35 0.36
***

 0.33
***

 

250 kg N ha
-1

 22.02 25.42 26.49 0.48
***

 0.46
***

 

350 kg N ha
-1

 18.68 24.92 29.05 0.41
***

 0.23
***

 
a Simulated soil temperature with 50% of the annual precipitation from seeding to harvest 
b Simulated soil water content with the annual precipitation 
*P < 0.05, **P < 0.01, ***P < 0.001  
 
 

The model overestimated soil water content at 15 and 30 cm depth over all N treatments by 

12.1 and 10.5%, respectively. Of all simulations for soil water content, a high overestimation 

was observed in 250 kg N ha-1 treatment at 15 cm (19.8%) and in 350 kg N ha-1 treatment at 

30 cm (25.0%). Differences between measured and simulated soil water content at 15 and 

30 cm depth were 2.7 and 2.6 vol. %, respectively.  

As compared the simulation results of soil water content between 15 and 30 cm depth, 

simulated soil water content at 30 cm depth agreed well with measurements. The simulation 

results of 15 cm depth from 50, 150 and 250 kg N ha-1 treatments had the negative ME (ME 

< 0) and r2 was also relatively low as compared with the results of 30 cm depth (Table 6). Of 

all simulations for soil water content at 15 cm depth, 350 kg N ha-1 treatment only showed the 

positive ME (ME > 0) and the high r2 (0.41). 
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Fig. 3  Measured (circle) and simulated (line) soil water content at 15 (a) and 30 cm (b) depth in rows 

with four different rates of N fertilizer. Solid lines represent the simulated soil water content with 50% 

of the precipitation in order to consider row conditions covered with the black plastic mulch during the 

whole growing periods of radish. Dotted lines indicate the simulated soil temperature with the annual 

precipitation. 

 

Radish biomass 

Radish is a cool-season and fast-maturing crop (El-Desuki et al. 2005) that grows well in 

spring and autumn (Sirtautas et al. 2011) in Korea. Korean ecotypes of radish are cold 

sensitive so that radish is cultivated during the autumn when ambient temperatures goes 

down to 5 - 6°C (Curtis 2003). Radish needs a high demand for nutrients even though it is a 

rapidly growing and a short duration crop (Akoumianakis et al. 2011; Hegde 1987). For 

example, radish requires 183 kg N, 120 kg P2O5, 232 kg K2O, 103 kg CaO, and 54 kg MgO 

ha-1 in order to produce 49,280 kg ha-1 (Park et al. 2006).  
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The Landscape-DNDC is capable to simulate above- and belowground biomass separately. 

The aboveground biomass includes leaves and stems and the belowground biomass stands 

for roots. The simulation results of radish biomass for all N treatments were compared with 

the measured biomass at 25, 50 and 75 harvest days. Dry weights of measured and 

simulated radish biomass at the last harvest day (75 days after seeding) are listed in Table 5. 

Both measured and simulated radish biomass were increased as the increase of the N 

fertilizer application rates. This positive relationship between radish biomass and N 

application rates has been reported in several researches. Maximum radish root yield (16.6 

kg) per plant was produced with 200 kg N ha-1 followed by 150 and 100 kg N ha-1 (Pervez et 

al. 2004). Radish root yield was 5.7 and 6.9 t ha-1 at 56 and 168 kg N ha-1, respectively 

(Sanchez et al. 1991). The maximum yield (89.2 t ha-1) of total radish was recorded at 200 kg 

N ha-1 and the minimum yield (60.3 t ha-1) was produced at 50 kg N ha-1 treatments (Jilani et 

al. 2010).      

Simulated belowground biomass was underestimated for 50 kg N ha-1 treatment and slightly 

overestimated for 150, 250 and 350 kg N ha-1 treatments. In contrast, the model 

overestimated the aboveground biomass at 50 and 150 kg N ha-1 treatments and 

underestimated at 250 and 350 kg N ha-1 treatments. Total biomass indicates the sum of 

above- and belowground biomass. The model overestimated the total biomass for 50 (2.0%) 

and 150 (2.0%) kg N ha-1 treatments. In contrast, the total biomass from 250 and 350 kg N 

ha-1 treatments was underestimated by 1.5 and 1.2%, respectively. 

 

Table 5 Measured and simulated radish biomass at the last harvest day (75 day) 

N rates  

[kg N ha
-1

] 

Aboveground [kg DW m
-2

]
 a

 Belowground [kg DW m
-2

]
 b

 Total [kg DW m
-2

]
c
 

Measured Simulated Measured Simulated Measured Simulated 

50  0.1264 0.1443 0.2724 0.2680 0.3988 0.4123 

150 0.1547 0.1614 0.2971 0.2997 0.4518 0.4612 

250 0.1817 0.1735 0.3217 0.3222 0.5034 0.4958 

350 0.2005 0.1894 0.3393 0.3517 0.5399 0.5411 

 
a Leaves and stems were  included. 
 b Roots were included.   
c Sum of above- and belowground biomass   
 
 

Fig. 4 shows that the model overestimated both above- and belowground biomass at first 

harvest day (25 day) and well predicted the last harvest day (75 day). At the second harvest 

day (50 day), the model overestimated the belowground biomass but underestimated the 

aboveground biomass over all N treatments. The growth and the development of simulated 
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radish were faster and they reached the mature stage earlier than the field radish so that the 

model might overestimate both above- and belowground radish biomass at first two harvest 

days. In addition to this, the less available field data might also result in inaccurate 

predictions for radish biomass by the model in this study. 
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Fig. 4  Comparison of measured (circle) and simulated (line) radish biomass in rows with four different 

rates of N fertilizer. Bars represent standard errors of measurements. 

 

N2O emissions from agricultural soils 

N2O emissions depend on application of N fertilizer as well as other factors such as soil 

conditions and managements, precipitation and temperature (Roelandt et al. 2005). In this 

study, the measurements of N2O emissions were conducted at 50, 150, 250 and 350 kg N 

ha-1 treatments in rows and interrows and compared with the simulated N2O emissions. Both 

measured and simulated N2O emissions were increased as the increase of applied N 

fertilizer rates in rows; 350 > 250 > 150 > 50 kg N ha-1 treatments (Fig. 5).  

Similar results were shown in interrows, except for 50 kg N ha-1 treatment. Of all 

measurements of N2O emissions in interrows, the highest N2O emissions were observed in 

50 kg N ha-1 treatment (77.97 ug N m-2 h-1) and followed by 350, 250 and 150 kg N ha-1 

treatments. The model simulated more N2O emissions from 50 kg N ha-1 treatment (56.54 ug 

N m-1 h-1) than for 150 and 250 kg N ha-1 treatments as well. In contrast with measurements, 

the model predicted the highest N2O emissions from 350 kg N ha-1 treatment (73.08 ug N m-2 

h-1). The high N2O emissions from measurements at 50 kg N ha-1 treatment might be caused 

by uncertainties in field measurements. The reason is that about 3.1 times more N2O 

emissions were observed in 50 kg N ha-1 treatment (435.3 ug N m-2 h-1) than in 350 kg N ha-1 
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treatment (147.6 ug N m-2 h-1) in 23th of June. As compared with 150 and 250 kg N ha-1 

treatments, N2O emissions from 50 kg N h-1 treatment were still 2.4 and 2.9 times high, 

respectively. In this sense, these high N2O emissions are also considered to result in the 

least correlation between measured and simulated N2O emissions from 50 kg N ha-1 

treatment. Comparison between measurement and simulation results of N2O emissions from 

50 kg N ha-1 treatment shows the highest RMSE (124.5) and the lowest r2 (0.07) of all N 

treatments in interrows (Table 6). Except for 50 kg N h-1 treatments, N2O emissions from 

interrows were increased as the increase of N application rates. The simulation results 

showed that the model overestimated N2O emissions for all N treatments in rows. N2O 

emissions in interrows were overestimated as well, except for 50 kg N ha-1 treatment. The 

model underestimated N2O emissions from 50 kg N ha-1 treatment by 37.9%. As compared 

with simulated N2O emissions between rows and interrows, the model predicted N2O 

emissions better in rows than in interrows. r2 was low and ME was negative (ME < 0) for 

almost all N treatments in interrows.  

Comparison between measured and simulated N2O emissions in rows and interrows showed 

that measured N2O emissions from rows were generally higher than from interrows, except 

for 50 kg N ha-1 treatment. In case of 50 kg N ha-1 treatment, about 2.8 times more N2O 

emissions were measured in interrows than in rows. In contrast, simulated N2O emissions 

from rows were always higher than from interrows for all N treatments. The second tillage 

and the plastic mulch are considered to induce the first high peak of N2O emissions in the 

measurements and the maximum peak of simulated N2O emissions is associated with N 

fertilizer application. Because added N fertilizer as a top dressing mixed into the soils during 

the second tillage for creating rows and interrows and then the rows were continuously 

covered with the black plastic mulch during the whole growing periods of radish in this study. 

The plastic mulch intercepts sunlight which warms the soil (McCraw and Motes 1991). The 

mulch keeps the soil warm and promotes N mineralization of the applied N fertilizer. The soil 

temperature at 5 cm depth under plastic mulch showed extensive diurnal fluctuation, mostly 

from 25 to 50°C in summer season (Nishimura et al. 2012) and the mean temperature under 

plastic mulch was 4°C higher than under bare soil ( Liakatas et al. 1986). In general, high soil 

temperature, high soil moisture and hence high decomposition rates promote high N2O 

emissions during the summer season (Li et al. 1992b). Since soil covered with plastic mulch 

right after fertilizer application is under high N content and low O2 concentration, a significant 

amount of N2O can be produced and emitted to the atmosphere (Nishimura et al. 2012). 

Simulated N2O emissions were increased following the fertilizer application and then 

gradually decreased. N2O emissions are generally increased with the increase of rainfall flux 

(Li et al. 1992b) and the N2O emission peaks usually coincide with rainfall events (Smith et 

al. 2002). The rain that falls onto the impermeable plastic mulch is able to run into the 
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interrow immediately and the less rainfall can pass through the root zone in the row (McCraw 

and Motes 1991). The simulation results showed that the model was capable of simulating 

N2O emissions during heavy rainfall. As seen in Fig. 5, slightly increased N2O peaks were 

simulated during the monsoon season (June - August). Measured and simulated mean 

values of N2O emissions were presented in Table 6. 
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Fig. 5  Measured (circle) and simulated (line) N2O emissions from four different rates of N fertilizer in 

(a) rows and (b) interrows. Arrows indicate time and date of N fertilizer application. Bars represent 

standard deviations of measurements. 

 

The model simulated N2O emissions in interrows with the same rates of N fertilizer and tilling 

events as rows. The only one difference between rows and interrows was that there was no 

crop in interrows. It means that there is no N loss by the plant uptake in interrows. Therefore, 

most of added N was lost by N2O emissions, nitrate leaching and ammonia volatilization in 

interrows as compared with rows. N2O emissions by both permeation through the plastic 
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mulch and the horizontal diffusion to the adjacent interrow may be important. The significant 

amounts of N2O emissions were observed from the unfertilized interrow between rows, which 

were covered with plastic mulch after fertilization, indicating the horizontal diffusion of N2O 

from rows to the adjacent interrow (Nishimura et al. 2012). In this study, the same rates of N 

fertilizer were added to rows and interrows because rows and interrows were created after 

fertilizer application. Therefore, it was not able to detect the horizontal diffusion of N2O in 

interrows in this study.  

 

Nitrate concentrations and nitrate leaching in agri cultural soils 

Calculation of soil nitrate concentrations in soil layers takes into account the mineralization, 

nitrification and denitrification as well as nitrate leaching. In addition, nitrate deposition from 

the atmosphere is also considered in the first soil layer (Kiese et al. 2011). In this study, 

nitrate concentrations in seepage water were measured at 15 and 45 cm depth of rows 

covered with the black plastic mulch and at 45 cm depth of interrows without the plastic 

mulch for 50, 150, 250 and 350 kg N h-1 treatments and compared with the simulation 

results.  

The mean measured nitrate concentrations were increased as the increase of applied N 

fertilizer rates in both rows and interrows. The simulated nitrate concentrations at 45 cm 

depth of rows and interrows were increased as the increase of N fertilizer rates as well (Fig. 

6). The simulation results of nitrate concentrations at 45 cm depth of rows ranged from 137.1 

(50 kg N ha-1) to 149.6 mg N l-1 (350 kg N ha-1). The less nitrate concentrations were 

simulated for 45 cm depth of interrows as compared with rows, ranged from 91.1 (50 kg N 

ha-1) to 124.7 mg N l-1 (350 kg N ha-1). These results were in good agreement with measured 

nitrate concentrations at 45 cm depth of rows and interrows. The measurements for nitrate 

concentrations at 45 cm depth in rows were more than of interrows. In contrast, simulated 

nitrate concentrations at 15 cm depth in rows decreased as the increase of N fertilizer rates. 

The model simulated the high nitrate concentrations at 50 kg N ha-1 treatment (173.7 mg N l-

1) and the low concentrations at 350 kg N ha-1 treatment (158.1 mg N l-1). 

The model was able to predict nitrate concentrations in rows and interrows. For example, ME 

was positive (ME > O) for all N treatments and r2 was also high (eg., 0.89, 0.89 and 0.52 for 

50, 150 and 250 kg N ha-1) at 45 cm depth of interrows. The simulation results of nitrate 

concentrations in rows were generally in good agreement with measured nitrate 

concentrations as well. In case of rows at 45 cm depth, for instance, r2 was 0.73 for 50 kg N 

ha-1 and 0.53 for 150 kg N ha-1(Table 6). In addition, the model was capable of estimating 

nitrate concentrations following the rainfall events. The high nitrate concentrations were 
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observed in early growing stage of radish during the monsoon season than late growing 

stage over all N treatments.  
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Fig. 6  Comparison of nitrate concentrations between rows and interrows with four different rates of N 

fertilizer; measured (circle) and simulated (line) nitrate concentrations at (a) 15 cm depth in rows, (b) 

45 cm depth in rows and (c) 45 cm depth in interrows. Arrows indicate time and date of N fertilizer 

application. Bars represent standard deviations of measurements. 

 

Nitrate leaching rate was most sensitive to fertilizer application rate and precipitation (Li et al. 

2006). The amount and the time of N fertilizer application have significant impacts on the 

nitrate leaching (Hansen et al. 2000). The high input of N fertilizer and low use efficiency may 

certainly result in the increase of the N loss from leaching (Qiu et al. 2011). In general, nitrate 

leaching rates increased under high nitrogen level and the low N level led to lower nitrate 

leaching (Liu et al. 2003). However, the simulations of nitrate leaching in this study showed 

the different results. Simulated nitrate leaching was decreased as the increase of N fertilizer 

rates in rows and interrows; 350 < 250 < 150 < 50 kg N ha-1 treatments. Simulated annual 

nitrate leaching ranged from 352.6 (350 kg N ha-1) to 382.6 kg N ha-1 yr-1 (50 kg N ha-1) in 

rows. The model simulated about 13.2% more nitrate leaching in interrows than in rows, 

ranged from 403.4 (350 kg N ha-1) to 452.3 ha-1 yr-1 (50 kg N ha-1) in interrows.   
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Table 6 The model performance of Landscape-DNDC for simulation of radish fields with four different 

N treatments 

  Mean Model Performance 

  Measured Simulated ME RMSPE r
2
 

Soil temperature [°C] at 15 cm depth  
     

50 kg N ha
-1

 24.01 25.88 -2.62 2.23 0.28
***

 

150 kg N ha
-1

 23.69 25.84 -3.86 2.55 0.14
**

 

250 kg N ha
-1

 23.91 25.81 -2.38 2.51 0.05
*
 

350 kg N ha
-1

 23.96 25.79 -2.61 2.13 0.32
***

 

Soil temperature [°C] at 30 cm depth  
     

50 kg N ha
-1

 23.00 25.00 -4.91 2.11 0.66
***

 

150 kg N ha
-1

 22.85 24.95 -7.53 2.28 0.39
***

 

250 kg N ha
-1

 23.43 24.90 -2.80 1.67 0.50
***

 

350 kg N ha
-1

 23.37 24.86 -3.69 1.74 0.37
***

 

Soil water content [vol %] at 15 cm depth   
     

50 kg N ha
-1

 18.61 20.61 -0.23 3.58 0.22
***

 

150 kg N ha
-1

 19.30 22.37 -0.74 4.15 0.32
***

 

250 kg N ha
-1

 17.92 22.35 -2.05 6.58 0.02 

350 kg N ha
-1

 27.73 29.21 0.19 3.29 0.36
***

 

Soil water content [vol %] at 30 cm depth 
     

50 kg N ha
-1

 25.06 25.28 0.33 3.28 0.33
***

 

150 kg N ha
-1

 24.49 25.16 0.30 2.80 0.36
***

 

250 kg N ha
-1

 22.02 25.42 -0.38 4.32 0.48
***

 

350 kg N ha
-1

 18.68 24.92 -3.73 6.67 0.41
***

 

N2O emissions [ug N m
-2

 h
-1

] in Rows 
     

50 kg N ha
-1

 27.88 61.53 -0.35 50.83 0.27 

150 kg N ha
-1

 38.91 66.79 0.13 57.41 0.33 

250 kg N ha
-1

 58.83 73.48 0.27 91.13 0.34 

350 kg N ha
-1

 65.82 98.02 0.12 106.7 0.21 

N2O emissions [ug N m
-2

 h
-1

] in Interrows 
     

50 kg N ha
-1

 77.97 56.54 0.04 124.5 0.07 

150 kg N ha
-1

 26.56 55.41 -0.24 55.22 0.11 

250 kg N ha
-1

 27.12 54.49 -0.24 50.08 0.15 

350 kg N ha
-1

 29.89 73.08 -0.99 63.31 0.16 

Nitrate
 
concentrations  [mg N l

-1
] at 15 cm depth in Rows 

    
50 kg N ha

-1
 79.81 173.7 -2.17 134.1 0.35 

150 kg N ha
-1

 92.50 172.1 -0.03 99.10 0.69
*
 

250 kg N ha
-1

 143.2 165.4 0.37 69.03 0.59
*
 

350 kg N ha
-1

 141.6 158.1 -0.14 84.57 0.34 

Nitrate concentrations  [mg N l
-1

] at 45 cm depth in Rows 
    

50 kg N ha
-1

 61.24 137.1 0.69 44.29 0.73
**

 

150 kg N ha
-1

 52.01 125.8 -5.31 145.3 0.53
*
 

250 kg N ha
-1

 107.6 139.9 -7.22 168.2 0.30 

350 kg N ha
-1

 116.9 149.6 -8.94 163.4 0.32 

Nitrate concentrations  [mg N l
-1

] at 45 cm depth in Interrows 
    

50 kg N ha
-1

 53.00 91.05 0.43 44.54 0.89
***
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150 kg N ha
-1

 56.75 96.87 0.38 50.05 0.89
***

 

250 kg N ha
-1

 104.8 118.3 0.41 43.36 0.52
*
 

350 kg N ha
-1

 108.0 124.7 0.07 64.12 0.25 
*P < 0.05, **P < 0.01, ***P < 0.001  
 
 

N fertilizer applied early in the crop growing stage has a high potential of being lost by 

leaching (Errebhi et al. 1998; Romic et al. 2003). The crop was not able to use up all nitrates, 

which usually linked to heavy rainfall, resulted in nitrate leaching (Romic et al. 2003). 

Frequent rainfall may cause rapid movement of nitrate from the rooting zone through the 

intermediate soil layer (Islam et al. 1994). The rainfall for 15 days induced more than 50.0% 

of nitrate leaching during the crop growing stage (Vázquez et al. 2006). The results from 

previous studies are in good agreement with simulated nitrate leaching in this study. Heavy 

rainfall in early growing stage of radish had significant effects on nitrate leaching. About 

34.6% (510 mm) of the total precipitation was observed during the measurements of nitrate 

concentrations (from 30th of June to 23rd of August). The model simulated about 18.5% and 

52.2% of the total nitrate leaching in rows and in interrows during this heavy rainfall, 

respectively. 
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Fig. 7 Simulated nitrate leaching in rows and interrows with four different rates of N fertilizer. Solid 

lines represent nitrate leaching in rows with the black plastic mulch. Dotted lines indicate nitrate 

leaching in interrows without the black plastic mulch. Arrows indicate time and date of N fertilizer 

application. 

 

Several studies have shown that the plastic mulch has a positive effect on the reduction of 

nitrate leaching. Nitrate leaching in the plot with the mulch was less than without the mulch. 

The plastic mulch protects soil from the direct infiltration of precipitation so that nitrate 
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leaching from the root zone is reduced (Islam et al. 1994; McCraw and Motes 1991; Romic et 

al. 2003; Zhang et al. 2012). For example, a nitrate leaching rate of 7% from the total water 

was shown in the plot with mulching and 10% without mulching (Romic et al. 2003). This 

result is in good agreement of simulation results of nitrate leaching in this study. Comparison 

of simulated annual nitrate leaching between rows and interrows showed that the model was 

able to predict nitrate leaching under the plastic mulch (Fig. 8). The model simulated about 

13.2% more nitrate leaching in interrows without the plastic mulch than in rows with the 

plastic mulch. The differences of nitrate leaching between rows and interrows ranged from 

50.78 (350 kg N ha-1) to 69.65 kg N ha-1 yr-1 (50 kg N ha-1). 
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Fig. 8 Comparison of simulated annual nitrate leaching between rows and interrows with four different 

rates of N fertilizer 

 

Table 7 shows the annual N2O emissions and nitrate leaching from 50, 150, 250 and 350 kg 

N ha-1 treatments by the model. The total N2O emissions were high in rows with 350 kg N ha-

1 treatment (3.472 kg N yr-1) and in interrows with 350 kg N ha-1 treatment (3.155 kg N yr-1). 

The high nitrate leaching rates were shown both in rows and interrows with 50 kg N ha-1 

treatments.  

About 0.94% of applied N fertilizer was lost by N2O emissions and more than a half of 

applied N fertilizer was lost by nitrate leaching in rows. As compared with rows and interrows, 

the model predicted more N lost by nitrate leaching in interrows (72.2%) than in rows 

(62.5%). Considering both the ratio of total N2O emissions and nitrate leaching to the total 

biomass, 250 kg N ha-1 was recommended to apply for the radish cultivation. 
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Table 7 Simulated annual N2O emissions and nitrate leaching from 4 different N treatments by the Landscape-DNDC model 

N treatment 

[kg N yr
-1

] 

Direct N2O 

[kg N yr
-1

] 

Indirect N2O
a 

 

[kg N yr
-1

] 

Total N2O
b
 

[kg N yr
-1

] 

Nitrate leaching 

[kg N yr
-1

] 

Total N2O  

/ Total N Input
c
 

Nitrate leaching / 

Total N Input 

Total N2O  

/ Total Biomass
d
 

Nitrate leaching 

 / Total Biomass 

50 
       

 Row 2.435 2.870 5.304 382.6 0.0114 0.8230 0.00129 0.0928 

 Interrow 2.365 3.392 5.757 452.3 0.0124 0.9728 - - 

150 
       

Row 2.682 2.803 5.485 373.8 0.0097 0.6617 0.00119 0.0811 

Interrow 2.441 3.199 5.640 426.5 0.0100 0.7550 - - 

250 
       

Row 2.883 2.757 5.640 367.7 0.0085 0.5529 0.00114 0.0742 

Interrow 2.457 3.150 5.607 420.0 0.0084 0.6317 - - 

350 
       

Row 3.472 2.645 6.117 352.6 0.0080 0.4610 0.00112 0.0644 

Interrow 3.155 3.026 6.181 403.4 0.0081 0.5274 - - 
a N2O emissions from leaching and runoff. Indirect N2O emissions were calculated with the IPCC`s default value, EF5 (0.0075) (IPCC 2006). 
b Sum of direct and indirect N2O emissions  
c Total N input indicates the amount of applied N fertilizer.  
d Sum of above- and belowground radish biomass  
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Discussion 

Agricultural soils are one of the important sources of N2O due to their great contribution to 

the anthropogenic N2O emissions. N fertilizer, soil and crop managements and precipitation 

have a great impact on N2O emissions (Mosier and Freney 2002).  

Radish is the main dry field crop, accounting for about 21% of the total crop production in 

Haean Catchment. In this study, soil temperature and water content, N2O emissions, nitrate 

concentrations and leaching across four different rates of N fertilizer (50, 150, 250 and 350 

kg N ha-1) in radish fields by the Landscape-DNDC model. Simulation results of nitrate 

concentrations at both 15 and 45 cm depth soils showed the relatively precise prediction for 

all N treatments. In contrast, the model overestimated N2O emissions after application of N 

fertilizer and then underestimated during the monsoon season when the high peak of N2O 

emissions were observed in the measurements, which resulted in negative ME (ME < 0) and 

low r2 in interrows. The model simulated N2O emissions in rows better than interrows. ME 

was positive (ME > 0), except for 50 kg N ha-1 treatment, and r2 was also relatively high as 

compared with interrows.  

The plastic mulch restricted the penetration of rainfall into the soil (Nishimura et al. 2012) and 

kept soil warm (McCraw and Motes 1991; Nishimura et al. 2012). In addition, since the row 

covered with plastic mulch right after fertilizer application is under high N content and low O2 

concentration, a significant amount of N2O can be emitted to the atmosphere (Nishimura et 

al. 2012). The most challenging of this study was to consider the impacts of the plastic mulch 

on soil systems. However, the plastic mulch was not implemented into the model yet and 

precipitation and temperature were adjusted to test the effects of the plastic mulch on soil 

systems. Several studies have reported that N2O emissions are high (Nishimura et al. 2012) 

and nitrate leaching rates are low under the plastic mulch compared with under bare soil 

(Haraguchi et al. 2004; Islam et al. 1994; Nishimura et al. 2012; Romic et al. 2003). This 

result was in good agreement with simulation results of N2O emissions and nitrate leaching in 

this study. The model simulated about 8.9% more N2O emissions from rows than from 

interrows, ranged from 0.07 (50 kg N ha-1) to 0.43 kg N ha-1 yr-1 (250 kg N ha-1). Simulated 

nitrate leaching in interrows without the plastic mulch were 13.2% higher than rows with the 

plastic mulch. Differences of nitrate leaching between rows and interrows ranged from 50.78 

(350 kg N ha-1) to 69.65 kg N ha-1 yr-1 (50 kg N ha-1). The model predicted most of the applied 

N lost by nitrate leaching and ammonia volatilization. For example, about 72.2% of the total 

added N was lost by nitrate leaching and 1.9 % by ammonia volatilization in interrows. In 

case of rows, about 62.5% of the total applied N was lost by nitrate leaching and 1.7% by 

ammonia volatilization.  
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Increased N fertilizer rates and continuous rainfalls during the monsoon season may result in 

the high nitrate leaching rate. Significant losses of N from urea and ammonium fertilizers 

result from ammonia volatilization (Sommer et al. 2004). Therefore, applied urea and NH4
+-N 

fertilizers are responsible for the significant amount of ammonia volatilization by the model. 

Several studies have shown that the significant amount of N2O is emitted from the soil 

covered with the plastic mulch (Nishimura et al. 2012) and nitrate leaching from the plastic 

mulch is less than from the bare soil (McCraw and Motes 1991; Romic et al. 2003; Zhang et 

al. 2012). In this respect, simulation results indicated that the model was able to differentiate 

between rows with the plastic mulch and interrows without the mulch. The model predicted 

more N2O emissions but less nitrate leaching in rows for all N treatments as compared with 

simulation results of interrows. Many studies have reported the relationship between fertilizer 

N rates and GHG emissions. 0.39% of applied N fertilizer was emitted as N2O-N from radish 

field (Xiong et al. 2006). In this study, the model simulated realtively high N2O emissions, 

which were induced by N fertilizer. About 0.94% and 0.97% of added N fertilizer were emitted 

as N2O in rows and interrorws, respectively.  

N2O emissions by both permeation through the plastic mulch and the horizontal diffusion to 

the adjacent interrow may be important (Nishimura et al. 2012). The current version of the 

Landscape-DNDC is capable of simulating vertical movements of trace gases in the soil 

layers, however, the model is incapable of capturing the horizontal diffusion. Therefore, 

horizontal diffusion is needed to consider in the further development of the model in order to 

have more precise prediction for N fluxes. 

 

Conclusion 

The Landscape-DNDC was able to predict N2O emissions, nitrate concentrations and 

leaching and biomass production from the radish field with four different N treatments. To 

consider the effects of the black plastic mulch, which has covered the rows during the whole 

growing periods of radish, on soil biogeochemistry, modified weather data such as the 

maximum average air temperature and 50% of the daily precipitation was applied for the 

simulations of rows. The actual weather data taken from the automatic weather station on 

site was used for interrows which were not covered with the plastic mulch. In general, the 

plastic covered row showed more N2O emissions than the interrow under the bare soil 

(Nishimura et al. 2012). This result was in good agreement with simulation results of N2O 

emissions in this study. The model predicted more N2O emissions from rows than from 

interrows. It should be noted that the model simulated significant amounts of N losses by 

nitrate leaching and ammonia volatilization. Therefore, appropriate functions for the plastic 
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mulch are needed to adopt in the further improvement of the Landscape-DNDC in order to 

have more accurate prediction.  

The simulation results showed the possibility of application of the Landscape-DNDC for 

simulating arable ecosystems in Korea. The model can be used to estimate N2O emissions, 

nitrate leaching and plant growth from different types of ecosystems such as grassland and 

forest and simulate on regional scale with GIS data base in the further research. 
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Abstract 

 

Rice is staple food of half of mankind and paddy soils account for the largest anthropogenic 

wetlands on earth. Ample of research is being done to find cultivation methods under which 

the integrative greenhouse effect caused by CH4 and N2O emissions would be mitigated. 

Whereas most of the research focuses on quantifying such emissions, there is a lack of 

studies on the biogeochemistry of paddy soils. In order to deepen our mechanistic 

understanding of N2O and CH4 fluxes in rice paddies, we also determined NO3
- and N2O 

concentrations as well as N2O isotope abundances and presence of O2 along soil profiles of 

paddies which underwent three different water managements during the rice growing 

season(s) in (2010 and) 2011 in Korea. Largest amounts of N2O (2 mmol m-2) and CH4 (14.5 

mol m-2) degassed from the continuously flooded paddy, while paddies with less flooding 

showed 30-60% less CH4 emissions and very low to negative N2O balances. In accordance, 

the global warming potential GWP was lowest for the Intermittent Irrigation paddy and 

highest for the Traditional Irrigation paddy. The N2O emissions could the best be explained 
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(*P<0.05) with the δ15N values and N2O concentrations in 40-50 cm soil depth, implying that 

major N2O production/consumption occurs there. No significant effect of NO3
- on N2O 

production has been found. Our study gives insight into the soil of a rice paddy and reveals 

areas along the soil profile where N2O is being produced. Thereby it contributes to our 

understanding of subsoil processes of paddy soils. 

 

Keywords 

 

Nitrous oxide, 15N, NO3
-, traditional irrigation, intermittent irrigation, Korea 
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Introduction 

 

Nitrous oxide (N2O) is a significant long-living greenhouse gas and it currently contributes 

about 6% to the annual increase in radiative forcing (WMO 2006). Worldwide, sources of 

N2O are dominated by agriculture (Potter et al. 1996, Robertson and Grace 2004), with the 

amount of N fertilizer applied as one of the key drivers of the N2O emission (Shepered et al. 

1991).  

Rice is the staple food of almost 50% of the earth’s population and 20% of the agriculturally 

managed soils are rice planting areas (Frolking et al. 2002). Whereas rice paddies are known 

to be among the most important sources of methane (CH4) (IPCC 1992, Neue and Sass 

1998; Yan et al. 2009), their N2O emissions are considered negligible, in particular under 

conditions of 4-6 months of continuous flooding (Cai et al. 1997; Smith and Patrick 1983; Zou 

et al. 2005a) because such strong anaerobic conditions lead to a further reduction of the 

intermediary denitrification product N2O to N2, so that no degassing of N2O can occur (Granli 

and Bøckman 1994), whereas that irrigation method has the great disadvantage of producing 

great amounts of CH4 (IPCC 1992; Neue and Sass 1998; Sass et al. 1999; Yan et al. 2009). 

However, it is the scientists aim to find irrigation methods which would cause the least 

integrative greenhouse effect by mitigating CH4 and N2O emissions as much as possible by 

ensuring enough rice yields (Chapagain and Yamaji 2010; Miyazato et al. 2010; Sato et al. 

2011; Peng et al. 2011). Controlled irrigation practices which leave rice paddies under non-

water logged conditions 40-80% of the time, are subject of plenty of studies (Cai et al. 1997; 

Wu 1999; Mao 2002; Zou et al. 2007; Quin et al. 2010; Peng et al. 2011). This not only saves 

water but also mitigates CH4 emissions, however at stronger N2O emissions due to changes 

in soil oxygen status, soil redox potential, moisture, temperature etc. (Smith and Patrick 

1983; Cai et al. 2001; Zou et al. 2005b; Johnson-Beebout et al. 2009; Liu et al. 2010; Peng et 

al. 2011). Such controlled irrigation methods are intermittent irrigation, flooding-midseason 

drainage-frequent water logging with intermittent irrigation (FDF), and flooding-midseason 

drainage-reflooding-moist intermittent irrigation but without water logging (FDFM) (Mao 2002; 

Wu 1999; Zou et al. 2007). 

This is a monitoring study comparing not only N2O and CH4 fluxes at the soil/atmosphere 

interface of three rice paddies in South Korea, which were under different water management 

practices, but it even more focuses on a couple of biogeochemical soil factors which are 

known to affect N2O emissions, such as NO3
- and N2O concentration, δ15N-N2O values, 

presence or absence of oxygen along soil profiles in addition to paddy water level and water 

temperature during the vegetation period of 2010 and 2011. The investigated water 

management practices were 1) ‘traditional irrigation’ (TI) with 5 months of flooding, 2) 

‘flooding-midseason drainage-reflooding-moist intermittent irrigation without water logging’ 
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(FDFM) with only 2.5 months of continuous flooding before the drainage and 3) ‘intermittent 

irrigation’ (II) without continuous flooding. Our objectives were to test how the different water 

management practices would affect the biogeochemistry of the rice paddies with respect to 

N2O production and emission. According to the literature, we hypothesized that the most N2O 

would degas from the paddies experiencing less flooding and most CH4 would be emitted 

from the continuously flooded paddy; but furthermore we were expecting to see great 

changes in N2O, NO3
- and O2 concentrations, as well as in δ15N-N2O values along the soil 

profiles in dependence of the water levels especially in the FDFM and II fields. 

 

2. Methods 

 

2.1 Study region and experimental sites 

 

All the field work was conducted in the mountainous Haean Basin between longitude 128° 5’ 

to 128° 11’ E and latitude 38° 13’ to 38° 20’ N in Yanggu County, Gangwon Province in the 

north-eastern part of South Korea. The average annual air temperature at the valley sites is 

10.5°C and the average precipitation is approximate ly 1500mm, with 70% falling during the 

summer monsoon from June to August. Rice paddies cover over 507 ha which is 25% of the 

cropland area in the Haean Basin, which makes rice the most important crop of the region. 

Three rice paddies have been selected as research sites (see Table 1).  

The first one was undergoing flooding-midseason drainage-reflooding-moist intermittent 

irrigation without water logging (FDFM) with only 2.5 months of continuous flooding; the 

second one was exposed to intermittent irrigation (II) and the third one experienced 

traditional irrigation (TI) of 5 months of continuous flooding. 

Measurements have been taken from 11 May 2010 until 23 October, 2010 at the FDFM 

paddy and from 6 May until 15 September 2011 at all three paddies. 

The three paddies had a substrate of sandy-loam texture and the soils were characterized as 

terric cambisols or even as anthrosols (IUSS Working Group WRB 2007) because of an 

artificial long-term addition of sandy soil on the top of the fields.  

The paddies were treated in the following way: the first irrigation occurred between end of 

April and the first days of May. Between 8 and 10 May the paddies were fertilized (see Table 

1) on their moist soils. Between 10 and 15 May the continuous flooding as well as the 

irrigation of the paddies started. The transplanting of the rice seedlings took place between 

25 and 30 May. Herbicides and pesticides were spread by end of June. The harvest was 

between middle and end of October. The owners of the three paddies followed that 

traditional procedure in 2011 as well as the farmer of the FDFM paddy did in 2010. 
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In 2010 the measurements were taken at the edge of the FDFM rice paddy, and potential 

edge effects could not be excluded. To avoid those edge effects, the 2011 measurements 

were taken within the paddies 5-8 m away from the paddies’ edges. Walkways were used to 

access the experimental sites in 2011. These walkways aimed to minimize disturbances of 

the sites from stepping onto the soil leading to soil compaction and pushing of gas bubbles 

from the sub-soil.  

Furthermore, the paddies differed in their soil horizons which were investigated until 60 cm 

soil depth. The FDFM paddy had an Apg-horizon from 0 until 22 cm soil depth, followed by 

an Arp horizon. The II paddy had two different Apg-horizons (the first one reached from 0 to 

11cm and from 11 to 34cm), followed by two different Arp-horizons. The II paddy’s sequence 

of horizons was quite different from the other two paddies’ sequence of horizons: the thin (0-

15cm) Apg-horizon was followed by a thin (15-33cm) Arp-layer which was followed by two 

different B-horizons with Bg1 reaching from 33 to 55cm and Bg2 starting at 55cm, reaching 

deeper. Ap-horizons may be oxic or anoxic, Arp-horizons are characterized by the absence 

of free oxygen since they represent the puddled but compacted layer. B horizons may either 

be aerobic or anaerobic (IUSS working group WRB, 2006). 
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Table 1: Site characteristics of the experimental sites in Haean Basin, South Korea 
 
Site FDFM II TI 

  Flooding-midseason Drainage- Intermittent Irrigation Traditional Irrigation 

  reFlooding-Moist intermittent     

  irrigation without water logging     

Location 128° 8' 33.532" E 128° 7' 53.123" E 128° 7' 51.632" E 

 38° 17' 5.008" N 38° 17' 26.175" N 38° 17', 26.78" N 

  411 m a.sl. 440 m a.sl. 440 m a.sl. 

Fertilizer N-P-K: 21-17-17 N-P-K: 21-17-17 N-P-K: 18-8-9 

  N: 127 kg ha
-1

 N: 109 kg ha
-1

 N: 109 kg ha
-1

 

  

NH4-N: 76 kg ha
-1

; urea-N: 51 kg ha
-

1
 

NH4-N: 65 kg ha
-1

; urea-N: 44 kg ha
-

1
 

NH4-N: 65 kg ha
-1

; urea-N: 44 kg ha
-

1
 

Yield 7118 kg/ha 4638 kg/ha 4356 kg/ha 
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2.2 Measurements of water level and water temperature 

 

From 1 June until 14 September 2011 water level and temperature of the three paddies were 

recorded every 30 minutes using Leveloggers Junior Edge (Model 3001, Solinst Canada). 

From these data mean daily water level and temperature were calculated. 

 

2.3 Measurements of N2O fluxes 

 

To measure N2O exchange at the soil-water/atmosphere interface we took closed chamber 

measurements in conjunction with a photoacoustic infrared gas analyzer (Multigas Monitor 

1312, INNOVA, Ballerup, Denmark) (for further details see Yamulki and Jarvis 1999 and 

Goldberg et al. 2008b) every two days at each experimental site. One day before the 

measurement, we installed 8 polyvinylchloride (PVC) cylinders (20 cm long and 19.5 cm 

wide) 6 cm deep in the soil, so that – depending on the water level of the rice paddy – they 

poked out of the paddy water at least 2 cm. At each rice paddy, four of them contained rice 

plants, the other four were installed on spots without rice plants. For the measurement days 

we connected them to chambers with a tubing connection to the gas analyzer which 

determined the N2O concentration of the chambers headspaces after 0, 8, 16, 24 and 36 

minutes. The reproducibility of one single N2O concentration measurement was ± 32 ppb. 

From a linear increase or decrease of the N2O concentration in the chambers’ headspaces 

the N2O flux was calculated taking into account the total chamber volume of the gas 

analyzing system, including the chamber headspace volume, volume of the two 25 m long 

Teflon tubes and of the CO2 and H2O gas traps. N2O flux measurements were done between 

11 May 2010 and 23 October, 2010 at the FDFM paddy and between 6 May and 15 

September 2011 at all three paddies. 

Cumulative N2O emissions were calculated according to Tilsner et al. (2003) by multiplying 

the N2O emission rates of two consecutive measurement days with the corresponding time 

period. These time weighted N2O flux means were then summed up over the measurement 

period. 

 

2.4 Measurements of CH4 fluxes 

 

CH4 fluxes were measured by closed chamber measurements, too, but instead of a field 

determination of the CH4 concentrations, gas samples were collected in the field and later 

analyzed via FID (flame ionization detector) gas chromatography (gas chromatograph: CP-

3800 Varian, USA) at the laboratory of the School of Civil and Environmental Engineering of 

the Yonsei University in Seoul. 10 ml gas samples were collected out of the chambers which 
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had an inlet with a septum, using 10 ml syringes. The collecting of the samples took place 

every two weeks. 

Cumulative CH4 emissions were calculated after the same method which served for the 

calculation of the cumulative N2O emissions (see 2.3). 

 

2.5 Determination of presence or absence of oxygen  

 

The presence or absence of oxygen in the paddies’ soils was evaluated as described by 

Reiche et al. (2007). PVC cable funnels (9 x 9 x 9 mm) were poured with melted 2% agar 

containing c. 80mM particulate black FeS (FeSO4 • 7 H2O mixed with Na2S • nH2O in a ratio 

of 1 : 1, solved in deionized water). Just after the solidifying 3 FeS probes were placed 

vertically until 60 cm soil depth in each rice paddy, nearby the experimental sites. Once a 

week, FeS probes were removed and the color was determined using the Munsell color chart 

and classified into three groups: A change in color from black to brownish, orange and red 

caused by oxidized FeS to Fe(III)-oxyhydroxide indicated the presence of oxygen. *Black* 

implied “no oxygen”, *dark brown* was interpreted as “small or intermediate amount of 

oxygen” and *red* or *orange* was regarded as “high amount of oxygen”. In general, the 

change in color was very sharp, occurred mostly within a few millimeters and only in few 

cases stretched over a few centimeters. 

 

2.6 Determination of NO3
- concentrations in the paddies’ waters and soils 

 

To enable us to collect soil water of the paddies’ soils we installed suction lysimeters. They 

consisted of a ceramic cup, a PVC tube, and a PE suction tube. The latter was connected to 

samplers (brown glass bottles), which were connected via air tight and high density PVC 

tubing to a self-constructed portable vaccum pump. At each rice paddy we installed 9 suction 

lysimeters in total: 3 of them reaching into 50 cm depth, 3 reaching into 30 cm depth and 3 

more in 10 cm depth. The suction lysimeters were installed by following the 

recommendations of UMS (2008). 

Once a week the brown glass bottles were evacuated. On the following day they had sucked 

up soil water from the suction lysimeters due to the underpressure in the glass bottles. The 

soil water was filled into sampling devices, treated with Spectroquant® quick tests based on 

the photometric method (Nitrate test photometric, DMP 0.10 - 25.0 mg/l NO3-N 0.4 - 110.7 

mg/l NO3 Spectroquant®, MERCK, South Korea) and by using a photometer (LP2W Digital 

Photometer, Dr. Lange, Germany) the optical density (leading to NO3
- concentrations) was 

determined. 
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2.7 Soil gas sampling  

 

At each rice paddy, three passive diffusion gas samplers containing six sampling cylinders 

were installed to collect soil gas from between 0 an 10cm, 10 and 20 cm, 20 and 30 cm, 30 

and 40cm, 40 and 50 cm and 50 and 60 cm depth. Each PVC cylinder (ID, 70mm, OD, 79 

mm; 0.1m height) had a total sampling volume of 35.34 ml using 5m of silicon tubing (ID, 3 

mm; OD, 5 mm). The sampling was done from the soil surface using gas impermeable 

polyurethane (PUR) tubing (ID, 1.8 mm; OD, 3mm) fitted with stopcocks (Luer Lock, Value 

Plastics, Fort Collins, CO, USA). To the one end of the two tubing-stopcock-links 100 ml 

glass bottles - which were first flushed with N2 gas, then evacuated using a membrane 

vacuum pump (KNF Neuberger N026.3AN.18, Freiburg, Germany) and whose vacuums 

were then measured by using a pressure gauge (TensioCheck TC 03S, Tensio-Technik, 

Geisenheim, Germany) - were connected, to the other end an air bag filled with N2 gas at 

ambient pressure. Subsequently, gas was sampled into the bottles directly from the various 

soil depths, replacing the extracted volume with N2 gas. Samples of ambient air were 

collected (n=3) on the respective sampling dates at approximately 2 m above the soil 

surface. Sampling dates were 14 June, 18 July and 27 August, 2011. For more details about 

the air sampling method along water-logged soil profiles see Goldberg et al. (2008a).  

 

2.8 Determination of N2O concentrations and δ15N-N2O values along soil profiles 

 

The gas samples collected from the soil profiles were analyzed for N2O concentration and 
15N/14N ratios of N2O using a gas chromatograph-isotope ratio mass spectrometer coupling 

which was linked to a pre-GC concentration device (PreCon-GC-IRMS) (IRMS: delta V plus; 

Thermo Fisher Scientific, Bremen, Germany; gas chromatograph: GC 5890 series II; 

Hewlett-Packard, Wilmington, USA; Pre-Con: Finnigan MAT, Bremen, Germany) as 

described in detail by Brand (1995). The reproducibility of the method is ± 0.15‰. Isotope 

ratios are presented as δ-values relative to air nitrogen for δ15N (Mariotti 1983): 

 

δ
15N = (R sample/R standard -1) • 1000  [‰],  (1) 

 

where R is the ratio of heavy isotope [atom percent, at %] to light isotope [at %] of the 

samples and the standard. 

N2O concentrations were then calculated from the volume of the gas samples and the peak 

area on m/z 44 with the help of a calibration curve, considering the exact amount of the 

samples’ additional N2 gas out of the air bags, which was subtracted. For further details on 

this method see Goldberg et al. (2008a). 
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2.9 Statistical methods 

 

We obtained N2O and CH4 flux curves by calculating mean N2O flux values ± 1SE for every 

day of measurement and linearly interpolated between two consecutive measurement days. 

The mean flux is based on n=8 for each rice paddy. Statistics were conducted with R 2.12.0. 

Via t-Test (normally distributed data) or Mann-Whitney U-test (not normally distributed data) 

it was tested whether the measured N2O fluxes are significantly different from 0 and whether 

the δ15N and N2O concentration profiles are significantly different from ambient air’s N2O 

concentration and 15N abundance. Comparisons of total gas fluxes, water level and water 

temperature between the three paddies, as well as NO3
-, N2O concentrations and δ15N-N2O 

values along the soil profiles of the paddies were done by ANOVA or the nonparametric 

Kruskal-Wallis test. Analysis of correlation between N2O fluxes, CH4 fluxes, concentrations of 

N2O and NO3
-, δ15N-N2O values, water level and water temperature were done by using the 

correlation test after Pearson. 

 

3. Results 

 

3.1 Water level and water temperature 

 

Due to different irrigation methods the three paddies underwent quite different water level 

fluctuations (see Fig. 1). The TI paddy was flooded continuously until end of September with 

huge water level fluctuations mostly driven by heavy monsoon rain events. The field fell dry 

only twice for two days each, at 22 and 23 June and 5 and 6 September. The II paddy fell dry 

very often and it never showed water levels as high as the TI paddy. Until beginning of 

August, the FDFM pattern faced water level heights which were similar to those of the TI 

paddy but during August and September it stood dry for almost half of the time. During the 

remaining time it showed very low water levels, except for the period from 7 until 11 

September 2011. There is a statistical significant difference (*P = 0.048) between the water 

levels of the experimental sites. 

 



 

Fig. 1: Water level and water temperature between 1 June and 14 September 2011 at the 

experimental sites. When the water level was 0, no water temperature could be measured.

 

3.2 N2O fluxes and cumulative N

 

In general the N2O fluxes at the three rice paddies were quite low (Fig. 2). The FDFM 

paddy’s fluxes in 2010 and 2011 were very similar; Statistics revealed that there is no 

difference (P = 0.332, t = 0.978

the TI paddy showed pronounced emission peaks of 1.49 and 2.0 µmol m

TI paddy which showed the highest cumulative N

N2O ha-1 or 6.57 g N2O ha-1 d-

by the II paddy (which has an emission balance of 

6.57 g N2O ha-1 d-1). The emission balance of the FDFM paddy in 2011 (when the 

measurement period ended by 14 September) is slightly positive (0.05 mmol m

22.05 g N2O ha-1 or 0.16 g N

continued until 23 October) the balance was negative with 

N2O ha-1 or 4.83 g N2O ha-1 d-
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Water level and water temperature between 1 June and 14 September 2011 at the 

experimental sites. When the water level was 0, no water temperature could be measured.

O fluxes and cumulative N2O emissions 

O fluxes at the three rice paddies were quite low (Fig. 2). The FDFM 

paddy’s fluxes in 2010 and 2011 were very similar; Statistics revealed that there is no 

P = 0.332, t = 0.978) in N2O fluxes between both years. On 5 July and 12 August 

the TI paddy showed pronounced emission peaks of 1.49 and 2.0 µmol m

TI paddy which showed the highest cumulative N2O emissions of 2 mmol m
-1), which is exactly the amount of N2O that has been consumed 

by the II paddy (which has an emission balance of -2 mmol m-2 (equals -880.2 g N

). The emission balance of the FDFM paddy in 2011 (when the 

riod ended by 14 September) is slightly positive (0.05 mmol m

or 0.16 g N2O ha-1 d-1), whereas in 2010 (when the measurements 

continued until 23 October) the balance was negative with -1.47 mmol m-

-1). 

 

 
Water level and water temperature between 1 June and 14 September 2011 at the 

experimental sites. When the water level was 0, no water temperature could be measured. 

O fluxes at the three rice paddies were quite low (Fig. 2). The FDFM 

paddy’s fluxes in 2010 and 2011 were very similar; Statistics revealed that there is no 

O fluxes between both years. On 5 July and 12 August 

the TI paddy showed pronounced emission peaks of 1.49 and 2.0 µmol m-2 h-1. It is also the 

O emissions of 2 mmol m-2 (equals 880.2 g 

O that has been consumed 

880.2 g N2O ha-1 or -

). The emission balance of the FDFM paddy in 2011 (when the 

riod ended by 14 September) is slightly positive (0.05 mmol m-2, equals 

), whereas in 2010 (when the measurements 
-2 (equals -646.95 g 



 

Fig. 2: N2O flux and cumulative N2O emissions as a function of time from 11 May to 23 October 2010 and 5 May to 14 September 2011 at the experimental sites. 

Error bars in N2O flux- and cumulative N
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O emissions as a function of time from 11 May to 23 October 2010 and 5 May to 14 September 2011 at the experimental sites. 

and cumulative N2O emission- graphs represent the standard error of the mean (n=8).

 

O emissions as a function of time from 11 May to 23 October 2010 and 5 May to 14 September 2011 at the experimental sites. 

graphs represent the standard error of the mean (n=8). 



 

3.3 CH4 fluxes and cumulative CH

 

While the CH4 fluxes of the II paddy were comparably low, there were quite huge amounts of 

CH4 degassing from the TI and FDFM paddies (see Fig. 3). There was a decline to zero

fluxes at the II and FDFM paddies on 12 July.

During the measurement period, the paddy with the highest CH

one with TI (14.5 mol m-2; equals 2328 kg

FDFM paddy (9.6 mol m-2; equals 1541 kg CH

emission balance was found for the II paddy with 4.4 mol m

5.89 kg CH4 ha-1 d-1).  

 

Fig 3: CH4 flux and cumulative CH

the experimental sites. Error bars in N

 

3.4. Presence of O2 along the paddies’ soil profiles

 

The O2 profiles of the rice paddies look very different (Fig. 4). The FDFM paddy did not seem 

to contain any O2 from the starting point of the O

abruptly huge amounts of O2 

The II and TI paddies had a more complex O

had high to low amounts of O

measurement period and almost no O

O2 in the topsoil during half of the O

and 70 cm depth during more than half of the time of the investigation period.
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fluxes and cumulative CH4 emissions 

fluxes of the II paddy were comparably low, there were quite huge amounts of 

degassing from the TI and FDFM paddies (see Fig. 3). There was a decline to zero

fluxes at the II and FDFM paddies on 12 July. 

During the measurement period, the paddy with the highest CH4 emission balance was the 

; equals 2328 kg CH4 ha-1 or 19.4 kg CH4 ha-1 d

; equals 1541 kg CH4 ha-1 or 12.8 kg CH4 ha-1 d

emission balance was found for the II paddy with 4.4 mol m-2 (equals 706.42 kg CH

flux and cumulative CH4 emissions as a function of time from 29 May to 28 August 2011 at 

Error bars in N2O flux- and cumulative N2O emission- graphs represent the 

standard error of the mean (n=5). 

along the paddies’ soil profiles 

profiles of the rice paddies look very different (Fig. 4). The FDFM paddy did not seem 

from the starting point of the O2 investigation until mid of August when 

 occurred from the topsoil until deep down in the paddy’s soil. 

The II and TI paddies had a more complex O2 situation than the one with FDFM. Whereas II 

had high to low amounts of O2 from the topsoil down to 30 cm depth during the whole 

and almost no O2 occurred in the deeper soil layers, TI did not have any 

in the topsoil during half of the O2 investigation period but it did have some O

and 70 cm depth during more than half of the time of the investigation period.

fluxes of the II paddy were comparably low, there were quite huge amounts of 

degassing from the TI and FDFM paddies (see Fig. 3). There was a decline to zero-

emission balance was the 

d-1), followed by the 

d-1). The lowest CH4 

(equals 706.42 kg CH4 ha-1 or 

 

emissions as a function of time from 29 May to 28 August 2011 at 

graphs represent the 

profiles of the rice paddies look very different (Fig. 4). The FDFM paddy did not seem 

investigation until mid of August when 

occurred from the topsoil until deep down in the paddy’s soil. 

situation than the one with FDFM. Whereas II 

from the topsoil down to 30 cm depth during the whole 

occurred in the deeper soil layers, TI did not have any 

investigation period but it did have some O2 between 40 

and 70 cm depth during more than half of the time of the investigation period. 



 

Fig. 4: Presence or absence of oxygen (O

 

 

3.5 NO3
- concentrations of the paddies’ soil profiles

 

The NO3
- pattern of the three paddies is similar (Fig. 5). All of them show high concentrations 

of NO3
- (about 40 mg/l; in 50 cm depth at the TI paddy there were 100mg/l) in June. From 10 

June until 1 August, the NO3

decreased to minimum values of 5 mg/l, then increased up to 55 mg/l and decreased again. 

The TI paddy showed slightly increased NO

strong decrease down to 3 mg/l. There were no statistical differ

concentrations of the three paddies at each measurement day.

 

Fig. 5: NO3
- concentration as a function of soil depth and time from 10 June to 11 September 2011 at 

the experimental sites. [For deviations from mean values see 
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: Presence or absence of oxygen (O2) as a function of soil depth and time from 10 June to 13 

September at the experimental sites. 

concentrations of the paddies’ soil profiles 

pattern of the three paddies is similar (Fig. 5). All of them show high concentrations 

(about 40 mg/l; in 50 cm depth at the TI paddy there were 100mg/l) in June. From 10 

3
- concentrations along all depths of the FDFM an

decreased to minimum values of 5 mg/l, then increased up to 55 mg/l and decreased again. 

The TI paddy showed slightly increased NO3
- concentrations (35mg/l) on 17 July but then a 

strong decrease down to 3 mg/l. There were no statistical differences (P > 0.05) of the NO

concentrations of the three paddies at each measurement day. 

concentration as a function of soil depth and time from 10 June to 11 September 2011 at 

the experimental sites. [For deviations from mean values see standard errors in Table 2 in the 

Appendix.] 

 

) as a function of soil depth and time from 10 June to 13 

pattern of the three paddies is similar (Fig. 5). All of them show high concentrations 

(about 40 mg/l; in 50 cm depth at the TI paddy there were 100mg/l) in June. From 10 

concentrations along all depths of the FDFM and II paddies 

decreased to minimum values of 5 mg/l, then increased up to 55 mg/l and decreased again. 

concentrations (35mg/l) on 17 July but then a 

ences (P > 0.05) of the NO3
- 

 

concentration as a function of soil depth and time from 10 June to 11 September 2011 at 

standard errors in Table 2 in the 
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3.6 N2O concentrations and δ15N-N2O values along the paddies’ soil profiles 

 

In general, the N2O concentrations along the paddies’ soil profiles are quite low, except for 

beginning of June 2011 at the FDFM and II paddy, where maximum values of 6700 and 9900 

ppb were reached (Fig. 6). At the other measurement days N2O concentrations in the soils of 

these two paddies were similar to the N2O concentration of ambient air (about 320 ppb). For 

the paddy undergoing TI, no huge changes in soil N2O concentrations could be observed; the 

lowest concentrations were around 460 ppb and the highest ones around 2085 ppb. The 

2010 and 2011 N2O concentration profiles of the FDFM paddy differ a lot. Whereas there 

were huge fluctuations in 2011, they were almost stable in 2010, ranging from 425 to 1420 

ppb. In addition to the statistical differences between the dates at each site, which are given 

in Fig. 6, comparisons of all three paddies’ N2O concentrations in June, July and August 

were done, too. They revealed that there were no statistical differences (P > 0.05) in June 

and July, but there were such differences in August (*P = 0.018, F = 5.706) with the paddy 

undergoing FDFM on the one hand having significantly higher N2O concentrations than the II 

paddy, but on the other hand not different from the TI paddy. 

The δ15N-N2O curves at all sites in 2011 as well as in 2010 varied statistically significant (Fig. 

6). While the TI and II paddy’s curves started with δ15N values down to -11.85‰, for the 

following two dates the II paddy’s values increased up to -0.51‰ and the TI paddy’s values 

even turned into positive ones (3.8‰). For the FDFM paddy in 2011 the opposite pattern 

could be observed: the June initial values were positive or less negative ones (ranging from 

1.51‰ down to -5.68‰), remained stable in July, but declined in August down to -11.84‰. A 

statistical comparison of the 2010 and 2011 δ15N-N2O values of the FDFM paddy showed 

that there were no statistical differences between June and July, but the differences were 

very significant (P = <0.001, t = -5.405) for the last measurement date, which was 24 August 

in 2011 and 23 October in 2010. A direct comparison of the δ15N values of each 

measurement day among the three paddies revealed that there were very significant 

differences in June (**P = 0.004, F = 9.109; FDFM different from II but not from TI), 

significant differences in July (P = 0.012; II different from TI but not different from FDFM) and 

highly significant differences in August (P = <0.001, F = 31.146; differences between all of 

the three paddies). 

 

  



 

Fig. 6: N2O concentrations and δ15N-N2O values on 6 June, 1 August and 23 October 2010 at the FDFM paddy and 14 June, 18 July and 24 August 2011 at the 

three experimental sites. Letters indicate statistical differences. 
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O values on 6 June, 1 August and 23 October 2010 at the FDFM paddy and 14 June, 18 July and 24 August 2011 at the 

Letters indicate statistical differences. [For deviations from mean values see standard errors in Table 3 in the App

 

O values on 6 June, 1 August and 23 October 2010 at the FDFM paddy and 14 June, 18 July and 24 August 2011 at the 

[For deviations from mean values see standard errors in Table 3 in the Appendix.] 
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3.7 Correlations of N2O fluxes at the soil/atmosphere interface and water level, CH4 fluxes, 

the soils’ N2O concentrations and δ15N-N2O values  

 

For each experimental site a correlation between N2O- and CH4 fluxes could be found, as 

well as there were correlations between N2O fluxes and water level at the individual sites. 

Over all sites correlations revealed relations between N2O fluxes and N2O concentrations in 

different soil depths as well as δ15N-N2O values at 50 cm depth (see Table 4). 

 

Table 4: P- and R2 values of correlations of N2O fluxes with those parameters (CH4 fluxes, water level, 

N2O concentration in 10, 20, 40 and 50 cm soil depth, δ15N value at 50 cm depth) which resulted in a 

statistical trend (P =/< 0.1) or were significant (*P < 0.05) or very significant (**P < 0.01). 

Correlations at individual experimental sites - N2O flux vs. :     

CH4 flux (FDFM) CH4 flux (II) CH4 flux (TI) Water level (II) Water level (TI) 

P = 0.1089; R
2
 = 0.39 *P = 0.0285; R

2
 = 0.39 **P = 0.0092; R

2
 = 0.81 P = 0.0839; R2 = 0.10 P = 0.0760; R2 = 0.10 

negative correlation negative correlation positive correlation negative correlation negative correlation 

Correlations over all experimental sites - N2O flux vs. :     

N2O conc. 10 N2O conc. 20 N2O conc. 40 N2O conc. 50 δ
15

N 50 

P = 0.1011; R
2
 = 0.25 P = 0.1061; R

2
 = 0.24 *P = 0.0450; R

2
 = 0.30 *P = 0.0386; R

2
 = 0.30 **P = 0.0079; R

2
 = 0.47 

positive correlation positive correlation positive correlation negative correlation negative correlation 

 

 

4. Discussion  

 

4.1 Evaluation of the N2O and CH4 fluxes and emissions with respect to water management 

 

The first of the two initial hypotheses was that the most N2O would degas from the paddies 

experiencing less flooding and the least N2O but the highest amount of CH4 would be emitted 

from the continuously flooded TI paddy. This hypothesis could not be corroborated for N2O, 

where the opposite result was found, but it could be corroborated for CH4. The TI paddy 

emitted the most N2O (2 mmol m-2, equals 880.2 g N2O ha-1 or 6.57 g N2O ha-1 d-1) as well as 

the highest amounts of CH4 (14.5 mol m-2; equals 2328 kg CH4 ha-1 or 19.4 kg CH4 ha-1 d-1), 

whereas the II paddy consumed exactly that amount of N2O and emitted only 30% of the CH4 

emitted from the TI paddy, which still sums up to a considerable amount of 4.4 mol m-2 

(equals 706.42 kg CH4 ha-1 or 5.89 kg CH4 ha-1 d-1) during the measurement period. The 

FDFM paddy showed 65% of the TI paddy’s CH4 emissions; its N2O emissions in 2011 

summed up to almost zero, but in 2010, when the N2O flux measurements continued until 

end of October, the FDFM paddy consumed 1.47 mmol N2O m-2, which corresponds to 72% 

of the amount that the II paddy consumed in 2011.  
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In general, previous studies have shown that N2O fluxes in rice paddies are strongly affected 

by source and rate of fertilizer applied (Clayton et al. 1997; Cai et al. 1997; Bouwman et al. 

2002; Zou et al. 2005a; Ma et al. 2007) as well as by the irrigation method (Smith and Patrick 

1983; Cai et al. 2001; Zou et al. 2005b; Johnson-Beebout et al. 2009; Liu et al. 2010; Peng et 

al. 2011), whereupon it’s the cumulative N2O emission that can be correlated with irrigation 

method (Zou et al. 2007), but it is not the N2O flux which is related to the water level, as our 

present result confirms, regardless of observations of N2O emission peaks during midseason 

aeration, which – when incorporated into statistics – do not bring significant results (Zou et al. 

2007, Li et al. 2011, Yao et al. 2012). 

Traditionally irrigated paddies (which experience continuous flooding) have been found to 

show the least N2O emissions, which were consistent with the N2O emissions we measured 

in our experimental sites (Zou et al, 2007; Peng et al. 2011). For FDFM paddies (which are 

flooded for a shorter time of 2 to 3 months in the beginning of the rice growing period, 

experience midseason-drainage and stand moist but not flooded until the harvest) cumulative 

N2O emissions range between 1.21 and 6.17 kg N2O-N ha-1 (Zheng et al. 2000; Zheng et al. 

2004; Zou et al. 2005a,b; Zou et al. 2007; Peng et al. 2011), which in any case exceeds the 

emissions we have measured. Other water management practices lead to cumulative N2O 

emissions of 0.17 to 2.5 kg N2O-N ha-1 (Cai et al. 1997; Cao et al. 1999; Zou et al. 2005; 

Peng et al. 2011). The N2O balances found in our study are considerably low, especially the 

ones of the II and FDFM paddies, which had been expected to be high, are lower than the TI 

paddy’s cumulative emission and even negative. N2O consumption in rice paddies was 

observed recently, too, (Ferré et al. 2012) occurred under flooded and water-logged 

conditions and might be explained by a more and more declining availability of NO3
-, which 

had served as electron acceptor before; and when nitrate became limited, microbes 

metabolized NO2
-, NO and N2O instead, resulting in the production of N2, which degassed 

from the soil into the atmosphere very quickly (Kögel-Knabner et al. 2010). This 

denitrification process, leading to decreased N2O emissions but increased N2O consumption 

and N2 emission, would only occur under anoxic conditions (Khalil and Bags 2005; Sey et al. 

2008; Kögel-Knabner et al. 2010) which we thought our II experimental site did not have to 

face; so we can only speculate that, either our rice paddy’s soil did remain wetter than we 

thought it was, or another process – metabolizing NH4
+ to NO3

- and further to N2 under 

aerobic conditions – could have taken place: nitrifier denitrification (Wrage et al. 2001; Kool 

et al. 2011). In fact, it is known that in rice paddy soils a tight coupling between nitrification 

and denitrification processes exists (Arth et al. 1998). Since it is also known that the 

application of NH4
+ fertilizer stimulates ammonium oxidizing bacteria (Cai et al. 1997; Kögel-

Knabner et al. 2010), we assume that in our II site favorable conditions for NH4
+ oxidation 

and further processing under aerobic conditions to N2 could be found, which may also have 
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lead to the use of N2O and its being processed to N2. The TI paddy experienced water-

logging during the whole rice growing season, whereas FDFM was flooded continuously for 

2.5 months, so they underwent the procedure which typically leads to a thin layer of 

ammonium oxidizing bacteria in the upper few cm of the paddies’ soils and underneath, 

where it is supposed to be anoxic, there would be the denitrifying bacteria (FAO 2006; Kögel-

Knabner et al. 2010) all together causing the processing of NH4
+ via NO3

- to N2. This would 

have caused very low N2O fluxes, which is indeed what we have measured, except for two 

unexpected N2O emission peaks which boosted the TI paddy’s N2O balance. But fluctuations 

of the amount of N2O emitted from paddies with identical water management and fertilizer 

application have been observed before (Zheng et al. 2004) are not to be over-interpreted.  

The quite high CH4 emissions at our sites may be explained by the NH4
+ fertilizer, too, 

because the presence of a high NH4
+ concentration also leads to a decreased CH4 oxidation, 

which may cause higher CH4 concentrations in the soil and finally leads to high CH4 fluxes 

(Cai et al. 1997). On the other hand one must be aware that we measured CH4 fluxes rather 

infrequent and seldom in contrast to our N2O emission measurements, so we may have 

missed CH4 peaks as well as days with low CH4 fluxes, which makes the CH4 flux results 

less robust.  

Thus, both seems possible, increasing N2O emissions with increasing CH4 emissions (as we 

found for the TI paddy) according to the preceding, to NH4
+ referring explanation, as well as 

the common opinion and our introductory hypothesis that contrary N2O and CH4 fluxes would 

occur (as found for FDFM and II), meaning larger emissions of one gas would cause less 

emissions of the other one, as favorable conditions for the production of the two gases, are 

assumed to be mutually exclusive (Granli and Bøckman 1994, Klüber and Conrad 1998). 

When considering the combined Global Warming Potential (GWP) of CH4 and N2O, 

calculated in units of CO2 equivalents over a 100-year time horizon (based on a radiative 

forcing potential relative to CO2 of 298 for N2O and 25 for CH4 (IPCC 2001)), it turns out that 

the traditional irrigation lead to the highest GWP of 363.1 mol CO2eq m-2, followed by FDFM, 

which lead to degassing of 240 mol CO2eq m-2. Intermittent Irrigation turned out to have a 

GWP of 109 mol CO2eq m-2. Thus, we would conclude that intermittent irrigation caused the 

least greenhouse gas emissions. 

 

4.2 Evaluation of the N2O fluxes at the soil/atmosphere interface with respect to the soil 

parameters: presence or absence of O2, NO3
- and N2O concentration and δ15N-N2O values 

 

We hypothesized great changes in N2O, NO3
- and O2 concentrations, as well as in δ15N-N2O 

values over time and along the soil profiles especially in the FDFM and II paddy, whereas we 

had expected the TI paddy to have rather stable soil conditions. This hypothesis could partly 
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be corroborated. In terms of O2 presence the FDFM and II paddy behaved exactly as 

expected, so the FDFM paddy soil was anaerobic until mid August and afterwards 

experienced aerobic conditions, and II was infiltrated with O2 from the top downwards during 

the whole measurement period. TI was riddled with O2 in its deeper soil layers in particular, 

which at first sight appears odd, regarding that TI is the paddy with the smallest Ap-horizon 

(the horizon which contains oxygen (Frenzel et al. 1992; FAO 2006; Yu et al. 2007; Kögel-

Knabner et al. 2010)), but at second sight one notices the paddy’s B-horizon which may have 

oxic conditions, too (Kögel-Knabner et al. 2010). We speculate that the TI paddy’s deeper 

soil layers contain O2 because they may have access to ground water providing them with 

O2. In contrast to that, the other two paddies’ oxygen-containing horizons reach down to 20 

and 35 cm, respectively, and get filled up with O2 every time when the water level declines.  

Regarding the NO3
- concentrations along the soil profiles we got anything but the expected 

result. Instead of great differences and concentration changes among study sites we found 

no statistical differences between NO3
- concentrations of the experimental sites. 

Furthermore, no relations detected between N2O fluxes and NO3
- concentrations of different 

soil layers makes us conclude that NO3
- concentrations in the soils only play a minor role for 

the N2O production and exchange at the paddies’ soil/atmosphere interfaces. To our 

knowledge there are no other lysimeter studies investigating NO3
- leaching from rice paddies, 

but there are such studies on DOC-leaching revealing that there are extremely large fluxes 

from top- to subsoil (Michalzik et al. 2001; Katoh et al. 2004; Maie et al. 2004). In general, 

one assumes that the highly mobile NO3
- can leach easily to deeper soil layers or is 

metabolized by microbes under anoxic conditions, quickly (Kögel-Knabner et al. 2010), which 

drastically reduces N fertilizer use efficiency in rice paddies in comparison to other 

agricultural systems (DeDatta 1981; Cao et al. 1984a,b; Roy and Misra 2003). Thus, we 

conclude that the water management of the three paddies had no effect on their NO3
- 

concentrations throughout the measurement period. In the short term there might have been 

significant differences between the paddies’ NO3
- concentrations, which we failed to detect, 

because NO3
- is highly mobile and it might have leached or metabolized by microbes too 

quickly. 

With regard to N2O concentrations and δ15N-N2O values along soil profiles, introductorily it 

needs to be said that that high N2O concentrations together with depleted δ15N-N2O values 

are interpreted as N2O production, whereas low N2O concentrations and positive δ15N-N2O 

values are regarded as N2O consumption (Goldberg et al. 2010). The FDFM paddy showed 

high N2O concentrations in June and by end of August 2011, at the same time when its δ15N-

N2O values (in June in the deeper soil layers) were fairly negative (down to -11.84‰), which 

is regarded indicative of N2O production and further reduction to N2 gas. The II paddy 

possessed high amounts of N2O (9977ppb) as well as fairly negative δ15N-N2O values (-



151 

 

11.85‰) in June, which we also interpret as N2O production and subsequent reduction to N2 

gas whereas the rest of the measurement period showed δ15N-N2O values around -3‰ and 

N2O concentrations between 957 and 2106 ppb, indicating less N2O production than in June. 

The TI paddy’s soil was depleted in 15N-N2O in June (-9.94‰), but comparably enriched 

(δ15N-N2O values up to 3.41‰), at comparably low N2O concentrations (567-3904ppb) 

throughout the measurement period, suggesting that after a short N2O production period in 

June, hardly any N2O had been produced anymore during the following measurement days. 

These profiles explain the N2O exchange we have measured at the soil/atmosphere interface 

to a good extend; so we identified the deeper soil layers’ (40-50 cm soil depth) N2O 

concentrations and 14N/15N ratios to have a significant effect on the N2O fluxes. Unpublished 

data on gene abundances of denitrifying and nitrifying bacteria at our FDFM paddy study site 

by Seo and Kang (2012) revealed a higher nirK / nosZ ratio at the subsoil (between 25 and 

65 cm soil depth), suggesting that N2O might be produced in the subsoil, which supports our 

findings. 
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Appendix 

Table 2: Average NO3
- concentrations [mg/l] and corresponding Standard errors. 

 

   FDFM paddy    II paddy    TI paddy   

    water 10 30 50 water 10 30 50 water 10 30 50 

10.6 NO3
-
 conc 13.21 35.98 10.97 62.37 17.91 7.41 27.60 50.53 34.86 10.50 20.97 112.62 

  SE 1.90 24.95 3.45 52.57 6.53 1.78 9.72 22.01 1.04 2.27 7.76 23.82 

19.6 NO3
-
 conc 35.86 18.13 26.39 46.04 17.01 27.35 50.65 44.80 25.86 18.50 15.89 36.79 

  SE 2.56 3.41 8.67 11.45 3.38 13.65 14.70 18.40 7.55 6.08 0.08 4.80 

4.7 NO3
-
 conc 12.90 11.59 16.20 16.23 12.43 14.42 40.25 18.16 9.13 17.69 21.28 22.99 

  SE 1.72 1.38 3.38 2.69 7.18 8.33 23.24 10.49 0.86 6.18 2.50 11.64 

17.7 NO3
-
 conc 5.23 9.25 14.42 11.03 9.31 6.98 15.76 22.62 7.07 10.50 36.88 41.00 

  SE 0.55 3.71 8.49 6.36 2.22 1.15 7.06 12.02 1.04 1.59 14.97 25.16 

28.7 NO3
-
 conc 5.30 7.88 9.38 7.23 10.28 9.94 7.82 14.45 6.51 14.89 10.81 13.89 

  SE 0.64 1.99 6.88 4.40 1.65 0.33 1.02 7.72 1.30 1.70 1.54 3.39 

12.8 NO3
-
 conc 36.54 12.37 37.69 33.12 18.32 14.08 23.18 58.13 10.16 8.82 15.33 19.56 

  SE 26.07 1.98 14.06 25.13 9.23 2.41 8.70 30.07 2.16 1.62 3.59 2.90 

24.8 NO3
-
 conc   3.18 2.87 5.39 20.28 1.56 0.62 43.30 22.99 2.34 7.60 5.61 

  SE   1.37 0.81 3.46 1.33 0.20 0.19 36.56 0.92 0.76 2.91 2.06 

29.8 NO3
-
 conc   3.68 4.02 13.18 23.12 3.21 3.99 7.82 16.26 5.26 5.11 7.71 

  SE   0.60 0.78 3.70 1.41 0.35 0.64 2.14 1.82 1.30 0.95 3.01 

11.9 NO3
-
 conc 6.54 3.96 3.93 14.39 5.92 3.58 2.74 3.18 5.20 3.30 3.18 2.80 

  SE 0.09 0.45 1.03 6.53 1.07 1.25 0.30 0.64 1.01 0.14 0.53 0.96 

 

Table 3: Average N2O concentrations [ppb] and δ15N values and corresponding standard errors. 

 

   

FDFM 

paddy     II paddy     TI paddy    

  depth 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 

10.6 N2Oconc 2139 6691 1744 2283 2894 1324 9189 5542 9977 2874 1174 3904 2086 1431 805 

  SE 813 5612 147 308 1809   4609 1523 4448   180 1679 495 331   

18.7 N2Oconc 1071 1703 687 1002 1179 957 1094 999 987 1122 836 567 755 816 739 

  SE 78 971 134 149 241   80 82 203   44 19 44 29 20 

24.8 N2Oconc 2030 4667 4348 3705 2377 957 2106 1919 1729 1352 2167 1790 1020 3418 1815 

  SE 937 3353 2414 2200   142 227 539 223   1774 1355 842 2661 1370 

10.6 δ
15

N 1.51 0.79 -2.43 -5.68 -1.86 -6.12 -9.61 

-

11.85 -9.49 -9.07 -0.51 -6.77 -4.18 -5.41 -9.94 

  SE 3.88 0.92 2.86 5.55 2.01   0.05 1.58 2.11   1.37 0.34 2.78 1.53   

18.7 δ
15

N -2.24 0.53 -1.07 0.51 0.67 -0.35 -4.39 -4.75 -4.73 

-

12.05 0.80 0.50 1.22 0.65 0.21 

  SE -1.30 0.31 -0.62 0.29 0.39   -2.53 -2.74 -2.73   0.46 0.29 0.70 0.37 0.12 

24.8 δ
15

N -4.28 -8.28 -8.99 

-

11.84 -6.78 -0.52 -4.09 -2.77 -2.77 -2.46 1.50 3.41 1.71 -0.34 3.80 

  SE -2.47 -4.78 -5.19 -6.84   -0.30 -2.36 -1.60 -1.60   0.86 1.97 0.99 -0.20 2.19 
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