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Zusammenfassung
Die vorliegende Arbeit ist das Ergebnis einer mehrjährigen Zusammenarbeit mit einem
deutschen Textildiscounter.

Das Ziel war die Entwicklung eines entscheidungsunterstützenden Systems für die
Belieferung der etwa 1300 Filialen in Deutschland.

Diese weist einige Besonderheiten auf: Die Filialen werden mit vorverpackten
Kombinationen von Größen eines Artikels, sogenannten Lot-Typen, beliefert. Durch
die Zusammenstellung dieser Lot-Typen, die bereits in dem Niedriglohnland erfolgt,
in dem die Ware produziert wird, sollen die Handgriffe im Zentrallager und damit die
Kosten in Deutschland reduziert werden. Um auch den weiteren Aufwand im Zen-
trallager möglichst klein zu halten, werden nur maximal vier bis fünf verschiedene
Lot-Typen für einen Artikel verwendet. Außerdem wird pro Artikel jede Filiale nur
mit einem Lot-Typ in einer Vielfachheit beliefert.

Da es sich um Modeartikel handelt, die in der Regel nicht nachbestellt werden
können, ist die Popularität des jeweiligen Produkts von vornherein unbekannt. Be-
darfe können nur sehr grob, das heißt durchschnittlich und auf Warengruppenebene,
geschätzt werden. Über- und Unterbelieferungen lassen sich nicht vermeiden.

Eine Einflussnahme auf den Verkaufsprozess ist durch Preisreduzierungen möglich.
Um Überbelieferungen zu kompensieren, kann der Preis eines Artikels wöchentlich
auf vordefinierte vom Startpreis abhängige Preisstufen herabgesetzt werden. Preisre-
duzierungen erfolgen für einen Artikel in allen Filialen und für alle Größen simultan.

In Rahmen der Kooperation wurden mathematische Problemformulierungen ent-
wickelt, mit dem Zweck, Kosten für die Abweichung von Belieferung und geschätztem
Bedarf zu minimieren. Der eigentliche Verkaufsprozess wurde bei der Ermittlung
dieser Kosten nicht oder nur sehr grob betrachtet.

Wir beziehen nun die Möglichkeit von Preisreduzierungen bereits bei der Entschei-
dung über die Belieferung ein. Das Ergebnis ist das zweistufige stochastische Pro-
gramm ISPO: Die sogenannte Erststufenentscheidung ist die Festlegung einer Beliefe-
rungsstrategie, die Zweitstufenentscheidung oder der Rekurs, die Entscheidung über
Preisreduzierungen im Verkaufsverlauf. ISPO liefert eine ertragsmaximierende Be-
lieferungsstrategie sowie sich darauf beziehende optimale Preisreduzierungsstrategien
für betrachtete Szenarien.

ISPO ist zu komplex um es mit Standardverfahren zu lösen. Die Entwicklung von
speziellen Lösern war notwendig. Zum einen präsentieren wir einen exakten Löser zum
Benchmarking und zum anderen eine schnelle Heuristik für den praktischen Einsatz
beim Industriepartner.

Der exakte Löser basiert auf der Idee mögliche Preisreduzierungsstrategien zu enu-
merieren. Damit kann ISPO auf eine frühere Problemformulierung zur Optimierung
der Belieferungsstrategie, die mit Standardverfahren gelöst werden kann, zurückgeführt
werden.
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In der Praxis ist eine Lösung von ISPO nur durch Enumeration aller möglichen
Preisreduzierungsstrategien zeitlich unmöglich.

Daher wird die Idee zu einem pro- blembezogenen Branch&Bound Verfahren er-
weitert. In diesem Zusammenhang ent- wickeln wir duale Schranken für allgemeine
zweistufige stochastische Optimierungs- probleme, die auf der sogenannten wait-and-
see solution aus der stochastischen Optimierung basieren. Wir zeigen, dass unsere
Schranken im Allgemeinen schärfer sind.

Die Heuristik sucht ausgehend von einer zulässigen Zweitstufenentscheidung eine
dazu optimale Erststufenentscheidung und alterniert dann bis zur Konvergenz zwischen
zweiter und erster Stufe. Die Optimalitätslücke ist klein genug um einen praktischen
Einsatz zu rechtfertigen.

In der Praxis werden die bezüglich ISPO optimalen Preisreduzierungsstrategien
nicht verwendet. Stattdessen werden aktuelle Verkaufszahlen ausgenutzt. Gemäß
diesen und einer angepassten Bedarfsschätzung wird wöchentlich eine neue optimale
Preisreduzierungsstrategie für den verbleibenden Verkaufszeitraum ermittelt. Dafür
präsentieren wir einen Algorithmus, der auf dynamischer Programmierung beruht und
nicht optimale Lösungen durch sogenannte Dominanztests von vornherein auszuschlies-
sen versucht.

ISPO, genauer gesagt unsere Heuristik, zusammen mit der wöchentlichen Aktu-
alisierung der Preisreduzierungsstrategien bildet unser entscheidungsunterstützendes
System zur integrierten Größen- und Preisoptimierung DISPO.

Wir testeten DISPO in einem fünfmonatigen Feldversuch, durchgeführt als statis-
tisches Experiment, beim Praxispartner. Hierbei wurden Paare ähnlicher Filialen mitei-
nander verglichen: In einer Filiale, der Testfiliale, wurde die von ISPO vorgeschlagene
Belieferungsstrategie umgesetzt und wöchentlich, wie oben beschrieben, die Preisre-
duzierungsstrategie aktualisiert. In der anderen Filiale, der Kontrollfiliale, wurde ein
früheres Modell zur Festlegung der Belieferungsstrategie eingesetzt, in dem der Ver-
kaufsprozess nicht integriert ist. Preisreduzierungen in den Kontrollfilialen wurden
vom Projektpartner angeordnet. In den Testfilialen, für die DISPO eingesetzt wurde,
erzielten wir einen um mehr als 1, 5 Prozentpunkte höheren realisierten Rohertrag als
in den Vergleichsfilialen.



Abstract
This thesis is the result of a collaboration with a German fashion retailer which lasted
for several years. The aim was the development of a decision-support system for the
supply of the about 1300 branches in Germany.

There are some specialties about the situation at our industrial partner: The branches
are supplied by prepackaged size-assortments of a product which we call lot-types.
With the objective to economize handling cost, these lot-types are already composed
at the respective low-wage country where the article is also produced. The expense at
the German central warehouse is further reduced by allowing only four or five differ-
ent lot-types for the delivery of one product. Moreover, each branch is supplied by a
certain quantity of a single lot-type.

For the most fashion articles replenishment is not possible. The sales success of
a product is a priori unknown. Historical sales data can only be used on a higher
aggregation level, e.g., the average historical demand on the commodity group level.
Demand estimation is therefore very vague. Under- and oversupplies are unavoidable.
Influence over the sales process is possible by marking down prices. To compensate
for an oversupply of a product, weekly the price can be reduced to predefined price
steps which depend on the starting price of the product. Mark-downs for an article are
performed simultaneously for all branches and sizes.

Within the cooperation mathematical problem formulations with the aim to mini-
mize measures for the deviation of supply from estimated demand had been developed.
In these measures the selling process is not or only very vaguely regarded.

Now we include the possibility of marking down prices during the selling time
already when deciding on the supply. The result is the two-stage stochastic program
ISPO: The so-called first stage decision is the determination of a supply policy. The
second stage decision, or recourse, is the decision on mark-downs during the selling
time. ISPO yields an expected revenue maximizing supply strategy and corresponding
optimal mark-down strategies for the considered scenarios.

ISPO it too complex to solve it via standard approaches. Customized methods had
to be devised to solve ISPO. On the one side we present an exact solver for benchmark-
ing. On the other side a fast heuristic was developed for practical use at our partner.
The basic idea of our exact solver is to enumerate all possible mark-down strategies.
With this it is possible to reduce ISPO to a former formulation for the optimization of
supply, which can be solved via standard approaches.

In practice enumeration of all valid mark-down strategies for the purpose of solving
ISPO is for reasons of time impossible. Therefore the idea is extended to a customized
Branch&Bound approach. In this context we derived dual bounds for general two-
stage stochastic programs which are based on the so-called wait-and-see solution from
stochastic programming. We show that in general our bounds are tighter.

The heuristic, beginning with a valid second stage decision, determines an optimal
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first stage decision and alternates between solving the first stage and the second stage
until convergence is reached. The optimality gap is small enough to justify a practical
use at the industrial partner.

In practice the by ISPO proposed mark-down strategies are not applied; instead
latest sales figures are exploited. According to these and an updated demand estimation
weekly a new optimal mark-down strategy for the remaining selling time of the product
is determined. For this purpose we propose an algorithm which relies on dynamic
programming and tries to exclude non-optimal solutions a priori by dominance checks.

ISPO, more precisely our heuristic approach, together with the weekly adaption of
the mark-down strategy forms our decision support system for integrated size and price
optimization DISPO.

We tested DISPO in a five-month field study, performed as a statistical experiment,
at our partner where pairs of similar branches were compared. At one branch of each
pair, the test branch, supply and mark-down decisions came from ISPO. With respect
to latest sales figures the mark-down decisions were weekly updated via our dynamic
programming approach. At the other branch, the control branch, these decisions were
not integrated: Supply was determined according to a strategy resulting from a former
model that disregarded the selling process and mark-downs were handled manually by
our partner. For the branches at which the decisions of ISPO were implemented an
average raise of 1.5 percentage points of relative revenue was observed.
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Chapter 1

Introduction

In clothing retailing mark-downs of prices and non-compliant supplies in terms of the
sizes affect the revenues in a great part because of the short selling times. Supply and
mark-down strategies interact substantially. In these thesis we consider these effects
in an integrated mathematical model with the aim to develop a real-world revenue-
maximizing decision system.

This work is motivated by more than a five years long cooperation with a German
fashion retailer.

Our industrial partner supplies its about 1300 branches in Germany by prepackaged
size-assortments of a product, so-called lot-types. A lot-type specifies for each size the
number of items in that size in the prepackage.

With the objective to economize handling cost, these lot-types are already com-
posed at the respective low-wage country where the related article is also produced.
The expense at the German central warehouse is further reduced by supplying each
branch only with a certain quantity of a single lot-type. At the maximum four or five
different lot-types are used for the delivery of one product.

Thus, the supply for the particular branches and sizes can not be decided indepen-
dently from each other.

Depending on the popularity of the particular article during the sales process mark-
downs are performed with the aim to maximize the realized overall revenue. Prices are
marked-down for a product in all branches and all sizes simultaneously.

After the regular selling time which as a rule amounts to three months, the products
stay in the branches – from the clothes hanger they are stowed away on dump bins and
sold for low price. According to what our industrial partner says nearly all items of a
product can be sold – but a bad seller may require drastic mark-downs.

The described process is depicted in Figure 1.1. At first we take our concentration
on the original process at our industrial partner. The purchasing agent decides on a
quantity of the corresponding article. This quantity is based on the availability of the
product and the agent’s own empirical values according to how he estimates the pop-
ularity of the article. After the purchase on the amount of items per branch and size
based on lot-types is decided. At a determined date the sales process for the product
starts in all supplied branches simultaneously. If the product turns out to be less popular
than estimated mark-downs may be disposed which are performed by the sales person-
nel at the branches by adapting the price tag. Moreover the new price is deposited at
the system. The price steps to which the prices can be deduced are predefined and de-
pend on the starting price of the article. The decision if and what kind of mark-down is

1
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Figure 1.1: Integration of DISPO into the business process

performed is made each sales week again by the sales department on the base of latest
sales figures.

Our decision support system for Integrated Size and Price Optimization DISPO will
intervene at two points. When the overall supply is known DISPO will propose a supply
policy based on lot-types. The specialty is that already at this point possible mark-
downs are regarded. This is done by solving a stochastic program where mark-downs
act as compensation for wrong supply – more exactly oversupply. Thus, with taking
into account pricing already in the supply process we hope to increase the realized
revenue. We call this part of DISPO also size optimization. The related integrated
two-stage stochastic model is called ISPO.

Analogously to the original approach at our partner DISPO also intervenes during
the selling time. After an observation time of two weeks, based on latest sales figures
the mark-down strategy is weekly updated. We call this part of DISPO also price
optimization.

1.1 Related Work
Linking of inventory and dynamic pricing decisions among others has been attacked
in [BdB05, CSSLS04, FH99, Net06]. Common to those results is the optimal control
approach via the dynamic programming approach and/or fluid approximation where
discrete events resp. distributions are approximated by their expected values and such
the random process is approximated by a continuous deterministic process. More re-
cent approaches consider robustness considerations [AP06] or game theoretic aspects,
like competition and equilibria [AP10]. The real-world settings of companies usually
involves additional side-constraints and costs. In our case it is the restriction on the
number of used lot-types and lot-type handling and opening costs that would lead to
very large state spaces in dynamic programming.

Dynamic pricing is a well-studied problem in the revenue management literature
(see, e.g., [BC03, GvR94, GvR97, Mon05, ZZ00] as examples). Again, complicated
operational side-constraints are usually neglected in favor of a more principle study
of isolated aspects. Again, some work has been done from a game theoretic point of



CHAPTER 1. INTRODUCTION 3

view, like strategic customers who are forward-looking customers which for example
include possible mark-downs of prices in their buying decision (see, e.g., [YAPT09] or
[MZ12]).

Classical inventory management research is less related to our topic, since there
most policies deal with the optimal way to replenish stock. In our environment, no
replenishment is possible.

The first steps in capturing the operations side constraints posed by the lot-based
supply [GKR10] – the Lot-type Design Problem LDP – did not take pricing into ac-
count, but estimated the consequences of inventory decisions by a distance measure
between supply and an estimated demand (without reference to pricing).

The LDP was extended to the Stochastic Lot-type Design Problem SLDP by re-
garding monetary costs and different sales scenarios [KKR11a]. The SLDP will serve
as a template for our model of the size optimization stage. Since the number of possi-
ble lot-types can be very large which leads to high computation times, a Branch&Price
algorithm was presented in [KKR11a].

For evaluating field studies in terms of applying different supply policies meth-
ods which are based on the comparison of sales speeds of different sizes were pro-
posed [KKR12].

Some topics of this thesis concerning the model for ISPO, the exact and the heuris-
tic approach to solve it and the concluding field-study at our industrial partner are
treated in similar fashion in [KKR11b].

1.2 Our contribution
We present an inventory and dynamic pricing problem of a real-world fashion re-
tailer with a set of operational side-constraints that has been unstudied so far. For
this problem, we contribute a decision support system. We present the new two-stage
stochastic model ISPO for optimization of supply. To solve ISPO we propose an ex-
act Branch&Bound algorithm for benchmarking with new dual bounds based on the
wait-and-see solution from stochastic programming and a fast heuristic for practical
use. Moreover we devised dominance rules especially for the so-called Price Opti-
mization Problem as it is weekly solved during the selling time. Under use of these
rules we implemented a dynamic programming approach as a label setting algorithm.
Moreover, we performed a field-study at our industrial partner as a controlled statistical
experiment (similar to a clinical study). We used in parallel an existing optimization
method on a set of control branches and our size optimization based on the ISPO model
on a set of test branches. From this study we derived that in a five-month period we
could increase the mean relative realized revenue (mean of revenue divided by maxi-
mally possible revenue) by more than 1.5 percentage points (which means big money
in economies of scale). To examine significance we applied Wilcoxon signed-rank test
from statistics. We have not seen any published results that investigate the significance
of practical results by this (or any other) statistical method, and we consider the intro-
duction of controlled statistical experiments into the field of retail revenue management
as a contribution in its own right.
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1.3 Outline of the thesis
In Chapter 2 we outline the collaboration with our industrial partner as a historical
process. We state different models and algorithms to decide for a supply policy in terms
of lot-types. Moreover we show how the “newer” formulation SLDP with stochastic
demand and monetary objective can be reduced to the “older” formulation LDP with
deterministic demand and a non-monetary measurement. We present the model POP
for price optimization which decides on weekly mark-downs and justify the decision
for integrating price optimization already in the size optimization process.

All of these models refer to an empirical demand estimation method which was
developed by involved colleagues. We outline the most important details in Chapter 3
and compare it with a – for our kind of data – common parametric approach.

Price optimization as part of DISPO is treated in detail in Chapter 4. For fixed sup-
ply we deduce dominance rules and apply them in a dynamic programming approach.

Before we present the stochastic program ISPO we outline some basics of stochas-
tic programming in Chapter 5. We state the ISPO formally in Chapter 6.

In Chapter 7 we show how to reduce ISPO to the former model SLDP by fixing
price trajectories – which are sequences of non-increasing prices from a set of prede-
fined price steps – to scenarios. We present a theoretical idea for solving ISPO that
is based on enumerating all possible combinations of assignments “scenario→price
trajectory”.

With the introduction of dual bounds for ISPO based on an extension of the wait-
and-see solution from stochastic programming in Chapter 8 the idea now gets also
practical interesting.

By combining enumeration of price trajectories from Chapter 6 with the idea to
solve ISPO by enumerating SLDPs from Chapter 7 and the dual bounds from Chapter 8
we are able to state an exact Branch&Bound approach called ISPO-BAB for solving
the ISPO to optimality. The approach is presented in Chapter 9. We apply ISPO-BAB
to test instances with different settings. For practical use we propose our heuristic
ISPO-PingPong. We perform ISPO-PingPong for different settings on a set of test data
in terms of computation time and optimality gaps. Moreover, we compare ISPO-BAB
with ISPO-PingPong on real instances.

With the use of ISPO-PingPong we performed a field-study at our industrial partner.
We present results from preliminary studies and briefly go into some basics of statistical
tests before we present the field study as a statistical experiment in Chapter 10.

We conclude this thesis with Chapter 11.

1.4 Preliminary remarks

1.4.1 Basics from mixed-integer linear programming
We apply some basics from mixed-integer linear programming MIP which are not ex-
plicitly treated in this thesis. For detailed informations about Branch&Bound, relax-
ations, LP relaxations, cover cuts, etc. we refer the reader to [Wol98], [Sch98] and
[ANW06].
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1.4.2 Labelling of own results
This thesis is a result of more than a five years long cooperation (2006 to 2011) at our
industrial partner. We joined the project at 2009. Therefore not all topics in this thesis
concerning the collaboration are a result of our own or our complete own work. We
will use three terms to differentiate between us and the other colleagues:

• former DISPO-team: involved persons (in alphabetical order) were Konstantin
Gaul, Tobias Kreisel, PD Dr. Sascha Kurz, Alexander Lawall, Prof. Dr. Jörg
Rambau,

• DISPO-team: involved persons were Miriam Kießling, Tobias Kreisel, PD Dr.
Sascha Kurz, Alexander Lawall, Prof. Dr. Jörg Rambau,

• we: Miriam Kießling.

1.4.3 Computational results
In this thesis we will state several computational results. If not otherwise specified they
were provided by a machine with Intel(R) Xeon(R) processor with 2.33 GHz and 62
GB of RAM. We implemented all stated algorithms in C++. Whenever we will use
a state-of-the-art solver for mixed-integer linear programs in our results we use IBM
ILOG CPLEX, version 12.2 (as alternative also SCIP could be chosen; we tested the
programs for SCIP in version 2.0.1 combined with SOPLEX-1.5.0 how it is included
in the ZIBOPTSUITE-2.0.1).



Chapter 2

Collaboration with the
industrial partner – historical
progress

The Integrated Size and Price Optimization Problem ISPO is an enhancement of for-
mer models for the optimization of supply or size optimization that were developed
during more than a five years long cooperation with our industrial partner. In this chap-
ter we outline the main results related to the time before we developed DISPO. We
show the historical progress from deterministic size optimization to integrated size and
price optimization and outline the basic ideas of the implemented approaches. In Sec-
tion 2.1 we treat the terms lot-type and lot in detail. The first model which assumes
deterministic demand – the Lot-type Design Problem LDP presented by Gaul, Kurz
and Rambau [GKR09], which is currently as a standard implemented at our industrial
partner, is outlined at first in Section 2.2. We describe the so-called SFA heuristic which
was introduced in [GKR10] as a solving method for the LDP. By additionally regard-
ing stochastic demand and lot-opening costs we arrive at the SLDP – the Stochastic
Lot-type Design Problem in Section 2.3. We show how to reduce the SLDP to the LDP
which makes it possible to apply the SFA heuristic on it. Because both models do not
contain all relevant properties of the sales process at our industrial partner as we outline
in Section 2.4, we extend the SLDP by regarding the possibility of mark-downs, i.e.
integrating price optimization. Price optimization as it was implemented by the former
DISPO-team is treated in Section 2.5. We give a short outlook on integrated size and
price optimization in Section 2.6.

2.1 Lot-types and lots
Our industrial partner already before the cooperation supplied its branches with lot-
types. This is done to economize handling costs. A lot-type describes a prepackage
which contains items of one product in different sizes and numbers. Mathematically
we are given a lot-type by a n-tuple where n equals the number of sizes. The entries
describe the number of items per size where we assume that the sizes are ordered
increasingly. For example if we want to specify a prepackage containing 1 item of size
S, 3 items of size M and 2 items of size L, we do this by the lot-type (1, 3, 2). Before

6
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the collaboration all branches were supplied by so-called standard prepackages. These
are prepackages, i.e lot-types, which contain always just 1 item of the extreme sizes
and 2 items for the middle sizes. An example would be the lot-type (1, 2, 2, 2, 1).

A branch can be supplied by a specific number of prepackages, provided all prepack-
ages are specified by the same lot-type. (To avoid handling costs it is not allowed to
mix differing prepackages for supplying a branch.) For example supplying 2 times
Lot-type (1, 3, 2) means supplying 2 items of Size S, 6 items of Size M and 4 items of
Size L.

2.2 The Lot-type Design Problem LDP
The Lot-type Design Problem LDP was the first formulation for optimization of supply
at our industrial partner and was first presented in [GKR09].

2.2.1 Problem specification
We consider an article with a given set of sizes S. We want to supply each branch of a
set of branchesB with one lot-type from a set of lot-types L in a multiplicity from a set
of multiplicitiesM = {1, . . . ,mmax}. The lot-types are given by four parameters: the
minimum supply per lot-type and size vmin, the maximum supply per lot-type and size
vmax, the minimum supply per lot-type vlmin and the maximum supply per lot-type
vlmax. At the maximum κ different lot-types can be used for supplying the branches.
The overall supply must lie in between a lower bound I and an upper bound Ī . The
supply shall meet the dependent demand db,s, s ∈ S, b ∈ B for each branch b and size
s as good as possible.

2.2.2 Problem formulation
The LDP is formulated as follows.

Problem 1 (LDP [GKR09]).

min
∑
b∈B

∑
`∈L

∑
m∈M

distLDP
b,l,m ·xb,l,m (2.1)

subject to
∑
`∈L

∑
m∈M

xb,l,m = 1 ∀b ∈ B, (2.2)∑
`∈L

y` ≤ κ, (2.3)∑
m∈M

xb,l,m ≤ yl ∀b ∈ B, ` ∈ L, (2.4)

Ib,s =
∑
`∈L

∑
m∈M

m · `s · xb,`,m ∀b ∈ B, s ∈ S, (2.5)

I =
∑
b∈B

∑
s∈S

Ib,s, (2.6)

I ∈ [I, I], (2.7)
xb,`,m ∈ {0, 1} ∀b ∈ B, ` ∈ L,m ∈M, (2.8)

y` ∈ {0, 1} ∀` ∈ L. (2.9)
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Binary variables xb,`,m indicate if Lot-type ` is delivered to Branch b in Multiplicity
m. If this is answered by “yes” the variable takes value one, otherwise zero. The binary
variable y` takes value one if at least one branch is supplied by Lot-type `, otherwise it
takes value zero.

With Constraint (2.2) it is ensured that every branch is supplied by exactly one lot-
type in one multiplicity. Constraint (2.4) connects the variables xb,`,m and yl in such
a way that y` can take value one only if lot-type ` is delivered to at least one branch.
The adherence of the upper bound κ for the number of different lot-types is enforced
by Constraint (2.3). With the constraints (2.5) and (2.6) it is ensured that the overall
supply adheres to the lower and the upper bound; the variables Ib,s here describe the
supply for Branch b and Size s, I the overall supply and ls the number of items of Size
s in Lot-type `.

The objective coefficients distLDP
b,l,m measure the deviation between supply and de-

mand. In our case we restrict ourselves to the L1-Norm, which is also implemented at
the industrial partner. For other measurements see [GKR09]. With a demand db,s for
Size s in Branch b, see Chapter 3 for the estimation method, the objective coefficients
are given by

distLDP
b,l,m :=

∑
s∈S
|db,s −m · ls|. (2.10)

Remark 1 (Lower and upper bounds for the overall supply [GKR09]). For each prod-
uct our partner first decides on an overall capacity D before the items are distributed
to the particular branches. There are two reason why this amount is softened to the
interval I ≤ D ≤ I in Constraint (2.7):

If for example the overall capacity D for an article was prime and there were
two or more sizes for the considered product than the LDP would be infeasible. Such
from a theoretical point of view the soft bound is needed to guarantee feasibility of
the problem. The other reason is practical. Our partner does not always obtain the
ordered supply from the supplier. As a rule there is a deviation between the ordered
and the actual delivered amount. Deviations up to 5% from the ordered volume may
occur.

Remark 2 (Complexity of the LDP [GKR09]). The LDP is NP-hard. This is shown
by reducing the p-median problem on it after restricting the set of multiplicities to the
case M = {1} and adapting the lower and upper bound in Constraint (2.7) in such a
way that it is not a real restriction.

Depending on the number of sizes, allowed lot-types and multiplicities the solv-
ing process for real-world instances by using state-of-the-art solvers for mixed-integer
linear programs (MIPs) as SCIP or CPLEX can be very time-consuming (more than 5
hours) and therefore is not suitable for practical purposes. For that reason Gaul, Kurz
and Rambau implemented the so-called SFA heuristic.

2.2.3 The Score-fix-adjust heuristic
In [GKR10] the Score-fix-adjust (SFA) heuristic for the LDP was proposed. The name
of the heuristic stems from the three basic steps the heuristic consists of.

1. Score: The lot-types get scores in terms of how good they meet the demands of
the branches.
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2. Fix: For a given time period κ-subsets of the set of lot-types are traversed accord-
ing to the scoring from the previous step. For each branch the best fitting lot-type
from the considered subset and the related best fitting multiplicity is fixed.

3. Adjust: The multiplicities are adjusted to adhere to the bounds I and Ī for the
overall supply.

In the Score-step each lot-type ` gets points according to the objective coefficient
distLDP

b,l,m. This is done in the following way. For every branch b and lot-type ` first
the best fitting multiplicity m(b, `) is determined. This is the multiplicity m ∈ M for
which

∑
s∈S |db,s − m · ls| is minimal. According to

∑
s∈S |db,s − m(b, `) · ls| the

lot-types ` ∈ L are ordered decreasingly. This yields an ordering of the lot-types in
terms of how good they meet the demand of Branch b.

Starting from this for each branch the three locally best fitting lot-types can be
determined. A score of 100 to the best fitting lot-type, a score of 10 to the second best
fitting lot-type and a score of 1 to the third best fitting lot-type is added. (Of course this
can be generalized to the first t best fitting lot-types and different scoring schemes.)

In the Fix-step the best κ-subsets of lot-types – best in terms of the highest sums
of scores over all branches – are traversed. This is done for a predefined time period
trusting that the most promising selections of lot-types were checked. For the consid-
ered κ-subset L′ ⊆ L for a branch b the lot-type `′ ∈ L′ is fixed which minimizes∑
s∈S |db,s − m(b, `) · l′s|. Such, a preliminary supply policy with a corresponding

overall supply I ′ is specified. If I ′ ∈ [I, I] the supply policy is valid. Otherwise the
Adjust-step, see below, has to be performed to establish feasibility. If the supply policy
yields a smaller objective value of the LDP than the already considered ones or if it is
the first considered one, we update our best found solution correspondingly.

The Adjust-step assures the adherence of the bounds I and Ī for the overall supply.
Fixing the best fitting lot-type from the considered κ-subset with best matching mul-
tiplicity for each branch in the previous step might violate Constraint (2.7). There are
two cases of infeasibility:

1. I ′ < I

2. I ′ > Ī

In the first case supply is increased until the lower bound is met. This is done in
a greedy way: The branch for which increasing the currently fixed multiplicity by one
is valid and leads to the smallest additional costs in terms of the objective function is
determined. The multiplicity is increased by one and fixed. This procedure is iterated
unless the lower bound for the overall supply I is met.

The proceeding in the second case is similarly. Supply iteratively is reduced until
the upper bound is met. From all branches that are at least supplied with a lot-type in
multiplicity 2 we choose the branch for which decreasing the multiplicity by one leads
to the smallest additional costs.

For 36 real instances the authors performed the SFA heuristics with a computation
time of one second. This led to a mean optimality gap of 0.327% while the highest gap
amounts to 2.114%.

2.2.4 Implementation at the industrial partner
Gaul, Kurz and Rambau [GKR10] performed a preliminary study at our industrial part-
ner to evaluate if the LDP performs better than manual planning of supply. Previously,
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the branches were all supplied by the same standard lot-type as we described in Sec-
tion 2.1.

In [KRSW08] the authors could show that the size dependent demand among dif-
ferent sizes at our industrial partner actually varies and that the LDP together with their
presented demand estimation method, see Chapter 3, could increase the gross yield
about 0.85 percentage points.

Since 2006 the LDP, more precisely, the SFA heuristic is implemented at the partner
and used for nearly all fashion articles which are supplied in terms of lots.

2.3 The Stochastic Lot-type Design Problem SLDP
The former DISPO-team enhanced the LDP to the Stochastic Lot-type Design Problem,
the SLDP. The SLDP can be understood as an intermediate model between the deter-
ministic LDP and the final stochastic model ISPO integrating price optimization. In the
SLDP different scenarios with scenario probabilities and scenario dependent demands
estimated from historical data are treated. While in the LDP abstract costs in form
of the L1-norm are considered and over- and undersupply are treated the same, now
monetary asymmetric costs are imposed for the deviation between supply and demand.
With these costs the SLDP can be seen as a first step in integrating the sales process in
the size optimization. Monetary measurement now allows also to take other costs into
account. On the one hand pick costs which arise from arranging the lot-types to lots
and on the other hand lot-opening costs which arise from the fact that each additional
supplied lot-type leads to higher logistic effort.

2.3.1 Problem specification
We consider an article with a given set S of sizes. We want to deliver each branch from
a setB of branches with one lot-type from a set L of lot-types in a multiplicity from the
set M = {1, . . . ,mmax} of multiplicities. At the maximum κ different lot-types are
allowed to use for supply. For the ith supplied new lot-type from the set L lot-opening
cost δi arise . For every handgrip needed for putting together the lot-types to lots pick
cost pcost arise. The overall supply must lie in between a lower bound I and an upper
bound Ī . Now we consider a set E of different scenarios with scenario probabilites
Prob(e),∀e ∈ E. With given demands deb,s for each size s, branch b and scenario
e an oversupply is penalized by acquisiton price ap minus salvage value πpmax , an
undersupply by starting price π0 minus ap. This means that it is assumed, that each
undersupply would lead to a loss of the full starting price while each oversupplied item
can just be sold for the salvage value. The aim is to minimize the expected overall
costs, i.e. the sum of the handling costs – lot-opening and pick cost – together with the
expected costs for oversupply and undersupply. In terms of demand estimation and the
estimation of the probabilities Prob(e), e ∈ E see Chapter 3.

2.3.2 Modelling the SLDP
Before we introduce the entire model we first focus on the coefficients in the ob-
jective: The expected dependent demand db,s for Branch b and Size s is given by
db,s =

∑
e∈E Prob(e) · deb,s, where db,s equals the dependent demand in the LDP. Now

asymmetric costs for over- and undersupply are introduced. An oversupply is penal-
ized by acquisition price minus salvage value ap − πpmax

, an undersupply by starting
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price minus acquisition price π0− ap. Then the cost arising by suppling Branch b with
Lot-type ` in Multiplicity m are given by distSLDP

b,`,m which is defined as

distSLDP
b,`,m :=

∑
s∈S

(max{m·ls−db,s, 0}·(ap−πpmax
)+max{db,s−m·ls, 0}·(π0−ap)).

(2.11)
The Stochastic Lot-type Design Problem SLDP is modeled as follows:

Problem 2 (SLDP).

min
∑
b∈B

∑
`∈L

∑
m∈M

(
distSLDP

b,`,m +m · pcost
)
xb,`,m +

κ∑
i=1

δi · zi (2.12)

subject to
∑
`∈L

∑
m∈M

xb,`,m = 1 ∀b ∈ B, (2.13)∑
m∈M

xb,`,m ≤ y` ∀b ∈ B, ` ∈ L, (2.14)

∑
`∈L

y` ≤
κ∑
i=1

zi, (2.15)

zi ≤ zi−1 i = 1 . . . , κ, (2.16)

Ib,s =
∑
`∈L

∑
m∈M

m · `s · xb,`,m ∀b ∈ B, s ∈ S, (2.17)

I =
∑
b∈B

∑
s∈S

Ib,s, (2.18)

I ∈ [I, I], (2.19)
xb,`,m ∈ {0, 1} ∀b ∈ B, ` ∈ L,m ∈M, (2.20)

y` ∈ {0, 1} ∀` ∈ L, (2.21)
zi ∈ {0, 1} i = 1, . . . , κ. (2.22)

Most constraints are similar to the ones of the LDP. At this point we explain only
the differences and refer the reader to Problem 1.

To take handling costs into account we introduce the binary variables zi, i = 1 . . . , κ
which indicate if at least i different lot-types are opened. Constraint (2.15) links the
variables zi with yl. By Constraint (2.16) it is ensured that zi can take value one only
if zi−1 also does. The additional costs for opening new lot-types are added in the ob-
jective function and for every delivered lot pick costs m · pcost arise in addition to the
costs for over- and undersupply (2.12).

Corollary 1 (Complexity of the SLDP). The SLDP is NP-hard.

Proof. If we set δi to zero for i = 1, . . . , κ in the SLDP, we obtain an LDP with
changed objective coefficients because the constraints (2.15) and (2.16) in this case
are equivalent to Constraint (2.3). That means, we can reduce the LDP in polynomial
time to the SLDP. Because the LDP is NP-hard – as stated in Remark 2 – the SLDP is,
too.
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2.3.3 Solving the SLDP by the LDP
The SLDP simplifies to an LDP if we set all lot-opening costs to zero. We now show
that in similar way we are able to determine the optimal solution of the SLDP as the
best solution resulting from solving κ LDPs.

For i = 1, . . . , κ we consider the following formulation of the LDP.

Problem 3 (LDP(i)).

min
∑
b∈B

∑
`∈L

∑
m∈M

(
distSLDP

b,`,m +m · pcost
)
xb,`,m (2.23)

subject to
∑
`∈L

∑
m∈M

xb,l,m = 1 ∀b ∈ B, (2.24)∑
`∈L

y` ≤ i, (2.25)∑
m∈M

xb,l,m ≤ yl ∀b ∈ B, ` ∈ L, (2.26)

Ib,s =
∑
`∈L

∑
m∈M

m · `s · xb,`,m ∀b ∈ B, s ∈ S, (2.27)

I =
∑
b∈B

∑
s∈S

Ib,s, (2.28)

I ∈ [I, I], (2.29)
xb,`,m ∈ {0, 1} ∀b ∈ B, ` ∈ L,m ∈M, (2.30)

y` ∈ {0, 1} ∀` ∈ L. (2.31)

The LDP(i) is an LDP with the restriction that at most i instead of κ different lot-
types are allowed for supply, Constraint (2.25). The coefficients of the variables xb,`,m
in the objective function are these from the SLDP. Opening-costs for new lot-types are
not regarded.

Having solved the LPD(i) with the optimal solution (x∗(i), y∗(i)) we can compute
the corresponding overall opening costs by adding∑

`∈L y
∗
` (i)∑

j=1

δj

to the optimal objective value z∗LDP(i). Thus, by solving the LDP(i) for each 1 ≤
i ≤ κ separately we obtain the optimal supply for each possible allowed number of
different lot-types. Adding the opening costs to the related objective value yields the
optimal objective value of the SLDP. The LDP(i) for which the objective value plus
the corresponding opening costs is minimal among 1 ≤ i ≤ κ then yields the optimal
solution of the SLDP.

Theorem 1 (Deducing the optimal solution of the SLDP from the LDP). With z∗LDP(i)

we denote the optimal objective value of the LDP(i). The corresponding optimal so-
lutions are denoted by x∗(i) and y∗(i). With z∗SLDP we denote the optimal objective
value of the SLDP and with x∗, y∗ and z∗ the related values of the variables. We define

i∗ := arg min
i=1,...,κ

z∗LDP(i) +

∑
`∈L y

∗
` (i)∑

j=1

δj

 . (2.32)
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Then the optimal objective function value of the SLDP is given by

z∗SLDP = z∗LDP(i∗) +

∑
`∈L y

∗
` (i∗)∑

j=1

δj . (2.33)

It is x∗ = x∗(i∗), y∗ = y∗(i∗) and z∗j = 1 for j = 1, . . . ,
∑
`∈L y

∗
` (i∗) and z∗j = 0 for∑

`∈L y
∗
` (i∗) < j ≤ κ.

Proof. It is i+ the number of used lot-type according to the optimal solution of the
SLDP. If we would set κ = i+ in the SLDP this would yield the same optimal solution.
We call the SLDP restricted to maximal κ = i+ different lot-types SLDP(i+). The cor-
responding optimal objective value is denoted by z∗SLDP(i+). The LDP(i+) yields a sup-

ply x∗(i+) that minimizes
∑
b∈B

∑
`∈L

∑
m∈M

(
distSLDP

b,`,m +m · pcost
)
x∗(i+)b,`,m

for maximal i+ different lot-types not regarding lot-opening costs. Because the zi and
the lot-opening costs are independent from the selected lot-types and depend only on
the number of them the LDP(i+) yields the same optimal solutions in terms of the
supply than the SLDP(i+). To obtain the same solution we could set the lot-opening
costs δi in the SLDP(i+) to zero, compute the optimal supply and later on add the costs
δi for the i+ used lot-types. This is the same as solving the LDP(i+) and adding the
corresponding lot-opening costs. Overall that means

z∗SLDP = z∗SLDP(i+) = z∗LDP(i+) +

∑
`∈L y

∗
l (i+)∑

j=1

δj .

It is z∗SLDP ≥ z∗LDP(i) +
∑∑

`∈L y`(i
∗)

j=1 δj for all i = 1, . . . , κ, i 6= i+. Otherwise the
SLDP would yield an optimal solution with less or more than i+ lot-types.

By setting i∗ = i+ the claim follows.

Remark 3. In order to compute the optimal solution of the SLDP we propose to solve
the LDP(i)s in ordering i = κ, . . . , 1. If the LDP(i) yielded a supply policy with just
i− < i lot-types we would not have to solve the LDP(j) for i− ≤ j < i. The LDP(j)s
would yield the same optimal solution as the LDP(i). So traversing the LDP(i)s in
order i = κ, . . . , 1 may reduce the computational effort.

By reducing the SLDP to the LDP now it is possible to apply solving methods for
the LDP – as the described SFA heuristic – to the SLDP. Later on, in Chapter 9, we
will mention how this property can be exploited when solving the Integrated Size and
Price Optimization Problem ISPO which is discussed in Chapter 6.

2.3.4 A column generation approach
In [KKR11a] an exact column generation approach for the LDP is presented by the
DISPO-team. The approach is guided by two main ideas1.

• Considering the restricted master problem (RMP) with only a subset L′ ⊂ L of
lot-types

1For further information about column generation we refer the reader to [LD05],[LD11] or [Lüb10]
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• Solving the LDP for the most promising subset of lot-types L̄ ⊆ L′ exactly

We will sketch the main parts of the approach. For further details we refer the reader
to [KKR11a].

A restricted master problem RMP of the LP relaxation of the LDP is considered.
The only difference to the LP relaxation is that only a subset of the lot-types are con-
sidered. Thus, because the optimal solution may not be contained, the restricted master
problem yields an upper bound for the LP relaxation of the original problem.

1. At first, a starting solution (x∗, y∗) of the LDP is determined. This can be done
via an adapted version of the SFA heuristic. The used lot-types, i.e. lot-types
with y∗` = 1 then are added to the initial subset L′ of lot-types. Additionally the
three best fitting lot-types for each branch – as they result from the score-step of
the SFA-heuristic, see 2.2.3 – are added to L′. The lot-types from the set L′ are
the only lot-types that are considered in the RMP at the beginning.

2. With (xRMP, yRMP) we denote the optimal solution of the RMP. The set of most
promising lot-types L̄ is the subset of all lot-types from the set L′ with yRMP

l ≥ ε
where ε is a small constant, for example ε = 0.15. If the optimal objective value
of the RMP is smaller than the objective value of the current best integer solution
(x∗, y∗) the LDP restricted to L̄ is solved exactly and possibly the currently best
integer solution (x∗, y∗) is updated. (If the RMP yields an optimal value higher
than the to (x∗, y∗) corresponding objective value the set L′ cannot contain the
optimal subset of lot-types. Because the RMP is a relaxation of the LDP that
contains only the lot-types L′ the optimal objective value is a lower bound for
the LDP restricted to the set L′ of lot-types. Such, we are not able to obtain
a better integer solution than (x∗, y∗) by only regarding the lot-types from the
set L′.) Cover cuts are added to the RMP to forbid that the optimal solution of
the RMP yields L̄ as the set of most promising lot-types again. This implies a
branching on the set L̄ and the rest of lot-types L′ currently considered in the
RMP.

3. Whenever the optimal function value of the RMP is higher than or equals the
objective value of the current best solution (x∗, y∗) the pricing step is performed
in which – if possible – new lot-types are added to the RMP – i.e. L′ is updated
and the RMP is solved again and so on. Whenever the optimal objective function
value of the RMP is smaller than the to (x∗, y∗) related objective function value
of the LDP, then we update the subset of most promising lot-types L′ and branch
on this subset, i.e. perform Step 2. If the optimal objective function value of the
RMP exceeds or equals the objective value of the LDP corresponding to (x∗, y∗)
and no more lot-types are/can be added to the RMP than we end up at this point
and return (x∗, y∗) as optimal solution.

The results in [GKR09] show that for real-world instances the maximum amount
of time for solving can be reduced from 36 minutes to 4 seconds. Even very large
instances – for which state-of-the-art MIP solvers fail – can be solved in less than 16
minutes.

2.4 Reasons for integrating price optimization
The introduction of monetary costs in Problem 2 is a first step in integrating the sales
process in the size optimization. But by penalizing oversupply with acquisition price
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minus salvage value we assume that each oversupplied item cannot be sold during the
regular selling time and only during sellout. The penalization of undersupply implicitly
assumes that if an additional item of the related size to the related branch had been
supplied, it could have been sold for the full starting price.

But this does not describe the situation at our industrial partner correctly: If an
article is a bad seller prices are marked down during the sales process hoping that more
than the salvage value can be earned for the left over items. Therefore the formulation
of the costs accrued by oversupply are very vague. If our partner performs a mark-
down for a product it happens in all branches and sizes simultaneously in the same
way. Thus, particular branches and sizes in which the article is possibly a good seller
are not explicitly regarded. What counts is to maximize the overall revenue over all
branches and sizes. Therefore an undersupply for one particular branch and size would
not always lead to a loss of the full sales price as it is assumed in the formulation of the
objective of the SLDP.

Hence, the conclusion is to integrate the possibility of mark-downs during the sales
process already in the decision on the supply policy.

2.5 Price optimization
The former DISPO-team performed price optimization on its own before we linked it
to the size optimization process. We specify the problem in Subsection 2.5.1 and state
the mixed-integer linear program POP in Subsection 4.1.1. Specialties regarding this
formulation are treated in Subsection 2.5.3. In Subsection 2.5.4 we go into the practical
application of price optimization – price optimization with receding horizon, POP-RH.

2.5.1 Problem specification
An instance of the Price Optimization Problem POP consists of a setP = {0, . . . , pmax}
of price indices with related decreasing positive prices πp, p ∈ P . The price π0 is the
starting price, πpmax

the salvage value.
Moreover a set K = {0, . . . , kmax} of sales periods is given with kmax being the

sellout period. We call the periods k = 0, . . . , kmax− 1 the real sales periods. A value
ρ > 0 for discounting during the sales process is given. For the first kobs observation
periods no mark-downs are allowed. In the sellout period kmax all remaining items are
sold for the salvage value.

We consider a set B of branches and a set S of sizes with an initial stock Ib,s for
each size s in each branch b.

For every scenario e from a set of scenarios E the dependent demand for each size
s in each branch b for each price to the related price index p < pmax in each real sales
period k is given by dek,p,b,s.

Our task is to allocate a price to each period so that the prices are non-increasing
during the sales process and the expected revenue over the scenarios is maximized.

2.5.2 Problem formulation
The former DISPO-team stated the Price Optimization Problem as follows.
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Problem 4 (The Price Optimization Problem (POP)).

maxEe∈E
∑
k∈K

exp(−ρk)
(∑
b∈B

∑
s∈S

rek,b,s

)
(2.34)

∑
p∈P

uek,p = 1 ∀k ∈ K, e ∈ E, (2.35)

uek,0 = 1 ∀k ∈ K : k < kobs, e ∈ E, (2.36)

uekmax,pmax
= 1 ∀e ∈ E, (2.37)

uek−1,p1
+ uek,p2

≤ 1 ∀k ∈ K : k > 0, p1, p2 ∈ P : p2 < p1, e ∈ E, (2.38)

ve0,b,s = Ib,s ∀b ∈ B, s ∈ S, e ∈ E, (2.39)

vek−1,b,s − vek,b,s =
∑
p∈P

wek−1,b,s,p ∀k ∈ K : k > 0, b ∈ B, s ∈ S, e ∈ E, (2.40)

∑
p∈P

wek,b,s,p ≤ vek,b,s ∀k ∈ K, b ∈ B, s ∈ S, e ∈ E, (2.41)

wek,b,s,p ≤ uek,p · dêk,p,b,s
∀k ∈ K : k < kmax, b ∈ B, s ∈ S, p ∈ P : p < pmax, e ∈ E,

(2.42)

wekmax,b,s,pmax
= vekmax,b,s ∀b ∈ B, s ∈ S, e ∈ E, (2.43)

rek,b,s =
∑
p∈P

πp · wek,b,s,p ∀k ∈ K, b ∈ B, s ∈ S, e ∈ E, (2.44)

uek,p ∈ {0, 1} ∀k ∈ K, p ∈ P, e ∈ E, (2.45)

wek,b,s,p ≥ 0 ∀k ∈ K, b ∈ B, s ∈ S, p ∈ P, e ∈ E, (2.46)

vek,b,s ≥ 0 ∀k ∈ K, b ∈ B, s ∈ S, e ∈ E, (2.47)

rek,b,s ≥ 0 ∀k ∈ K, b ∈ B, s ∈ S, e ∈ E. (2.48)

The binary variable uek,p indicates if the to Price index p related price is allocated
to Period k for Scenario e. If this is the case the variable takes value one, otherwise
value zero. Equation (2.35) enforces the assignment of exactly one price/price index
p to each period. For a given number of periods kobs from the beginning of the sales
process the starting price is enforced by Equation (2.36). In the last period – the sell-
out – the salvage value is fixed by Equation (2.37). We forbid increasing prices by
Equation (2.38). The following restrictions model the dynamics of the sales process
using some dependent variables. The fractional variable vek,b,s specifies the scenario
dependent stock level in Period k in Branch b for Size s. The initial stock per branch
b and size s is given by the corresponding supply Ib,s – which in this case is a param-
eter (2.39). The fractional variable wêk,b,s,p measures the scenario dependent sales in
Period k in Branch b for Size s for the price with index p. Equation (2.40) describes
the change of stock levels from one period to another. Inequality (2.41) models that
there can be no more sales than stock, and in Inequality (2.42) we require that, only
if the price with Price index p is chosen, there can be sales at the Price index p of at
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most the demand at Price index p. Because the objective favors larger sales, the sales
variables at a price in an optimal solution will become exactly the minimum of stock
and demand at that price. Finally, we capture by Equation (2.44) the yield in terms of
money. Only the independent price assignment variables need to be binary (2.45). The
dependent variables capturing the dynamics of stocks, sales, and yields are required
to be nonnegative in (2.46) through (2.48). Our objective is to maximize the expected
revenue.

2.5.3 Justificating the problem formulation
In the problem formulation of the POP fractional sales and stocks are considered. In
the most cases for an article we can observe no sales per week, branch and size.2 In
consequence of this our demand estimation – see Chapter 3 – yields mean demands
that mostly lie in between zero and one. Therefore in POP the sales and stock variables
also describe fractional mean sales and stocks.

In POP a set of scenarios E is considered. A scenario from the set E refers to
the whole selling time for the considered product and does not change over time. The
former DISPO-team considered the scenarios

E = {“low seller”, “normal seller”, “high seller”}.

One could think about formulating price optimization as a so-called multi-stage
problem where the scenario changes over time according to the observed sales. One
could also think about including more than three scenarios. By a finer partitioning of
the set of scenarios the problem formulation of the POP would get much more com-
plicated. Moreover our data basis for estimation – transaction data of one commodity
group for a time frame of about a year – is too small to consider larger sets of scenarios.
The samples for the particular scenarios would be to small for a reasonable estimation.
Later on, in Chapter 10 we will see that demand estimation for ISPO is very vague.
There are high deviations among products from the same sample. We can not make
a point of an potential improvement of considering more recourse stages or more sce-
narios with only inaccurate estimations of demand. It is questionable if the potential
improvement would justify a complication of the model.

As an alternative to a multi-stage formulation and to profit from current sales figures
a different proceeding presented in the next subsection was applied.

2.5.4 Price optimization with receding horizon – POP-RH
Price optimization is performed similarly to a closed-loop process with a receding hori-
zon. After an observation time of kobs periods, the price optimization process starts
with the knowledge about the scenario in effect deduced from current sales figures.
The scenario in terms of the sales figures is updated after each period, see Chapter 3,
3.2.6 for details, and in Sales period k the Price Optimization Problem for the set
K = {k + 1, . . . , kmax} of periods, and E containing only the scenario in effect, is
solved again. This proceeding is similar to model predictive control as a special field of
dynamic programming, see for example [Ber05] or [GPM89]. In the context of smaller
field studies the former DISPO-team solved the particular models per period (week in
the case of application) by state-of-the-art MIP solvers. In Chapter 4 we will see that
the typical computation time for a standard selling time of 13 periods with CPLEX

2see for example Table 3.4.1 in Chapter 3



CHAPTER 2. HISTORICAL PROGRESS 18

amounts more than 8 hours. This is too slow for practical use where for more than
4000 products within two days about mark-downs has to be decided.

2.6 Integrated size and price optimization
We adopt the proceeding of the former DISPO-team and prefer a so-called two-stage
instead of a multi-stage model for integrated size and price optimization. In the first
stage we decide on a supply and in the second stage according to the scenario in effect
price optimization is performed.

An important aspect – also for the already presented models – is the estimation of
demand. We use an empirical method which was developed by the former DISPO-
team. It is topic of the next chapter.

To benefit from all current information we apply price optimization in the same way
as described above after we determined the optimal supply with our integrated model.
Thus, our decision support system for integrated size and price optimization DISPO
consists of two parts. One is to solve ISPO one time and supply the branches according
to the solution. The other one is to perform price optimization with receding horizon
POP-RH every sales period again. Therefore, we have to develop faster approaches
for price optimization. In Chapter 4 we treat price optimization as it takes part in
DISPO in detail and present a dynamic programming approach for fixed supply before
we present the Integrated Price and Size Optimization Problem (ISPO) in Chapter 6.
The remainder of the thesis is devoted to the exact and heuristic solution of ISPO and
real-world experiments in terms of DISPO.



Chapter 3

Demand estimation

An important aspect of DISPO is the estimation of the dependent demand. There are
some special features about the situation at our industrial partner which have to be
regarded. The considered fashion products are only sold once and are never offered
again. Thus, historic sales data can only be used on a higher aggregation level, e.g.,
the average historic demand at a price in a sales week on the commodity group level.
The number of sales also depends from the popularity of the observed products. The
demand estimation method should handle this aspect.

Since the supplies per branch and size of a single product are zero, one, or two
in most cases, we can expect that historic sales data will only give us very coarse
information. Only sales can be observed and not the real demand. If a size is sold
out in a branch we do not know if the actual demand for this size in this branch was
higher than the observed sales. This kind of data is also called right-censored. The
additional sales that would have occurred if the corresponding supply had been higher
in literature are known as lost sales. References can be found in Section 3.1. Here
we also state some estimation approaches from literature and outline the applicability
on our situation. We present an empirical estimation approach for DISPO developed
by the former DISPO-team in Section 3.2. A parametric approach, logistic regression
together with maximum likelihood estimation is outlined in Section 3.3. We present a
logistic regression model for demand estimation for DISPO in Section 3.4 and compare
it to the empirical estimation method in Section 3.5.

3.1 Literature review
The most common approach for estimating dependencies of a dependent variable from
one or more independent variables is linear regression, see for example [Har10].

According to Breen [Bre96] there are two different procedures to handle with cen-
sored data. One is to omit all data which might be censored and then to apply linear
regression. The other one is to estimate the censored data. A common approach to
do this for metric data is the so-called tobit model, invented by James Tobin [Tob58],
where it is assumed that the censoring-point for each observation is equal. Tobit re-
gression is a special case of the so-called censored regression. Here each observation
might be censored at a different point. The models are commonly estimated via maxi-
mum likelihood estimation.

In [VvRR12] Vulcano et al. use the so-called expectation-maximization method

19
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(EM method) to estimate the demand for a product with right-censored sales data. The
EM method in general was first proposed by Dempster et al. [DLR77] to estimate
dependencies on the basis of incomplete observations. The basic idea of the EM-
algorithm is the following: By starting with an initial model alternately the missing
observations according to the given data and the current model parameters are esti-
mated and the parameters are adapted (maximization) via maximum likelihood estima-
tion. Vulcano et al. in the expectation step estimate primary (or first choice) demand.
This is the actual demand, while the sales are only incomplete observations of primary
demand. The primary demand is estimated by assuming that the arrivals of the cus-
tomers are Poisson-distributed over time. If a customer wants to buy a product there
are two possibilities: Either the product is available then he will buy it or it is not. If
the product is not available he might buy a similar product either at the same provider
at a competitor. This happens according to a so-called market share which is given as
input of the algorithm.

In the maximization step the estimated primary demand is used to estimate the
parameters in terms of preference values for the observed products via maximum like-
lihood estimation.

A similar approach also using the EM-algorithm with Poisson-distributed arrivals
is outlined in [ADG98].

Huh et al. [HLRO11] applied the so-called Kaplan-Meier Estimator, see for ex-
ample [ABG10], to stochastic inventory control problems with censored demand to
decide on the time items have to be reordered. The Kaplan-Meier estimator – also
product limit estimator – is an approach from survival analysis. The non-parametric
approach examines how long the observed individuals stay in a state.

It is often applied in medial resarch where the question is: “Does the patient survive
or will he die?” The probability S(t) that a member has a life time exceeding t is
considered. For a sample with size N the observed times ti until death are ordered
increasingly. The probability of surviving ti days can be seen as the probability of
surviving day ti after living ti−1 days multiplied by the chance of surviving ti−1 days.
Thus, S(t) is given by S(t) :=

∏
ti<t

ni−di
ni

where di is the number of deaths at time
i and ni the number of survivors at the end of ti−1.

A special estimation method for binary response is logistic regression. While linear
regression might lead to outcomes that can be negative or higher than one, logistic
regression measures the probability for outcome one or zero. The dependent variables
are transformed to the so-called odds. The odds describes the relation of the probability
that the event happens to the probability that it does not – the odds can only take values
higher than zero. By taking the logarithm the odds is transformed to the so-called logit.
As a linear function of the independent variables with a range between −∞ and +∞
it is commonly estimated by maximum likelihood estimation.

A similar model is the so-called probit model, see for example [Rya08]. It distin-
guishes from logistic regression by the assumption is that the error is normally dis-
tributed. For the logistic model we assume a distribution according to the so-called
logistic function. Both models belong to the class of the so-called generalized linear
models. In contrast to ordinary linear regression models generalized models do not
assume that the residuals are normally distributed. Both can be extended for ordinal
data. For logistic regression we will outline this later on. For further information about
generalized linear models and maximum likelihood estimation see for example [Har10]
or [Rya08].

We did not find any general comparison of logistic and probit regression in litera-
ture.
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Applicability
To omit right-censored data in our case is not possible. Because the most sizes per
branch are supplied by maximal one or two items and nearly all observations are right-
censored this would lead to a tiny sample which could not serve as basis for demand
estimation whatsoever. Thus, we have to deal with censored observations.

For our right-censored and ordinal data linear regression as mentioned above is
not suitable. Ordinary linear regression may lead to negative values for the depen-
dent variable, i.e. in our case the demand. Because the supply and consequently the
censoring-point for each size and branch differs the tobit model is not an alternative,
rather a general censored regression model. But also this is not conceived for integer
numbers of outcomes.

The EM approach by Vulcano et al. described above in principle appears promising.
However, the approach needs a set of comparable products as input. One could consider
all items of the same commodity group or sub commodity group as comparable but
this is not the case. The articles differ in color, fashion, etc. and most important
price. But even if our industrial partner could commit us lists of comparable products
there would be another difficulty: Because there is no reordering of products and the
products have different sales starts we have to regard that the list of comparable articles
may change over time. Moreover, incomparability caused by mark-downs would have
to be regarded.

The Kaplan-Meier approach as applied in [HLRO11] can not directly be adopted.
In our situation the items are not reordered. So far, we did not see how the method could
be adapted to our situation where we also have to include the possibility of mark-downs
during the selling time.

From all mentioned methods from literature the for us most promising approach
is the ordinal logistic regression model. This can explicitly deal with small integer
outcomes. Moreover we can include price dependencies and dependencies in terms
of the popularity of the observed product. By including the current stock as indepen-
dent variable we estimate sales not demand and have not to deal with right-censored
observations.

3.2 Empirical estimation
All models and results in this thesis are based on an empirical demand estimation de-
veloped by the former DISPO-team. Parts of this method were already implemented to
estimate the demand in terms of the LDP the SLDP and the Price Optimization Problem
POP.

Because there are no publications including a detailed description we outline the
method at this point.

The overall demand D is considered as an exogenous quantity.1

The estimator circumvents the difficulties arising from varying popularity among
different articles by considering the conditional probability that – if an item is sold –
this happens in Branch b and Size s. The conditional probability is also called the mean
amount of demand δb,s for Branch b and Size s.

Additionally we consider the mean amount of demand δb for Branch b. It is the
conditional probability that if an item is sold this happens in Branch b.

1This coincides with the proceeding at our industrial partner. Before the supply according to lots takes
place, the purchaser decides on the overall number D of supplied items.
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With these quantities the fractional mean demand db,s per branch b and size s for
the sets B of branches and S of sizes is computed. We outline the approach in Subsec-
tion 3.2.1. We show how to include the set E of scenarios in Subsection 3.2.2 before
we split up db,s to the sales periods – in our case weeks – K \ {kmax} and include
price dependency for the price indices P \ {pmax} in the subsections 3.2.3 and 3.2.4.
In Subsection 3.2.5 we combine the single estimates to arrive at the estimate we use
for DISPO. Concluding, in Subsection 3.2.6, we describe how to adapt the demand
estimation according to a scenario in effect, as it is the case when we perform price
optimization with receding horizon.

Demand is always estimated by pooling observations from products from the same
commodity group. A smaller division for example to sub commodity groups in our
case would lead to an insufficient amount of data. Commodity groups are for example
“women overgarments classic” or “women overgarments fashion” or “men trousers”.

3.2.1 Relative demand estimation
To exclude the influence of the popularity of the different articles and also to reduce the
influence of lost-sales we consider sales just until the day when 50% of the observed
product’s overall supply (over all branches and sizes) is sold. The advantage of doing
so is that we obtain a measurement of the sales speed for different sizes and branches.
If we considered the complete selling time per article varying behavior among branches
and sizes – because due to mark-downs nearly all items would be sold out – would not
longer be recognizable.

For article a ∈ A we denote the amount of sales (over all branches and sizes) until
the point in time when 50% of the overall supply for a are sold by sal50 a. The amount
of sales for Branch b for the same time frame is denoted by sal50 ab and for Branch b
and Size s by sal50 ab,s.

Whenever in this subsection we talk about sales we refer always to the point in time
until 50% of the supplied items of the considered article are sold.

We define with

δ̂ab :=
sal50 ab
sal50 a

· |B| (3.1)

the scaled relative demand for branch b for Article a – scaled in such a way that the
mean of δ̂ab for Article a over all branches from the set B takes value one. Because
not every observed product may be delivered to all branches this scaling is necessary
to guarantee comparability of the observations.

With

δ̃b :=

∑
a∈A δ̂

a
b

|A|
(3.2)

we define the mean relative demand for Branch b in terms of the set of articles A.
The mean amount of demand δb for Branch b is given by the relative frequency

δb :=
δ̃b∑

b′∈B δ̃b′
. (3.3)

Analogously we define the scaled relative demand for Size s in Branch b for Article
a by

δ̂ab,s :=
sal50 ab,s
sal50 ab

· |S| (3.4)
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and the mean relative demand for Size s in Branch b for the set of articles A by

δ̃b,s :=

∑
a∈A δ̂

a
b,s

|A|
. (3.5)

The mean amount of demand δb,s for Branch b and Size s is given by

δb,s :=
δ̃b,s∑

s′∈S δ̃b,s′
. (3.6)

Finally, the mean demand db,s for Branch b and Size s by

db,s = D · δb · δb,s. (3.7)

That means we split up the estimated overall supply D to the particular sizes and
branches in terms of the observed relative frequencies of sales.

Example 1 (relative demand estimation). We want to illustrate the approach on a small
example. We assume observations of sales according to the third column of the fol-
lowing table. We consider the case of three different observed articles and branches
B = {b1, b2, b3}. The scaled relative demands per Article a and Branch b are stated in
the last column.

a b sal50ab δ̂ab

a1 b1 6 1.50
a1 b2 2 0.50
a1 b3 4 1.00
a2 b1 3 1.00
a2 b2 4 1.33
a2 b3 2 0.66
a3 b1 2 0.86
a3 b2 2 0.86
a3 b3 3 1.29

In the next table in the second column we stated the mean relative demands per branch
in terms of the setA of observed articles. In the third columns the corresponding mean
amounts of demand are stated.

b δ̃b δb

b1 1.12 0.37
b2 0.90 0.30
b3 0.97 0.33

In the following table in the second column the sales per article for the particular
branches and sizes s1, s2, s3, s4 are stated. The corresponding scaled relative demands
are stated in the fourth column.

a b (sal50ab,s1
, sal50ab,s2

, sal50ab,s3
, sal50ab,s4

) (δ̂ab,s1
, δ̂ab,s2

, δ̂ab,s3
, δ̂ab,s4

)

a1 b1 (2,2,2,0) (1.33,1.33,1.33,0.00)
a1 b2 (1,1,0,0) (2.00,2.00,0.00,0.00)
a1 b3 (0,2,2,0) (0.00,2.00,2.00,0.00)
a2 b1 (1,2,0,0) (1.33,2.67,0.00,0.00)
a2 b2 (1,1,1,1) (1.00,1.00,1.00,1.00)
a2 b3 (1,0,1,0) (2.00,0.00,2.00,0.00)
a3 b1 (1,1,0,0) (2.00,2.00,0.00,0.00)
a3 b2 (0,1,1,0) (0.00,2.00,2.00,0.00)
a3 b3 (0,2,1,0) (0.00,2.67,1.33,0.00)

The mean relative demands per branch and size are stated in the next table in the second
column. In the third column the mean amount of demand per branch and size is stated.
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b (δ̃b,s1 , δ̃b,s2 , δ̃b,s3 , δ̃b,s4 ) (δb,s1 , δb,s2 , δb,s3 , δb,s4 )

b1 (1.55,2.00,0.44,0.00) (0.39,0.50,0.11,0.00)
b2 (1.00,1.67,1.00,0.33) (0.25,0.42,0.25,0.08)
b3 (0.67,1.56,1.78,0.00) (0.17,0.39,0.44,0.00)

On the basis of these computations for a given estimated overall supply of D = 20 we
compute the mean demand db,s per branch and size: For example, the mean demand
for Size s1 in Branch b1 is given by db,s = 20 · 0.37 · 0.39 = 2.89. The mean demands
for all branches and sizes are stated in the following table.

b (db,s1 , db,s2 , db,s3 , db,s4 )

b1 (2.89,3.70,0.81,0.00)
b2 (1.50,2.52,1.50,0.48)
b3 (1.12,2.57,2.90,0.00)

3.2.2 Regarding different scenarios
As a next step we include the consideration of different scenarios. The resulting mean
demand deb,s per branch b, size s and scenario e is applied in the SLDP, see Section 2.3.

Additionally we estimate the scenario probabilities Prob(e) which are applied in
the SLDP and DISPO.

At first we determine the realized scenario for each observed article a ∈ A. We ob-
serve sales until two weeks after sales start. For article a ∈ A the number of these sales
over all branches and sizes is given by sal2 a and the supply by sup2 a. The relation
rel2 a = sal2a

sup2a ∈ [0, 1] then indicates the popularity of the article. It is rel2 a = 0 if no
item is sold in the first two weeks and rel2 a = 1 if all items are already sold out after
two weeks. We categorize three different scenarios as they are stated in the following
table.

rel2a e

< 0.33 low seller
≥ 0.33,≤ 0.66 normal seller

> 0.66 high seller

The scenario probabilities Prob(e) are given by the relative frequencies of the ob-
served scenario in the historical data.

Now we determine how the demand for the low and the high scenario behaves
against the normal scenario. This is done the following way:

We categorize the set of articles A by their scenarios.
For every scenario e ∈ {low seller, normal seller, high seller} thus we obtain a set

Ae. The sales until 3 months after sales start for each article over all supplied branches
and sizes are given by sala, the supply by supa. The mean relative sales rele over all
articles for one particular scenario e are given by

rele :=

∑
a∈Ae

sala

supa

|Ae|
. (3.8)

We compute the change of demand df e for scenario e as

df e :=
rele

relnormal seller (3.9)

Thus, df = 1 for the normal seller scenario.
The mean demand for Scenario e, Branch b and Size s is given as
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deb,s := df e · db,s. (3.10)

3.2.3 Splitting up the demand to sales periods
The next step is to split up the demand to the sales periods. This is done by estimating
sales rates from the historical data for all periods – in our case weeks. With salak we
denote the number of sales for Article a over all branches and sizes in Period k. We
denote with stoak the overall stock for Article a at the beginning of Period k. For Period
k the relative sales per period rsak for Article a are given by

rsak :=
salak
stoak

. (3.11)

The mean relative sales per period rsak for Period k are given by

rsk :=

∑
a∈A rsak
|A|

. (3.12)

The value rsk equals the mean relative amount of sold items depending on the stock
at the beginning of Period k. We now convert the rsk, k = 1, . . . , kmax − 1 to a factor
which describes the amount of sold pieces per size and branch depending on the supply.

We compute this factor, we call it the sales rate per period srk for Period k, by
Algorithm 1.

Algorithm 1 Sales rates per period
Require: mean relative sales rsk, k ∈ K \ {kmax}
Ensure: sales rate srk, k ∈ K \ {kmax}

1: init sum = 0
2: init stock = 1
3: for all k = 0, . . . , kmax − 1 do
4: nr = rsk · stock
5: s̃rk = nr
6: stock = stock − nr
7: end for
8: for all k ∈ K \ {kmax} do
9: srk = s̃rk∑

j∈K s̃rk

10: end for

In the for-loop in Step 3 of Algorithm 1 the percentage remaining stock (beginning
with a stock of one item or 100%) is computed according to the mean relative sales.
From the current stock and the mean relative sales the values s̃rk arises. In Step 9 of
the algorithm the values srk are computed by scaling the values s̃rk in such a way that
the sum over all resulting srk takes value one.

Example 2 (sales rates). In this example we assume kmax = 4 that means 4 real sales
periods. We assume that the historical data yields mean relative sales as they are stated
below.

k 0 1 2 3
rsk 0.5 0.7 0.2 0.4
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Now we apply Algorithm 1. At first stock is set to value one. In Period 0 according
to rs0 we sell 50% of the current stock or 0.5 items. The updated stock is set to 0.5
and s̃r0 = 0.5. In Period 1 we start with a stock of 0.5. With rs1 = 0.7, we assume
that 70% of the current stock that means 0.35 items are sold. This yields a new stock
of 0.15. It is s̃r1 = 0.35. We proceed analogously for the last two periods and obtain
s̃r2 = 0.03 and s̃r3 = 0.048.

We scale the values s̃rk according to Step 9 of Algorithm 1 and obtain the results
stated in the following table.

k 0 1 2 3
srk 0.539 0.377 0.032 0.052

3.2.4 Price-dependent demand
An important factor in terms of our demand estimation is the influence of the sales
price.

To estimate the impact of a mark-down in week k from price πp1
to πp2

with
p2 > p1 the relative sales per week, as defined in the last subsection, for an observed ar-
ticle a in the week before the mark-down rsak−1 and in the week of the mark-down rsak
are compared. The observed increase of sales is given by the factor ˜elas

a

πp1→πp2
=

rsak
rsak−1

.
With noπp1→πp2 beeing the number of articles for which a mark-down from πp1

to πp2

was observed, the mean elasticity elasπp1→πp2
is given by

∑
a∈A

˜elas
a
πp1
→πp2

noπp1
→πp2

.

3.2.5 Combining the estimated factors
The scenario-, time- and price-dependent demand for a product with starting price π0

for branch b and size s given by

dek,b,s,p = db,s · df e · srk ·
∏

p′∈P :p′≤p

elasπ0→πp′ . (3.13)

3.2.6 Updating the scenario
In the approach POP-RH, see Subsection 2.5.4, we use latest sales figures to determine
the scenario in effect. Before we perform POP-RH to adapt our mark-down policy for
the subsequent periods we update demand estimation by adapting the factor for the
change of demand from Subsection 3.2.2. This is done by comparing predicted overall
sales with realized overall sales. It is salobsk the amount of sales over all branches and
sizes for the last period k. The amount of predicted sales over all branches and sizes
for Period k is given by salrealk . Then our updated change of demand df ek is given by

df ek =
salobsk
salrealk

.
We compute the dependent demands for the next period k + 1 by

dekk+1,b,s,p = db,s · df ek · srk+1 ·
∏

p′∈P :p′≤p

elasπp0
→πp′ . (3.14)
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3.3 Logistic regression
With the aim to compare the empirical estimation method outlined in the last chapter
with a more common parametric approach we performed ordinal logistic regression.
In Subsection 3.3.1 we outline the basic concepts of maximum likelihood estimation
– this is the common approach to estimate logistic regression models. We introduce
binary logistic regression in Subsection 3.3.2 before we extend it to ordinary logistic
regression in Subsection 3.3.3. We are mainly guided by [Har10] and [Rya08].

3.3.1 Maximum likelihood estimation
Maximum likelihood estimation (MLE) is a common statistical method to estimate
parameters in generalized linear models. The so-called likelihood function is defined
as the joint probability function of the random variables.

Assumed we are given o observations Yi, i = 1, . . . , o and we want to estimate
unknown parameters β = (β1, . . . , βn). We denote with fi(y, β) the density function
of the random variable y for the i-th observation. The likelihood for the i-th observation
is given by Li(β) := fi(Yi, β).

With the assumption that the observations are independent from each other the
likelihood function is given by

L(β) =

o∏
i=1

Li(β). (3.15)

The log likelihood function is the logarithm of the likelihood function:

ln(L(β)) =

n∑
i=1

ln(Li(β)) (3.16)

The maximum likelihood is the value of β that maximizes ln(L(β)) as a function
of β. It can be computed by considering the first derivates of Li(β), the so-called
score-vector, i.e. the gradient, and the matrix of the second derivates, also known
as observed information matrix i.e. the Hessian-matrix. For a maximizing β all first
partial derivates have to take value zero while the observed information matrix has to
be negative definite.

The log likelihood function is applied because in much cases the derivate of the log
likelihood function – because of the properties of the logarithm, for example changing
from product to sum – is easier to compute as the likelihood itself. And if β maximizes
the log-likelihood function then it also maximizes the likelihood function.

If it is not possible to determine the maximum likelihood exactly, so-called iterative
trial-and-error methods are used. The most common method is the so-called Newton-
Raphson or simply Newton method. This method is a standard approach in nonlinear
optimization. The score vector U(β) is locally approximated by a linear function of
β in a small region. In the following we denote with I(β) the observed information
matrix. With a starting estimate of β(0) of the maximum likelihood β the linear ap-
proximation is given by

U(β) = U(β(0))− I(β(0))(β − β(0)). (3.17)

Equating to 0 and solving by β yields

β = β(0) + I−1(β(0))U(β(0)). (3.18)
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Thus, we determined the null of the linear approximation of the maximum likelihood
function in β. At the i-th step we obtain the next estimate by

β(i+1) = β(i) + I−1(β(i))U(β(i)). (3.19)

If it is the case that the log likelihood worsened at β(i+1) then “step-halfing” is
applied, that mean β(i+1) is replaced by β(i)+β(i+1)

2 . This is done until the likelihood
still is worse than the likelihood at β(i). The method is iterated until convergence.

For more details about maximum likelihood estimation see for example [Har10]
or [Rya08]. For further reading in terms of the Newton method, we refer to [Rus06].

3.3.2 Binary logistic Regression
The assumption for binary logistic regression is, that the outcome – the dependent y-
variable only takes value zero or one. Independent variables xi, i = 1, . . . , k may be
binary, integer, continuous or multinomial.

We denote the probability that the outcome y takes value one under the observations
xi, i = 1, . . . , k by P (y = 1|x1, x2, . . . , xk) =: P (y = 1). Analogously the probabil-
ity for y taking value zero is denoted by P (y = 0|x1, x2, . . . , xk) =: P (y = 0).

Binary logistic regression tries to estimate these probabilities.
For this purpose the so called odds is defined as

odds :=
P (y = 1)

1− P (y = 1)
=
P (y = 1)

P (y = 0)
(3.20)

where both probabilities P (y = 1) and P (y = 0) should not take value zero.
The odds which takes values ∈ [0,∞[ is transformed to the so-called logit by the

logarithmic function.

logit := ln(odds) = ln

(
P (y = 1)

1− P (y = 1)

)
(3.21)

In contrast to the odds the logit can take all real values.
The logit is estimated by a linear function

ln

(
P (y = 1)

1− P (y = 1)

)
= α+ β1x1 + β2x2 + . . .+ βkxk. (3.22)

Rearranging Equation (3.22) yields

P (y = 1) =
1

1 + exp(−(α+
∑k
i=1 βixi))

. (3.23)

where the right side is known as the logistic function.
This is a nonlinear function. The coefficients α and βi,= 1, . . . , n are estimated

by maximum likelihood estimation.
Because there are only two possibilities for the outcomes – zero or one – each obser-

vation can be seen as a Bernoulli experiment. For a sample of size n and observations
o1, . . . , on the likelihood function therefore is given by

L(β) =

n∏
i=1

P oii (1− Pi)1−oi . (3.24)

where it is Pi = P (oi = 1) = 1
1+exp(

∑k
i=1 βixi)

.
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3.3.3 Ordinal logistic regression
If the dependent variable y can also take other values than zero or one the binary lo-
gistic regression model may be extended to an ordinal logistic regression model. The
restriction is that the possible outcomes stand together in an ordinal relationship. If this
is not the case one would favor a multinomial logistic regression model. The proceed-
ing in that case is different. For further reading about multinomial regression see for
example [Har10].

We assume levels j = 0, 1, . . . , jmax for the dependent variable. Now the odds for
j = 0, 1, . . . , jmax is defined as

odds =
P (y ≥ j)

1− P (y ≥ j)
(3.25)

and the logit as

logit = ln

(
P (y ≥ j)

1− P (y ≥ j)

)
= αj + β1x1 + β2x2 + . . .+ βkxk. (3.26)

This yields the following coherence:

P (y ≥ j) =
1

1 + exp(−(αj +
∑k
i=1 βixi))

(3.27)

In this model the regression coefficients βi are independent of j. Only the αj which
describe the intercept depend on j. For a specific j the formulation is consistent with
the binary regression model, see (3.23).

The ordinal model can also be estimated via maximum likelihood estimation. For
detailed information we refer the reader to [McC80].

3.4 Applying ordinal logistic regression
Now we apply ordinal logistic regression to estimate the sales per period=̂week, size,
branch and price at our industrial partner. For this purpose we use the environment
GNU R for statistical computing2.

3.4.1 Data sample
In our first trials GNU R in terms of memory could not deal with the transaction data of
the hole tested commodity group. Thus, we will perform all tests on a smaller data set.
We consider historical data from the commodity group “women overgarments classic”
containing transaction data for about one year starting in September 2009. We restrict
the set of about 1400 branches by randomly choosing 30 branches and the set of sizes
by randomly choosing 3 sizes. (Mostly there are 6 or 7 different sizes per article in this
commodity group.) Moreover we will only regard articles which can be observed at
least 13 weeks beginning from the sales start. We divided the remaining 116 articles
randomly aiming at ratio 70 : 30. This yields a set of 81 articles for estimation and a
set of 35 articles for validation.

We categorize our observations in observations per article, week, branch and size.
For our test set of 81 articles this results in 81 · 13 · 30 · 3 = 94 770 data points.

2GNU R version 2.10.2
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Frequencies of Responses

0 1 2 3 4
90326 4118 299 17 10

Table 3.1: Estimation – Responses

Analogously we get 40 950 observations for the validation set.
In our data set there are five types of responses. The dependent variable, the number

of sales, takes value 0,1,2,3 or 4. The frequencies are stated in Table 3.4.1.

3.4.2 Choosing the model
Analogously to the empirical estimation we include popularity of the article, week,
price, size and branch in the estimation and interpret the branches and sizes as cat-
egorical incomes. In contrast to the empirical method now we also consider current
stock as input. At this point we want to estimate realized sales and not demand. We
have to decide on how the price is adopted in the estimation. We are given the starting
price and the realized price per week. We tried three different models in terms of the
adoption of the price which include

1. only realized price (Model 1),

2. only ratio realized price divided by starting price (Model 2),

3. ratio and starting price (Model 3).

as independent variables.
We will present the complete Model 3 before we comment on statistical tests in

terms of the model fitness for all models.
We denote by sa the number of sold items and by at the popularity of the corre-

sponding article. Analogously to the empirical estimation the popularity is computed
by dividing the sales of the first two weeks by the stock at the beginning of the first
week. With we we denote the corresponding week and with st the stock at beginning
of the week and by pr the sales price and by sp the starting price. The additional bi-
nary variables {cb}, {cs}, {cb,s} take value one if and only if the observation concerns
Branch b and/or Size s.

The probabilityP (sa ≥ j) with j > 0 after Model 3 is given as follows (P (sa ≥ 0)
by definition takes value one):

P (sa ≥ j) =
1

1 + exp(−αj − βX)
, (3.28)

where

βX = βatat + βwewe + βst st + βspsp + βpr
pr

sp
+

∑
b∈B

βb{cb}+
∑
s∈S

βs{cs}+
∑
β∈B

∑
β∈S
{cb,s}

We estimate the coefficients of the model under use of GNU R. For maximum
likelihood estimation we used the function lrm (logistic regression model) with de-
fault settings from the Design-package which was implemented by Frank Harrell, see
also [Har10]. To evaluate the fitness of the model we state results from some statistical
tests. These tests also were performed under use of the Design-package.



CHAPTER 3. DEMAND ESTIMATION 31

The output of statistical tests in terms of the model fitness for our three models are
stated in Table 3.2. We will state some general information about statistical tests in
Subsection 10.1.2. For more detailed information we refer the reader to [FPP07].

One of the performed tests is the so-called likelihood-ratio test, see for exam-
ple [Har10]. For this a so-called null-model is compared to the estimated model.
Null-model means that all parameters are set to zero. Thus, we compare if our model
yields better results than they could arise by pure chance. If L0 is the likelihood of
the null-model and L1 the likelihood of our estimated model, then the likelihood-ratio
test statistic is given by −2log(L0/L1). The related test statistics for our models are
stated in the third column of Table 3.2. This test statistic follows a χ2-distribution as
test distribution, see for example [FPP07] for further informations about this topic. In
the second column with name “Max Deriv” the maximum absolute value of the first
derivate of the logarithmized likelihood function , also known at Fisher score, is stated.
The first derivate numerically takes value zero at a maximum. The degrees of freedom
for the χ2-distribution are stated in the fourth column “d.f”. This value equals the num-
ber of estimated parameters. The null-hypothesis H0 of the likelihood-ratio test says
the estimation does not yield a better result than the null model, i.e. it is random. The
alternative hypothesis H1 says it does. The related p-value is stated in the fifth column
with name “P”. It equals the probability to obtain the observed test statistic or a lower
one by chance. If the probability lies under a predefined significance level – in general
5% – then we deny the null-hypothesis, the result is significant: The probabilities to
obtain an equal or better result for our models than by chance in all cases are small
enough to trust the alternative hypothesis.

A further measurement for the fitness of the model is the so-called Nagelkerle
Pseudo-R2 index. It is defined by

R2 :=
1− L0

L1

2
n

1− L
2
n
0

(3.29)

where n is the sample size. There are also other R2 indices like for example Mc-
Faddens Pseudo-R2 or Cox-Snell Pseudo-R2. But these values dependent on the sam-
ple size and it is difficult to give a general statement about which value is good or bad.
The advantage of Nagelkerle’s version is that the value lies – independent from the
number of observations – in between zero and one. We can assess a perfect “model fit”
if R2 takes value one. Thus, an index of value 0.15 for Model 3 is not as good.

The seventh column “Dxy” of Table 3.2 concerns the result of the so-called Somers’
D test [Som62]. The test measures the coherence of the observations and the estimated
values for the dependent variable. For this test we consider so-called concordant and
discordant pairs and ties. With two distinguishing observations o1 and o2 and the
two estimated responses r1 and r2 with probabilities p(r1) and p(r2) we call the pair
concordant if o1 < o2 and p(r1) < p(r2) or o1 > o2 and p(r1) > p(r2). Otherwise the
pair is called discordant. If the predicted probabilities are numerically equal the pair is
called tied. If nc is the number of concordant pairs, nd the number of discordant pairs
and nt the number of ties, then the Somers’ D rank order correlation statistics Dxy is
given by

Dxy :=
nc − nd

nc + nd + nt
. (3.30)

This value can lie in between−1 and +1. A negative value would evidence that the di-
rection of prediction is inaccurate for the most pairs, a positive value that it is accurate.
Our predicted value of 0.573 for Model 3 speaks for accurateness for the most pairs.



CHAPTER 3. DEMAND ESTIMATION 32

Model Obs Max Deriv Model L.R. d.f. P C Dxy R2 Brier
1 94770 2e-11 4870.02 93 0 0.786 0.573 0.15 0.043
2 94770 6e-12 4667.63 93 0 0.783 0.566 0.144 0.043
3 94770 1e-11 4870.3 94 0 0.787 0.573 0.15 0.043

Table 3.2: Evaluation of Model 1

An similar measurement is Harrell’s concordance index C [Har10]. It is given by

C :=
Dxy + 1

2
(3.31)

in the sixth column of the table with value 0.787 for Model 3 and scales the Somers’
D correlation to a value between 0 and 1. A value of 0.5 means that the direction of
prediction neither is accurate nor inaccurate, a value of 1 high accurateness.

At the last column of the table the so called Brier score Br is stated. Brier score
is a similar measurement as the mean-squared standard error, see for example [FPP07]
and is defined as

Br :=
1

n

n∑
i=1

(p(ri)− oi)2 (3.32)

for n observations oi and responses ri with probabilities p(ri). Brier score measures
the deviation between predicted and observed values. If the forecast was perfect, then
the Brier score would take value zero. The smaller the Brier score is the better. For
Model 3 the Brier score takes value 0.043.

We see that for Model 3 we obtain equal or a little better results in terms of the
performed statistical tests than for the other models. Thus, we decided to use Model 3
for estimation.

3.4.3 Result
In the following {40},{44} denote the considered sizes, the remaining {. . .} the branches.
The result is adjusted to Size 38 and to a branch with name 255. Therefore these vari-
ables do not appear in the following result. Estimation of Model 3 yields

Prob{sa ≥ j} =
1

1 + exp(−αj −Xβ)
, where

α̂1 = −2.991214,
α̂2 = −5.724494,
α̂3 = −8.236504,
α̂4 = −9.233339,
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Xβ̂ =

+1.266487 at− 0.05551025 we+ 0.8386404 st

−0.1073931 sp− 1.025878 pr
sp

+0.40555481{683}+ 0.42276266{701} − 0.06807982{894}+ 0.91453736{1096}
+1.14605624{1160}+ 0.51938412{1224}+ 0.04119262{1375}+ 0.62334482{1384}
+0.11655906{1395}+ 0.10298705{1432}+ 0.42631106{1456}+ 0.78788775{1484}
+0.41849692{1486}+ 0.40607731{1490}+ 0.73817205{1527}+ 0.85198384{1569}
+0.55776877{1599}+ 0.34085792{1687}+ 0.06353926{1720}+ 0.68430028{1863}
+0.66197427{1882}+ 0.30272593{1929}+ 1.00467592{1964}+ 0.74825459{1991}
+0.17367353{2056}+ 0.65254159{2066}+ 0.42737426{2093}+ 0.68953835{2096}

+0.24661423{2182}
+0.5022497{40}+ 0.5660673{44}

+{40}[−0.1679237 {683} − 0.2582429 {701} − 0.4211826 {894} − 0.6175968 {1096}
−0.6293785 {1160} − 0.8027621 {1224} − 0.6984557 {1375} − 0.5685319 {1384}
−0.2725717 {1395} − 0.1415956 {1432} − 0.3708545 {1456} − 0.5452929 {1484}
−0.8955414 {1486} − 0.4984089 {1490} − 0.2372495 {1527} − 0.6378074 {1569}
−0.4431316 {1599} − 0.8218475 {1687} − 0.6595380 {1720} − 0.6408166 {1863}
−0.5815683 {1882} − 0.3830782 {1929} − 0.8092480 {1964} − 0.7050292 {1991}
−0.2009142 {2056} − 0.7501039 {2066} − 0.2857802 {2093} − 0.4810097 {2096}

−0.7264964 {2182}]
+{44}[−0.3505462 {683} − 0.7450688 {701} − 0.1731708 {894} − 0.3135945 {1096}
−0.7559348 {1160} − 0.8709310 {1224} − 0.5686853 {1375} − 0.3835397 {1384}
−0.8152310 {1395} − 0.1074382 {1432} − 0.1655254 {1456} − 0.6748133 {1484}
−0.6939229 {1486} − 0.2487922 {1490} − 0.4253804 {1527} − 0.5045935 {1569}
−0.1982682 {1599} − 0.8017821 {1687} − 0.1931474 {1720} − 0.7426981 {1863}
−0.5992249 {1882} − 0.2742510 {1929} − 0.6623949 {1964} − 0.4209326 {1991}
−0.2403357 {2056} − 0.6230690 {2066} − 0.8306514 {2093} − 0.4560512 {2096}

−0.7413656 {2182}]
and{c} = 1 if subject is in group c, 0 otherwise.

The estimated parameters are partly stated in Table 3.3, more precisely in the sec-
ond column. The remaining parameters can be found in Appendix D. We see that pop-
ularity and current stock have a positive effect on the sales probabilities while the sales
week and the price have a negative effect. This is also reproduced by the in Section 3.2
described empirical estimation method.

With the so-called Wald test [Wal43] it is tested if particular parameters have a
significant influence on the estimation, For the computation of the Wald statistic we
consider a model where the considering variable is missing – similar to the null model,
but all other independent variables are contained. The test-statistic is defined as the
deviation – in units of the standard error – from the mean for the estimated model to
the mean of the model where the corresponding coefficient takes value zero. It follows
a standard normal distribution as test distribution. The null-hypothesis is that our model
does not yield a better estimation than the model where this coefficient takes value zero,
the alternative says it does.

If the Wald statistic would yield no significant result than the variable could be
omitted from the model because the influence is not significant. The standard error is
stated as “S.E.” in the third column of the table, the test statistic – the so-called z-score
“Wald Z” in the fourth column. In the fifth column the corresponding p-value as “P” is
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Coef S.E. Wald Z P

y ≥ 1 -2.99121 0.256641 -11.66 0.0000
y ≥ 2 -5.72449 0.262209 -21.83 0.0000
y ≥ 3 -8.23650 0.320577 -25.69 0.0000
y ≥ 4 -9.23334 0.407111 -22.68 0.0000
at 1.26649 0.063337 20.00 0.0000
we -0.05551 0.004702 -11.81 0.0000
st 0.83864 0.016701 50.22 0.0000
sp -0.10739 0.007625 -14.08 0.0000
pr
sp

-1.02588 0.092116 -11.14 0.0000
branch = 683 0.40555 0.251831 1.61 0.1073
branch = 701 0.42276 0.294544 1.44 0.1512
branch = 894 -0.06808 0.327038 -0.21 0.8351

...
...

...
...

...

Table 3.3: Estimated parameters

stated. We see that popularity, week, stock and price have a significant influence on the
estimation. For some branches and sizes this is not the case: The behavior is similar to
that of the reference branch “38” or the reference size “255’. See Appendix D for all
estimated parameters.

3.5 Comparison of different estimation methods
As already mentioned we applied the empirical estimation method in DISPO. All re-
sults in this thesis rely on this method. This raises the question of whether there would
have been a better performance by applying a standard parametric approach like lo-
gistic regression. In the last section we mentioned some statistical tests to assess the
model fitness for the logistic regression model. But these tests cannot be applied on
the empirical method. So we had to implement a different strategy: We compare the
methods on historical transaction data. But how can we deal with lost sales?

3.5.1 Methodology
A “good” method should predict demand or sales as accurately as possible. In the end
this should lead on to a supply policy for which the realized revenue is possibly high.
So we will assess our methods in terms of the revenue that would arise by a supply
according to the estimates.

For both estimation methods we determine revenue-maximizing independent sup-
plies per branch and size according to the predicted demand/sales3. Our predictions in
terms of the logistic regression model are the related (branch,size,price,stock) expecta-
tional values

∑4
j=0 [P (y = j) · j].

Because in the empirical demand estimation the overall numberD of supplied items
is needed as input in both cases we only allow solutions for which the supply over
all observed branches and sizes equals the observed overall supply. Otherwise the
empirical estimation would have an advantage over the other method. That means
we redistribute the supplied items according to our estimations. For the comparison
we take a pass on the lot-type restriction because it would distort our results – at this

3Therefor we use the later outlined Algorithm 8 in correspondence with Algorithm 6 to compute the
so-called single supply revenues for the in the historical data observed prices, see Section 7.1.
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point we are interested in the goodness of the predictions and not in how they could be
implemented by a supply in terms of lot-types.

Because of the right-censored transaction data, a difficulty we have to deal with is
the fact that we can only observe sells in the data if the current stock in the considered
branch and size does not take value zero – lost sales may occur. If the stock (observed
in the historical data) in Period k amounts to zero we have to regard that possibly
more items would had been sold in this or the subsequent periods if it would have been
possible. It describes r̃model

f the stock at the beginning of period f (for the considered
branch and size) if a supply according to the estimation of the related model had been
applied. With df we denote the related demand for Period f . It is ãmodel

f the discounted
revenue that would have been arisen and t̃f the price in period f . For all periods f with
0 < f < k we can compute the related revenue we would have earned by supplying
according to the model by

ãmodel
f = ãmodel

f−1 + t̃f ·min{r̃model
f , df}.

The updated stock after Period f is the stock at the beginning of Period f minus the
sales at Period f :

r̃f+1 = max{0, r̃f − df}.

For Period k the proceeding is different. There are three possibilities:

1. the current stock does not differ for the both methods,

2. the current stock for the first estimation method is higher than the current stock
for the second one,

3. the current stock for the second estimation method is higher than the current
stock for the first one.

In the first case we can neglect potential lost sales. For both methods they would yield
the same revenue. In the second case we compute the value ri =“stock at k in terms of
the first method minus stock at k in terms of the second method”. The difference equals
the number of items which might have been additionally sold if Method 1 compared
with Method 2 had been used for estimation. The maximum additional revenue for
Method 1 would have been arisen if the ri items had been still sold in Period k. Due
to the non-increasing prices it is the discounted revenue for selling all the remaining
items ri in Period k. In contrast the revenue that is implied by observed sales is called
sure revenue.

Analogously we precede in the third case. Here the second estimation method may
lead to additional revenue.

We call Estimation method 1 for an article surely better than Method 2, if the sure
revenue for Method 1 is higher than the sure revenue plus the additional revenue for
Method 2.

3.5.2 Results
In Table 3.4 we listed the results of comparing the empirical method with the logistic
regression model according to the described methodology. We performed the test for
34 articles. In the first column the overall supplies are listed. The sure revenues for the
empirical method “e” and the ordinal logistic regression model “l” are stated in the next
two columns, the maximum additional revenue in columns four and five. The entries
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supply sure rev. max add. rev surely better equal
e l e l e l

141 60.85 60.85 0.00 0.00 0 0 1
109 177.76 176.83 7.04 0.00 1 0 0
145 186.43 174.49 0.00 0.00 1 0 0
153 −56.24 −56.24 0.00 0.00 0 0 1
93 −53.56 −53.56 0.00 0.00 0 0 1
85 77.38 82.33 13.49 13.49 0 0 0
82 64.63 64.63 26.64 26.64 0 0 1
142 284.23 232.01 18.48 98.88 0 0 0
109 −44.39 −44.39 0.00 0.00 0 0 1
157 19.51 19.51 0.00 0.00 0 0 1
51 29.61 18.50 50.23 57.40 0 0 0
93 126.44 126.44 0.00 0.00 0 0 1
128 10.37 10.03 3.64 0.00 1 0 0
129 −73.65 −73.65 0.00 0.00 0 0 1
113 499.77 413.67 111.89 243.41 0 0 0
122 −23.92 −23.92 0.00 0.00 0 0 1
79 116.61 101.30 21.53 28.70 0 0 0
120 3.11 3.11 0.00 0.00 0 0 1
121 −225.79 −225.79 0.00 0.00 0 0 1
137 −20.23 −59.06 122.08 411.54 0 0 0
136 −278.14 −278.14 0.00 0.00 0 0 1
68 144.82 172.18 21.53 7.18 0 1 0
89 245.93 237.06 17.76 26.64 0 0 0
82 76.69 80.27 14.58 10.93 0 0 0
54 30.18 26.24 18.22 18.22 0 0 0
130 57.40 22.43 9.24 0.00 1 0 0
61 87.75 77.58 35.52 35.52 0 0 0
14 −21.19 14.68 57.41 21.53 0 0 0
64 101.66 107.16 25.30 18.97 0 0 0
109 127.44 87.85 25.47 68.52 0 0 0
134 61.13 27.66 3.61 69.25 0 0 0
102 −39.73 −39.73 0.00 0.00 0 0 1
70 80.94 88.09 28.70 21.53 0 0 0
80 6.34 −0.77 31.62 31.62 0 0 0∑

3500 1840.14 1569.65 663.98 1209.97 4 1 13
∅ 103 54.12 46.17 19.53 35.59 11.76% 2.94% 38.24%

Table 3.4: Comparison of empirical estimation with logistic regression

in the three last columns indicate if the considered estimation method is surely better
than the other one or if both methods perform equal in terms of the sum sure revenue
plus additional revenue.

In 11.76 percent that means 4 of the considered cases we see that the empirical
estimation is surely better than the logistic regression model. In contrast we get only
one win, this equals 2.94 percent wins, for the logistic regression method. In 13 of
the 34 cases or 38.24 percents both methods would yield the same revenue. Although
we are not able to attest better predictions to our empirical approach for sure there is
obviously no reason for us to replace it by the logistic regression model.



Chapter 4

Price Optimization

In this chapter we elaborate on the Price Optimization Problem, how it takes part in
DISPO and present algorithms to solve it. We restrict us to the case that the set of sce-
narios contains only one scenario. This is the case when we perform price optimization
with receding horizon POP-RH, Subsection 2.5.4: The set of scenarios consists only
of the current scenario in effect.

In Section 4.1 we introduce a mixed-integer programming formulation for the Price
Optimization Problem for one fixed scenario ê, the POPê. To describe the situation at
our industrial partner as correctly as possible, we extend price optimization as it is
performed by the former DISPO-team by adding mark-down costs depending on the
current stock. This leads to nonlinearity of the underlying mixed-integer program.

We adapt the mark-down policy every period/week, see Subsection 2.5.4 or Fig-
ure 1.1. The last sales for the week can be observed on Saturday evening. On Monday
morning already the decision for mark-downs has to be made. At our industrial partner
weekly more than 4000 articles have to be considered. Therefore the solving process
of price optimization must not last too long.

Even without regarding stock-depending costs for mark-downs solving price opti-
mization with state-of-the-art MIP solvers – because of the long computation times –
is not suitable in terms of these real-world requirements.

In the MIP formulation of the POPê the variables are finely grained: For every
period and price index there exists a binary variable that indicates if the related price is
assigned to the period or not. One idea would be to enumerate all possible combinations
of these variables – the so-called price trajectories, Section 4.2.

In Section 4.3 we introduce some basics of dynamic programming which we apply
in Section 4.4 on the POP-RH: We outline how to generate price trajectories for a
given supply dynamically. For this purpose we develop dominance rules to exclude
truncated price trajectories which will not lead to an optimal solution from further
consideration, Section 4.5. The result is a so-called label setting algorithm for POPê.
The detailed implementation is outlined in Section 4.6. We illustrate the algorithm on
a small example, Section 4.8, that we introduce in Section 4.7 and that will accompany
us in the remainder of the thesis. We state computational results in Section 4.9 and
conclude the chapter in Section 4.10.

We will apply the enumeration of price trajectories in our exact Branch&Bound
solver for ISPO which is presented in Section 9.1. The dynamic generation of price
trajectories – besides price optimization with receding horizon, POP-RH – takes place
in our heuristic approach for ISPO, see Section 9.2.

37
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4.1 Extending POP by mark-down costs – a mixed-integer
nonlinear program

In this section we state price optimization for one fixed scenario ê, Subsection 4.1.1.
We will not go into details in terms of the problem specification at this point and refer
the reader to Problem 5. Because we fix scenario ê in the POPê we drop the scenario
index for the corresponding variables at this point. In Subsection 4.1.2 we go into the
case that mark-down costs depending on the corresponding stock arise as it is the case
at our industrial partner. Inclusion of these costs leads to nonlinearity of the introduced
model.

4.1.1 Problem formulation
We formulate the Price Optimization Problem for a fixed scenario ê with the inclusion
of mark-down costs as follows:

Problem 5 (POPê).

max
∑
k∈K

exp(−ρk)
(∑
b∈B

∑
s∈S

rk,b,s − µkβk
)

(4.1)

subject to ∑
p∈P

uk,p = 1 ∀k ∈ K, (4.2)

uk,0 = 1 ∀k ∈ K : k < kobs, (4.3)

ukmax,pmax
= 1, (4.4)

uk−1,p1
+ uk,p2

≤ 1 ∀k ∈ K : k > 0, p1, p2 ∈ P : p2 < p1, (4.5)

βk ≥ uk−1,p1
+ uk,p2

− 1 ∀k ∈ K : k > 0,∀p1, p2 ∈ P : p2 6= p1,

(4.6)

v0,b,s = Ib,s ∀b ∈ B, s ∈ S, (4.7)

vk−1,b,s − vk,b,s =
∑
p∈P

wk−1,b,s,p ∀k ∈ K : k > 0, b ∈ B, s ∈ S, (4.8)

∑
p∈P

wk,b,s,p ≤ vk,b,s ∀k ∈ K, b ∈ B, s ∈ S, (4.9)

wk,b,s,p ≤ uk,p · dk,p,b,s
∀k ∈ K : k < kmax, b ∈ B, s ∈ S, p ∈ P : p < pmax, (4.10)

wkmax,b,s,pmax
= vkmax,b,s ∀b ∈ B, s ∈ S, (4.11)

rk,b,s =
∑
p∈P

πp · wk,b,s,p ∀k ∈ K, b ∈ B, s ∈ S, (4.12)

uk,p ∈ {0, 1} ∀k ∈ K, p ∈ P , (4.13)

βk ∈ {0, 1} ∀k ∈ K, p ∈ P , (4.14)
wk,b,s,p ≥ 0 ∀k ∈ K, b ∈ B, s ∈ S, p ∈ P , (4.15)

vk,b,s ≥ 0 ∀k ∈ K, b ∈ B, s ∈ S, (4.16)

rk,b,s ≥ 0 ∀k ∈ K, b ∈ B, s ∈ S. (4.17)
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A mark-down in period k is indicated by the dependent binary variable βk, which
is forced to one by Inequality (6.19) if the price compared to the previous period has
changed. In the objective the mark-down costs µk for every period are subtracted from
the revenue.

4.1.2 Nonlinearity by mark-down costs
We want to put a finer point to the mark-down costs µk for Period k.

Mark-down costs divide into two parts. On the one side there are fixed mark-down
cost. If there is a mark-down in a period always cost of µf occur independent from
the number of items that have to be marked down. On the other side there are variable
mark-down cost: Every single item that has to be marked down causes cost of µv .

At our partner fixed mark-down costs arise from all actions that are necessary to
inform the branches about mark-downs, the variable mark-down costs accrue from
pricing the items in the branches by the sales personnel.

There is an exception for the last/sellout period kmax. We assume that in the sellout
process still qkmax

mark-downs are necessary. Only variable mark-down costs arise for
the sellout period.

Altogether the mark-down costs µk in the real sales period k are given by

µk = µf + µv
∑
b∈B

∑
s∈S

vk,b,s,∀k ∈ K \ {kmax}. (4.18)

For the sellout period kmax the mark-down costs are given by

µkmax
= qkmax

µv
∑
b∈B

∑
s∈S

vkmax,b,s. (4.19)

Extending the formulation of Problem 5 by Constraints (4.18) and (4.19) leads to a
mixed-integer nonlinear program because in the objective function we have to multiply
the binary variables βk via µk with the real variables vk,b,s.

In the remainder we will regard the mark-down costs as formulated by the con-
straints (4.18) and (4.19). Henceforth, whenever we will mention the Price Optimiza-
tion Problem, we refer to the POPê

4.2 Enumerating price trajectories
We can enumerate the possible price trajectories by branching on the decisions of the
price optimization stage. The variables for the price optimization stage are finely
grained – for every period k and price index p there is a binary variable uk,p which
indicates whether the price with index p is assigned to k. Now we consider more
widescale decisions. A natural idea is to condense the mark-down decisions in each
time period to an entire price trajectory for the complete selling time.

Definition 1 (price trajectory, revenue of a price trajectory). We define a price trajec-
tory t = (t0, . . . , tkmax) as a kmax + 1 -tuple where each entry is a price index p ∈ P . It
is tk = 0 for k < kobs and tkmax = pmax. Moreover it is tk ≤ tk+1,∀k ∈ K \ {kmax}.
That is a price trajectory equals a valid assignment of the uk,p variables in Problem 5
where tk = p if and only if uk,p = 1. The revenue a resulting from a price trajectory
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which equals the related objective value of Problem 5 is given by

a :=

kmax−1∑
k=0

exp(−ρk)

(
πtk
∑
b∈B

∑
s∈S

min

max

Ib,s −
k−1∑
j=0

dj,b,s,tj , 0

 , dk,b,s,tk


− βk

µf + µv
∑
b∈B

∑
s∈S

max{Ib,s −
k−1∑
j=0

dj,b,s,tj , 0}

)

+ exp(−ρkmax)(πkmax − qkmaxµv) ·
∑
b∈B

∑
s∈S

max

{
Ib,s −

kmax−1∑
k=0

dk,b,s,tk , 0

}
(4.20)

According to the constraints (4.7), (4.8), (4.9) and (4.10) max{Ib,s−
∑k−1
j=0 dj,b,s,tj , 0}

equals the stock vk,b,s for Size s in Branch b at the beginning of Sales period k. The
number of sold items for the real sales periods is the minimum of the current stock
and demand, (4.9) and (4.10) together with the objective function (4.1). At the sellout
period kmax all remaining items are sold. Subtracting mark-down costs from the related
yield results in the last line of Equation (4.20).

Now we want to deduce the general number of all valid price trajectories. For this
purpose we consider a small example.

Example 3 (number of price trajectories). It is kmax = 4, i.e. |K| = 5, and pmax = 3,
i.e. |P | = 4, and kobs = 2. We depict the sales periods by their indices and encode a
mark-down after Period k in Period k + 1 to the next price index tk + 1 by the symbol
?, a mark-down to the after next price index tk + 2 by ?? and so on. Then these are all
valid price trajectories together with their encoding:

price trajectory encoding

0 0 0 0 3 0 1 2 3 ? ? ? 4
0 0 0 1 3 0 1 2 ? 3 ? ? 4
0 0 0 2 3 0 1 2 ? ? 3 ? 4
0 0 1 1 3 0 1 ? 2 3 ? ? 4
0 0 1 2 3 0 1 ? 2 ? 3 ? 4
0 0 2 2 3 0 1 ? ? 2 3 ? 4

Using the encoding scheme from Example 3 we can establish the number of all
valid price trajectories.

Theorem 2 (number of price trajectories [KKR11b]). The number of all valid price
trajectories for Problem 5 is given by(

kmax − kobs + pmax − 1

pmax − 1

)
. (4.21)

Proof. We encode the feasible price trajectories by inserting pmax symbols for mark-
downs, like e.g. ? as in Example 3. In the first kobs observation periods no mark-down
is possible, so there is no symbol ? between the related places in the encoding. The
last mark-down after Period kmax − 1 to the salvage value is determined. So we have
to distribute our remaining pmax − 1 mark-downs/symbols ? among the remaining
kmax − kobs + pmax − 1 places. This yields the claim.
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Figure 4.1: POP – enumeration tree

The valid price trajectories can be established by walking through an enumeration
tree. The nodes of the tree in depth k+1 with 0 ≤ k < kmax−1 correspond with fixed
prices/price indices for the first k+1 periods. The leaves at depth kmax +1 correspond
with valid price trajectories. In every depth k + 1 with 0 ≤ k < kmax − 1 we consider
all extensions with price indices p = tk−1, . . . , pmax − 1. At depth kmax + 1 – the
sellout period – we have to fix the salvage value, i.e. price index pmax.

We consider the enumeration tree for a small example.

Example 4 (enumeration tree for POP). It is kmax = 4, kobs = 2 and pmax = 3. In
Figure 4.1 the corresponding enumeration tree is depicted. The number inside a node
at depth k + 1 is equivalent to the entry tk in the price trajectory.

Now we state some corollaries in terms of the enumeration tree which follow from
Theorem 2.

Corollary 2 (number of nodes per depth). The number of nodes in depth k + 1 with
kobs ≤ k < kmax in the enumeration tree amounts to(

k − kobs + pmax

pmax − 1

)
. (4.22)

Proof. This Corollary follows easily from Theorem 2 because it is equivalent to con-
sider the enumeration tree for the same data, but kmax = k + 1.

Corollary 3 (number of nodes). The overall number of nodes in the enumeration tree
amounts to

kobs +

kmax−1∑
k=kobs

(
k − kobs + pmax

pmax − 1

)
+

(
kmax − kobs + pmax − 1

pmax − 1

)
. (4.23)

Proof. This claim – more precisely the second term – follows from Corollary 2. The
first term describes the number of nodes for the observation time kobs. Because for
periods k with k < kobs the starting price has to be maintained there is always one
node for these periods. The third term equals the number of nodes at depth kmax + 1
which is the number of all valid price trajectories.
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Corollary 4 (number of induced price trajectories). The number of induced price tra-
jectories by a node at depth k+1 with kobs ≤ k < kmax and tk = p in the enumeration
tree is given by (

kmax − k + pmax − p− 2

pmax − p− 1

)
. (4.24)

Proof. We consider truncated price trajectories ending up with tk = p. The number
of induced price trajectories is the number of all valid extensions. So it is equivalent
to determine the number of price trajectories for kmax = kmax − k, kobs = 1 and
pmax = pmax − p.

4.3 Excursus: Dynamic programming
As already mentioned in the introduction a general approach for inventory and pricing
problems is dynamic programming. Dynamic programming is based on the Bellman’s
optimality principle which roughly says that for a dynamic system (Section 4.3.1) ev-
ery optimal solution consists of optimal partial solutions. This leads to a backwards
dynamic programming algorithm which we outline in Section 4.3.2. While this algo-
rithm computes the optimal partial solutions backwards in time for the special case of
deterministic problems an algorithm performing forwards in time can be stated. This
is outlined in Section 4.3.3. Deterministic dynamic problems can be reduced to short-
est path problems and common algorithms for solving shortest path problems can be
applied, Section 4.3.4. Sometimes the state-space for dynamic programs is restricted
by resource constraints. Thus, in Section 4.3.5 we consider the case of a resource
constraint shortest path problem. Because the in Section 4.3.4 proposed methods only
regard the length of the partial path they are not suitable for this problem formulation.
The explained approach is extended to a label setting algorithm. Now each partial path
gets a label which includes the length of the path and the still available amounts of
the resources. The state space is reduced by comparing the labels. If one label can
not lead to a better solution than the other one it is said to be dominated. Dominated
labels can be excluded from further consideration. In this section we are mainly guided
by [Ber05].

4.3.1 General dynamic program
We consider a system of the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 (4.25)

where k is a discrete time index, xk is a state of the system for stage k, uk is the
decision variable or control which is selected at time k and wk is a random parameter.
The number of stages is stated byN which is also denoted as horizon. With the function
fk the dynamic of the system is described.

Additionally we are given a cost function gk(xk, uk, wk). The total costs are given
by

gN (xN ) +

N−1∑
k=0

gk(xk, uk, wk). (4.26)

gN (xN ) is also called terminal cost.
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With Sk we denote the state space of xk. It is xk ∈ Sk and analogously we
consider a space Ck where uk ∈ Ck. The disturbance wk is an element from a space
Dk. A control is called admissible if uk ∈ U(xk) where U(xk) ⊂ Ck. That means the
admissibility of a control at stage k depends on the state xk in this stage.

The control uk is selected with the knowledge of the current state xk. A policy or
control law is a sequence of functions

π = {µ0, . . . , µN−1} (4.27)

where µk maps the state xk into controls uk = µk(xk).
The goal is to minimize the expected cost Jπ(x0) of π starting at stage x0 which is

given by

Jπ(x0) = E

{
gN (xN ) +

N−1∑
k=0

gk(xk, µk(xk), wk)

}
. (4.28)

We only consider admissible policies, that means policies with µk(xk) ∈ Uk(xk)
∀xk ∈ Sk. The set of all admissible policies is denoted by Π. An optimal policy π∗ is
a policy π that minimizes the costs, that means

Jπ∗(x0) = min
π∈Π

Jπ(x0). (4.29)

4.3.2 The dynamic programming algorithm
The techniques to solve dynamic programs are based on the principle of optimality
stated first by Richard Bellman [Bel10].

Definition 2 (principle of optimality). It is π∗ = (µ∗0, µ
∗
1, . . . , µ

∗
N−1) an optimal pol-

icy. The truncated policy (µ∗i , µ
∗
i+1, . . . , µ

∗
N−1) is also optimal for the subproblem to

minimize the expected cost

E

{
gN (xN ) +

N−1∑
k=i

gk(xk, µk(xk), wk)

}
(4.30)

from Stage i to Stage N .

We now denote with Jk(xk) the optimal expected cost for starting at Stage k. With
the above principle for every initial state x0 the optimal cost J∗(x0) equals J0(x0) and
is given by the last step of the following algorithm. The algorithm proceeds backwards
in time from Stage N − 1 to Stage 0:

JN (xN ) = gN (xN ), (4.31)

Jk(xk) = min
u∈Uk(xk)

Ewk{gk(xk, uk, wk)+Jk+1(fk(xk, uk, wk))}, k = 0, 1, . . . , N−1.

(4.32)

4.3.3 Deterministic Systems
In this Section we focus on deterministic problems. These are problems where the
disturbance wk takes only one value. This may result from the approximation of a



CHAPTER 4. PRICE OPTIMIZATION 44

stochastic problem. For deterministic problems for a given policy (µ0, . . . , µN−1) and
the initial state x0 the future states are predictable by

xk+1 = fk(xk, µk(xk)), k = 0, 1, . . . , N − 1 (4.33)

and the corresponding controls are given by

uk = µk(xk), k = 0, 1, . . . , N. (4.34)

A deterministic dynamic program can be seen as a shortest path problem in a di-
rected graph with nodes corresponding to stages. The source s corresponds to State x0

while the sink is an artificial terminal node t that describes the state after adding the
terminal costs. The inner nodes correspond to the stages 1, 2, . . . , N . There are only
arcs between nodes corresponding to state xk and xk+1, k = 0, . . . , N − 1. These arcs
describe a transition of the form xk+1 = fk(xk, uk). The length of an arc is given by
the transition cost gk(xk, uk). Moreover every node related to state xN is connected
with the sink t. The corresponding length of the arc is the terminal cost gN (xN ).

With this reduction solving a dynamic program to optimality is the same as finding
the shortest path in the corresponding graph.

This leads to an forward algorithm for the dynamic program what means that we
compute optimal partial solutions beginning from Stage 0 and ending up at Stage N .

With akij we denote the cost of transition from Stage k and State i ∈ Sk to State
j ∈ Sk+1. The terminal cost of State i ∈ SN are denoted by aNij .

It is
J̃N (j) = a0

sj , j ∈ S1 (4.35)

and
J̃k(j) = min

i∈SN−k
[aN−kij + J̃k+1(i)]. (4.36)

The optimal cost are given by

J̃0(j) = min
i∈SN

[aNij + J̃1(i)]. (4.37)

4.3.4 Solving shortest path problems
In the previous section we stated the context of deterministic dynamic programming
and shortest path problems and a forward algorithm which can be seen as a general
approach to solve shortest path problems. We consider a graph where we want to find
the shortest path from a source node s to a sink node t. The length of the path results
as the sum of the lengths of the traversed arcs.

The problem can be solved to optimality by a so-called label correcting algorithm.
The idea is to discover shorter paths from the source s to every other node j and to
maintain the length of the shortest path found so far in a variable dj which is called the
label of j.

We start from the source s, Step 2 of Algorithm 2, and extend our partial step-by-
step to a path ending up at the sink t. For this purpose we consider all possible arcs
starting at the end node i of our partial path, Step 5. Whenever a shorter path from the
sink to a node j is found, the label is corrected in Step 7, i.e. we always consider only
the shortest partial path from the source to node j. Because according to the Bellman’s
optimality principle each path consists of optimal partial paths we will end up with a
shortest path from the source s to the sink t.



CHAPTER 4. PRICE OPTIMIZATION 45

Algorithm 2 Label correcting
1: init dj =∞ for all nodes j
2: init OPEN={s}
3: while OPEN6= ∅ do
4: choose node i from OPEN
5: for all childs j of i do
6: if di + aij < min{dj ,UPPER} then
7: dj = di + aij
8: if j /∈ OPEN and j 6= t then
9: place j in OPEN
10: else
11: if j = t then
12: UPPER=di + aij
13: end if
14: end if
15: end if
16: end for
17: remove i from OPEN
18: end while

There are different ways to perform the label correcting algorithm. For example,
one could traverse the nodes from the set OPEN in a breadth-first search, also known as
Bellman-Ford method with complexityO(nm) where n is the number of nodes and m
the number of arcs. Or one can perform a depth-first search with the same complexity
but with the advantage that the amount of needed memory is less. By a best-first search,
also denoted by Dijkstra’s method the complexity only amounts toO(nlogn+m). But
Dijkstra’s algorithm in general works only correctly if there are no negative arc lengths.
(Otherwise Bellman’s optimality principle may be violated, because with negative arc
lengths an optimal path has not necessarily to consist of shortest partial paths.) If the
graph contained negative cycles then the label correcting approach would not terminate.
Traversing negative cycles would always reduce the length. The Bellman-Ford method
can detect negative circles. (In the case of dynamic programming where there are only
forwards arcs – from stage k to stage k + 1 – no cycles can occur.)

The label correcting method can also be extended to a Branch&Bound method
where in comparison with the bound UPPER solutions are discarded that have no
chance to be optimal.

For further reading about shortest path problems we refer to [CGR93].

4.3.5 Resource constraint shortest path problems and dominance
We now deal with shortest path problems with one or more additional resource con-
straints. For each resource j an initial stock R(j)

init is given. Each arc in the graph, see
Section 4.3.3, consumes always an amount of the given resources. Now, a path is only
valid if the totally amounts of each resources does not violate the resource restriction –
i.e. the sum of the consumed amounts of resource j over all arcs in the path must not
exceed R(j)

init .
For resource constraint shortest path problems the algorithms stated in the last sec-

tion are not convenient. In a simple shortest path problem the shortest path is always
the best. For resource constraint shortest path problems this path might violate the
resource constraints.

Thus, we can not exclude longer paths being optimal as it is implied by Step 7 of
Algorithm 2. An idea would be to save all possible paths. But according to the problem
size this might be inefficient in terms of time and impossible in terms of memory.

Handler and Zang [HZ80] showed that the resource constraint shortest path prob-
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lem in general – also in our case where no cycles in the graph appear – is NP hard by
reducing the knapsack problem to it. The same is shown by Garey and Johnson [GJ79].
But they reduced the partition problem on it. Irnich and Desaulniers [ID05] among oth-
ers covered so-called dominance rules for resource constraint shortest path problems.
The label correcting algorithm above is adapted to a so-called label setting algorithm:
Not only the shortest path to a node is regarded but also longer paths which cannot be
excluded from being optimal.

In our case we are given a resource constraint shortest path problem with n re-
sources. The initial stock for each resource j = 1, . . . , n is given by R(j)

init . For each
resource j = 1, . . . , n and each arc from Node k1 to Node k2 a consumption or weight
c
(j)
k1k2

is given.
With

L = (d,R, k) (4.38)

we define a label for a node. The first element d of the triple is the length of the path
from the sink s to the related node k. R = (r(1), r(2), . . . , r(n)) is an n-tuple where
r(j) is the still available amount of resource j.

We start with the label Ls = (ds, Rs, s) with

ds = 0, (4.39)

r(j)
s = R

(j)
init , j = 1, . . . , n. (4.40)

A label Li1 = (di1 , Ri1 , k1) is extended to a label Li2 by setting

Li2 = (di2 , Ri2 , k2) (4.41)

where

di2 = di1 + ak1k2
, (4.42)

r
(j)
i2

= r
(j)
i1
− c(j)k1k2

, j = 1, . . . , n. (4.43)

A labelLn1 – which stands for a partial path starting at the sink s and ending at node
k1 – is said to be dominating over a label Ln2 ending at the same node if dn1 < dn2

and r(j)
n1 ≥ r

(j)
n2 for all j = 1, . . . , n. Because of the higher amount of the resource and

both labels ending up at the same node we can extend the path described by label Ln1

in each way we can extend Ln2
. And, because dn1

< dn2
each path containing the to

Ln2 related partial path cannot be shorter than each path containing the to Ln1 related
partial path. Thus, we can exclude the label Ln2 from further consideration. We say,
Ln2

is dominated by Ln1
.

Many further references regarding dominance and dominance rules can be found
in literature. We just mention some few of them exemplary. A definition of dominance
was given by Manne [Man58] already in the year 1958. In [JC11] dominance rules in
combinatorial optimization and their characteristics are generally defined and studied.
Fischetti and Salvagnin presented a dominance procedure for general mixed-integer
linear programs in [FT88]. General results for applying dominance in Branch&Bound
algorithms are presented in [Iba77].

4.4 Dynamic generation of mark-down strategies
In the POPê we deal with fixed supply for each branch and size, Constraint (4.7). We
apply a dynamic programming approach, see the last section, to solve Problem 5. In
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the formulation of the POPê we treated demand as a predetermined size. Thus, we
can see our formulation of the price optimization as a deterministic problem. We have
to maintain a resource restriction for each branch and size: the number of items may
not exceed the supply. So we are able to treat POPê as a resource constraint shortest
path problem where a period equals a stage. We start from Period 0 and end up at
Period kmax. We will describe how to find the optimal mark-down policy by dynamic
generation of the price trajectories.

At first we will define our labels which describe revenue, remaining stock per
branch and size and the set prices. A label is denoted as a complete mark-down strategy
or a partial mark-down strategy.

Definition 3 (complete mark-down strategy). A complete mark-down strategy P is
defined as a tupel P = (a, t). The kmax+1-tuple t = (t1, . . . , tkmax

) is the price
trajectory of P , see Definition 1 and a the related revenue. We also call a the revenue
of P in this context.

A mark-down strategy arises by extending a partial mark-down strategy:

Definition 4 (partial mark-down strategy). A partial mark-down strategy P̃ is defined
as a tupel P̃ = (ã, t̃, r̃) where ã ∈ R is called partial revenue of P̃ . The k+1-tuple
t̃ = (t0, . . . , tk) are the ordered price indices assigned to the sales periods 0 . . . , k
called partial price trajectory of P̃ . The stock of P̃ is given by r̃ ∈ R|B|×|S|, where
r̃b,s is the stock for Branch b and Size s after Period k. It is 0 ≤ k < kmax.

Definition 5 (valid extension of a partial mark-down strategy). Given is a partial mark-
down strategy P̃ (1) =

(
ã(1), t̃(1), r̃(1)

)
with t̃(1) =

(
t
(1)
0 , . . . , t

(1)
k

)
. We consider the

partial mark-down strategy P̃ (2) =
(
ã(2), t̃(2), r̃(2)

)
with t̃(2) =

(
t
(2)
0 , . . . , t

(2)
k+1

)
and

k + 1 < kmax. We introduce the parameter β̂k+1 ∈ {0, 1} that takes value one if and
only if t(2)

k 6= t
(2)
k+1. The partial mark-down strategy P̃ (2) is called a valid extension of

P̃ (1) if the following conditions hold:

t
(2)
i = 0 ∀0 ≤ i < kobs, (4.44)

t
(2)
k+1 ≥ t

(1)
k , (4.45)(

t
(2)
0 , . . . , t

(2)
k

)
=
(
t
(1)
0 , . . . , t

(1)
k

)
, (4.46)

ã(2) = ã(1) + exp(−ρ(k + 1))

·

(
π
t
(2)
k+1

·
∑
b∈B

∑
s∈S

min

{
r̃

(1)
b,s , dk+1,b,s,t

(2)
k+1

}

−β̂k+1 ·

(
µf + µv ·

∑
b∈B

∑
s∈S

r̃
(1)
b,s

))
, (4.47)

r̃
(2)
b,s = max

{
r̃

(1)
b,s − dk+1,b,s,t

(2)
k+1

, 0

}
∀b ∈ B, s ∈ S. (4.48)
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In terms of dynamic programming, an extension of a partial mark-down strategy
with a price trajectory of length k equals a transition from Stage – in our case Period –
k to k + 1. The dynamic of the system is given by (4.47) and equals the revenue at the
end of Period k. Our control is given by the price index tk we assign to Period k and
the truncated policy is described by the partial price trajectory.

Equation (4.44) analogously to Equation (4.3) guarantees that the starting price is
maintained for the first kobs periods. The prices have to be non-increasing, i.e. the price
indices non-decreasing; see also Constraint (4.5). This is ensured by Inequality (4.45).
Additionally sells must not exceed the initial stock. That means we are given resource
constraints for each branch and size. The stock is updated by Equation (4.48).

We defined partial mark-down strategies only for sales periods k < kmax. To
extend a partial mark-down strategy to a complete mark-down strategy we have to add
salvage value and to subtract mark-down costs for all remaining items as terminal costs.

Definition 6 (valid extension to a complete mark-down strategy). Given is a partial
mark-down strategy P̃ (1) =

(
ã(1), t̃(1), r̃(1)

)
with t̃(1) =

(
t
(1)
0 , . . . , t

(1)
kmax−1

)
. The

mark-down strategy P = (a, t) with t = (t0, . . . , tkmax) is called an valid extension of
P̃ if the following conditions hold:

(t0, . . . , tkmax−1) =
(
t
(1)
0 , . . . , t

(1)
kmax−1

)
, (4.49)

a = ã(1) + exp(−ρkmax) · (πpmax
− qkmax

µv) ·
∑
b∈B

∑
s∈S

r̃
(1)
b,s . (4.50)

So every mark-down strategy can be established by extensions of a partial mark-
down strategy. Starting with P̃ s = (ãs, t̃s, r̃s) where ãs = 0, t̃s = () and the stock
being r̃b,s = Ib,s ∀b ∈ B, ∀s ∈ S we can obtain every valid mark-down strategy from
P̃ s by kmax + 1 extensions.

4.5 Pruning the enumeration tree – dominating partial
mark-down strategies

Dominance rules allow us to reduce the state space by excluding mark-down strategies
from further consideration since they cannot lead to optimality.

We develop dominance rules specifically for the Price Optimization Problem.

Definition 7 (dominating partial mark-down strategy). Consider the two partial mark-
down strategies P̃ (1) =

(
ã(1), t̃(1), r̃(1)

)
and P̃ (2) =

(
ã(2), t̃(2), r̃(2)

)
. The price trajec-

tories are given by t(1) =
(
t
(1)
0 , . . . , t

(1)

k(1)

)
and t(2) =

(
t
(2)
0 , . . . , t

(2)

k(2)

)
. The parameter

τ ∈ {0, 1} takes value one if and only if t(1)

k(1) 6= t
(2)

k(2) . We say that P̃ (1) dominates P̃ (2)

if

k(1) ≤ k(2), (4.51)

t
(1)

k(1) ≤ t
(2)

k(2) , (4.52)
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ã(1) − τexp
(
−ρ
(
k(2) + 1

))(
µf + µv ·

∑
b∈B

∑
s∈S

r̃
(1)
b,s

)
(4.53)

−
k(2)+1+τ+min

{
kmax−k(2)−τ−1,pmax−1−t(2)

k(2)

}∑
k=k(2)+1+τ

exp(−ρk)µv
∑
b∈B

∑
s∈S

r̃
(1)
b,s

−exp(−ρkmax)qkmaxµv
∑
b∈B

∑
s∈S

r̃
(1)
b,s > ã(2).

We call P̃ (1) dominating in terms of P̃ (2) and P̃ (2) dominated by P̃ (1).

There is no need for a further consideration of a dominated mark-down strategy.

Theorem 3 (pruning dominated mark-down strategies). With P̃ (1) =
(
ã(1), t̃(1), r̃(1)

)
with t̃(1) =

(
t
(1)
0 , . . . , t

(1)

k(1)

)
and P̃ (2) =

(
ã(2), t̃(2), r̃(2)

)
with t̃(2) =

(
t
(2)
0 , . . . , t

(2)

k(2)

)
we are given two partial mark-down strategies. The partial mark-down strategy P̃ (1)

dominates P̃ (2). Then every valid extension of P̃ (2) applied on P̃ (1) would yield a
higher revenue for P̃ (1).

To prove Theorem 3 we will start with the following Lemma:

Lemma 1 (additional mark-down costs of extensions). Let P̃ ext =
(
ãext , t̃ext , r̃ext

)
with t̃ext = (text0 , . . . , textk ) and P̃ (2) =

(
ã(2), t̃(2), r̃(2)

)
with t̃(2) =

(
t
(2)
0 , . . . , t

(2)
k

)
be two partial mark-down strategies with price trajectories of the same length and
textk ≤ t(2)

k .
Let τ ∈ {0, 1} be as in Definition 7.
Then for all possible complete mark-down strategies arising by extensions of P̃ (2)

the additional overall mark-down costs which arise by applying the same extension to
P̃ ext are bounded above by

τexp(−ρ(k + 1))

(
µf + µv ·

∑
b∈B

∑
s∈S

r̃extb,s

)
(4.54)

+

k+1+τ+min
{
kmax−k−τ−1,pmax−1−t(2)

k

}∑
j=k+1+τ

exp(−ρj)µv
∑
b∈B

∑
s∈S

r̃extb,s

+exp(−ρkmax)qkmax
µv
∑
b∈B

∑
s∈S

r̃extb,s

Proof. We consider two cases: In the first case we assume that the price trajectories of
both partial mark-down strategies P̃ ext and P̃ (2) end up with the same price index, in
the second case that they do not.
Case 1: textk = t

(2)
k

The price trajectories t̃ext and t(2) of both partial mark-down strategies P̃ ext and
P̃ (2) end up with the same price index. This means all valid extensions of P̃ (2) are
also valid for P̃ ext . The maximum number of additional mark-downs for a partial
mark-down strategy with a price trajectory of length k and last price tk amounts to

min{kmax − k − 1, pmax − 1− tk}. (4.55)
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The first term describes the bounding by the remaining periods to obtain a complete
mark-down strategy, the second one the bounding by the remaining price steps.

The additional overall fixed mark-down costs do not differ if we extend P̃ ext

and P̃ (2) the same way, so we can neglect it. The variable mark-down costs depend
on the stock at the beginning of the corresponding period. Because of the discount-
ing and the non-increasing stock the sooner a mark-down happens the higher costs
for mark-downs are. With taking into account that the demand for the subsequent
periods can take value zero for all branches and sizes – that means the remaining
items may have to be priced after each further mark-down decision including the
qkmax mark-downs during sellout – we get

k+1+min{kmax−k−1,pmax−1−t(2)
k }∑

j=k+1

exp(−ρj)µv
∑
b∈B

∑
s∈S

r̃extb,s

+exp(−ρkmax)qkmax
µv
∑
b∈B

∑
s∈S

r̃extb,s

as an upper bound for the additional mark-down costs for all valid extensions of
P̃ ext .

Case 2: textk < t
(2)
k

In this case not all valid extensions of P̃ ext are also valid for P̃ (2). If we consider
the valid extensions of P̃ (2) with t(2)

k+1 = t
(2)
k – i.e. the price index for the next

period is the same as for period k – we have to take into account that additional
mark-down costs can arise if we extend P̃ ext the same way. The maximal additional
mark-down costs arise if P̃ ext immediately in period kext + 1 is extended by t(2)

k

(through the non-increasing stock and the discounting). Additionally this time we
also have to take additional fixed mark-down costs for period kext+1 into account.
After extending P̃ ext and P̃ (2) by t(2)

k we are in a similar situation as in the first
case: The last indices of the both price trajectories are the same, but now they are
of length k + 1. So we can bound the additional mark-down costs by

exp(−ρ(k + 1))

(
µf + µv ·

∑
b∈B

∑
s∈S

rextb,s

)

+

k+2+min{kmax−k−2,pmax−1−t(2)
k }∑

j=k+2

exp(−ρj)µv
∑
b∈B

∑
s∈S

r̃extb,s

+exp(−ρkmax)qkmaxµv
∑
b∈B

∑
s∈S

r̃extb,s .

For extensions with t(2)
k+1 > t

(2)
k , we can neglect the fixed costs for extending P̃ ext

in Period k + 1 by tk+1 because they would also arise if P̃ (2) is extended the same
way. So the upper bound for the additional mark-down costs is also valid in this
case.

With including the parameter τ that indicates if the last prices for P̃ ext and P̃ (2) are
different, we obtain bound (4.54).

Now we prove Theorem 3.

Proof of Theorem 3. We split up the proof in two cases. At first we assume that both,
the fixed and the variable mark-down cost, take value zero. Then we will go into case
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that the mark-down costs take arbitrary positive values.
Case 1: µf = µv = 0

According to Definition 7 it is

• k(1) ≤ k(2),

• t(1)

k(1) ≤ t
(2)

k(2) ,

• ã(1) > ã(2).

Consider the partial mark-down strategy P̃ ext =
(
ãext , t̃ext , r̃ext

)
with price tra-

jectory t̃ext =
(
t
(1)
0 , . . . , t

(1)

k(1) , t
ext
k(1)+1

, text
k(1)+2

, . . . , text
k(2)

)
where the price does not

change after Period k(1), i.e. tk(1) = text
k(1)+1

= text
k(1)+2

= . . . = text
k(2) .

Because text
k(2) ≤ t

(2)

k(2) by assumption it is possible to extend P̃ ext in every way
as P̃ (2) can be extended. In this consideration the current stock does not play a role.
Because µv = µf = 0 the revenue per period is completely given by the yield per
period. In this case a higher stock is never unfavorable in terms of revenue. Due to
the non-increasing pricing selling an item earlier is always better. (If r̃extb,s < r̃

(2)
b,s

than we will not be able to get a higher revenue for the non-sold r̃(2)
b,s items by

extending P̃ (2) because t(2)

k(2) ≥ textk(2) . If r̃extb,s > r̃
(2)
b,s then – because we extend both

price trajectories the same way – we can meet more demand for the extensions of
P̃ ext and therefore obtain a higher revenue than for the same extension of P̃ (2).) It
is ãext ≥ ã(1) > ã(2) because no negative costs arise. If we extend P̃ ext and P̃ (2)

the same way we therefore get a greater revenue for the extension of P̃ ext .
It follows that for every complete mark-down strategy resulting from extensions

of P̃ (2) there is a mark-down strategy resulting from P̃ (1) with greater revenue.
Case 2:µf 6= 0 and/or µv 6= 0

We now have to regard that also negative costs can occur in a sales period depending
on if there is a mark-down and the current stock. The requirements are tighter than
in the previous case, Definition 7, (4.53). With Lemma 1 the claim follows from
the first case.

Remark 4. With Definition 7 and Theorem 3 we defined dominance rules that allow us
to exclude partial mark-down strategies from further consideration. One could think
about tightening Condition (4.53) in Definition 7. Now we obtain the bound by the
implicit assumption that the additional mark-down costs have to be applied for all
non-sold items in terms of the partial mark-down strategy P̃ (1). But actually in the
first case of Lemma 1 we would only have to consider additional mark-down costs
for max

{
r̃extb,s − r̃

(2)
b,s , 0

}
items for each branch b and size s. Replacing r̃extb,s in the

second and third line of (4.53) by this term would also yield a valid bound. While
in the implementation (Algorithm 4) our label additionally contains the overall stock∑
b∈B

∑
s∈S r̃b,s, tightening (4.53) in Definition 7 as described would require travers-

ing all branches and sizes for each dominance check. So far we can not make a point
about how a tightened dominance rule for our instances would affect our results in
terms of the computation time.

Replacing
∑
b∈B

∑
s∈S r̃

ext
b,s by

∑
b∈B

∑
s∈S r̃

ext
b,s −

∑
b∈B

∑
s∈S r̃

2
b,s in (4.53) in

general does not lead to an upper bound for the additional mark-down costs.
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Remark 5. One could think about computing the number of items which in terms of
P̃ ext in contrast to P̃ (2) additionally may have to be marked down by add the related
additional stock for all branches and sizes, i.e.

∑
b∈B

∑
s∈S r̃

ext
b,s −

∑
b∈B

∑
s∈S r̃

2
b,s.

But in general this is not correct. For simplicity we take a look on the case of only one
branch with index b = 1 with two sizes S = {S,L} and r̃ext1,S = 1, r̃ext1,L = 2, r̃(2)

1,S = 2,

r̃
(2)
1,L = 0. Summing up and subtracting the sums as in the formula above would yield to

additional mark-down costs for 1 item for P̃ ext for all following periods. But this is not
a correct assumption. If extending P̃ ext and P̃ (2) the same way led to a demand of 2
items for Size S and 0 items for Size L for the next period, the remaining stocks after this
period would be r̃ext1,S = 0, r̃ext1,L = 2, r̃(2)

1,S = r̃
(2)
1,L = 0. This would yield to mark-down

costs for two additional items for the current period. That means summarizing the
remaining stocks and compare them is not necessarily correct to estimate the additional
mark-down costs. But if we would assume that revenues for selling an item would
always exceed the variable costs for mark-downs adding up the stock over all branches
and sizes would yield a valid bound anyway. But in general this is not the case, as the
example shows.

4.6 Implementation
We implemented the dynamic generation of price trajectories as a Branch&Bound al-
gorithm in a depth-first-search, see Algorithm 3.

The actual depth-first-search is outlined in Algorithm 4. We extend our partial
mark-down strategy as described in Definition 5 and 6 to partial and complete mark-
down strategies. For mark-down strategies with a price trajectory ending up with a
period with index smaller than kmax − 1 we perform a dominance check, see Algo-
rithm 5. (We do not run the dominance check for partial mark-down strategies with
kmax − 1 periods because the extension to the complete mark-down strategy as per
Definition 6 is by regarding the overall stock

∑
b∈B

∑
s∈S r̃b,s in the labels done in

O(1) – multiplying stock with salvage value minus variable mark-down costs yields
the additional revenue for period kmax.)

For checking dominance we initialize a (kmax−1)×(pmax−1)–dimensional array
with value −∞ at the beginning of Algorithm 3, values abound

k,p . This array contains for
each period k with k < kmax − 1 and each price index p with p < pmax a lower
bound for the revenue of all extensions of mark-down strategies which start with a
price index greater or equal than p and end up at period k. We perform the dominance
check by comparing the current revenue of the considered partial mark-down strategy
P̃ = (ã, t̃, r̃) with t̃ = (t0, . . . , tk) with the current value of abound

k,tk
. If ã ≤ abound

k,tk
the check for dominance is successful and we can prune the current branch of the
enumeration tree. Otherwise we try to update the values abound

k,p with p ≥ tk. For
this purpose we compute the maximal additional mark-down costs that can arise by
extending P̃ with all valid extensions starting with a price index greater or equal than
tk. If the revenue of P̃ less the maximal mark-down costs is greater than the current
value of abound

k,p , then abound
k,p is updated.

The optimal mark-down strategy P ∗ is updated whenever a complete mark-down
strategy with higher revenue is found.
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4.7 An accompanying example
In order to illustrate basic ideas and algorithms we introduce a small (manageable)
instance for ISPO on which we will draw on in the remaining course of the thesis.

We consider just two branches and sizes. The selling time amounts to five peri-
ods. There are four different prices, salvage value included. This implies at most two
possible markdowns during the sales process. Concisely, our data is as follows:

• |B| = 2, B = {1, 2}

• |S| = 2, S = {S,L}

• kmax = 4

• kobs = 2

• pmax = 4, π0 = 10.99, π1 = 5.99, π2 = 1.99, π3 = 0.99

• µf = 1, µv = 0.10

• ρ = 0.01

• qkmax = 2

• ap = 0.5

• E = {low seller, normal seller, high seller}with Prob(low seller) = 0.2, Prob(normal seller) =
0.5, Prob(high seller) = 0.3.

• κ = 1

• δ1 = 1.5

• pcost = 0.01

• I = 5, I = 10

• vmin = 1, vmax = 1, vlmin = 2, vlmax = 3

In the subsequent example we will assume a fixed supply per branch b ∈ B and size
s ∈ S which is given by the following table:

b/s S L
1 5 5
2 3 8

In the following tables we state the demands per price index p and period k for every
pair of branches and sizes (b, s) for the “normal seller” scenario.

(1,S)
k/p 0 1 2
0 2 0 0
1 1.5 0 0
2 1 1.5 2
3 0.5 1 1.5

(1, L)
k/p 0 1 2
0 3 0 0
1 2 0 0
2 1 2 3
3 0.7 0.8 0.9
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(2,S)
k/p 0 1 2
0 1 0 0
1 0.9 0 0
2 0.8 0.9 1
3 0.7 0.8 0.9

(2, L)
k/p 0 1 2
0 2 0 0
1 1 0 0
2 0.9 1.2 1.5
3 0.5 1 1.4

The demands for the other scenarios are given by

dlow seller
k,b,s,p = 0.5 · dnormal seller

k,b,s,p ∀k ∈ {0, 1, 2, 3}, s ∈ {S,L}, b ∈ {1, 2}, p ∈ {0, 1, 2},
(4.56)

dhigh seller
k,b,s,p = 1.3 · dnormal seller

k,b,s,p ∀k ∈ {0, 1, 2, 3}, s ∈ {S,L}, b ∈ {1, 2}, p ∈ {0, 1, 2}.
(4.57)

4.8 POP-DYN applied on the accompanying example
We depict the basic ideas of our Algorithm 3, POP-DYN, with help of the example
from the last section.

Example 5 (solving POPê by Algorithm 3). All valid (partial) mark-down strategies
for the example from Section 4.7 are pictured in the enumeration tree in Figure 4.2.
Revenue and stock can be found beside the nodes. Nodes which can be pruned by
dominance are colored gray.

We just consider the scenario “normal seller”. We start by extending the partial
mark-down strategy P̃ = (ã, t̃, r̃) with ã = 0, t̃ = () and r̃b,s = Ib,s,∀s ∈ S, ∀b ∈ B.
Because kobs = 2 we have to maintain the starting price with Price index 0 in the two
first periods.

For Branch 1 and Size S the demand in Period 0 amounts to 2, the current stock is
5. That means all the demand for this branch and size is met and we obtain a revenue
of exp(−0 · 0.10) · 2 · 10.99 = 21.98 for this branch and size. The revenue for Branch
1 and Size L is given by exp(−0 · 0.01) · 3 · 10.99 = 32.97. For Branch 2 we earn
10.99 and for Size L 21.98. There is no mark-down in this period. Hence, the revenue
for all branches and sizes is the sum of the single revenues, namely 87.92.

We get to Period 1. For Branch 1 and Size S there are 3 items left, for Size L 2.
In Branch 2 there are still 2 items of Size S and 6 items of Size L available. Thus, all
demand of this period can be met and our updated revenue at the end of Period 1 is
87.92 + exp(−1 · 0.01) · 10.99 · (1.5 + 2 + 0.9 + 1) = 146.68.

Because we traverse the enumeration tree by depth-first-search we first consider the
extension of the current partial mark-down strategy with Price Index 0. In Branch 1
the demand for Size S can be met, Size L is sold out. The demands for both sizes in
Branch 2 can be fully met. So the revenue for the current partial mark-down strategy
amounts to 146.68 + exp(−2 · 0.01) · 10.99 · (1 + 0 + 0.8 + 0.9) = 175.76.

Now we perform the dominance check. Because we stand in the first branch of the
enumeration tree pruning is not yet possible. But we are able to update our bounds
abound

2,p , p = 0, 1, 2 which still take value −∞. For the current period k = 2 and price
index p there could be only one additional mark-down in the extension (see 4.55) and
with the maximum mark-down costs that can arise in Period kmax we get

aµ = exp(−3 · 0.01) · (0.5 + 0 + 0.3 + 4.1) · 0.1
+ exp(−4 · 0.01) · ((0.5 + 0 + 0.3 + 4.1) · 2 · 0.1 + 2 · 1) = 3.34.
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So the updated bound amounts to abound
2,0 = 175.76− 3.34 = 172.42.

For p = 1 we have to regard that in comparison to a mark-down strategy of the same
length with the current last price index 0 an additional mark-down may be possible, that
means we update our bound to

abound
2,1 = 175.76− exp(−3 · 0.01) · (0.1 · (0.5 + 0 + 0.3 + 4.1) + 1)

+ exp(−4 · 0.01) · ((0.5 + 0 + 0.3 + 4.1) · 2 · 0.1 + 2 · 1) = 171.45.

All new bounds for Period 2 are outlined in the following table:

p 0 1 2
abound
2,p 172.42 171.45 171.45

At Period 3 we extend the current partial mark-down strategy again with Price
Index 0. In Branch 1 the demand of Size S can be met while Size L is as always
sold out. In Branch 2 we meet the demand only partly and sell all remaining items of
Size S. The demand for Size L can be fully met. Therefore the revenue is given by
175.76 + exp(−3 · 0.01) · 10.99 · (0.5 + 0 + 0.3 + 0.5) = 189.63.

Now we come to extend the partial mark-down strategy to a complete one. For ev-
ery remaining item on the one hand we earn the salvage value on the other hand we have
to pay two times variable mark-down cost. We obtain a complete strategy with revenue
189.63 + exp(−4 · 0.01) · ((0.99− 2 · 0.1) · (0 + 0 + 0 + 3.6)− 2 · 1) = 190.44. We
set P ∗ = (190.44, (0, 0, 0, 0, 3)).

The next step in the depth-first-search is to extend the partial mark-down strategy
with partial price trajectory (0, 0, 0) by Price index 1. This implies a mark-down at the
beginning of Period 3 and together with the yield earned by the sales the corresponding
revenue amounts to 175.76 + exp(−3 · 0.01) · (5.99 · (0.5 + 0 + 0.3 + 1)− 2 · 1− 2 ·
0.1 · (0.5 + 0 + 0.3 + 4.1)) = 184.78.

Extending the current partial mark-down strategy to a complete one yields a rev-
enue of 185.21.

We have to continue the algorithm without the possibility to prune nodes until our
partial mark-down strategy will end up in Period 2 with Price Index 1. The revenue for
this strategy amounts to 166.09. Because 166.09 < 171.45 = abound

2,1 the current branch
of the tree can be pruned. This is the same with Period 2 and Price Index 2.

We end up with the optimal mark-down strategy P ∗ = (190.44, (0, 0, 0, 0, 3)).

Algorithm 3 POP-DYN
Require: complete data of an instance of the POPê
Ensure: optimal mark-down strategy P ∗ = (a∗, t∗)
1: init abound

k,p = −∞, ∀k < kmax − 1, ∀p < pmax,
init ã = 0 ,t̃ = (), r̃b,s = Ib,s ∀b ∈ B, ∀s ∈ S,
init P ∗ = (a∗, t∗) with a∗ = −∞ and t∗ uninitialised

2: set P̃ = (ã, t̃, r̃)
3: POP-DFS(P̃ )
4: return P ∗
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Algorithm 4 POP-DFS
Require: a partial mark-down strategy P̃ = (ã, t̃, r̃) with t̃ = (t0, . . . , tk)
Ensure: valid non-dominated extensions of P̃
1: if k < kmax − 1 then
2: if POP-DOM(P̃ )=true then
3: return
4: end if
5: for all valid extensions P̃ ext of P̃ (see Definition 5) do
6: POP-DFS(P̃ ext )
7: end for
8: else
9: extend P̃ to obtain the complete mark-down strategy P = (a, t) (see Definition 6)

10: if a > a∗ then
11: P ∗ = P
12: end if
13: end if

Algorithm 5 POP-DOM
Require: a partial mark-down strategy P̃ = (ã, t, r̃) with t̃ = (t0, . . . , tk),

for each price index p : p < pmax a bound abound
k,p

Ensure: possibly updated bound abound
k,p for tk ≤ p < pmax,

P̃ dominated? true or false
1: if ã ≤ abound

k,tk
then

2: return true
3: else
4: for all p : p ≥ tk, p < pmax do
5: compute the maximal additional mark-down costs ãµ for extending P̃ by all valid exten-

sions starting with the price index p (see Lemma 1)
6: if ã− ãµ > abound

k,p then
7: abound

k,p = ã− ãµ
8: end if
9: end for

10: return false
11: end if
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period/depth-1

0

1

2

3

4

0 ã=87.92

r̃b,s S L
1 3 2
2 2 6

0ã=146.68r̃b,s S L
1 1.5 0
2 1.1 5

1 ã=166.09 r̃b,s S L
1 0 0
2 0.2 3.8

0 ã=175.76r̃b,s S L
1 0.5 0
2 0.3 4.1

2 ã=152.75

r̃b,s S L
1 0 0
2 0.1 3.5

0 ã=189.63

r̃b,s S L
1 0 0
2 0 3.6

1 ã=184.78

r̃b,s S L
1 0 0
2 0 3.1

2 ã=178.56

r̃b,s S L
1 0 0
2 0 2.7

1 ã=173.06

r̃b,s S L
1 0 0
2 0 2.8

2 ã=167.82

r̃b,s S L
1 0 0
2 0 2.4

2 ã=155.65

r̃b,s S L
1 0 0
2 0 2.1

3 a=190.44 3 a=185.21 3 a=178.69 3 a=173.27 3 a=167.72 3 a=155.32

Figure 4.2: Example for the dynamic generation of mark-down strategies, Algorithm 3, POP-DYN
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Instance scenario low scenario normal scenario high
nd d nd d nd d

time(s) time(s) %n time(s) time(s) %n time(s) time(s) %n

1 3.47 1.10 34.70 3.29 0.68 21.23 3.45 0.43 13.47
2 3.66 0.71 21.89 4.07 0.37 10.18 3.85 0.24 7.98
3 3.55 0.99 30.97 3.48 0.80 21.60 3.95 0.47 14.79
4 3.55 1.16 22.53 4.07 0.73 22.33 3.37 0.53 14.93
5 4.06 0.79 24.23 3.24 0.52 16.76 3.41 0.36 11.79
6 3.57 1.17 35.80 4.05 0.85 22.84 3.48 0.50 16.32
7 4.57 0.74 21.96 4.46 0.52 15.37 3.50 0.40 11.86
8 2.86 0.90 28.26 2.92 0.51 20.50 3.31 0.32 12.66
9 3.23 0.85 27.60 2.88 0.51 19.62 3.30 0.28 11.64

12 2.96 0.93 30.01 3.35 0.62 22.62 2.80 0.38 24.49

∅ 3.55 0.93 27.80 3.58 0.61 19.31 3.44 0.39 13.99

Table 4.1: Dynamic generation of mark-down strategies – computational results

4.9 Computational results
In Table 4.1 we compare two implementations of Algorithm 3, one with the usage
of dominance checks, Algorithm 5, and one without it. We took articles with known
supply from our set I, Appendix E, of real-world instances. We performed the tests
for all three different scenarios, see also Chapter 3: good seller, bad seller and normal
seller.

To compare the number of visited inner nodes we use the results of the corollar-
ies 2, 3 and 4. We compare runtime in seconds “time” and the percentage of visited
inner nodes of the enumeration tree.1 With kmax = 13 and pmax = 4 the overall
number of nodes in the enumeration tree according to Corollary 3 amounts to 1730.
Without the leaves there remain 1730 − 364 = 1366 =̂ 100% visited nodes in the
complete enumeration tree for applying Algorithm 3 without dominance checks “nd”.
The percentages of this number for applying the procedure with dominance checks via
Algorithm 5 “d” are given in the columns with label “%n”.

We see that with the application of our dominance rule depending on the considered
scenario we can reduce the mean number of visited inner nodes to a number between
12.83 and 27.55 percents of the number of inner nodes we would have to visit if we
enumerated all trajectories. The computation times can be reduced by a factor between
3.38 and 8.29. For “higher” scenarios we get better results with the usage of dominance
checks.

We used the same instances from the set I to compare Algorithm 3 with solving the
mixed-integer programming formulation of Problem 5 directly via CPLEX. To avoid
nonlinearity we set the mark-down costs – both, fixed and variable – to zero. The
results for the “low” scenario can be found in Table 4.2.

While the solving process for the MIP averagely needs more than 8 hours our dy-
namic programming approach with dominance checks can yield the optimal solution
averagely in less than one second. Compared to the results stated in Table 4.1 we also
see that the number of cut off inner nodes is averagely more than 14 percentage points
higher as against the case where mark-down costs are regarded.

1We exclude the leaves in the enumeration tree from this consideration because extensions to complete
mark-down strategies are easy to compute by including the overall stock in the labels.
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Instance nd d MIP
time(s) time(s) %nodes time

1 3.56 0.48 14.79 30067.8
2 4.09 0.44 13.69 27423.3
3 4.08 0.44 15.45 28637.7
4 3.59 0.49 15.45 30303.6
5 3.49 0.53 14.79 28752.7
6 3.58 0.41 12.81 25800.5
7 4.56 0.18 4.90 36300.9
8 2.95 0.43 14.13 32898.0
9 2.99 0.36 13.47 30194.3

12 3.39 0.36 14.35 32356.2

∅ 3.63 0.41 13.38 30273.5

Table 4.2: POP – dynamic generation versus MIP

4.10 Conclusion of the chapter
Every week our industrial partner for more than 4000 products has to decide on mark-
downs. Hence, a fast approach for solving the Price Optimization Problem is necessary.
In praxis there remain only two days to decide for an eventual mark-down. Our results
show that therefore applying state-of-the-art solvers on the mixed-integer programming
formulation of price optimization are not an alternative.

A standard approach for pricing problems is dynamic programming. We applied
this idea on the Price Optimization Problem how it takes part in DISPO and extended
the approach by dominance rules to a label setting algorithm. Now we can solve the
Price Optimization Problem for one article averagely in less than one second. Our label
setting algorithm with dominance checks against an enumeration of all mark-down
strategies would reduce the runtime for deciding mark-downs for weekly 4000 articles
from four hours to one hour. In this form our algorithm POP-DYN with dominance
checks could be applied as a standard approach for deciding on mark-downs at our
industrial partner.



Chapter 5

Stochastic Optimization

In this chapter we outline some basics of stochastic programming. We are mainly
guided by [BL97].

In contrast to deterministic programs stochastic programs can contain random data.
Thus, stochastic programming extends the field of mathematical programming by pro-
gramming under uncertainty. Uncertain input data are reproduced by random variables
with known distribution.

Stochastic programs are applied when not all of the input data is known at the time
of decision making. The aim is, e.g., to optimize the expected costs over all possible
scenarios.

Economical problems often have to deal with uncertainties. Demand for prod-
ucts, resources, etc. are not always known a priori. By treating this uncertainties in a
stochastic program a more realistic problem formulation is anticipated which shall lead
to better decisions at the end.

In Section 5.1 we will introduce so-called two-stage stochastic programs. Two-
stage stochastic programs consist of a so-called first stage decision, a decision which
has to be made before the scenario in effect is known. The second stage – or recourse
decision – responds to the realization of the scenario. If the random events follow a
discrete distribution with a finite number of scenarios the two-stage stochastic program
can be formulated as a so-called deterministic equivalent. In Section 5.2 we sketch
out approaches from literature to solve the deterministic equivalent. Our focus in this
chapter is on dual bounds for general two-stage stochastic programs, Section 5.3 –
later on we will apply them to the Integrated Size and Price Optimization Problem in
the context of a customized Branch&Bound approach.

In Section 5.4 we sketch out the idea of multi-stage stochastic programs. Again a
first-stage decision has to be made before anything about future behavior is known. But
in contrast to two-stage programs – in which we only deal with one recourse decision
– multi-stage programs involve sequences of recourse decisions over time depending
on the realizations of the particular outcomes.
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5.1 Two-stage stochastic programs
We start with an example of a popular stochastic program, the newsvendor problem, as
it is for example stated in [BL97].

Example 6 (newsvendor problem). In the morning a newsvendor buys x newspapers
at a price c per paper from a publisher to sell them at the price of q on the street.
The number x of bought newspapers is bounded above by u. The newsvendor sells as
many papers as possible for the sales price q. At the end of the day he can return the
remaining newspapers to the publisher at a price of r with r < c . The demand per day
is varying and described by a random variable ξ.

The newsvendor problem can be formulated as a two-stage stochastic linear pro-
gram. The first stage is the decision on how many newspapers the newsvendor should
buy from the publisher. As second stage or recourse the newsvendor can compensate
a wrong first-stage decision by returning overbought newspapers to the publisher.

We get to the general formulation of a two-stage stochastic program.

Definition 8 (two-stage stochastic program with recourse).

min
x

cTx+ EξQ(x, ξ) (5.1)

subject to Ax = b, (5.2)
x ≥ 0. (5.3)

It is
Q(x, ξ) = min{qTξ y|Wξy = hξ − Tξx, x, y ≥ 0}. (5.4)

The function Q(x, ξ) is also called recourse function. The recourse is called fixed
if the so-called recourse matrix Wξ does not depend on any uncertainties, then it is
Wξ = W . The recourse is called complete if there is a valid second-stage decision for
every first-stage decision and relative complete if for every valid first-stage decision
for every scenario a valid second-stage decision exists. The matrix T is also denoted as
technology matrix.

In the case that the random events follow a discrete distribution with a finite number
of scenarios it is possible to reduce the two-stage stochastic program to a deterministic
program. Then the expected value EξQ(x, ξ) can be computed explicitely: For every
variable y of the second stage one introduces a random variable for every particular
scenario and obtains an equivalent linear program – the so-called deterministic equiv-
alent.

Definition 9 (two-stage stochastic problem in its extensive form – deterministic equiv-
alent).

min
x

cTx+
∑
ξ∈Ξ

pξq
T
ξ yξ (5.5)

subject to Ax = b, (5.6)
Tξx+Wξyξ = hξ, ∀ξ ∈ Ξ, (5.7)
x ≥ 0, y ≥ 0. (5.8)

The set Ξ contains all scenarios which follow from the discrete distribution. The prob-
ability for the occurrence of scenario ξ is given by pξ.
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The number of the second stage variables in terms of the classical formulation from
Definition 8 in this models multiplies with the number of scenarios. This may lead to
a large deterministic program. It may be that this deterministic equivalent can not be
handled with standard approaches from linear programming.

5.2 Solving stochastic programs
In this section we sketch out common solving methods for two-stage stochastic pro-
grams. One of the most prominent method for linear programs (without integer vari-
ables) is the so-called L-shaped method. We outline the basic idea in Subsection 5.2.1.
For general mixed-integer programs an important property the L-shaped method is
based on is violated: The convexity of the recourse function. In literature applications
of general approaches from mixed-integer programming like Branch&Bound are often
proposed to handle two-stage mixed-integer linear programs. We state some references
in Subsection 5.2.2.

5.2.1 The L-shaped method for two-stage linear stochastic
programs

The L-shaped method for two-stage linear stochastic programs – in general also Ben-
ders’ decomposition [Ben62] – exploits the special structure of the deterministic equiv-
alent.1

The Bender’s decomposition method is closely linked to the Dantzig-Wolfe decom-
position [DW60]: It equals the Dantzig-Wolfe decomposition on the dual linear pro-
gram: While in the case of a Dantzig-Wolfe decomposition in a column-generation al-
gorithm [LD11] sequentially “promising” variables are added, in the L-shaped method
step-by-step cuts are added.

For this purpose the L-shaped method exploits the property that the recourse func-
tion Q(x, ξ) is piecewise linear and convex in x for a fixed ξ. Positive linear combina-
tions of convex functions are convex and so the expected value Q(x) := Eξ(Q(x, ξ))
is as well. The main idea of the L-shaped method is to approximate the term Q(x) in
the objective function by piecewise linear functions.

Two types of constraints are sequentially added: On the on hand optimality cuts
which are linear approximations of Q(x) and on the other hand feasibility cuts which
restrict the set {x|Ax = b, x ≥ 0}.

For details and the exact algorithm we refer the reader to [BL97], [KW94] or [Pré95].

5.2.2 Solving two-stage mixed-integer stochastic programs
In the case of (mixed-)integer stochastic programs the convexity of the function Q(x)
– which is exploited by the L-shaped method – is no longer guaranteed.

In literature some extensions of the Benders’ decomposition which deal with inte-
grality of variables can be found. There are approaches for special problem structures.
Wollmer [Wol80] extended Benders’ decomposition for stochastic problems with bi-
nary first and continuous second stage variables. This algorithm was extended by La-
porte and Louveaux [LL93] for binary first and binary or continuous recourse variables.

1The name L-shaped method stems from the block structure of the deterministic equivalent.
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Carøe and Tind again extended this approach for continuous first stage and integer sec-
ond stage variables. All these approaches and the historical progress are outlined by
Sherali and Zhu [SZ09].

In recent times the L-shaped method is adapted to various special integer prob-
lems like dial-a-ride problems with stochastic customers delays [HCL11], stochastic
Steiner tree problems [BCJ+10] or the traveling salesman problem with stochastic
travel times [TOH04].

There are many references on solving mixed-integer stochastic programs with com-
mon approaches from mixed-integer programming. Schultz [Sch03] reviews existing
approaches based on Branch&Bound, Lagrangian relaxation or cutting plane meth-
ods. Sherali and Zhu [SZ06] developed a Branch&Bound approach in which Benders’
decomposition is used for dual bounding. There exists also literature about custom-
made approaches for special problems, for example Branch&Bound algorithms for
stochastic general assignment [ASvdVF06] or high speed telecommunication network
design [ALMP05] problems.

5.3 Common bounds for two-stage stochastic programs
As outlined in the last section Branch&Bound is an frequently applied approach to
tackle mixed-integer stochastic programs. The efficiency of this approach depends in
a great part on the goodness of dual and primal bounds. Besides the common primal
(valid solutions) and dual bounds (LP relaxations) for mixed-integer problems, in lit-
erature bounds especially for stochastic programs are proposed. At this point we will
give an overview. More details can be found for example in [BL97].

5.3.1 Dual bounds
A well-known dual bound for two-stage stochastic programs is the so-called wait-and-
see solution. Similar bounds can be derived by solving the so-called pairs subproblem
which can be extended to the group subproblem.

The wait-and-see solution

To illustrate the idea behind this bound let us assume that already at the time when
the first stage decision has to be made, we know which scenario will occur. Then the
logical consequence would be to determine the first stage decisions optimal in terms of
the scenario in effect.2

For each scenario we can compute an optimal first stage decision a priori. Because
no compromises in terms of the other scenarios have to be made the particular first
stage decision yields lower costs for the corresponding scenario than the optimal first
stage decision of the original problem.

To formalize this idea we consider the formulation of a general two-stage stochastic
program from Definition 8 for only the particular scenario ξ, i.e. we set the probability
of ξ to value one and the probability of all other scenarios to value zero.

2The name wait-and-see solution can be derived as follows: One waits until he will see which scenario
occurred and only then the first stage decision is made.
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Definition 10 (two-stage linear stochastic program associated with one scenario).

min
x

cTx+Q(x, ξ) (5.9)

subject to Ax = b, (5.10)
x ≥ 0. (5.11)

with Q(x, ξ) as in Definition 8. The optimal solution is denoted by x̄. It is z(x̄, ξ) the
related optimal objective value.

The wait-and-see solution WS is defined as

WS := Eξz(x̄, ξ). (5.12)

Birge and Louveaux showed that the wait-and-see solution of a general two-stage
stochastic linear program is a dual bound for the original problem.

Theorem 4 (wait-and-see solution as dual bound [BL97]). With RP being the optimal
objective function value of the two-stage stochastic program from Definition 8 it is

WS ≤ RP. (5.13)

Proof. [BL97] With z(x∗(Ξ), ξ) we denote the objective value that results from apply-
ing the optimal solution x∗ of the two-stage stochastic program from Definition 8 on
the program from Definition 10. By definition it is z(x̄, ξ) ≤ z(x∗(Ξ), ξ). Applying
the expected value over all scenarios ξ ∈ Ξ on both sides yields the claim.

To compute the wait-and-see solution for a deterministic equivalent one has to con-
sider |Ξ| linear programs where the number of second stage variables of a particular
problem reduces by factor |Ξ| against the original problem from Definition 8. There-
fore for large problems the wait-and-see solution might be easier to compute than the
optimal solution of the original problem.

There is a descriptive interpretation for the difference between the value of the wait-
and-see solution and the optimal objective value of the original problem also called
expected value of perfect information EVPI . The EVPI

EVPI = RP −WS , (5.14)

measures how useful the knowledge about the scenario in effect is. So vividly it can
be seen as the maximum price one would pay to a psychic to obtain reliable information
about the occurring scenario.

Pairs subproblems

Bounds similar to the wait-and-see solution can be derived by solving so-called pairs
subproblems. For a pairs subproblem a reference scenario ξr is chosen. As above we
denote the scenario probabilites by pξi . One could also choose a reference scenario
which is not contained in the set Ξ. In this case the probability pξr would take value
zero.
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Definition 11 (pairs subproblem). The pairs subproblem for the reference scenario ξr
and the scenario ξk ∈ Ξ is defined as

zP (x, ξr, ξk) := min
x

cTx+ pξrq
T
ξryξr + (1− pξr )qTξkyξk (5.15)

subject to Ax = b, (5.16)
Wξryξr = hξr − Tξrx, (5.17)
Wξkyξk = hξk − Tξkx, (5.18)
x, y ≥ 0. (5.19)

The pairs subproblem can be seen as a stochastic program with only two possible
realizations ξr with probability pr and ξk with probability pk.

The sum of pairs expected value SPEV is given by

SPEV =
1

1− pξr

∑
ξk∈Ξ,ξk 6=ξr

zP (x, ξr, ξk). (5.20)

If ξr /∈ Ξ, then the sum of pairs expected values is equivalent to the wait-and-see
solution.

Additionally it is
WS ≤ SPEV ≤ RP . (5.21)

Birge and Louveaux [BL97] proved these inequalities similarly to Theorem 4. To
obtain the first inequality they compared the optimal objective value of the problem
from Definition 10 for the reference scenario ξr (which is also feasible for the pairs
subproblem) with the optimal objective value of the pairs subproblem.

For the second inequality they compared the optimal objective value of the original
problem with the optimal objective value of the pairs subproblem. They exploited that
the optimal first and particular second stage decisions for the scenarios ξr and ξk are
also feasible for the pairs subproblem.

Group subproblems

An extension of the pairs subproblems are the so-called group subproblems. Here a
reference scenario together with a subset of scenarios is considered. We found two dif-
ferent formulations of group subproblems. One from Birge and Louveaux [Bir82] and
a recent formulation by Sandikçi et al. [SKS12]. Sandikçi et al. showed by counterex-
amples that the formulation of [Bir82] in general does not yield correct dual bounds.
Therefore we focus on the group subproblem as it is stated in [SKS12].

Again we consider a reference scenario ξr with probability pξr which not necessar-
ily has to be from the set Ξ. It is S := {1, 2, . . . ,K} the index set of scenarios exclud-
ing ξr and P(S) the power set of S without the empty set. For k = 1, 2, . . . ,K the set
of all subsets of P(S) with k elements is given by Pk(S) := {Γ ∈ P(S) : |Γ| = k}. It
is ρ(Γ) :=

∑
j∈Γ pξj the sum of probabilities of all scenarios included in Γ.
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Definition 12 (group subproblem GR(Γ)). The group subproblem GR(Γ) for the ref-
erence scenario ξr and the subset of scenarios Γ ∈ Ξ is given by

z∗(Γ) = min
x

cTx+ pξrq
T
ξryξr + (1− pξr )

(∑
i∈Γ

pξi
ρ(Γ)

qTξiyξi

)
(5.22)

subject to Ax = b, (5.23)
Wξryξr = hξr − Tξrx, (5.24)
Wξiyξi = hξi − Tξix, ∀i ∈ Γ, (5.25)
x, y ≥ 0. (5.26)

To obtain the dual bound named expected value of the group subproblem EGSO(k)
all group subproblems for subsets of k scenarios have to be solved and the expected
value of the optimal objective values has to be taken where the probability assigned to
a group subproblem GR(Γ) with |Γ| = k is given by ρ(Γ)∑

Γ∈Pk(S) ρ(Γ) .

The authors exploited the fact that a scenario index i is contained in exactly
(
K − 1
k − 1

)
elements of Pk(S).

Then for 1 ≤ k ≤ K it is∑
Γ∈Pk(S)

ρ(Γ) =

(
K − 1
k − 1

)
ρ(S) =

(
K − 1
k − 1

)
·
∑
i∈S

pξi =

(
K − 1
k − 1

)
(1−pξr ) (5.27)

EGSO(k) is then defined as

EGSO(k) :=
1(

K − 1
k − 1

)
(1− pξr )

∑
Γ∈Pk(S)

(ρ(Γ) · z∗(Γ)). (5.28)

The authors prove that there is a hierarchy of bounds depending on the size of the
considered subsets of scenarios, namely

WS ≤ EGSO(1 ) ≤ EGSO(2 ) ≤ . . . ≤ EGSO(K − 1) ≤ EGSO(K) = RP .
(5.29)

The proof is divided into three steps. It is shown that

1. WS ≤ EGSO(1),

2. EGSO(k) ≤ EGSO(k + 1),

3. EGSO(K) = RP .

The first claim follows from the observation that EGSO(1) is equivalent to SPEV .
As already mentioned the inequality SPEV ≤ WS has been proved by Birge and
Louveaux [BL97].

The third claim follows easily by the definition of the group subproblem: EGSO(K)
equals the original problem from Definition 8.

For the proof of the second inequality the authors exploit some Lemmas in terms
of properties of subsets of scenario index sets and optimal solutions of the group sub-
problem. For further reading and a formal proof we refer the reader to [SKS12].
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5.3.2 Primal bounds
We will present some primal bounds from literature particular for stochastic programs.
All outlined approaches have one similarity: The random variables are replaced by
their expected values.

EEV

The expected value problem EV is the problem that arises by replacing all random
variables in the original problem from Definition 8 by their expected value ξ̄ := E(ξ).
That means we consider a problem with the same constraints as the original problem
regarding only one scenario with a probability of value one.

Formally the objective of the expected value problem is given by

min
x
cTx+Q(x, ξ̄). (5.30)

The expected value problem yields a first stage decision. To obtain correspond-
ing second stage decisions for every particular scenario a second optimization is per-
formed. This is done by fixing the according to the objective function (5.30) optimal
first stage decisions x̄(ξ̄) in the original problem from Definition 8.

We denote the corresponding optimal objective value with z(x̄(ξ̄), ξ).
The expected result of using the EV solution EEV is given by

EEV = Eξ(z(x̄(ξ̄), ξ)). (5.31)

It is

RP ≤ EEV . (5.32)

This inequality is easily to comprehend if we realize that x̄(ξ̄) is only one specific
solution of the original problem. It is EEV the related objective value for this solution,
while RP is the optimal objective value.

We can interpret the difference, also called the value of stochastic solution VSS ,
between the EEV and the optimal objective function value RP of the original problem,
i.e.

VSS = EEV − RP , (5.33)

as the cost for not regarding stochastic influences.

Further bounds

Birge and Louveaux showed that for two-stage stochastic programs with only continu-
ous variables the pairs subproblem in which all random variables are replaced by their
expected value yields a primal bound named EPEV with EPEV ≤ EEV . For details
see [Bir82] or [BL97].

Similarly Sandikçi et al. [SKS12] derived an upper bound based on group subprob-
lems for two-stage stochastic mixed-integer programs.
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5.4 Multi-stage stochastic programs
Until now we have only considered two-stage stochastic programs where a recourse
decision is only made one time. But sometimes it could be useful that problems involve
sequences of decisions over time that are dependent on realizations of outcomes that are
a priori unknown. In this case one would formulate a so-called multi-stage stochastic
program. For illustration we consider a lightly modified version of the newsvendor
problem.

Example 7 (newsvendor problem with return). At the beginning of the day a newsven-
dor buys x papers at a price c per paper from the publisher to sell them on the street.
The amount x of bought papers is bounded above by u. The newsvendor sells as many
papers as possible for price q. The sales until the middle of the day follow a stochastic
demand ξ1. In the middle of the day he either can return the remaining newspapers to
a price r1 with r1 < c1 to the publisher or decide to try to sell the remaining items at
the remainder of the day. The demand until evening is given by a random distribution
ξ2. At the end of the day the newsvendor can return non-sold items for price r2 with
r2 < r1 to the publisher.

In this example there are three stages:

1. In the morning of the first day, the vendor decides on how many items to buy
from the publisher.

2. In the middle of the day, he decides on how many items to return the publisher.

3. At the end of the day, remaining items can be returned to the publisher.

In this case we have a multi-stage stochastic optimization problem, exactly a three-
stage one. Now there are two recourse stages and both depend on the previous scenarios
in effect.

Multi-stage stochastic optimization problems are characterized by the occurrence
of the random events in a chronological process where new decisions have to be made
meanwhile.

This model would extend to n stages if the newsvendor could return the remaining
items n − 1 times a day to the publisher for price ri, i = 1, . . . , n with rn < rn−1 <
. . . < r1 < r0 < c0.

However, our focus lies on two-stage models and for further information about
multi-stage models we refer the reader to [BL97], [Pré95] or [KW94].



Chapter 6

The Integrated Size and Price
Optimization Problem (ISPO)

In this chapter we present our model ISPO for integrated size and price optimization.
The model is an advancement of the model SLDP, presented in Chapter 2. Because
demand is a priori unknown and depends on the scenario in effect, ISPO is formulated
as a stochastic program. More precisely, a two-stage stochastic program with fixed
recourse where the so-called first-stage decision is the supply in terms in lots and the
recourse the price optimization where oversupply is compensated by marking down
prices. The target is to find a supply policy that maximizes the expected profit over all
scenarios – “bad seller”, “normal seller” and “good seller”. We will specify the problem
in Section 6.1 and outline ISPO in its extensive form in Section 6.2. In Section 6.3 we
show that ISPO is NP-hard by reducing to it the SLDP. In Chapter 4 we presented a
dynamic programming approach for solving the Price Optimization Problem where the
supply is fixed. One could also think about applying dynamic programming for solving
ISPO for all possible supply strategies. In Section 6.4 we will see that because of the
special situation at our industrial partner – the supply in terms of lots – the state space
is too large to apply dynamic programming. Moreover state-of-the-art MIP solvers
cannot deal with the problem size of ISPO.

6.1 Problem specification
An instance of ISPO among others consists of a set B of branches, a set L of lot-types
and a set M = {1, . . . ,mmax} of multiplicities for the given lot-types. Also a set of
sizes S is specified. With ls we denote the number of items of Size s in Lot-type l.

The set of lot-types is given by four parameters. The minimum number of items per
size vmin with vmin ≥ 1, the maximum number of items per size vmax, the minimum
number of items per lot-type vlmin and the maximum number of items per lot-type
vlmax.

An upper bound for the maximum number of supplied different lot-types κ is given.
Lot opening costs δi for using an additional i-th lot-type i = 1, . . . , κ are also specified.
Moreover pick costs pcost arise for each supplied lot-type. An acquisition price ap has
to be paid for each supplied item. The lower and upper bounds for overall supply are
given by I and I .
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In terms of the sales success of the considered article a set of scenarios E with sce-
nario probabilites Prob(e),∀e ∈ E is given. A set of sales periodsK = {0, . . . , kmax}
is specified. We call 0, . . . , kmax − 1 the real sales periods where kmax is the sellout
period. For a duration of kobs observation periods the article will not be marked down.

We are given a set of price indices P = {0, . . . , pmax}where the related price steps
πp, p ∈ P are in descending order. The first price step π0 is the starting price, the last
price step πpmax

is the salvage value.
Moreover a factor ρ for weekly discounting is given. For every mark-down uniquely

fixed mark-down cost µf and mark-down cost µv per marked down item arise. In the
sellout period kmax, where all remaining items are sold, we assume that every left over
item has to be marked down qkmax

times. Here only variable mark-down costs µv per
item accrue. For every scenario e, period k, branch b, size s and price index p the
dependent demand is given by dek,b,s,p.

Our goal is to maximize the expected revenue for supplying each branch with a
lot-type in a multiplicity by taking into account that mark-downs may occur during the
selling time.

6.2 ISPO as a two-stage stochastic mixed-integer pro-
gram (SMIP) in its extensive form

Now we present one of the main aspects of this work – our formulation of the Integrated
Size and Price Optimization Problem ISPO.

We start with a look at the objective function coefficients.
For the objective function we introduce handling costs cb,`,m. They are computed

as described in the following definition.

Definition 13 (handling costs cb,`,m). For a given acquisition price ap for one item and
given pick cost pcost for one lot-type the handling costs for supplying Branch b with
Lot-type ` in Multiplicity m are given by

cb,`,m := m ·

(∑
s∈S

lsap + pcost

)
. (6.1)

For the first stage – the size optimization stage (SOP) – we use binary assignment
variables xb,`,m to encode the independent assignment of Branch b to Lot-type ` in
Multiplicity m. In the second stage – the price optimization stage (POP) – we intro-
duce binary assignment variables for the independent second stage assignment decision
uek,pof Price index p to Period k in Scenario e. In order to account for the profit and the
cost, we need additional dependent variables. We list the complete model before we
comment on the details.

Problem 6 (ISPO).

max−
∑
b∈B

∑
`∈L

∑
m∈M

xb,`,m · cb,`,m −
κ∑
i=1

δi · zi (6.2)

+
∑
e∈E

Prob(e)
∑
k∈K

exp(−ρk)
(∑
b∈B

∑
s∈S

rek,b,s − µkβek
)

(6.3)
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Size Optimization Stage (SOP):∑
`∈L

∑
m∈M

xb,`,m = 1 ∀b ∈ B, (6.4)∑
m∈M

xb,`,m ≤ y` ∀b ∈ B, ` ∈ L, (6.5)

∑
`∈L

y` ≤
κ∑
i=1

zi, (6.6)

zi ≤ zi−1 i = 1, . . . , κ, (6.7)

Ib,s =
∑
`∈L

∑
m∈M

m · `s · xb,`,m ∀b ∈ B, s ∈ S, (6.8)

I =
∑
b∈B

∑
s∈S

Ib,s, (6.9)

I ∈ [I, I], (6.10)
xb,`,m ∈ {0, 1} ∀b ∈ B, ` ∈ L,m ∈M, (6.11)

y` ∈ {0, 1} ∀` ∈ L, (6.12)
zi ∈ {0, 1} ∀i = 1, . . . , κ, (6.13)

Coupling via initial inventory:

Ib,s − ve0,b,s = 0, ∀b ∈ B, s ∈ S, e ∈ E, (6.14)

Price Optimization Stage (POP):∑
p∈P

uek,p = 1 ∀k ∈ K, e ∈ E, (6.15)

uek,0 = 1 ∀k ∈ K : k < kobs, e ∈ E, (6.16)

uekmax,pmax
= 1 ∀e ∈ E, (6.17)

uek−1,p1
+ uek,p2

≤ 1 ∀k ∈ K, e ∈ E, p1, p2 ∈ P : p2 < p1, (6.18)

βek ≥ uek−1,p1
+ uek,p2

− 1 ∀k ∈ K, e ∈ E, p1, p2 ∈ P : p2 6= p1,

(6.19)

vek−1,b,s − vek,b,s =
∑
p∈P

wek−1,b,s,p ∀k ∈ K, b ∈ B, s ∈ S, e ∈ E, (6.20)

∑
p∈P

wek,b,s,p ≤ vek,b,s ∀k ∈ K, b ∈ B, s ∈ S, e ∈ E, (6.21)

wek,b,s,p ≤ uek,p · dek,p,b,s ∀k ∈ K, b ∈ B, s ∈ S, p ∈ P, e ∈ E, (6.22)

rek,b,s =
∑
p∈P

πp · wek,b,s,p ∀k ∈ K, b ∈ B, s ∈ S, e ∈ E, (6.23)

uek,p ∈ {0, 1} ∀k ∈ K, p ∈ P, e ∈ E, (6.24)

βek ∈ {0, 1} ∀k ∈ K, e ∈ E, (6.25)
wek,b,s,p ≥ 0 ∀k ∈ K, b ∈ B, s ∈ S, p ∈ P, e ∈ E, (6.26)

vek,b,s ≥ 0 ∀k ∈ K, b ∈ B, s ∈ S, e ∈ E, (6.27)

rek,b,s ≥ 0 ∀k ∈ K, b ∈ B, s ∈ S, e ∈ E, (6.28)
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µk = µf + µv
∑
b∈B

∑
s∈S

vek,b,s, ∀k ∈ K \ {kmax}, e ∈ E, (6.29)

µkmax
= qkmax

µv
∑
b∈B

∑
s∈S

vekmax,b,s, ∀e ∈ E. (6.30)

We start our explanations with the SOP stage: The constraints are the same as
in the formulation of the SLDP (Problem 2). For the sake of completeness we will
go into them anyway. The binary variables xb,`,m indicate if Lot-type ` is delivered
to Branch b in Multiplicity m. If this is the case they take value one, and zero oth-
erwise. We force an assignment of a lot-type and a multiplicity to each branch by
Equation (6.4). In order to account for the opening costs of the supplied lot-types, we
introduce binary variables y` indicating whether or not lot-type ` is used at all and bi-
nary variables zi that take value one if and only if at least i different lot-types are used
for supply. Equation (6.5) guarantees that y` = 1 whenever ` is assigned to at least
one branch b. Inequality (6.6) implies that no more than κ lot-types are used. Inequal-
ity (6.7) enforces that zi = 1 implies that the number of used lot-types is at least i. We
use another dependent variable Ib,s for the inventory in branch b and size s, and Equa-
tion (6.8) links this variable to the assignment decisions. The total inventory is then
given by yet another dependent variable I , computed by Equation (6.9) and enforced
to lie in between given bounds by Inequality (6.10). All independent variables have to
be binary, see (6.11) through (6.13).

Next, let us have a look at the POP stage model that is linked via the start inventories
Ib,s to the SOP stage by Equation (6.14).

The binary variables uk,p indicate if Price index p is allocated to Period k. If this
is the case, they take value one, and zero otherwise. Equation (6.15) enforces the
assignment of exactly one price to each period for each particular scenario. For a given
number of periods kobs from the beginning of the sales process the starting price is
enforced, Equation (6.16). In the last period – the sellout – the salvage value is fixed
by Equation (6.17). We forbid increasing prices by Equation (6.18). A mark-down
for Scenario e in Period k is indicated by the dependent binary variable βek, which is
forced to one by Inequality (6.19) if the price has changed compared to the previous
period. The mark-down costs for the real sales periods are given by Equation (6.29),
the mark-down costs for the sellout period by Equation (6.30).

The following restrictions model the dynamics of the sales process using depen-
dent variables. The fractional variable vek,b,s specifies the stock level in Period k in
Branch b for Size s in Scenario e. The fractional variable wek,b,s,p measures the sales
in Period k in Branch b and Size s for the price with index p in Scenario e. We capture
the yield rek,b,s in Period k for Size s in Branch b in Scenario e by Equation (6.23).
Equation (6.20) describes the change of stock levels from one period to another. In-
equality (6.21) models that sales may not exceed stock. In Inequality (6.22) we require
that, only if the price with related price index p is chosen, there can be sales at the
price index p of at most the demand at the price index p. Because the objective favors
larger sales, the sales variables at a price in an optimal solution will attain exactly the
minimum of stock and demand at that price.

In this POP stage, only the independent price assignment variables need to be bi-
nary (6.24). The dependent variables capturing the dynamics of mean stocks, sales,
and yields are required to be nonnegative in (6.26) through (6.28).

The objective function subtracts the costs for the handling of m lots of Type ` in
Branch b and the lot-type opening costs for using the first, second, . . . , i-th new lot-
type (6.2) from the expected discounted yields minus the expected discounted costs for
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mark-downs, (6.3).

6.3 Complexity of ISPO
The complexity of ISPO can be derived by reducing the SLDP on it.

Corollary 5 (Complexity of ISPO). ISPO is NP-hard.

Proof. If we set all prices πp for all p = 0, . . . , pmax and the fixed and variable mark-
down costs in ISPO to value zero then the term

∑
e∈E

Prob(e)
∑
k∈K

exp(−ρk)

(∑
b∈B

∑
s∈S

rek,b,s − µkβek

)

in the objective will take value zero. (This would be the same as completely ignoring
the price optimization stage in ISPO). The constraints of the size optimization stage
still have to be fulfilled. Because these constraints are the same as for the SLDP we
can solve each instance of the SLDP by setting cb,`,m = distSLDP

b,`,m +m · pcost. In
Corollary 1 we mentioned that the SLDP is NP-hard and therefore it follows that ISPO
is too.

6.4 Solving ISPO with standard approaches
In Chapter 4 we presented a dynamic programming approach for the Price Optimiza-
tion Problem. With a given supply per branch and size as initial state and applying
our dominance rules we can solve the problem for all tested instances in less than four
seconds to optimality. One could also think about applying dynamic programming to
ISPO. In ISPO the initial supply for each branch and size is unknown from the begin-
ning. The optimal supply is the supply that yields – together with the corresponding
locally optimal mark-down strategies – the highest expected revenue. For each par-
ticular supply strategy theoretically a dynamic programming approach analogous to
Chapter 4 could be applied. Finally we would choose the supply which maximizes
the expected revenue in terms of the locally optimal price trajectories. But the sup-
ply has to be in lot-types and the single branches are connected by the overall supply
I and the maximum number κ of used lot-types, Constraints (6.6) and (6.10). More-
over mark-downs are applied simultaneously over all branches and sizes. Therefore the
state space would be huge. To get an idea how large the state space is, let us consider
a small example. As in practice we are given |B| = 1300 branches, but consider only
lot-types (1, 2, 1), (2, 1, 1) and (1, 1, 2), set M = {1} and restrict the overall supply
by I = 5200 and I = 5200. We set κ = 3.1 Because every of our 1300 branches
can be supplied by each lot-type this yields 31300 > 10620 different supply policies. In
fact, for real instances with about 729 different lot-types, at least 3 multiplicites and
larger ranges in terms of the overall supply our state space is much bigger. So there
is no possibility to solve ISPO just by dynamic programming to optimality. However
dynamic programming is part of our heuristic solver for ISPO which we will present in
Chapter 4. Here we restrict ourselves on small subsets of “most promising” lot-types.

1In fact these are no real restrictions. Consider the cardinality of the lot-types, the fact that the sole
multiplicity takes value one and the number of branches.
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Without the fixings (6.16), (6.17) and obviously redundant constraints (6.8), (6.9),
(6.23) the number of constraints of ISPO amounts to

|E|(|B||S|+ |K|(1 + 1.5|P |(|P | − 1) + |B||S|(1 + |P |))) + |B|(1 + |L|) + 2 + κ.

Without the obviously redundant variables (I ,Ib,s,rek,b,s) there are

|L|(|B||M |+ 1) + κ+ |E||K|(1 + |B||S|)(|P |+ 1)

variables.
If we considered practical relevant instances with 3 scenarios, 1300 branches, 6

sizes, 14 periods, 5 prices, 729 lot-types, 3 multiplicities and maximal κ = 4 allowed
different lot-types this would lead to 1 990 308 constraints and 4 809 685 variables. For
typical computers (8 GB of RAM) the size of these instances exceeds memory capacity
and CPLEX fails already at the initialization.

An instance of this size was tested on a machine with 128 GB of RAM.2 Even after
four weeks CPLEX was not able to solve the root relaxation. For an instance with 12
periods, 1000 branches, 7 lot-types, 5 multiplicities, maximal κ = 5 allowed used lot-
types and the rest as above CPLEX needed more than 4 weeks to get to a solution with
an optimality gap of 11.33%. So we tried a very small instance with only 30 branches,
5 periods and 435 lot-types, 3 multiplicities and maximal κ = 4 allowed lot-types and
the rest as above.3 The optimal solution is found after about five hours but still, after
more than four weeks, there is no proof for optimality.

To put this into perspective: Our Branch&Bound solver presented in Chapter 9 is
able to solve such instances in less than 30 seconds. And, more importantly, enables us
to tackle real-world instances.

2Quad-Core AMD Opteron(tm) Processor 2384 CPU with 2GHz and 128 GB of RAM
3It is the first instance of our test set Itest6 , see Appendix E.



Chapter 7

Reducing ISPO to the SLDP

As we have seen in Chapter 6, state-of-the-art solvers fail for real instances of ISPO. In
Chapter 4 we deduced the number of possible price trajectories for the POPê. With this
relatively small number – beside dynamic programming – it is possible to enumerate
all valid price trajectories a priori. We exploit this property and in the remainder of
this thesis only consider price trajectories instead of single assignments “price index to
period”.

We will show that fixing a price trajectory to each scenario simplifies ISPO to an
SLDP with changed objective coefficients. To obtain these, in Section 7.1 we compute
for each number of supplied items per branch and size the expected revenue – we call
it single supply revenue. Adding up corresponding single supply revenues leads to so-
called lot-type revenues which are objective function coefficients in the resulting SLDP,
Section 7.2.

We state the SLDP that results by fixing price trajectories to scenarios in ISPO in
Section 7.3.

In Section 7.4 we will show how ISPO theoretically could be solved by enumerat-
ing SLDPs for all possible assignments “scenario to price trajectory”.

7.1 Single supply revenues
Now we consider the case that in ISPO a price trajectory to a particular scenario is
fixed. For the fixed price trajectory we are able to compute the expected revenue for the
related scenario for every branch, size and integer supply – the single supply revenue
in advance.

Before we describe the algorithm for the computation of the single supply revenues
we introduce some notation.

Notation 1 (map scenario to price trajectory, set of maps). For a scenario e and a price
trajectory t we call e → t a map from scenario e to price trajectory t. A map e → t
means that we fix Price trajectory t = (t0, . . . , tkmax

) to Scenario e in ISPO. In the
formulation of Problem 6 this would mean setting the corresponding uek,p with tk = p

to 1, ∀k ∈ K and the remaining uek,p to 0. With WE′ we denote a set of maps for a
subset E′ ⊆ E of all scenarios, where each scenario e ∈ E′ is mapped to exactly one
valid price trajectory.

75
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Because the sales among the branches and sizes are independent from each other
we can determine the expected revenue for each branch and size separately.

Our computation of the revenue does not regard the fixed costs for mark-downs a
priori. Because they only depend on the corresponding price trajectory and not on the
sold items or the stock after a period we will treat them later on.

We define the single supply revenue as follows.

Definition 14 (single supply revenue). We consider a map scenario to price trajectory
e→ t. For Branch b ∈ B and Size s ∈ S the single supply revenue āe→tb,s,n for a number
n of supplied items is defined as

āe→tb,s,n :=− n · ap

+

kmax−1∑
k=0

exp (−ρk)

(
πtk min

max

n−
k−1∑
j=0

dej,b,s,tj , 0

 , dek,b,s,tk


− βkµv max

n−
k−1∑
j=0

dej,b,s,tj , 0


)

+ exp (−ρkmax)

(
(πkmax − qkmaxµv) max

{
n−

kmax−1∑
k=0

dek,b,s,tk , 0

})
(7.1)

For supplying 0 items the single supply revenue āb,s,0 takes value 0. For each
additional supplied item we have to pay the acquisition price and the markdown costs.
The more items are supplied the higher the costs for markdowns and for acquisition
are. Because of the non-increasing prices and the discounting the yield we earn for
each more supplied item will never exceed the yield we obtained for the last item.

The single supply revenue āe→tb,s,n is concave in n.

Theorem 5 (concavity of the single supply revenue). āe→tb,s,n is concave for n ≥ 0.

Proof. We show that the function is concave for all real values ñ with ñ > 0. Then we
can transfer the concavity to n with n > 0 and n integer.

As a linear function −ñ · ap is concave.
The term

exp (−ρk)

−βkµv max

ñ−
k−1∑
j=0

dej,b,s,tj , 0




is concave: As a linear function ñ −
∑k−1
j=0 d

e
j,b,s,tj

is convex. Likewise the constant
function 0 is. Maxima of convex functions are also convex, such is

max

ñ−
k−1∑
j=0

dej,b,s,tj , 0

 .

It is exp (−ρk), βk and µv ≥ 0. Multiplying a convex function with positive scalars
does not change the convexity. But negative convex functions are concave. This yields
the claim.
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For the same reasons

exp (−ρkmax)

(
−qkmax

µv max

{
ñ−

kmax−1∑
k=0

dek,b,s,tk , 0

})
is a concave function in ñ.

We now show that

kmax−1∑
k=0

exp (−ρk)πtk min

max

ñ−
k−1∑
j=0

dej,b,s,tj , 0

 , dek,b,s,tk


+ exp (−ρkmax)πkmax max

{
ñ−

kmax−1∑
k=0

dek,b,s,tk , 0

}
is concave. Because positive linear combinations of concave functions are also concave
the claim of the theorem follows.

To simplify the term we denote exp(−ρk)πtk by π̃k, ∀k ∈ K. Because we con-
sider only one branch, size and scenario we can simplify dek,b,s,tk by d̃k. Moreover we
include the last sellout period in the first term. This can be done by assuming that the
demand d̃kmax in the sellout period for ñ items always amounts to ñ.

We have to show that

kmax∑
k=0

π̃k min

max

ñ−
k−1∑
j=0

d̃j , 0

 , d̃k


is concave for ñ > 0.

We show that π̃fñ0
with fñ0 := min

{
k ∈ K :

∑k
j=0 d̃j ≥ ñ0

}
is a supergradient

for each ñ0 > 0, i.e. we show that for every ñ, ñ0 > 0 it is

kmax∑
k=0

π̃k min

max

ñ−
k−1∑
j=0

d̃j , 0

 , d̃k


−
kmax∑
k=0

π̃k min

max

ñ0 −
k−1∑
j=0

d̃j , 0

 , d̃k

 ≤ π̃fñ0
(ñ− ñ0) .

Then concavity follows.1

It is fñ0
as defined above and analogously fñ := min{k ∈ K :

∑k
j=0 d̃j ≥ ñ}.

Then it is

kmax∑
k=0

π̃k min

max

ñ−
k−1∑
j=0

d̃j , 0

 , d̃k


−
kmax∑
k=0

π̃k min

max

ñ0 −
k−1∑
j=0

d̃j , 0

 , d̃k


=

fñ−1∑
k=0

π̃kd̃k + π̃fñ

ñ− fñ−1∑
k=0

dk

− fñ0
−1∑

k=0

π̃kd̃k − π̃fñ0

ñ0 −
fñ0−1∑
k=0

dk


1For detailed information about supergradients and generalized concavity we refer the reader

to [ADSZ10].
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If ñ = ñ0 the term above takes value 0 and the supergradient inequality follows.
So in the following we only consider the two cases ñ > ñ0 and ñ < ñ0.

Case 1: ñ > ñ0

It is fñ ≥ fñ0 and because πk ≥ πk+1, ∀k ∈ K \{kmax} it is also πfñ ≤ πfñ0
.

Such it is

fñ−1∑
k=0

π̃kd̃k + π̃fñ(ñ−
fñ−1∑
k=0

d̃k)−
fñ0
−1∑

k=0

π̃kd̃k − π̃fñ0
(ñ0 −

fñ0
−1∑

k=0

d̃k)

=

fñ−1∑
k=fñ0

π̃kd̃k + π̃fñ ñ− π̃fñ
fñ−1∑
k=0

d̃k − π̃fñ0
ñ0 + π̃fñ0

fñ0
−1∑

k=0

d̃k

≤π̃fñ0

fñ−1∑
k=fñ0

d̃k + π̃fñ ñ− π̃fñ
fñ−1∑
k=0

d̃k − π̃fñ0
ñ0 + π̃fñ0

fñ0
−1∑

k=0

d̃k

=π̃fñ0

fñ−1∑
k=0

d̃k + π̃fñ ñ− π̃fñ
fñ−1∑
k=0

d̃k − π̃fñ0
ñ0

=
(
π̃fñ0

− π̃fñ
) fñ−1∑
k=0

d̃k + π̃fñ ñ− π̃fñ0
ñ0

≤
(
π̃fñ0

− π̃fñ
)
ñ+ π̃fñ ñ− π̃fñ0

ñ0 = π̃fñ0
(ñ− ñ0).

Case 2: ñ < ñ0

It is fñ ≤ fñ0
and because πk ≤ πk+1, ∀k ∈ K \{kmax} it is also πfñ ≥ πfñ0

.
Such it is

fñ−1∑
k=0

π̃kd̃k + π̃fñ(ñ−
fñ−1∑
k=0

d̃k)−
fñ0−1∑
k=0

π̃kd̃k − π̃fñ0
(ñ0 −

fñ0−1∑
k=0

d̃k)

=

fñ−1∑
k=0

(πk − πfñ)dk + πfñ ñ+

fñ0−1∑
k=0

(πfñ0
− πk)dk − πfñ0

ñ0

=

fñ∑
k=0

(πfñ0
− πfñ)dk +

fñ0
−1∑

k=fñ+1

(πfñ0
− πk)dk + πfñ ñ− πfñ0

ñ0

≤ñ(πfñ0
− πfñ) + πfñ ñ− πfñ0

ñ0 = πfñ0
(ñ− ñ0)

One possibility to compute the single supply revenues for all possible numbers of
supplied items n for a price trajectory and a given scenario would be to consider each
n separately and then apply the formula from Definition 14. But this may lead to
unnecessary iterations: For all m < n and all periods k with

∑k
j=1 d

e
j,b,s,tj

≤ m the
yield in this period as well for m as for n amounts to exp(−ρk)πtkd

e
k,b,s,tk

. With this
consideration iterations can be avoided. Nevertheless additional mark-down costs may
arise for a higher supply. To handle these we define the aggregated discount.
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Definition 15 (aggregated discount). We define the aggregated discount ρ̃tk for Period
k with 0 < k < kmax and a price trajectory t = (t0, . . . , tkmax

) as

ρ̃tk :=
∑
j∈Kt

k

exp (−ρj) (7.2)

while j ∈ Kt
k if and only if 0 < j ≤ k and tj 6= tj−1.

The aggregated discount arises by adding up the discounting factors for all real
sales periods ≤ k in which a mark-down occurs.

Algorithm 6 considers different numbers of supplied items simultaneously when
traversing the sales periods.

Algorithm 6 Single supply revenue
Require: complete data of an instance of ISPO,

map e→ t from Scenario e to Price trajectory t = (t0, t1 . . . , tkmax )
Ensure: for every branch b, every size s and integer numbers

n : vmin ≤ n ≤ d
∑kmax−1
k=0 dek,b,s,tk

e single supply revenue āe→t
b,s,n

1: for all b ∈ B do
2: for all s ∈ S do
3: set r̃ = vmin

4: set ã = −ap · vmin

5: set d̃ = de0,b,s,t0
6: set k̃ = 0
7: set p̃ = t0
8: set n = vmin

9: while true do
10: if k̃ > 0 and tk̃ 6= tk̃−1 then

11: ã = ã− exp
(
−ρk̃

)
r̃µv

12: end if
13: if d̃ < r̃ then
14: ã = ã+ exp

(
−ρk̃

)
d̃πp̃

15: r̃ = r̃ − d̃
16: if k̃ < kmax − 2 then
17: k̃ = k̃ + 1
18: p̃ = tk̃
19: d̃ = de

k̃,b,s,t
k̃

20: else
21: āe→t

b,s,n = ã+ exp (−ρkmax)
(
r̃
(
πtkmax

− qkmaxµv
))

22: break
23: end if
24: else
25: ã = ã+ exp

(
−ρk̃

)
r̃πp̃

26: āe→t
b,s,n = ã

27: d̃ = d̃− r̃
28: r̃ = 1
29: n = n+ 1
30: ã = ã− ap
31: if k̃ > 0 then
32: ã = ã− ρ̃t

k̃−1
µv

33: end if
34: end if
35: end while
36: end for
37: end for

The proceeding in Algorithm 6 is as follows:
We traverse the branches and sizes. First we set the current stock r̃ for the consid-

ered branch and size to the minimum supply per lot-type and size vmin, Step 3.
For each period k̃ we sell the minimum of current stock and current demand d̃, Case

13 or 24. The revenue is then computed by Step 14 or Step 25. If there is a mark-down
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at the beginning of the current period, we have to subtract the variable mark-down costs
in Step 11.

If the demand of the considered period is smaller than the current stock, we have to
update the stock, Step 15. We possibly go to the next sales period, Step 17, and after
updating demand and price index we continue. If we already are in the sellout period
kmax we update the current revenue by adding the salvage value and subtracting the
variable mark-down costs for the remaining items in Step 21 and update the revenue
for the current number n. After that we break the loop.

In the other case – if the demand is not smaller than the current stock – we will
sell all of our current stock and state the revenue for the considered number of supplied
items, Step 26. We update the remaining demand for the current period k̃ in Step 27
and increase our stock by one in Step 28 to compute the revenue for the next number
of supplied items, Step 29. For the additionally supplied item we have to pay the
acquisition price, see Step 30. Moreover, because the additionally supplied item was
in the considered branch at the beginning of the sales process – before we got here for
the current n the demand was always smaller than the current stock r̃ – we have to
subtract variable mark-down costs for all former periods, Step 11. We continue with
the updated number n.

7.1.1 Runtime of Algorithm 6
In the following we want to outline results in terms of the runtime of Algorithm 6.

Theorem 6 (Number of iterations in Algorithm 6). We consider a branch b ∈ B, a size
s ∈ S and a map scenario to price trajectory e → t with t = (t0, . . . , tkmax

). With dk
we denote the demand dek,b,s,tk for period k according to t. For vmin = 1 the number
of iterations it (1) in the while-loop of Algorithm 6 is given by

it (1) = kmax +

⌊
kmax−1∑
k=0

dk

⌋
. (7.3)

To proof this theorem we exploit the following lemmas:

Lemma 2 (equality condition). It is 0 ≤ d̃ < r̃ ≤ 1. Then the following equation
holds:

r̃ − d̃ = 1− d̃+ r̃ + bd̃− r̃c. (7.4)

Proof. Since 0 ≤ d̃ < r̃ ≤ 1 it is d̃− r̃ < 0 and d̃− r̃ ≥ −1. This means bd̃− r̃c = −1
and the claim follows.

Lemma 3 (value of r̃ in Algorithm 6 (part 1)). It is vmin = 1. With r̃k we denote the
value of r̃ at the first iteration of the while-loop for period k̃ = k with 0 ≤ k < kmax.
The corresponding demand in period k is given by dk := dek,s,b,tk . It is

r̃k = 1− dk−1 + r̃k−1 + bdk−1 − r̃k−1c. (7.5)
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Proof. We consider two cases:
Case 1: dk−1 < r̃k−1

With Step 15 of the algorithm it is r̃k = r̃k−1 − dk−1. Moreover it is r̃k ≤ 1 (Step
3 and Step 28). Applying Lemma 2 provides the equation.

Case 2: dk−1 ≥ r̃k−1

Step 27 of the algorithm provides d̃ = dk−1− r̃k−1 and Step 28 sets r̃ = 1. As long
as d̃ ≥ r̃ Step 27 yields d̃ = d̃ − 1 because r̃ has been set to 1 before in Step 28.
That means we have to subtract one time r̃k−1 and then bdk−1− r̃k̃−1c times r̃ = 1

for updating d̃. When finally d̃ < r̃, it is d̃ = dk−1 − r̃k−1 − bdk−1 − r̃k−1c and
after Step 15 it is r̃k = 1− (dk−1 − r̃k−1 − bdk−1 − r̃k−1c).

Lemma 4 (Value of r̃ in Algorithm 6 (part 2)). The requirements and notations of
Lemma 3 are met. Then the value of r̃k is given by

r̃k = 1−
k−1∑
j=0

dj +

k−1∑
j=0

dj

 . (7.6)

Proof. We use Lemma 3 and prove the equality by induction.
k = 0:

The claim is true because the sums of demands take value zero. So r̃0 = 1, what is
true by assumption.

k → k + 1:
We assume that the claim is valid for k. Then with Lemma 3 it is
r̃k+1 = 1− dk + r̃k + bdk − r̃kc .
By applying the induction hypothesis we get

r̃k+1 =1− dk + 1−
k−1∑
j=0

dj +

k−1∑
j=0

dj


+

dk −
1−

k−1∑
j=0

dj +

k−1∑
j=0

dj

 .
By extracting the integer values from rounding we finally get

r̃k+1 = 1−
k∑
j=0

dj +

 k∑
j=0

dj

 .

For a period k < kmax the number of iterations needed in the while-loop of Al-
gorithm 6 depends on the current stock and demand. If the demand is greater than or
equals the stock then we are first in the case of Step 24. We subtract the current demand
from our stock and set the current stock to one. Altogether we need one iteration for
subtracting the demand from the current stock and then have to set our current stock
bdk − r̃kc times to one, Step 15, to meet the demand of Period k. We need another
iteration in which we increase the current period by one, Step 17.

If the demand is smaller than the current stock we only perform one iteration in the
while loop: the period is increased by one in Step 17.
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Observation 1 (Number of iterations for k̃ in Algorithm 6). It is vmin = 1. For period
k with 0 ≤ k < kmax the number of iterations it (1)

k while k̃ = k in the while-loop in
Algorithm 6 is

it
(1)
k = 2 + bdk − r̃kc. (7.7)

With the help of the previous lemmas and Observation 1 we now prove Theorem 6.

Proof of Theorem 6. We first put the results of Lemma 4 and Observation 1 together
and get

it
(1)
k = 2 +

dk − 1 +

k−1∑
j=0

dj −

k−1∑
j=0

dj

 .
Extracting the integer values −1 and b

∑k−1
j=0 djc from rounding yields

it
(1)
k = 1 +

 k∑
j=0

dj

−
k−1∑
j=0

dj

 .
Summing up over the real sales periods yields

it (1) =

kmax−1∑
k=0

1 +

 k∑
j=0

dj

−
k−1∑
j=0

dj


=kmax +

kmax−1∑
k=0

 k∑
j=0

dj

− kmax−1∑
j=0

k−1∑
j=0

dj


=kmax +

⌊
kmax−1∑
k=0

dk

⌋
.

If vmin > 1 the runtime of Algorithm 6 will be lower or equal.

Corollary 6 (number of iterations for Algorithm 6 with vmin ≥ 1). The general num-
ber of iterations it (vmin) in the while-loop for the minimum number of supplied items
per branch and size vmin is given by

it (vmin) = 1− vmin + kmax + max

{⌊
kmax−1∑
k=0

dk

⌋
, vmin − 1

}
(7.8)

Proof. If vmin = 1, the maximum in the last term of 7.8 amounts to
⌊∑kmax−1

k=0 dk

⌋
and the claim follows directly.

In the case of vmin > 1 we first assume that there exists a period f with

f = min

k ∈ {0, . . . , kmax − 1} :

k∑
j=0

dk ≥ vmin

 .
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We will show that in this case

it (vmin) = f︸︷︷︸
:=it<

+ 2 +

⌊
f∑
k=0

dk

⌋
− vmin

︸ ︷︷ ︸
:=it=

+

kmax − f − 1 +

⌊
kmax−1∑
k=0

dk

⌋
−

⌊
f∑
k=0

dk

⌋
︸ ︷︷ ︸

:=it>

.

By simplification then the claim follows.
While

∑k̃
k=0 dk < vmin we only do one iteration for the current period k̃ and then

change to the next period. This results in it< = f iterations.
The first time when

∑k̃
k=0 dk̃ ≥ vmin, it is r̃k̃ = vmin −

∑k̃−1
k=0 dk. In Step 15 r̃ is

set to one. We can apply Observation 1 and get

it= = 2 +

dk̃ − vmin +

k̃−1∑
k=0

dk

 = 2 +

 k̃∑
k=0

dk

− vmin

iterations for k̃ = f .
We now will consider the number of iterations for k̃ > f . It is

r̃f = vmin −
f−1∑
k=0

dk.

Because r̃ is set to value 1 at the end of the first iteration with k̃ = f + 1 Lemma 3
holds. Inserting r̃k̃−1 = vmin −

∑f−1
k=0 dk in (7.5), Lemma 3, and summing up for

the remaining kmax − f − 1 periods yields it> = kmax − f − 1 +
⌊∑kmax−1

k=0 dk

⌋
−⌊∑f

k=0 dk

⌋
iterations.

In the case that there exists no 0 ≤ f < kmax with
∑f
k=0 dk ≥ vmin the maximum

of the last term of 7.8 always amounts to vmin − 1. We get kmax iterations, what
is correct because in the algorithm always d̃ < r̃ and the current period k̃ is always
increased by one.

We now can state the runtime of Algorithm 6.

Corollary 7 (general runtime of Algorithm 6). The runtime of Algorithm 6 for the map
e→ t depending on the minimum supply per branch and size vmin is given by

O

(
|B||S|

(
kmax +

⌊
kmax−1∑
k=0

dek,b,s,tk

⌋))
. (7.9)

In Algorithm 6 we did not regard the number of supplied items per branch and size
that are higher than the rounded up demand over all real sales periods. Because every
additional item will not be sold until sellout, the additional revenue is easy to compute:
We just have to add the salvage value and subtract acquisition price and mark-down
costs for all periods for the additional items.
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Observation 2 (revenue for demand-exceeding number of items).
It is nmax :=

⌈∑kmax−1
k=0 dek,b,s,tk

⌉
the highest number in Algorithm 6 for which for

Scenario e, Price Trajectory t = (t0, . . . , tkmax
), Branch b and Size s the single supply

revenue āe→t
b,s,n is computed. For every m > nmax the single supply revenue āe→t

b,s,m is
given by

āe→t
b,s,m =āe→t

b,s,nmax
+

(m− nmax)
(
−ap− µvρ̃tkmax−1 + exp (−ρkmax) (πpmax

− qkmax
µv)
)
.

(7.10)

7.1.2 An Example
Example 8 (Algorithm 6 – computation of the single supply revenue). We now de-
pict the proceeding of Algorithm 6 on our accompanying example from Section 4.7 for
vmin = 1. We consider the price trajectory t = (0, 0, 0, 2, 3) for the scenario “normal
seller” and compute the single supply revenues for Branch 1 and Size S. We state the
demands for each period according to t in the subsequent table.

k 0 1 2 3
dek,1,S,tk

2 1.5 1 1.5

At the beginning of Algorithm 6 it is r̃ = 1 and ã = −0.5 (Step 30). The demand d̃
for the current period k̃ = 0 takes value 2. Therefore, d̃ > r̃ and the current revenue
is given by ã = −0.5 + exp (−ρ · 0) · 1 · 10.99 = 10.49 (Step 25). We update the rev-
enue for suppling one item: āe→t

1,S,1 = 10.49 (Step 26). The remaining demand d̃ is
updated to 1, and now we consider a supply of n = 2 and have to subtract the acqui-
sition price for the additional item from the current revenue: ã = 10.49 − 0.5 = 9.99
(Steps 27-30).

Now, it is 1 = d̃ = r̃, that means again we are in the case that d̃ ≥ r̃. We update the
current revenue ã = 9.99 + exp (−0.01 · 0) · 1 · 10.99 = 20.98 and set the revenue for
supplying two items: āe→t

1,S,2 = 20.98. The remaining demand now takes value zero and
we consider a supply of n = 3. The current revenue is set to ã = 20.98− 0.5 = 20.48.

It is 0 = d̃ < r̃ = 1. Because the remaining demand takes value zero, the cur-
rent revenue and stock does not change (Steps 14 and 15). We increase k̃ to k̃ = 1.
The remaining demand now is the demand of Period 1: d̃ = 1.5, r̃ still takes value
1. Now it is 1.5 = d̃ ≥ r̃ = 1 and we update the revenue according to the sales:
ã = 20.48 + exp (−0.01 · 1) · 1 · 10.99 = 31.36. We update the revenue for supplying
3 items to āe→t

1,S,3 = 31.36. The remaining demand amounts to d̃ = 0.5 and we consider
the supply n = 4. So we have to regard the acquisition price for the additional item
and subtract it from the current revenue: ã = 31.36− 0.5 = 30.86.

Still, the remaining demand is smaller than the current stock: 0.5 = d̃ < r̃ = 1.
The updated revenue amounts to ã = 30.86 + exp (−0.01 · 1) · 0.5 · 10.99 = 36.30.
The remaining stock is updated to r̃ = 0.5 and we increase the current period to k̃ = 2.

Now, after the demand is updated it is 1 = d̃ ≥ r̃ = 0.5. We update the current
revenue and obtain ã = 36.30 + exp (−0.01 · 2) · 0.5 · 10.99 = 41.69. The revenue
for supplying 4 item amounts to āe→t

1,S,4 = 41.69. We update the remaining demand:
d̃ = 0.5, set the remaining stock r̃ = 1 and continue with a supply of n = 5. With
subtracting the acquisition price we get ã = 41.69− 0.5 = 41.19.
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We are in the case that 0.5 = d̃ < r̃ = 1. We update the current revenue and
get ã = 41.19 + exp (−0.01 · 2) · 0.5 · 10.99 = 46.58. The current stock is updated to
r̃ = 0.5. We continue with period k̃ = 3 and set the current demand to the demand of
Period 3: d̃ = 1.5.

Because there is a mark-down in the current period k̃ = 3, we have to regard the
variable mark-down costs and get ã = 46.58 − exp (−0.01 · 3) · 0.5 · 0.1 = 46.53.
Now the current demand exceeds the current stock: It is 1.5 = d̃ ≥ r̃ = 0.5. The
updated current revenue amounts to ã = 46.53 + exp (−0.01 · 3) · 0.5 · 1.99 = 47.49.
We set the revenue for suppling 5 items to āe→t

1,S,5 = 47.49. The remaining demand now
is d̃ = 1, the remaining stock is set to r̃ = 1. We go on with suppling n = 6 items and
subtract the acquisition price from the current revenue: ã = 47.49− 0, 5 = 46.99.

Additionally we have to regard the mark-down costs for the current stock. It is
ã = 46.99 − exp (−0.01 · 3) · 0.1 = 46.89 and 1 = d̃ = r̃. The updated revenue is
ã = 46.89 + exp (−0.01 · 3) · 1 · 1.99 = 48.82. The cost for suppling 6 items is set to
āe→t

1,S,6 = 48.82. The remaining demand is d̃ = 0. We continue with n = 7 and set the
remaining stock to r̃ = 1. The revenue is updated to ã = 48.82− 0.5 = 48.32.

The mark-down costs for one additional item are subtracted from the current rev-
enue. This results in ã = 48.32 − exp (−0.01 · 3) · 0.1 = 48.22. It is 0 = d̃ < r̃ = 1.
Because we are in the last real sales period, we are in the case of Step 20. We have to
add the salvage value and subtract the variable mark-down costs for period kmax and
get āe→t1,S,7 = 48.22 + exp (−0.01 · 4) · 1 · (0.99− 2 · 0.1) = 48.98 and end up the
computation for Branch 1 and Size S.

The additional revenue per supplied item for more than 7 supplied items amounts
to

−0.5 + exp (−0.01 · 3) · 0.1 + exp (−0.01 · 4) · (0.99− 2 · 0.1) = 0.16.

7.1.3 Computational results
We compare Algorithm 6 with the more intuitive Algorithm 7 to compute the sin-
gle supply revenues. In Algorithm 7 for each integer supply of items n per branch
and size with vmin ≤ n ≤ d

∑kmax−1
k=0 dek,tk,b,se we always walk through the periods

k = 0, . . . , kmax − 1 until all items are sold or we reached the last real sales period.
Thus, the alternative algorithm has a runtime of

O

(
|B||S|kmax

⌈
kmax−1∑
k=0

dek,b,s,tk

⌉)
. (7.11)

That means with Algorithm 6 we can reduce the pseudo-polynomial runtime against
the more intuitive Algorithm 7 at least by one factor.

In Table 7.1 the results for comparing Algorithms 6 with Algorithm 7 for a subset
from the set of real instances I (see Appendix E) are stated. We took the supply Ib,s
from historical transaction data we obtained from our partner. The algorithms were
performed consecutively for all three scenarios “low seller”, “normal seller” and “high
seller”. Thus, time and number of iterations refer to all three scenarios. The mean
values in the last line refer to the whole set I. The number of iterations “#iter” and
the computation time in seconds “time(s)” is stated for Algorithm 6 and the described
alternative.

In Algorithm 6 on average the number of iterations is 170 586 less. Let us take a
look on the overall computation time. It amounts to 49.00 seconds for our proposed
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Algorithm 7 Single supply revenue 2
Require: map e→ t from Scenario e from Price trajectory t = (t0, . . . , tkmax ),

complete data of an instance for ISPO
Ensure: for every branch b, every size s and integer numbers n : vmin ≤ n ≤ d

∑kmax−1
k=0 dek,b,s,tk

e single

supply revenue āe→t
b,s,n

1: for all b ∈ B do
2: for all s ∈ S do
3: set n = vmin

4: while true do
5: set r̃ = n
6: set ã = −ap · n
7: set p̃ = t0
8: set k̃ = 0
9: set d̃ = de0,b,s,t0
10: while k̃ < kmax do
11: if k̃ > 0 and tk̃−1 6= tk̃ then

12: ã = ã− exp
(
−ρk̃

)
r̃µv

13: if d̃ < r̃ then
14: ã = ã+ exp

(
−ρk̃

)
d̃πp̃

15: r̃ = r̃ − d̃
16: k̃ = k̃ + 1
17: d̃ = de

k̃,b,s,t
k̃

18: p̃ = tk̃
19: else
20: ã = ã+ exp

(
−ρk̃

)
r̃πp̃

21: break
22: end if
23: end if
24: end while
25: ã = ã+ exp (−ρkmax) r̃ (πpmax − qkmaxµv)
26: n = n+ 1
27: end while
28: end for
29: end for

Instance #iter time(s)
Alg.7 Alg.6 Alg.7 Alg.6

1 328 308 212 244 0.06 0.05
2 328 308 212 244 0.06 0.05
3 389 730 224 119 0.06 0.06
4 365 680 218 762 0.06 0.05
5 365 680 218 762 0.07 0.04
6 365 680 218 762 0.05 0.06
7 365 680 218 762 0.06 0.05
8 355 236 217 681 0.05 0.06
9 366 060 218 278 0.05 0.06

10 333 383 212 806 0.05 0.05
11 274 576 203 267 0.05 0.05
12 274 576 203 267 0.06 0.05
13 314 439 209 643 0.05 0.05
14 361 619 235 900 0.08 0.06
15 447 372 284 027 0.09 0.08

...
...

...
...

...

∅ 496 757 326 171 0.0569 0.0606∑
280 507 337 427 210 602 49.00 52.15

Table 7.1: Comparison – computation of single supply revenues
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Algorithm and 52.15 second for the alternative. In terms of time this is only a marginal
improvement. Yet, we proposed an algorithm for the computation of the single supply
revenues which always needs less iterations than a more intuitive algorithm.

7.2 Establishing lot-type revenues
To obtain revenues for a map e→ t Scenario e to Price trajectory t for a given lot-type
` and multiplicity m one has to add up the according to Section 7.1 computed single
supply revenues āe→tb,s,n in the following way.

Definition 16 (lot-type revenue). The lot-type revenue âb,`,m for Branch b, Lot-type `
and Multiplicity m for a map e→ t is given as

âe→tb,`,m :=
∑
s∈S

āe→t
b,s,m·ls −m · pcost. (7.12)

By definition the single supply revenue contains as well acquisition price as yield
resulting from fixing Price trajectory t to Scenario e, so also the lot-type revenue does.
We included the corresponding pick-costs by subtracting m · pcost.

7.3 Fixing price trajectories in the ISPO – an SLDP

Let us consider a subset E′ of the scenarios E . We are given a set of mapsWE′ where
each e ∈ E′ is mapped to a price trajectory te. The part of the expected revenue of the
ISPO according to the subset E′ of scenarios is given by the optimal objective value of
the following SLDP.

Problem 7 (SLDP(WE′ )).

max
∑
e∈E′

Prob (e)

(∑
b∈B

∑
`∈L

∑
m∈M

âe→t
e

b,`,mxb,`,m − µf δ̃t
e

kmax−1 −
κ∑
i=1

δi · zi

)
(7.13)

subject to ∑
`∈L

∑
m∈M

xb,`,m = 1 ∀b ∈ B, (7.14)∑
m∈M

xb,`,m ≤ y` ∀b ∈ B, ` ∈ L, (7.15)

∑
`∈L

y` ≤
κ∑
i=1

zi, (7.16)

zi ≤ zi−1 i = 1 . . . , κ, (7.17)

Ib,s =
∑
`∈L

∑
m∈M

m · `s · xb,`,m, ∀b ∈ B, s ∈ S, (7.18)

I =
∑
b∈B

∑
s∈S

Ib,s, (7.19)
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I ∈ [I, I], (7.20)
xb,`,m ∈ {0, 1} ∀b ∈ B, ` ∈ L,m ∈M, (7.21)

y` ∈ {0, 1} ∀` ∈ L, (7.22)
zi ∈ {0, 1} i = 1, . . . , κ. (7.23)

The constraints do not differ from the formulation of Problem 2. Now we want
to consider revenue not costs and changed the objective from minimization to maxi-
mization. The objective coefficient âe→teb,`,m is the expected revenue for Scenario e for
supplying Branch b with Lot-type ` in Multiplicity m excluding the fixed mark-down
costs. We have to subtract these costs for the periods with mark-downs separately.
This is done by using the aggregated discount from Definition 15 for every scenario.
Additionaly we subtract the lot-opening costs in the objective.

Notation 2 (optimal objective value of SLDP
(
WE′

)
). With z∗

SLDP(WE′ )
we denote

the optimal objective function value of Problem 7.

Notation 3 (optimal objective value of the LP relaxation of SLDP
(
WE′

)
). With

z∗
SLDP-LP(WE′ )

we denote the optimal objective value of the LP relaxation of the SLDP
(
WE′

)
.

7.4 Solving the ISPO by enumerating SLDPs
With the results of the previous sections, theoretically we can solve ISPO by solving
an SLDP for every set of maps “scenario to price trajectory” in which each considered
scenario is assigned to a price trajectory. The subsequent Corollary follows directly
from Theorem 2.

Corollary 8 (solving the ISPO by enumerating SLDPs). We consider ISPO how it is
stated in the formulation of Problem 6. We can solve ISPO by enumerating(

kmax − kobs + pmax − 1

pmax − 1

)|E|
SLDP(WE)s.

We will illustrate the proceeding on a small example.

Example 9 (ISPO – enumeration tree). For simplicity we assume in this example
kobs = 2, kmax = 3 and pmax = 2. According to Theorem 2 this leads to 2 different
price trajectories: t0 = (0, 0, 0, 2) and t1 = (0, 0, 1, 2). It is |E| = 3. In Figure 7.1 we
see the corresponding enumeration tree. A depth corresponds to a scenario e ∈ E. The
width corresponds to a price trajectory. At the leaves every scenario is fixed to a price
trajectory and solving the corresponding SLDP(WE) yields a lower bound for the op-
timal solution of the ISPO. The optimal solution of the ISPO is the optimal solution of
the SLDP(WE) with the highest optimal solution value among all possible set of maps
WE .

For example, for the set of ordered scenarios E = {e1, e2, e3} and the set of or-
dered price trajectories {t1, t2} at the leaf of the third branch in the enumeration tree in
Figure 7.1 we would solve an SLDP(WE) with WE = {e1 → t1, e2 → t2, e3 → t1}.
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scenario

e1

e2

e3

t1 t2

t1 t2 t1 t2

t1 t2 t1 t2 t1 t2 t1 t2

Figure 7.1: ISPO – enumeration tree

Enumerating all maps WE and solving the related SLDP(WE) is for us firstly
theoretically interesting. With real-world instances with kobs = 2, kmax = 13 and
pmax = 4 this would yield 364 price trajectories for every scenario what means 3643 =
48 228 544 leaves or to be solved SLDP(WE)s. Even if we assumed that the solving
process for each SLDP(WE) would take only 1 second, we would have to wait more
than 558 days for an optimal solution of the ISPO.

But with this reduction we are able to reduce the size of ISPO to the size of –
although – many SLDP(WE)s and theoretically can solve the same instances – in terms
of the numbers of branches, lot-types and multiplicities – as we can handle with the
SLDP.

Because also the SLDP(WE) can be reduced to κ LDPs as shown in Chapter 2, we
can use all known approaches for the LDP in the solving process.

Enumerating the SLDP(WE)s in the outlined way is the basic idea of our exact
Branch&Bound solver we will present in Chapter 9. Because solving all SLDP(WE)s
is not possible, we have to prune the enumeration tree. This is done by dual bounds
which are topic of the following chapter.



Chapter 8

Dual Bounds

In Chapter 9 we will present an exact Branch&Bound approach to solve the Integrated
Size and Price Optimization Problem. One of the most important points in terms of
efficiency of this algorithm is the computation of possibly tight dual bounds.

At the nodes of our Branch&Bound we will fix price-trajectories to scenarios. At
the leaves then for every scenario a price trajectory is fixed and the corresponding
SLDP(WE) is solved to optimality in order to obtain a primal bound for ISPO. To
reduce the number of processed nodes and especially of processed leaves, i.e. to be
solved SLDP(WE)s, we will use lower bounds based on the wait-and-see solution
from stochastic programming, see also Chapter 5. We developed tighter dual bounds
based on the wait-and-see solution by combining subsets of scenarios and call the result
the extended wait-and-see solution. We present these bounds in Section 8.1

Computational effort is reduced by combining wait-and-see and extended wait-and-
see solutions with relaxations of the SLDP(WE′ ) for subsets E′ ⊆ E of scenarios. A
relaxation we use neglects the fact that the supply has to be in lot-types – i.e. indepen-
dent integer supplies per branch and size are allowed. Additionally we use LP relax-
ations. In Section 8.2 we apply these dual bounds to ISPO. We conclude the chapter in
Section 8.3.

8.1 Dual bounds from wait-and-see solutions
A well known dual bound from stochastic programming is the wait-and-see solution,
see also Chapter 5. In Subsection 8.1.1 we will formulate the wait-and-see solution
for a general stochastic mixed-integer program. We show how to extend this bound by
combining scenarios, Subsection 8.1.2. Computation time can be reduced by relaxing
the underlying problems, Subsection 8.1.3.

8.1.1 The wait-and-see solution
In this section we will refer to the following formulation of a general stochastic mixed-
integer program:

90
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Problem 8 (general two-stage SMIP).

max
x

z(x(Ξ),Ξ) = max
x

cTx+ Eξ∈ΞQ(x, ξ) (8.1)

subject to Ax = b, (8.2)

x ∈ Rk × Zn−k. (8.3)

Ξ is the set of all possible scenarios andQ(x, ξ) is the objective of the second stage
for the particular scenario ξ and may be nonlinear.

With x∗(Ξ) we denote the optimal solution of the problem, z(x∗(Ξ),Ξ) is the
optimal objective value. If we restrict Problem 8 to a particular scenario ξ we obtain
Problem 9.

Problem 9 (general two-stage SMIP associated with Scenario ξ).

max
x

zSIN(x(ξ), ξ) = max
x

cTx+Q(x, ξ) (8.4)

subject to Ax = b, (8.5)

x ∈ Rk × Zn−k. (8.6)

With x∗(ξ) we denote the optimal solution of Problem 9. The related optimal
objective value is denoted by zSIN(x∗(ξ), ξ).

Definition 17 (wait-and-see solution for a general SMIP). The wait-and-see solution
WS for Problem 8 is given by

WS = Eξ∈Ξ

[
max
x

zSIN(x(ξ), ξ)
]

= Eξ∈Ξz
SIN(x∗(ξ), ξ). (8.7)

The wait-and-see solution is a dual bound of the original problem. It follows from
the proof of Theorem 4 in Chapter 5. Integrality of variables does not affect the result.

8.1.2 Extending wait-and-see solutions
Based on the wait-and-see solution from the previous subsection we developed stronger
dual bounds for general two-stage stochastic optimization problems by considering
subsets of scenarios. We call them extended wait-and-see solutions.

For this purpose we define the so-called partial stochastic program on which the
extended wait-and-see solution is based.

Problem 10 (partial two-stage SMIP). It is pξ the probability of the occurrence of
scenario ξ. The partial two-stage stochastic (mixed-integer) program for the subset of
scenarios Ξ′ ⊆ Ξ is given by

max
x

zPA(x(Ξ′),Ξ′) = max
x

∑
ξ∈Ξ′

pξ(c
Tx+Q(x, ξ)) (8.8)

subject to Ax = b, (8.9)
x ≥ 0. (8.10)

It is x∗(Ξ′) the optimal solution of the problem and with zPA(x∗(Ξ′),Ξ′) we denote
the corresponding objective value.
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Definition 18 (extended wait-and-see solution). We define the extended wait-and-see
solution W̃S (Ξ′) of an SMIP for the subset Ξ′ ⊆ Ξ of scenarios by

W̃S (Ξ′) := zPA(x∗(Ξ′),Ξ′) +
∑

ξ∈Ξ\Ξ′
zPA(x∗({ξ}), {ξ}) (8.11)

= zPA(x∗(Ξ′),Ξ′) +
∑

ξ∈Ξ\Ξ′
pξz

SIN(x∗(ξ), ξ). (8.12)

For every subset of scenarios from the set Ξ the extended wait-and-see solution is
a tighter dual bound than the classical wait-and-see solution.

Theorem 7 (extended wait-and-see solution as dual bound). For the optimal solution of
Problem 8 and the extended wait-and-wee solution W̃S (Ξ′) the following inequalities
hold:

WS ≥ W̃S (Ξ′) ≥ z(x∗(Ξ),Ξ). (8.13)

Proof. The first inequality equals∑
ξ∈Ξ

pξz
SIN(x∗(ξ), ξ) ≥ zPA(x∗(Ξ′),Ξ′) +

∑
ξ∈Ξ\Ξ′

pξz
SIN(x∗(ξ), ξ).

Subtracting
∑
ξ∈Ξ\Ξ′ z

SIN(x∗(ξ), ξ) on both sides yields∑
ξ∈Ξ′

pξz
SIN(x∗(ξ), ξ) ≥ zPA(x∗(Ξ′),Ξ′).

With zPA(x∗(Ξ′), ξ) we denote the objective value that results from applying the opti-
mal solution of Problem 10 to Problem 9. By definition it is

zSIN(x∗(ξ), ξ) ≥ zPA(x∗(Ξ′), ξ)

for every scenario ξ ∈ Ξ′. Multiplying both sides with the corresponding scenario
probability and adding up for all scenarios ξ ∈ Ξ′ yields the claim.

The proof of the second inequality is similar. We denote with zSIN(x∗(Ξ), ξ) and
zPA(x∗(Ξ),Ξ′) the objective values that result from applying x∗(Ξ) to the problems 9
and 10. By definition it is

zSIN(x∗(ξ), ξ) ≥ zSIN(x∗(Ξ), ξ)

and also by definition it is

zPA(x∗(Ξ′),Ξ′) ≥ zPA(x∗(Ξ),Ξ′).

Multiplying the first inequality for each scenario ξ ∈ Ξ \ Ξ′ on both sides with the
corresponding scenario probability does not change the relation. Adding up the second
inequality and the with the scenario probabilities multiplied first inequalities for all
scenarios ξ ∈ Ξ \ Ξ′ yields the claim.

Partial SMIPs and group subproblems

In Chapter 5 we introduced the so-called group subproblem as it is defined by Sandikçi
et.al. [SKS12]. The group subproblem yields a hierarchy of bounds for stochastic
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programs by combining all subsets of scenarios with same cardinality and computing
the expected optimal value over all group subproblems for these subsets.

We recognized similarities between the group subproblem and our extended wait-
and-wee solution. To outline our ideas we first consider a group subproblem where the
reference scenario ξr takes probability zero, i.e. the reference scenario is not contained
in our subset Ξ of scenarios.

For our formulation of a general SMIP, Problem 8, the group subproblem for a
subset Ξ′ of scenarios can be stated as follows.

Problem 11 (group subproblem for a general SMIP, reference scenario not in Ξ).

z∗g(Ξ′) = max
x

cTx+
∑
ξ∈Ξ′

pξ
ρ(Ξ′)

Q(x, ξ) (8.14)

subject to Ax = b, (8.15)

x ∈ Rk × Zn−k. (8.16)

where ρ(Ξ′) :=
∑
ξ∈Ξ′ pξ.

It is

ρ(Ξ′) · z∗g (Ξ′) = max
x

ρ(Ξ′)cTx+ ρ(Ξ′)
∑
ξ∈Ξ′

pξ
ρ(Ξ′)

Q(x, ξ) (8.17)

= max
x

ρ(Ξ′)cTx+
∑
ξ∈Ξ′

pξQ(x, ξ) (8.18)

= max
x

∑
ξ∈Ξ′

pξ(c
Tx+Q(x, ξ)). (8.19)

This is exactly the objective function of our partial two-stage SMIP, Problem 10.
That means we can compute the expected value of the group subproblem for i

scenarios, with Pi(Ξ) being the set of all subsets of i scenarios from the set of all
scenarios Ξ, in this case originally given by

EGSO(i) =
1(

|Ξ| − 1
i− 1

) ∑
Ξ′∈Pi(Ξ)

ρ(Ξ′)z∗g(Ξ′) (8.20)

by

EGSO(i) =
1(

|Ξ| − 1
i− 1

) ∑
Ξ′∈Pi(Ξ)

zPA(x∗(Ξ′),Ξ′). (8.21)

Our partial two-stage SMIP yields the same optimal solution as the group sub-
problem. The objective differs because in relation to the formulation of the group
subproblem we scaled the vector c by the summed up scenario probabilities.

Such, our partial SMIP can be seen as a special case of the group subproblem where
the reference scenario is not contained in the set Ξ.

The wait-and-see solution is with Ξ′ = ∅ a special case of the extended wait-and-
see solution. Therefore, in the following we will refer solely to extended wait-and-see
solutions.
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8.1.3 Relaxations of extended wait-and-see solutions
If the original problem restricted to one scenario is still hard to solve, we can use the
bounding property of the wait-and-see solution together with the bounding property of
relaxations and use the optimal values of the relaxed problems 9 and 10 for the com-
putation of the extended wait-and-see solutions. The inequalities from the theorems
4 and 7 will also hold for the relaxed extended wait-and-see solutions, the bounds at
most increase.

Definition 19 (relaxed extended wait-and-see solution). It is x∗R(ξ) the optimal solu-
tion of a relaxation of Problem 9. With zSIN

R (x∗R(ξ), ξ) we denote the related optimal
objective value. With x∗R(Ξ′) we denote the optimal solution of a relaxation for Prob-
lem 10. The related optimal objective value is zPA

R (x∗R(Ξ′),Ξ′). We define the relaxed
extended wait-and-see solution W̃SR(Ξ′) for the subset Ξ′ of scenarios as follows:

W̃SR(Ξ′) : = zPA
R (x∗R(Ξ′),Ξ′) +

∑
ξ∈Ξ\Ξ′

zPA
R (x∗R({ξ}), {ξ}) (8.22)

= zPA
R (x∗R(Ξ′),Ξ′) +

∑
ξ∈Ξ\Ξ′

pξz
SIN
R (x∗R(ξ), ξ) (8.23)

Corollary 9 (bounding by relaxed extended wait-and-see solutions). It is

˜WSR(Ξ′) ≥ W̃S (Ξ′) ≥ z(x∗(Ξ),Ξ) (8.24)

for all subsets of scenarios Ξ′ ⊆ Ξ.

Proof. The theorem follows from Theorem 7 by exploiting the dual-bound property of
relaxations.

8.2 Application to ISPO
Now we apply the outlined bounds to the ISPO. Because the SLDP in general is hard to
solve in our solver we solely use relaxed (extended) wait-and-see solutions. On the one
side LP relaxations and on the other side combinatorial bounds – based on relaxing the
restriction that the items have to be supplied in terms of lot-types – are applied. In Sub-
section 8.2.1 we present our combinatorial bounds. Then, in Subsection 8.2.2 we apply
the different dual bounds to ISPO and in Subsection 8.2.3 we present computational
results.

8.2.1 Relaxing the lot-type constraint – single supply relaxations
By neglecting the restriction that the supply has to be in terms of lots and allowing
independent integer supplies of items among branches and sizes we obtain a relaxation
of the SLDP(WE′ ).

First we will present the problem formulation of this relaxation as an integer linear
program before we outline a fast greedy algorithm to solve it.
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Problem formulation

The single supply relaxation of Problem 7 can be formulated as follows:

Problem 12 (SLDP-CB(WE′ )).

max
∑
e∈Ẽ

Prob(e)

(∑
b∈B

∑
s∈S

∑
n∈N

āe→tb,s,nxb,s,n − µf δ̃t
e

kmax−1

− |B|pcost− δ1

)
(8.25)

subject to
∑
n∈N

xb,s,n = 1 ∀b ∈ B, ∀s ∈ S, (8.26)

ṽl
min
≤
∑
s∈S

∑
n∈N

n · xb,s,n ≤ ṽl
max

∀b ∈ B, (8.27)

I =
∑
b∈B

∑
s∈S

∑
n∈N

n · xb,s,n, (8.28)

I ∈ [I, I], (8.29)
xb,s,n ∈ {0, 1} ∀b ∈ B, s ∈ S, n ∈ N. (8.30)

The binary variable xb,s,n indicates if Branch b is supplied by n items of Size
s. If this is the case it takes value one, and zero otherwise. With Constraint (8.26)
it is ensured that exactly one number n from a set of positive integer values N of
possibly supplied items is assigned to every branch and size. With Constraint (8.27)
given minimum and maximum supplies per branch ṽl

min
and ṽl

max
are adhered to.

Abidance of lower and upper bounds for the overall supply is preserved by (8.28) and
(8.29). The implicitly integer variable I here denotes the supply over all branches and
sizes.

Since in the original formulation of the SLDP every branch is at least supplied by a
number of lot-types given by the minimum multiplicity 1 and at least one lot-type has
to be used for all branches, we subtract the corresponding pick and lot-opening costs
from the objective to strengthen the bound and also regard the fixed mark-down costs
for the mapped price trajectories (8.25).

Notation 4 (optimal objective value of SLDP-CB(WE′ ). We denote the optimal ob-
jective value of Problem 12 with z∗

SLDP-CB(WE′ )
.

Observation 3 (possible single supplies). The set of possible single supplies N in the
formulation of Problem 12 can be restricted to

N := {ṽmin, ṽmin + 1, ṽmin + 2, . . . , ṽmax − 1, ṽmax}, (8.31)

where ṽmin is given by

ṽmin = max
{
vmin, vlmin − (|S| − 1)vmax, I − |B|(|S| − 1)vmax

}
. (8.32)

The upper bound ṽmax is given by

ṽmax = min
{
mmaxvmax,mmax(vlmax − (|S| − 1)vmin), Ī − |B|(|S| − 1)vmin

}
.

(8.33)
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We restrict the set N of possible single supplies by regarding the bounds for sup-
plied items from the formulation of the SLDP(WE′ ), Problem 7. We satisfy the mini-
mum supply per branch and size by regarding the minimum number vmin of items per
lot-type and size. The minimum number of items vlmin contained in a lot-type com-
plies the minimum supply per branch. The maximum supply per branch and size is
vmax. We consider a particular size in a branch: The overall supply for the remain-
ing |S| − 1 sizes in this branch is bounded above by (|S| − 1)vmax. There are only
positive numbers of supplied items possible. Such, ṽmin can be bounded below by
ṽmin ≥ vlmin − (|S| − 1)vmax. Analogously we derive a bound for ṽmin by regarding
the maximum overall supply. If we consider a size and a branch, then the overall supply
for the remaining sizes per branch is bounded below by I − |B|(|S| − 1|)vmax.

The upper bound ṽmax can be derived in a similar way. It is ṽmax ≤ mmaxvmax.
In terms of lot-types the maximum supply per size and branch regarding the maximum
multiplicity is bounded above by mmax(vlmax − (|S| − 1)vmin). In terms of the upper
bound for the overall supply I the third bound can be derived.

In Problem 12 we restrict us to overall supplies per branch that lie in between
bounds ṽl

min
and ṽl

max
.

Observation 4 (minimum and maximum supply per branch).
The lower bound ṽl

min
in Problem 12 can be chosen as

ṽl
min

= max
{
vlmin, I − (|B| − 1)mmaxvlmax

}
. (8.34)

The upper bound ṽl
max

can be chosen as

ṽl
max

= min
{
mmaxvlmax, I − (|B| − 1)vlmin

}
. (8.35)

With vlmin being the minimum supply per lot-type and 1 the minimum multiplicity
in the non-relaxed formulation, the minimum supply per branch ṽl

min
can be bounded

below by vlmin. Now we focus on a branch b. The maximum supply for the remaining
|B| − 1 branches is bounded above by mmaxvlmax. This means, if we supply the
remaining branches with the maximum possible number of items mmaxvlmax at least
we have to deliver I − (|B| − 1)mmaxvlmax items to Branch b to adhere to the lower
bound for the overall supply.

We proceed similarly for ṽl
max

.

A greedy approach

We solve Problem 12 by Algorithm 8. In the algorithm we do not regard fixed mark-
down costs, we add them later on. Before we outline the approach we will state some
definitions and properties the algorithm draws on.

Definition 20 (expected single supply revenue). For a subsetE′ ⊆ E of scenarios with
a corresponding set of mapsWE′ containing a map e→ te for each particular scenario
e ∈ E′ we define the expected single supply revenue ¯̄aW

E′

b,s,n for Branch b ∈ B, Size
s ∈ S and Number n ∈ N as

¯̄aW
E′

b,s,n :=
∑
e∈E′

Prob(e)āe→t
e

b,s,n . (8.36)
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The expected single supply revenue is concave.

Corollary 10 (concavity of the expected single supply revenue). For a given set of
maps WE′ where each scenario e ∈ E′ is mapped to a price trajectory te it is∑
e∈E′ Prob(e)ae→t

e

b,s,n concave in n for every branch b ∈ B and size s ∈ S.

Proof. Because linear combinations of concave functions with non-negative coeffi-
cients are also concave – and the expected value is one – the claim follows from Theo-
rem 5.

Definition 21 (current supply and additional revenue). With supply(b, s) ∈ N we
assign an integer supply to Branch b and Size s in Algorithm 8. The additional revenue
ac(b, s) for supplying supply(b, s) + 1 items of Size s to Branch b is given by

ac(b, s) := ¯̄aW
E′

b,s,supply(b,s)+1 − ¯̄aW
E′

b,s,supply(b,s). (8.37)

Algorithm 8 Single supply relaxation
Require: set B of branches, set S of sizes, minimum single supply ṽmin, maximum single supply ṽmax, mini-

mum supply per branch ṽl
min, maximum supply per branch ṽl

max, expected single supply revenues ¯̄aW
E′

b,s,n

for all numbers n ∈ N , all branches b ∈ B and all sizes s ∈ S
Ensure: optimal objective value cb := z∗

SLDP-CB(WE′ )
of Problem 12

1: init I = |B||S|ṽmin

init cb =
∑
b∈B

∑
s∈S

¯̄aW
E′

b,s,ṽlmin −
∑
e∈E′

Prob(e)(µf δ̃
te

kmax−1 + |B|pcost + δ1)

2: for all b ∈ B do
3: for all s ∈ S do
4: init Ib,s = ṽmin

5: end for
6: init Ib = |S|ṽmin

7: init I = |S|ṽmin

8: while Ib < ṽl
min do

9: s′ = arg maxs∈S:Ib,s≤ṽmax ac(b, s)

10: Ib,s′ = Ib,s′ + 1

11: Ib = Ib + 1
12: I = I + 1
13: end while
14: end for
15: while I < I do
16: (b′, s′) = arg max(b,s)∈B×S:Ib,s≤ṽmax,Ib≤ṽlmax ac(b, s)

17: Ib′,s′ = Ib′,s′ + 1

18: Ib′ = Ib′ + 1
19: I = I + 1
20: cb = cb + ac(b′, s′)
21: end while
22: while I ≤ I do
23: if maxb∈B,s∈S:Ib,s≤ṽmax,Ib≤ṽlmax ac(b, s) ≤ 0 then

24: break
25: end if
26: (b′, s′) = arg max(b,s)∈B×S:Ib,s≤ṽmax,Ib≤ṽlmax ac(b, s)

27: Ib′,s′ = Ib′,s′ + 1

28: Ib′ = Ib′ + 1
29: I = I + 1
30: cb = cb + ac(b′, s′)
31: end while
32: return cb

At the beginning of Algorithm 8, in Step 4, we ensure that the bounds for minimum
supply per size and per branch are adhered to. The next is the abidance of the minimum
supply per branch. For each branch we determine the branch with the highest additional
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revenue until we meet vlmin, Step 8. We consider only branches and sizes for which
increasing the supply would not exceed the upper bound ṽmax. Ties are always broken
arbitrarily.

After guaranteeing the minimum supply per branch, the focus is on the lower bound
I for the overall supply. Now we choose the size s′ and branch b′ with highest addi-
tional revenue. The current supply Ib′,s′ is increased by one. Again we consider only
branches and sizes for which increasing the supply would not exceed the upper bounds
ṽmax and ṽl

max
. This is done by traversing the while-loop in Step 15. After these steps

we have a feasible solution for Problem 12. To obtain the optimum we greedily choose
a branch and size with highest positive additional revenue. We increase the correspond-
ing supply Ib′,s′ by one. This is done in the while-loop in Step 22. If there is no branch
and size with positive additional revenue, we are already optimal. Otherwise the last
step is repeated as long as the maximum additional profit ac(b, s) is positive or until
we meet the upper bound Ī for the overall supply.

In the algorithm the concavity of the expected single supply revenues is exploited.
Because we know that the additional revenue for one additional item does not increase
for growing n, greedily choosing the size and branch which highest positive additional
revenue yields the optimal solution of Problem 12.

Remark 6 (runtime of Algorithm 8). By storing the additional revenues ac(b, s) in
heaps the complexity of Algorithm 8 is given by

O(|B||S|+ |B|(vlmin − vmin)log(|S|) + (I − |B|vlmin)log(|B||S|)). (8.38)

8.2.2 Extended wait-and-wee solutions for ISPO
In the enumeration tree for ISPO, see Section 7.4, we fix a price trajectory te to every
scenario e ∈ E according to the set of maps WE . To obtain the optimal first stage
decision for a particular scenario ewe solve an SLDP(WE′ ), Problem 7, withE′ = {e}
and objective function

max Prob(e)

(∑
b∈B

∑
`∈L

∑
m∈M

âe→t
e

b,`,mxb,`,m − µf δ̃t
e

kmax−1 −
κ∑
i=1

δi · zi

)
. (8.39)

Notation 5 (extended wait-and-see solution for ISPO). We denote the extended wait-
and-see solution for ISPO with fixed price trajectories according to the setWE of maps

for E′ ⊆ E by W̃S
E′

(WE).

Observation 5 (extended wait-and-see solution for ISPO). We consider a set of maps
WE where each scenario e ∈ E is mapped to a price trajectory and a subset of
scenarios E′ ⊆ E. The optimal objective values for the SLDP({e→ te}) with e ∈
E \ E′ are denoted by z∗SLDP({e→te}) and for the SLDP(WE′) by z∗

SLDP(WE′ )
.

Then the extended wait-and-see solution W̃S
E′

(WE) is given by

W̃S
E′

(WE) = z∗
SLDP(WE′ )

+
∑

e∈E\E′
z∗SLDP({e→te}. (8.40)

Because – as we will see in Chapter 9 – the SLDP(WE′ )s for real-world instances
are hard to solve, we only use relaxed (extended) wait-and-see solutions in our cus-
tomized Branch&Bound solver. On the one side we use LP relaxations, i.e. we solve
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the related SLDP-LP(WE′ ), on the other side single supply relaxations obtained by
solving the SLDP-CB(WE′ ) via Algorithm 8.

Notation 6 (LP-relaxed extended wait-and-see solution – LPB, ELPB). We denote the
LP-relaxed extended wait-and-see solution or extended LP bound ELPB for ISPO with
fixed price trajectories for each scenario according to the set WE′ of maps for the set
E′ of scenarios with E′ 6= ∅ by WSE

′

lp (WE′). For E′ = ∅ the LP-relaxed extended
wait-and-see solution equals the LP-relaxed wait-and-see solution and is denoted by
LPB.

Observation 6 (LP-relaxed extended wait-and-see solution – LPB, ELPB). We con-
sider a set of maps WE where each scenario e ∈ E is mapped to a price trajectory
and a subset of scenarios E′ ⊆ E.

Then the LP-relaxed extended wait-and-see solution W̃S
E′

lp (WE) is given by

W̃S
E′

lp (WE) = z∗
SLDP−LP(WE′ )

+
∑

e∈E\E′
z∗SLDP−LP({e→te}). (8.41)

Notation 7 (single-supply-relaxed extended wait-and-see solution, (extended) combi-
natorial bound – CB, ECB). We denote the single-supply-relaxed extended wait-and-
see solution or extended combinatorial bound ECB for ISPO with fixed price trajecto-
ries for the set of mapsWE forE′ 6= ∅ by WSE

′

cb (WE). ForE′ = ∅ the single-supply-
relaxed extended wait-and-see solution equals the single-supply-relaxed classical wait-
and-see solution and is denoted by CB.

Observation 7 (single-supply-relaxed extended wait-and-see solution, (extended) com-
binatorial bound – CB, ECB). We consider a set of maps WE where each scenario
e ∈ E is mapped to a price trajectory and a subset of scenarios E′ ⊆ E.

Then the single-supply-relaxed extended wait-and-see solution W̃S
E′

cb (WE) for a
subset E′ ⊆ E of scenarios and the set of WE of maps is given by

W̃S
E′

cb (WE) = z∗
SLDP−CB(WE′ )

+
∑

e∈E\E′
z∗SLDP−CB({e→te}). (8.42)

We can mix up combinatorial and LP-relaxations for the computation of our relaxed
(extended) wait-and-see solution. Both, the optimal objective value of the LP relaxation
SLDP-LP(WE′ ) and the optimal objective value of the SLDP-CB(WE′ ), yield dual
bounds for the SLDP(WE′ ). For all subsets of scenariosE1 andE2 withE1 ⊆ E \ E′,
E2 ⊆ E \ E′ and E1∪̇E2 = E \ E′ the relaxed extended wait-and-see solutions

z∗SLDP-CB(WE′ )
+
∑
e∈E1

z∗SLDP-CB({e→te}) +
∑
e∈E2

z∗SLDP-LP({e→te}) (8.43)

just like

z∗SLDP-LP(WE′ )
+
∑
e∈E1

z∗SLDP-CB({e→te}) +
∑
e∈E2

z∗SLDP-LP({e→te}). (8.44)

are dual bounds for the SLDP(WE).
In our exact Branch&Bound solver, see Chapter 9, we will mix up combinatorial

and LP relaxations. Because – as we will see in the next section – the computation of
the (extended) combinatorial bounds is much faster than solving the LP relaxations of
the SLDP(WE′ ), we will solve LP relaxations only on demand if combinatorial bounds
are not tight enough to prune the tree.
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Figure 8.1: Goodness of dual bounds
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Figure 8.2: Computation time of dual bounds

8.2.3 Computational results
We compared the proposed bounds on the first 79 instances of our test set I6, see
Appendix E.

We computed the bounds for all leaves of the enumeration tree of ISPO. In Fig-
ure 8.1 and Figure 8.2 we depicted results in terms of optimality gaps and computation
time.

We denoted the bound resulting from the standard wait-and-see solution of the
related SLDP(WE) by “ILPB”. For the other names see the previous notations.

For the extended bounds ECB and ELPB we always pooled all three scenarios.
That means ELPB related to WE in our case is the same as the optimal objective value
of the SLDP-LP(WE).

Averaged over all instances and rounded to two decimal figures we get optimality
gaps of 1.74% for CB, 1.26% for ECB, 1.53% for LPB, 0.16% for ELPB and 1.47%
for ILPB. The mean runtime is 0.00 seconds for CB and ECB, 0.80 seconds for LPB,
0.49 seconds for ELPB and 2.53 seconds for ILPB. Please note that for an LPB the
numbers of the SLDP-LP(WE′ )s that have to be solved amounts to |E| = 3, for an
ELPB just one, namely SLDP-LP(WE).

The wait-and-see solutions based on single-supply-relaxed bounds, as well the
combinatorial bounds CB as the extended combinatorial bounds ECB, are as a rule
weaker than the wait-and-see solutions LPB and ELPB based on LP relaxations, but
can be solved much faster. ECB and ELPB in many cases also beat the standard wait-
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and-see solution ILPB. For ELPB this is even always the case. As already mentioned
ELPB for E′ = E is the same as the LP relaxation SLDP-LP(WE) of the SLDP(WE).
This means that the SLDP(WE) has a small integrality gap, i.e. the optimal objective
value of SLDP-LP(WE) is not far from the optimal objective value of the SLDP(WE).

8.3 Conclusion of the chapter
We introduced new bounds for two-stage stochastic programs based on the wait-and-
see solution from stochastic programming. The extended wait-and-see solutions are
tighter than the classical wait-and-see solution. We applied these bounds on the leaves
of the enumeration tree of ISPO – here each leaf corresponds to an SLDP(WE). Be-
cause the underlying binary programs are hard to solve we relax them – either by
allowing single supply instead of lot-types or by the LP relaxation. The results for a set
of small test instances show that the bounds based on the single supply relaxation can
be obtained very fast. The relaxed extended wait-and-see solutions are always faster to
compute than the classical wait-and-see solution. In some cases they even beat the clas-
sical wait-and-see solution in terms of the optimality gap; for the LP-relaxed extended
wait-and-see solution this is even always the case.



Chapter 9

Solving the Integrated Size and
Price Optimization Problem

Now we present two of the main results of this thesis: our solvers for the Integrated
Size and Price Optimization problem ISPO. Since the MIP formulation of ISPO pre-
sented in Chapter 6 for real instances cannot be solved directly by state-of-the-art MIP
solvers, we developed two approaches: An exact algorithm for benchmarking and a
fast heuristic for practical use. In the exact algorithm we exploit the fact that for fixed
price trajectories ISPO reduces to an SLDP, Chapter 7. Dual bounds on the base of
the wait-and-see solution, see Chapter 8, allow us to prune the enumeration tree from
Section 7.4. We outline the resulting Branch&Bound algorithm named ISPO-BAB in
Section 9.1. The heuristic solver, ISPO-PingPong, is presented in Section 9.2. It ex-
ploits the fact that for every valid second stage decision, i.e. for every set of maps
“scenario¸to price trajectory” for all scenarios there exists a valid first stage decision,
a valid supply policy. We call this property reversible recourse. We present compu-
tational results for both solvers on real-world instances in Section 9.3 and give some
remarks about the goodness of our proposed heuristic in Section 9.4, before we con-
clude this chapter in Section 9.5.

9.1 An exact Branch&Bound approach
Now we present our exact solver for ISPO – a customized Branch&Bound algorithm.
In Chapter 7, Section 7.4, we already showed how to solve ISPO by enumerating all
possible combinations of assignments of price trajectories to scenarios. We adopt this
idea and develop it further by applying the dual bounds presented in Chapter 8. The re-
sult is our exact Branch&Bound algorithm ISPO-BAB. A node at Depth j corresponds
to all maps “scenario to price trajectory” with the images of the first j scenarios fixed.
The leaves are the maps with fixed images for all scenarios. In the branching step we
extend a partially defined set of maps at a node by maps to all valid price trajectories
for the next scenario.

102
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9.1.1 The algorithm
We present the detailed implementation of the above concept – Algorithm 9.

In a first step we compute for each map “scenario to price trajectory” the single
supply revenues for each branch and size and every number n from the setN of integer
supplies, see Theorems 3 and 4, by Step 4. We apply a simple dominance check, Step 6,
in Algorithm 10: If for each number, each size and each branch for one price trajectory
t the single supply revenue is always smaller than the single supply revenue for another
price trajectory t′ in terms of the same scenario, the price trajectory t is dominated by
t′. If this is the case we can exclude t from further consideration for this scenario. The
set of non-dominated price trajectories for scenario e is denoted by T e.

Then, in Step 10 of Algorithm 9, we solve for each scenario e ∈ E and each
price trajectory t ∈ T e the SLDP-CB({e → t}), Problem 12, and store the optimal
objective function value – it is a summand for the computation of the relaxed wait-
and-see solution – as Γ (e→ t). We update these addends possibly later on by solving
the LP-relaxation SLDP-LP({e → t}). In further progress we add up these values to
obtain relaxed wait-and-see solutions for the particular SLDP(WE)s. But from these
combinatorial bounds we also benefit in another way: These bounds are used to get
an idea how good a price trajectory fits to a scenario. By ordering the trajectories
decreasingly according to their combinatorial bounds in the Branch&Bound tree we
expect to find the optimal solution for ISPO as early as possible which may lead to the
possibility to prune a bigger part of the tree.

For the purpose of computing dual bounds also at the inner nodes of the tree we
save the maximum lower bound for each scenario as Γmax(e) in Step 13 and in the next
step the index of the corresponding price trajectory as argmax(e).

Then we start a depth-first-search. We start with an empty set WE0 of maps
“scenario→price trajectory”, Step 18, and set the current depth to value one, Step 19.

The depth-first-search itself is outlined as Algorithm 11: We fix the first price tra-
jectory in the order to the scenario related to the current depth, Step 1, and compute
the dual bound in terms of a relaxed wait-and-see solution, Step 2. If we are in the first
branch of the tree, we abandon to compute improved lower bounds because we will not
be able to prune the tree until the primal bound is updated for the first time. Otherwise
– if the dual bound is to weak to prune the tree – we try to improve the current bound
by updating the bounds Γ(e → t) by LP-relaxations or by computing extended wait-
and-see solutions in Step 6, more precisely by the algorithms 12,13 and 14. If the dual
bound is smaller than the current primal bound, we are able to prune the current branch
at this point.

Whenever we reach a leaf of the tree at depth |E| and are not able to prune, we
solve the corresponding SLDP(WE) and possibly update the primal bound.

In Algorithm 12 the summands for the computation of the LP-relaxed wait-and-see
solution are computed. We avoid to solve more LP relaxations of the SLDP(WE′ ) than
necessary. That means we mix combinatorial and LP-relaxed bounds.

We compute LP relaxations of the SLDP(WE′ ) just until the resulting “mixed”
relaxed wait-and-see solution is smaller than the current primal bound. We also update
the corresponding values Γ (e→ t) if the SLDP-LP({e→ t}) yields a smaller optimal
objective function value than the SLDP-CB({e → t}), i.e. if the LP-relaxation of the
SLDP({e→ t}) has a smaller optimality gap than the related single supply relaxation,
Step 6. If this is the case, we may have to adapt the maximum bound for the current
scenario Γ (e)

max in Step 7.
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Algorithm 9 ISPO-BAB
Require: complete data of an instance of ISPO, set of price trajectories T
Ensure: expected revenue maximizing supply x∗ in terms of lots and related price trajectories
1: init global primal bound z∗ = −∞
2: for all e ∈ E do
3: for all t ∈ T do
4: compute āe→tb,s,n∀b ∈ B, s ∈ S, n ∈ N , Algorithm 6
5: end for
6: T e = ISPO-DOM(e)
7: end for
8: for all e ∈ E do
9: for all t ∈ T e do
10: compute the optimal solution of SLDP-CB({e → t}) and save the related optimal objective function

value as Γ (e→ t)
11: end for
12: sort the price trajectories T e in descending order according to Γ (e→ t)→ set of indexed price trajec-

tories T e = (te1, t
e
2, . . . , t

e
|T |)

13: set Γmax(e) = Γ (e→ te1)
14: set argmax(e) = te1
15: end for
16: sort the scenarios→ set of indexed scenarios E = {e1, . . . , e|E|}
17: for all i = 1, . . . , |T e1 | do
18: set WE0 = ∅
19: set j = 1
20: ISPO-DFS(1,i,WE0 )
21: end for
22: return z∗ and related optimal solution of ISPO

9.1.2 Some implementational aspects
At this point we outline some implementational details of our Algorithm 9.

MIP solvers

As MIP solver or LP solver for the SLDP(WE′ )s and the SLDP-LP(WE′ )s one can
choose between ILOG CPLEX and SCIP. By default we use CPLEX because it leads to
shorter computation times. An advantage of CPLEX is that if once an SLDP-LP(WE′ )
is generated we can keep it in memory and only have to update the objective coefficients
the next time we have to solve an SLDP-LP(WE′ ). Moreover we use the possibility to
perform so-called warm starts in the simplex algorithm.

Warm starts

The constraints of the SLDP-LP(WE′ ) and SLDP(WE′ ) are independent from the
fixed price trajectories, only the coefficients of the objective differ. So every optimal
basis of an SLDP-LP(WE′ ) is also feasible for the SLDP-LP(W Ẽ)s with W Ẽ 6= WE′

at the other nodes of the tree.
When solving an SLDP-LP(WE′ ) we let CPLEX start the primal simplex with

the optimal basis of an already solved SLDP-LP(WE′ ) – if available. For detailed
information about the simplex algorithm we refer the reader to [Van07].

Additional Bounding

As soon as a primal bound for ISPO is found, we hand over this primal bound to the
MIP solver. The MIP-solver uses this bound in its internal Branch&Bound approach
to prune branches which can not lead to a better solution.
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Algorithm 10 ISPO-DOM
Require: single supply revenues āe→tb,s,n ∀b ∈ B, s ∈ S, n ∈ N, ∀t ∈ T for the considered scenario e
Ensure: set of non-dominated ordered price trajectories T e

1: init T e = ∅
2: init domt = true
3: for all i = 1, . . . , |T | do
4: set t = ti
5: init tdomt′ = true
6: init t′domt = true
7: if domt = true then
8: continue
9: end if
10: for all j = i+ 1, . . . , |T | do
11: set t′ = tj
12: if domt′ = true then
13: continue
14: end if
15: for all b ∈ B do
16: for all s ∈ S do
17: for all n ∈ N do
18: if āei→tb,s,n > ā

ei→t
′

b,s,n then
19: t′domt = false
20: else
21: if āei→tb,s,n < ā

ei→t
′

b,s,n then
22: tdomt′ = false
23: end if
24: end if
25: if tdomt′ = t′domt = false then
26: goto 39
27: end if
28: end for
29: end for
30: end for
31: if tdomt′ then
32: set domt′ = true
33: else
34: if t′domt then
35: set domt = true
36: end if
37: end if
38: end for
39: if domt = false then
40: set T e = T e ∪ {t}
41: end if
42: end for
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Algorithm 11 ISPO-DFS
Require: depth/scenario index j

width/index i of ordered price trajectories
bounds Γ (e→ te) for all e ∈ E, te ∈ T e

set of maps WEj−1 for Ej−1 := {ei|i < j}
current global upper bound z∗

Ensure: possibly updated bounds Γ (e→ te) and/or updated primal bound z∗

1: WEj = WEj−1 ∪ {ej → t
ej
i }

2: compute the (mixed) relaxed wait-and-see solution Γ̂
(
WEj

)
by

Γ̂
(
WEj

)
=
∑
e→t∈WEj

Γ (e→ t) +
∑|E|
o=j+1 Γ (eo)max

3: if Γ̂
(
WEj

)
≤ z∗ then

4: return
5: end if
6: try to improve the dual bound by
7: Γ̂

(
WEj

)
=ISPO-ECB

(
WEj , Γ̂

(
WEj

)
, j
)

and or

8: Γ̂
(
WEj

)
=ISPO-ELPB

(
WEj , Γ̂

(
WEj

)
, j
)

and or

9: Γ̂
(
WEj

)
=ISPO-LPB

(
WEj , Γ̂

(
WEj

)
,
{

Γ (e→ t) , e→ t ∈ WEj
})

10: if Γ̂
(
WEj

)
≤ z∗ then

11: return
12: end if
13: if j < |E| then

14: for all i = 1, . . . , |T e
j+1
| do

15: ISPO-DFS
(
j + 1, i,WEj

)
16: end for
17: else
18: solve the SLDP(WEj )→ optimal objective value z∗

SLDP
(
W
Ej

) and optimal supply policy x∗
SLDP

(
W
Ej

)
19: if z∗

SLDP
(
W
Ej

) > z∗ then

20: z∗ = z∗
SLDP

(
W
Ej

)
21: x∗ = x∗

SLDP
(
W
Ej

)
22: end if
23: end if

Algorithm 12 ISPO-LPB
Require: set of maps WEj of price trajectories fixed to scenarios

dual bound Γ̂
(
WEj

)
for the given set of maps

dual bounds Γ (e→ t) for each single map e→ t in WEj

Ensure: possibly improved dual bound Γ̂
(
WEj

)
based on the LP-relaxed wait-and-see solution

possibly improved dual bounds Γ (eo → teo ) for o ≤ j
1: for all o = 1, . . . , j do
2: if SLDP-LP({eo → teo}) not solved until now then
3: solve SLDP-LP({eo → teo})→ optimal objective function value z∗SLDP-LP({eo→teo})
4: if z∗SLDP-LP({eo→teo}) < Γ (eo → teo ) then
5: set Γold = Γ (eo → teo )
6: Γ (eo → teo ) = z∗SLDP-LP({eo→teo})
7: if argmax(eo) = teo then
8: arg(eo)max = arg maxt′∈Teo {Γ

(
eo → t′

)
}

9: Γmax(eo) = maxt′∈Teo {Γ
(
eo → t′

)
}

10: end if
11: Γ̂

(
WEj

)
= Γ̂

(
WEj

)
− Γold + z∗SLDP-LP({eo→teo})

12: if Γ̂
(
WEj

)
< z∗ then

13: return
14: end if
15: end if
16: end if
17: end for
18: return Γ̂

(
WEj

)
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Algorithm 13 ISPO-ECB
Require: set of maps WEj of price trajectories fixed to scenarios

dual bound Γ̂
(
WEj

)
for the given set of maps

current depth/scenario index j
Ensure: possibly improved dual bound Γ̂

(
WEj

)
based on the single-supply-relaxed extended wait-and-see

solution
1: solve SLDP-CB(WEj )

2: if z∗
SLDP-CB

(
W
Ej

) +
∑|E|
o=j+1 Γ (eo)max < Γ̂

(
WEj

)
then

3: Γ̂
(
WEj

)
= z∗

SLDP-CB
(
W
Ej

) +
∑|E|
o=j+1 Γ(eo)max

4: end if
5: return Γ̂

(
WEj

)

Algorithm 14 ISPO-ELPB
Require: set of maps WEj of price trajectories fixed to scenarios

dual bound Γ̂
(
WEj

)
for the given set of maps

current depth/scenario index j
Ensure: possibly improved dual bound Γ̂

(
WEj

)
based on the LP-relaxed extended wait-and-see solution

1: solve SLDP-LP
(
WEj

)
2: if z∗

SLDP-LP
(
W
Ej

) +
∑|E|
o=j+1 Γ (eo)max < Γ̂

(
WEj

)
then

3: Γ̂
(
WEj

)
= z∗

SLDP-LP
(
W
Ej

) +
∑|E|
o=j+1 Γmax(eo)

4: end if
5: return Γ̂

(
WEj

)

9.1.3 Computational results
We compare different settings for ISPO-BAB in terms of the applied dual bounds. We
performed ISPO-BAB for all 166 instances from our test-set Itest

6 , see Appendix E.
For these tests we first abandon dominance checks, Algorithm 10. We compare differ-
ent combinations of combinatorial bounds CB, extended combinatorial bounds ECB,
LP bounds LPB and extended LP bounds ELPB. Additionally we applied dominance
“DOM” in terms of the price trajectories to reduce the size of our Branch&Bound tree a
priori. In Figure 9.1 we see how many leaves of the tree can not be pruned by applying
the given combinations of bounds.

In many cases the number of remaining leaves can be much reduced by applying
the extended combinatorial bounds against the case where only combinatorial bounds
are used (from averagely 1.96% to 1.32%). If we use combinatorial bounds together
with LP bounds or extended LP bounds there are averagely only 0.89% or 0.80% leaves
remaining. Combining combinatorial bounds, extended combinatorial bounds and LP
bounds together yields averagely 0,68% remaining leaves. If we replace in this case
the LP bounds by extended LP bounds we can reduce the number of remaining leaves
averagely to 0.65%.

We depict the improvements by additionally applying dominance in terms of using
combinatorial, extended combinatorial and extended LP bounds in Figure 9.2. We see
how strong we can reduce the number of remaining leaves in the tree “not pruned by
dom.” by applying dominance checks for the price trajectories a priori – averagely to
1.68 percents. While the number of remaining leaves in the Branch&Bound tree – or to
be solved SLDP(WE)s – only reduces about averagely 0.18 percents “diff ILPs” and
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Figure 9.1: ISPO-BAB – percentage of non-pruned leaves applying different
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Figure 9.2: ISPO-BAB – Applying dominance for the price trajectories

the number of to be solved extended combinatorial bounds “diff ECBs” to 0.44 percents
we get averagely about 4.33 percents extended LP bounds “diff ELPBs” fewer to solve
by applying dominance checks for price trajectories.

Now we want to concentrate our attention on the computation time of ISPO-BAB
in terms of using different dual bounds. For every instance from the set Itest

6 for the
stated bounds the average computation time at the leaves is depicted in Figure 9.3. If
we neglect the scaling Figure 9.3 looks like Figure 9.1. Roughly speaking the figures il-
lustrate a typical property of Branch&Bound algorithms: the worse the dual bounds the
higher the computation times. In average we get 54,31 seconds for just using combi-
natorial bounds, 40.33 seconds for additionally using extended combinatorial bounds,
38.21 seconds for combinatorial and LP bounds, 38.36 for the combination of combi-
natorial bounds and extended LP bounds, 32.83 seconds by combining combinatorial,
extended combinatorial and LP bounds and 34.19 seconds for using combinatorial,
extended combinatorial and extended LP bounds.

Averagely 0.03% fewer ILPs have to be solved by applying ELPBs instead of LPBs.
If we add dominance in the last case we can reduce the runtime averagely to 21.73

seconds.
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9.1.4 ISPO-BAB applied to the accompanying example
We apply Algorithm 9 to our accompanying example from Chapter 4.

Example 10. A first step in the algorithm is the computation of the optimal objective
function value of the SLDP-CB({e → t}) for each price trajectory t and scenario
e. Therefore we use the single supply revenues, Algorithm 6. The results for each
scenario, branch and size can be found in Appendix C. Based on these data the single
supply relaxation SLDP-CB({e → t}) is solved to optimality via Algorithm 6. The
results are stated in the following tables. For each price trajectory we state its index
and the optimal supply for each pair (b,s) with b ∈ B and s ∈ S. The optimal objective
function values of the SLDP-CB({e→ t}) are always stated in the last column.

low seller
price trajectory index (1,S) (1,L) (2,S) (2,L) bound

(0, 0, 0, 0, 3) 0 3 3 2 2 18.86
(0, 0, 0, 1, 3) 1 3 3 2 2 18.31
(0, 0, 0, 2, 3) 2 3 3 2 2 17.64
(0, 0, 1, 1, 3) 3 3 4 1 2 16.86
(0, 0, 1, 2, 3) 4 3 4 1 2 15.96
(0, 0, 2, 2, 3) 5 3 4 1 2 14.39

normal seller
price trajectory index (1,S) (1,L) (2,S) (2,L) bound

(0, 0, 0, 0, 3) 0 2 4 1 3 51.58
(0, 0, 0, 1, 3) 1 2 4 1 3 51.10
(0, 0, 0, 2, 3) 2 2 4 1 3 51.10
(0, 0, 1, 1, 3) 3 2 4 1 3 51.09
(0, 0, 1, 2, 3) 4 2 4 1 3 50.61
(0, 0, 2, 2, 3) 5 2 4 1 3 51.09

high seller
price trajectory index (1,S) (1,L) (2,S) (2,L) bound

(0, 0, 0, 0, 3) 0 2 4 1 3 31.00
(0, 0, 0, 1, 3) 1 2 4 1 3 30.71
(0, 0, 0, 2, 3) 2 2 4 1 3 30.71
(0, 0, 1, 1, 3) 3 2 4 1 3 30.71
(0, 0, 1, 2, 3) 4 2 4 1 3 30.41
(0, 0, 2, 2, 3) 5 2 4 1 3 30.71

We order the price trajectories according to the revenues for the particular scenario and
get:
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scenario 1st 2nd 3rd 4th 5th 6th

low 0 1 2 3 4 5
normal 0 1 2 3 5 4

high 0 1 2 3 5 4

To illustrate our Branch&Bound approach we first abandon excluding price trajectories
by dominance.

For this example we order the scenarios in the sequence “high-normal-low” and
start with the depth-first-search, Algorithm 11.

The related Branch&Bound tree is depicted in Figure 9.4. The combinatorial bounds
CB for the visited nodes are stated. The indices of the mapped price trajectories are
always stated in the nodes. In the depth-first-search the nodes are visited in the order
according to the numbers right above the nodes.

At first we fix the first price trajectory for the “high seller” scenario. For this sce-
nario we obtain an expected revenue of 31.00. For the remaining scenarios yet we have
not fixed a price trajectory: In terms of bounding we have always to consider the price
trajectory that yields the highest revenue in terms of a single supply. For both, the “nor-
mal” and the “low” scenario, this is the first trajectory which yields 51.58 and 18.86 of
revenue. Thus, the combinatorial bound amounts to 31.00 + 51.58 + 18.86 + 101.44.
The bound stays the same for the next two nodes. At Depth 3 we solve the SLDP(WE)
for WE = {high seller→ 0, normal seller→ 0, low seller→ 0}. This yields a primal
bound of 101.38.

We continue with fixing the first price trajectory for the low seller scenario. This
yields an upper bound of 100.88. Because it is 100.88 < 101.44 we prune the current
branch. This is also the same for fixing the remaining price trajectories to the low seller
scenario at this point.

We continue with fixing Price Trajectory 1 to the normal seller scenario. The related
objective function value of the SLDP-CB amounts to 51.10. For the non-set low seller
scenario again we have to add the expected revenue of 18.86. The expected revenue
for the high seller scenario stays 31.00 – because we still fix Price Trajectory 0 to it.
Thus, for the set of maps WE′ = {high seller → 0, normal seller → 1} our current
dual bound is 100.96. Because 100.96 < 101.38 we prune the current branch. This is
also the same for the following nodes at Depth 2.

Now we fix Price Trajectory 1 to the high seller scenario. This results in an expected
revenue of 30.71. Again, we have to choose the maximum combinatorial bound for the
remaining scenarios to obtain an upper bound for the wait-and-see solutions of the
related childnodes. Altogether this yields a revenue of 101.14 and 101.14 < 101.38.
We can prune the tree also for the remaining nodes at Depth 1 and at the end obtain
the optimal solution value of 101.44. In the related optimal solution we just delivered
Lot-type (1,1). Both branches obtain this lot-type in Multiplicity 3.

In this example the computation of other bounds than the combinatorial bound CB
was not necessary because we were able to prune all branches of the tree except the
first one directly.

We did not apply dominance rules for the price trajectories. If we regarded dom-
inance, the price trajectory with index 0 would dominate all other price trajectories
for every particular scenario. Only the first branch of the Branch&Bound tree would
remain.
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scenario

high

normal

low

0
1.

CB0,0,0 =101.44 1
14.

CB1,0,0 =101.14 2
15.

CB2,0,0 =101.14 3
16.

CB3,0,0 =101.14 4
17.

CB4,0,0 =101.14 5
18.

CB5,0,0 =100.85

0
2.

CB0,0,0 =101.44 1
9.

CB0,1,0 =100.95 2
10.
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Figure 9.4: Example for ISPO-BAB
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9.2 A heuristic approach – ISPO-PingPong
Our exact solver ISPO-BAB, Algorithm 9, which we presented in the preceding section
is – as we will see in the next section – still too slow to satisfy real-world requirements.
For practical purposes we therefore developed the heuristic ISPO-PingPong. The basic
idea of this approach is to perform size optimization and price optimization alternately
until convergence. There is a crucial property of ISPO that makes this approach possi-
ble. We call it reversible recourse. It is topic of the first subsection.

The main method of our heuristic ISPO-PingPong is presented in Subsection 9.2.2.
In the following three subsections we will go more into detail. In Subsection 9.2.3 we
describe the initial step of the heuristic – the determination of a set of maps “scenario
to price trajectory”. We present the approach to handle the size optimization stage
in Subsection 9.2.4. In Subsection 9.2.5 we go into the other part of the algorithm
– the price optimization stage. We present computational results for our heuristic in
Subsection 9.2.6. Concluding, in Subsection 9.2.7 we will bring ISPO-PingPong into
line with familiar approaches from literature.

9.2.1 Reversible recourse
Our problem has a special structure. We call it reversible recourse. This means: the
independent second stage variables (in our case the price trajectories assigned to the
different scenarios) can be interpreted as independent first stage decisions. The inde-
pendent first stage variables and all dependent variables can then be seen as second
stage variables. In our setting, fixing the independent decision variables of one stage
does not even imply any restrictions to the feasible set of the independent variables in
the other stage. Fixing a price trajectory to a scenario does not influence the feasibility
of supply. This property can easily be observed in our Branch&Bound tree from the
last Section, more precisely at the leaves which are related to an SLDP(WE). The
constraints in the SLDP(WE) are for every leaf the same. Only the coefficients in the
objective function differ.

9.2.2 The main algorithm
We outline our heuristic ISPO-PingPong in a top-down design. We describe the frame-
work in Algorithm 15. After fixing a price trajectory to each scenario we alternate
size and price optimization until the related objective function value of ISPO no longer
increases. The particular parts are treated in the subsequent subsections.

9.2.3 Fixing price trajectories
At the beginning of Algorithm 15 we fix a price trajectory to each particular scenario.
There are different possibilities to do this. In order to start with a supposed good
assignment for each scenario e as a rule we solve the SLDP-CB({e→ t}) for all valid
price trajectories t to optimality by Algorithm 8 and pick the price trajectory with the
highest optimal objective function value.

We will present results for different settings in terms of fixing price trajectories in
Subsection 9.2.6.
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Algorithm 15 ISPO-PingPong
Require: complete data of an instance of ISPO
Ensure: optimal supply policy x∗

1: for all scenarios e ∈ E do
2: fix a price trajectory for each scenario→ set of maps WE

3: end for
4: set z∗ = −∞
5: while true do
6: ISPO-SF(z∗): solve SLDP(WE ) exactly or heuristically → resulting supply x with expected revenue

zSLDP(WE)
7: if zSLDP(WE) = z∗ then

8: break
9: end if
10: x∗ = x
11: z∗ = zSLDP(WE)

12: ISPO-PO(x∗): for all e ∈ E solve POPe for an initial stock according to x∗ to optimality→ updated set
of maps WE with expected revenue z∗POP(x∗)

13: if z∗POP(x∗) = z∗ then
14: break
15: end if
16: z∗ = z∗POP(x∗)

17: end while

9.2.4 Solving the SLDP(WE)
To solve the SLDP(WE) within ISPO-PingPong we implemented an adapted version
of the SFA heuristic from Chapter 2.

We call this adapted version ISPO-SF, see Algorithm 9.2.4. Scoring and fixing is
done in the same way as in the SFA heuristic: At first we determine for each lot-type
and branch the best-fitting multiplicity. Best fitting in that sense means that there is no
other multiplicity for which for the considered branch and lot-type a higher expected
revenue can be achieved . Starting from this, for each branch we determine the three
locally best fitting lot-types and add a score of 100 to the best fitting lot-type, a score of
10 to the second best fitting lot-type and a score of 1 to the third best fitting lot-types.

With this we have implicitly assigned a score to each lot-type ` ∈ L, where most
of the lot-types obtain the score zero. We can extend this scoring to the κ-subsets
of L by summing up the individual scores, so that we implicitly get an order of the(|L|
κ

)
many feasible lot-type combinations. With this we traverse the κ-subsets of L in

descending order and break up if a predefined number of subsets is reached, where ties
are broken arbitrarily. For this purpose we apply an approach which we adopted from
the original SFA heuristic. It makes it possible to traverse the “most promising” lot-
types without explicitly generating all such subsets beforehand. In the corresponding
search tree a node at Depth i corresponds to the i-th lot-type in a subset. Each node/lot-
type with ordering j according to the scoring has only childnodes with ordering >
j, i.e. smaller or equal scores. Such we avoid to obtain permutations of the same
subset of lot-types. At a leaf in depth κ we are given a complete κ-subset of lot-types.
Bounding in the tree is possible. The maximum possible overall score scoremax is
given by the summed up single scores for the κ first lot-types in the ordering. The
minimum possible overall score scoremin by the summed up single scores for the κ
last lot-types. We perform depth-first-searches in our search tree for the overall scores
scorecur = scoremax, scoremax − 1, . . . , scoremin until a predefined number nrκ of
found κ-subsets of lot-types is reached. Because in a branch of the tree the lot-types are
ordered decreasingly according to their scores we obtain an upper bound ubs for the
overall score of all induced κ-subsets by adding κ minus depth times the score of the
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current lot-type/node to the scores of the already fixed lot-types. Similarly we obtain a
lower bound lbs: to the score of the fixed lot-types we add the κ minus depth smallest
occurring scores. If scorecur < lbs or scorecur > ubs we can prune the current branch
of the search tree.

In the fixing step we assume that the applicable lot-types are restricted to the current
κ-subset of L. Now we differ from the original SFA heuristic as described in Chapter 2.
In our implementation we solve the SLDP(WE) for the fixed lot-types directly via an
MIP-solver – with a predefined solving time limit tb – and have not to perform an
adjust step.

Notation 8 (SLDP
(
WE

)
for a subset L̂ of lot-types). We consider a subset L̂ ⊆ L of

lot-types. We denote the SLDP
(
WE

)
as formulated in Problem 7 restricted on the set

L̂ of lot-types by SLDPL̂
(
WE

)
.

Algorithm 16 ISPO-SF
Require: complete data of an instance of ISPO

lot-type revenues âe→tb,`,m for all b,∈ B, ` ∈ L and m ∈M and all maps e→ t from the set WE

lower bound zSLDP(WE) for the objective value

Ensure: supply in terms of lots and corresponding expected revenue zSLDP(WE)

1: init score(`) = 0 ∀` ∈ L
2: for all b ∈ B do
3: for all ` ∈ L do
4: determine the revenue maximizing multiplicity m(`, b) = arg maxm∈M âe→tb,`,m

5: end for
6: determine the three best fitting lot-types `1, `2, `3

`1 = arg max`∈L â
e→t
b,`,m(`,b), `2 = arg max`∈L,`2 6=`1 â

e→t
b,`,m(`,b),

`3 = arg max`∈L,`3 6=`1,`3 6=`2 â
e→t
b,`,m(`,b)

7: update the scoring score(`1) = score(`1) + 100, score(`2) = score(`2) + 10, score(`3) =
score(`3) + 1

8: end for
9: while a predefined number nrκ of passed through κ-subsets of lot-types is not reached do
10: consider the not yet considered κ−subset L̂ with the highest overall score

∑
`∈L̂ score(`)

11: solve SLDPL̂(WE) with time limit tb → objective function value zL̂SLDP
(
WE

)
and related supply

xSLDP
L̂

(WE)

12: if zSLDP
L̂

(WE) > zSLDP(WE) then

13: zSLDP(WE) = zSLDP
L̂

(WE)

14: xSLDP(WE) = xSLDP
L̂

(WE)

15: end if
16: end while
17: return zSLDP(WE) and xSLDP(WE)

9.2.5 Solving the POP
Our approach for solving the price optimization stage is outlined in Algorithm 17,
ISPO-PO. We use Algorithm 3 – POP-DYN – to solve the Price Optimization Problem
for each particular scenario from the setE to optimality. From the the expected revenue
over all these scenarios we have to subtract the corresponding lot-opening costs and the
acquisition price for the supplied items. We take over these costs from the preceding
solution of the size optimization stage.

9.2.6 Computational results
We apply ISPO-PingPong also to all instances of the test set Itest

6 . We set nrκ = 100
and tb = 60 seconds. We perform four different ways of fixing the price trajectories to
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Algorithm 17 ISPO-PO
Require: complete data of an instance for ISPO

supply x in terms of lots
Ensure: optimal price trajectory for each scenario according to x
1: compute overall acquisition, lot-opening and handling costs c− for the given supply x.
2: set z∗ = c−

3: for all scenarios e ∈ E do
4: perform price optimization, Algorithm 3, POP-DYN according to the supply x→ revenue a∗(e)
5: z∗ = z∗ + Prob(e) · a∗(e)
6: end for
7: return z∗
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Figure 9.5: ISPO-PingPong – goodness of solutions

the particular scenarios at the beginning of the algorithm: For each scenario e we fix
the price trajectory t

1. that yields the highest optimal objective function value of the related single-
supply-relaxation SLDP-CB({e→ t}), “best” bound,

2. randomly,

3. without mark-downs during the real sales process (first in the depth-first gener-
ation of the price trajectories, see the enumeration tree in Section 4.2), “first”
bound,

4. that yields the worst optimal objective function value of the SLDP-CB({e→ t}),
“worst” bound.

We first take a look at the optimality gaps that are depicted in Figure 9.5.
Overall we get averagely an optimality gap of 0.078% for fixing the price trajec-

tories with the best bounds, a gap of 0,055% for fixing the price trajectories randomly
and a gap of 0,074% for choosing the first price trajectory. For fixing the worst price
trajectory the resulting gap is 0.056%. That means in these cases we could achieve
better results by starting with supposed “not promising” price trajectories. But actu-
ally all gaps are tiny enough to justify each of the outlined setting for fixing the price
trajectories.

With the choice of supposed “better” trajectories we soon arrive at a suboptimal
local maximum. This is approved by the results depicted in Figure 9.6. Already at
first glance we can see that the strategy with the smallest gap – the randomly and worst
choice of the price trajectories – needs the most iterations in all cases, while fixing the
best trajectory yields a smaller number of iterations. We always counted a half iteration
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Figure 9.6: ISPO-PingPong – number of iterations
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Figure 9.7: ISPO-PingPong – runtime

for performing size and price optimization. Averagely we get 1.59 iterations for fixing
the best trajectories, 2.29 iterations for fixing the trajectories randomly or worst and
1.69 iterations for the price trajectory without a mark-down.

This behavior is also recognizable in the runtime, see Figure 9.3: averagely 6.85
seconds for setting 1, 11.86 seconds for setting 2, 7.84 seconds for setting 3 and 8.70
seconds for the last setting.

Results for other choices of nrκ and tb are depicted in Appendix A.

9.2.7 Similarities to familiar approaches
At this point we want to remark that the main aspect of ISPO-PingPong – alternating
size and price optimization until convergence – can also be connected to some general
approaches in literature. The principle of our heuristic is similar to the principle of
evolutionary algorithms, see for example [Mie99]. The idea of evolutionary algorithms
is to assign a so-called fitness-function to the solutions of the problem and iteratively in
a selection-step to combine the best-solutions to get solutions with higher fitness. This
is done until convergence. In our case the fitness of the supply in terms of lot-types
is given by the expected revenue the price optimization stage yields. By combining
the local optimal supply with the local optimal mark-down strategy we possibly get a
supply which results in higher revenue.

One could also connect the principle of ISPO-PingPong with the principle of bilevel
programming. A bilevel program consists of an upper-level and a lower-level optimiza-



CHAPTER 9. SOLVING ISPO 117

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

g
a

p
 (

p
e

rc
e
n

t)

instance

best start trajectories

iteration: 0.5
1

1.5
2

 0

 1

 2

 3

 4

 5

 6

 7

g
a

p
 (

p
e
rc

e
n

t)

instance

first start trajectories

iteration: 0.5
1

1.5
2

 0

 10

 20

 30

 40

 50

 60

g
a
p

 (
p
e
rc

e
n
t)

instance

random start trajectories

iteration: 0.5
1

1.5
2

2.5

 0

 10

 20

 30

 40

 50

 60

 70

g
a
p
 (

p
e
rc

e
n
t)

instance

worst start trajectories

iteration: 0.5
1

1.5
2

2.5
3

Figure 9.8: ISPO-PingPong – Progress of gaps
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tion problem. The lower-level problem considers a variable x as a parameter to com-
pute the optimal value of a variable y while the upper-level problem obtains the optimal
value of x by using the value of y computed in the lower-level problem [CCMGB10].
In our case – by virtue of reversible recourse – we can see the size optimization stage
and also the price optimization stage as both, as upper-level and as lower-level sub-
problems.

9.3 Computational results for real-world instances
We now compare ISPO-BAB with ISPO-PingPong for real instances from the set I,
Appendix E. We applied ISPO-BAB by using combinatorial bounds CB, extended
combinatorial bounds ECB and extended LP bounds ELPB; LP bounds LPB are only
applied in depth 1 of the Branch&Bound tree. Moreover, in a preprocessing step
the state space of valid price trajectories is restricted by dominance DOM, see Al-
gorithm 10. We performed ISPO-PingPong for two different settings:

1. nrκ = 1, tb = 20 seconds,

2. nrκ = 100, tb = 60 seconds.

In the second column in Table 9.3 “non.dom.(%)” we state the number(percentage)
of remaining leaves in the enumeration tree after applying the dominance check for
the price trajectories. By checking dominance most of the price trajectories can be
excluded a priori , averagely more than 99.995 percent and so the number of leaves in
the Branch&Bound tree reduces extremely.

In the third column we state the number(percentage) of the solved SLDP(WE)s
“#ILP(%)”. The percentages in the fourth and the subsequent columns are related to
the number of remaining leaves we state at column “non.dom”. We see that in relation
only a small number of all possible SLDP(WE)s has to be solved. If we would relate
the number of solved SLDP(WE)s to the number of leaves of the hole enumeration
tree without the restriction to non dominated price trajectories, the maximum number
of 104 solved SLDP(WE)s for Instance 2 would mean that just 0.0002156% of all
possible SLDP(WE)s had to be solved. In the next seven columns for all applied dual
bounds overall solving time “t. . . ” in seconds “(s)” or hours “(h)” and the number
“#. . . ” of the computed related bounds are stated. Because we compute combinatorial
bounds for all scenarios and price trajectories a priori, i.e. 100% of these bounds,
we did not state this specific number. Let us take look at the computation times for the
different bounds. We therefore take the average computation times in the last line of the
table and divide it by the related average number of solved bounds. The computation
time for combinatorial and extended combinatorial bounds in relation to (extended) LP
bounds is very small: For one ECB averagely it amounts to about 0.14 seconds while
the average time needed for computing the LP bound amounts to nearly one hour and
for the extended LP bound to about 9 minutes. But for LP bounds and extended LP
bounds in relation to the solution of the binary program SLDP(WE) the computational
effort is yet small. The overall computation time minus the time for all bounds except
CB yield the approximate average computation time for the SLDP(WE)s. It is more
than 110 hours. (The time for traversing the nodes in the tree is neglectable.)

Not every SLDP(WE) is solved until the internal Branch&Bound process of the
MIP solver starts. In Table 9.3 we did not distinguish between SLDP(WE)s solved up
to optimality and SLDP(WE)s for which only the LP relaxation is solved. Because we
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hand over the current best bound to the MIP solver it may be that the solving process
breaks up earlier. Moreover, because the ELPB at depth |E| equals the LP relaxation of
the related SLDP(WE) we do not compute the bound ELPB explicitly at depth |E|. So
the columns “#ELP(%)” and “tELP(h)” in our case of three scenarios are only related
to depth 2.

At the columns with label “ILP∗(%)” and “t∗” we state the number of SLDP(WE)s
that have to be solved at the leaves and the solving time until the optimal solution was
found. We see that mostly the optimal solution is found very fast after averagely 5.9
solved SLDP(WE)s. On the other hand altogether averagely 64.3 SLDP(WE)s have
to be considered. This speaks for our preprocessing step in which for the particular
scenarios the price trajectories according to their single supply relaxations are ordered.

The results of ISPO-PingPong for the two settings are stated in the last six columns.
We state the solving time in minutes “t/min”, the number of iterations “#iter” and the
optimality gap “gap(%)”. Also with the first setting – i.e. at every iteration of the
size optimization stage ISPO-SF only one SLDP(WE′ ) is solved – we mostly can get
proper results. For the second setting where we traverse the 100 “best” κ-combinations
we get no gap higher than 0.69%. The average solving time amounts to 12.77 minutes.
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i ISPO-BAB ISPO-PingPong1 ISPO-PingPong2
t/h non.dom. #ILP(%) tCB(s) #ECB(%) tECB(s) #LP(%) tLP(h) #ELP(%) tELP(h) ILP∗(%) t∗/h t/min #iter gap(%) t/min #iter gap(%)

1 47.75 1331(0.0057) 81(6.09) 56.69 101(6.96) 8.44 5(15.15) 2.68 21(17.36) 2.46 2(0.15) 9.60 1.05 2 0.30 22.41 2 0.08
2 88.64 1331(0.0057) 104(7.91) 56.58 123(8.47) 9.55 4(12.12) 3.94 20(16.53) 3.82 30(2.25) 45.80 1.01 1.5 0.26 12.61 2 0.01
3 130.93 1331(0.0057) 85(6.39) 89.36 113(7.78) 19.00 5(15.15) 5.68 29(23.97) 6.19 23(1.73) 46.21 1.05 1.5 0.65 20.84 1.5 0.09
4 214.72 1331(0.0057) 90(6.76) 87.76 110(7.58) 22.86 5(15.15) 5.66 21(17.36) 4.98 2(0.15) 12.61 1.06 2 0.31 24.67 1.5 0.06
5 32.58 1331(0.0057) 34(2.55) 57.32 48(3.31) 3.55 4(12.12) 2.21 15(12.40) 1.92 2(0.15) 29.54 0.94 1 0.69 6.50 1 0.69
6 1.29 1(0.0000) 1(100) 56.96 0(0.00) 0.00 0(0.00) 0.00 0(0.00) 0.00 1(100) 1.23 0.93 1 0.50 6.47 1 0.50
7 51.27 1(0.0000) 1(100) 69.34 0(0.00) 0.00 0(0.00) 0.00 0(0.00) 0.00 1(100) 51.25 1.08 1 0.90 8.55 1 0.18
8 4.97 1331(0.0057) 28(2.10) 50.65 44(3.03) 2.33 4(12.12) 2.11 17(14.05) 0.36 1(0.08) 0.19 0.88 2 1.32 29.56 1.5 0.20
9 3.91 1331(0.0057) 21(1.58) 50.26 35(2.41) 1.75 4(12.12) 1.98 15(12.40) 0.35 1(0.08) 0.18 0.86 1.5 1.68 11.59 1 0.29
11 12.53 1331(0.0057) 58(4.36) 52.58 83(5.72) 5.28 5(15.15) 1.34 26(21.49) 0.81 3(0.23) 0.94 0.86 1.5 1.78 29.73 1.5 0.23
12 10.84 1331(0.0057) 47(3.53) 52.38 68(4.68) 4.35 5(15.15) 1.54 22(18.18) 0.71 1(0.08) 0.65 0.95 1.5 1.69 12.11 1 0.20
13 10.26 1331(0.0057) 45(3.38) 52.06 64(4.41) 4.00 5(15.15) 1.43 20(16.53) 0.67 1(0.08) 0.63 0.94 1.5 1.83 8.74 1 0.21
44 112.69 1331(0.0057) 92(6.91) 56.92 112(7.71) 9.11 5(15.15) 2.56 21(17.36) 2.45 2(0.15) 9.51 1.02 1 1.89 12.95 1 0.23
45 123.71 1331(0.0057) 81(6.09) 58.07 113(7.78) 9.08 5(15.15) 2.62 33(27.27) 3.60 29(2.18) 62.55 1.11 2 0.26 12.43 2 0.00
46 197.57 1331(0.0057) 80(6.01) 89.76 112(7.71) 18.22 5(15.15) 5.78 33(27.27) 7.00 1(0.08) 6.23 0.99 1 0.26 6.66 1 0.00
48 67.77 1331(0.0057) 53(3.98) 58.03 71(4.89) 5.79 4(12.12) 2.34 19(15.70) 2.26 2(0.15) 7.21 1.09 1.5 0.52 12.37 1.5 0.52
49 4.58 1(0.0000) 1(100) 93.19 0(0.00) 0.00 0(0.00) 0.00 0(0.00) 0.00 1(100) 4.56 0.99 1 0.16 7.71 1 0.16
50 67.59 1331(0.0057) 45(3.38) 88.87 65(4.48) 9.98 4(12.12) 5.39 21(17.36) 4.98 1(0.08) 4.55 1.00 1 4.12 8.05 1 0.22
52 4.58 1(0.0000) 1(100) 90.09 0(0.00) 0.00 0(0.00) 0.00 0(0.00) 0.00 1(100) 4.55 0.99 1 4.07 7.93 1 0.21
53 340.49 1331(0.0057) 129(9.69) 90.78 159(10.95) 25.22 5(15.15) 6.84 31(25.62) 6.96 43(3.23) 125.05 1.09 1.5 0.11 14.16 1.5 0.00
61 237.59 1331(0.0057) 90(6.76) 92.71 119(8.20) 20.24 6(18.18) 13.57 30(24.79) 7.20 1(0.08) 4.72 1.12 1.5 0.36 11.99 1.5 0.05
62 291.86 1331(0.0057) 102(7.66) 91.61 129(8.88) 23.25 5(15.15) 6.21 28(23.14) 6.33 1(0.08) 4.61 1.01 1 0.33 6.80 1 0.14
63 296.24 1331(0.0057) 116(8.72) 91.70 141(9.71) 23.81 5(15.15) 4.59 26(21.49) 4.96 2(0.15) 10.74 1.11 2 0.19 13.77 1.5 0.12
64 328.68 1331(0.0057) 118(8.87) 91.19 143(9.85) 26.45 5(15.15) 5.80 26(21.49) 5.80 1(0.08) 4.73 1.11 2 0.20 7.60 1 0.12
65 1.17 1(0.0000) 1(100) 91.29 0(0.00) 0.00 0(0.00) 0.00 0(0.00) 0.00 1(100) 1.17 0.99 1 0.25 7.65 1 0.18
66 154.40 1331(0.0057) 106(7.96) 91.51 129(8.88) 23.54 5(15.15) 5.83 24(19.83) 5.45 2(0.15) 9.32 1.12 2 0.25 14.15 2 0.17
67 323.95 1331(0.0057) 125(9.39) 90.88 156(10.74) 29.11 6(18.18) 9.86 32(26.45) 5.97 2(0.15) 9.37 1.0 1 0.33 6.77 1 0.15

∅ 117.13 1085(0.0046) 64.3(23.34) 74.02 82.90(5.71) 11.29 4.00(11.90) 3.70 20.00(16.22) 3.16 5.9(18.95) 17.32 1.01 1.43 0.93 12.77 1.30 0.19

Table 9.1: ISPO-BAB and ISPO-PingPong applied on real instances



CHAPTER 9. SOLVING ISPO 121

9.4 General goodness of ISPO-PingPong
In the previous section we showed that the optimality gap for our heuristic for real-
world instances averagely amounts to 0.19% and in the worst case to 0.69% depending
on the setting. Now we apply the heuristic on a small example to show that we cannot
guarantee such small gaps in general. As in our accompanying example we consider
only two branches B = {1, 2} and two sizes S = {S,L}. Only one lot-type is allowed
for supplying the two branches, i.e. κ = 1. We consider all lot-types with at minimum
one item per size, i.e. vmin = 1 and at maximum two items per size, vmax = 2. We
only allow lot-types with cardinality 3. This yields the lot-types (1, 2) and (2, 1). The
set of multiplicities is given by M = {1, 2, 3}. We set I = 0 and I = 20. In this
example we assume that pick-cost and lot-opening costs take value zero. We consider
four sales periods including the sellout period kmax = 3. The discounting factor is
also set to zero, ρ = 0. Moreover we set the fixed and variable mark-down costs to
zero, i.e. µv = µf = 0. We are given four prices including the salvage value. It is
P = {0, 1, 2, 3} with π0 = 10, π1 = 9, π2 = 8 and π3 = 4. We number the price
trajectories t according to the following table:

index t

1 (0, 0, 0, 3)
2 (0, 0, 1, 3)
3 (0, 0, 2, 3)

For simplicity’s sake we consider only one scenario with probability one. The
demands per period k and price index p are given as stated in the following tables.

(1,S)
k/p 0 1 2
0 1.0 - -
1 0.0 - -
2 0.0 3.0 3.1

(1, L)
k/p 0 1 2
0 1.0 - -
1 1.0 - -
2 0.0 1.1 3.0

(2,S)
k/p 0 1 2
0 1.0 - -
1 1.0 - -
2 0.0 1.1 1.1

(2, L)
k/p 0 1 2
0 1.0 - -
1 0.0 - -
2 0.0 0.0 0.0

We state the single supply revenues computed by Algorithm 6 in the table found
below. In the last column we are given the additional revenue for the demand-exceeding
numbers of items according to Observation 2. Because we are given no mark-down
costs, the additional revenue always amounts to πkmax

− ap = 5− 4 = −1.

(branch,size) t/n 1 2 3 4 5 6 6+

(1,S)
1 5.0 4.0 3.0 2.0 1.0 0.0 −1.0
2 5.0 9.0 13.0 17.0 16.0 15.0 −1.0
3 5.0 8.0 11.0 14.0 13.4 12.4 −1.0

(1,L)
1 5.0 10.0 9.0 8.0 7.0 6.0 −1.0
2 5.0 10.0 14.0 13.5 12.5 11.5 −1.0
3 5.0 10.0 13.0 16.0 19.0 18.0 −1.0

(2,S)
1 5.0 10.0 9.0 8.0 7.0 6.0 −1.0
2 5.0 10.0 14.0 13.5 12.5 11.5 −1.0
3 5.0 10.0 13.0 12.4 11.4 10.4 −1.0

(2,S)
1 5.0 4.0 3.0 2.0 1.0 0.0 −1.0
2 5.0 4.0 3.0 2.0 1.0 0.0 −1.0
3 5.0 4.0 3.0 2.0 1.0 0.0 −1.0
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At the beginning of ISPO-PingPong a price trajectory for each scenario is fixed.
In this example at first we choose the “first” price trajectory 1. For this trajectory the
best supply in terms of lot-types is computed. Because κ = 1 we can only choose one
lot-type, either (1, 2) or (2, 1), for supply.

According to the single supply revenues an optimal supply for Price trajectory 1 is
given by choosing Lot-type (1, 2) in Multiplicity 1 for Branch 1 and in Multiplicity 2
for Branch 2. This yields a revenue of 27.

The next step is to reject the fixed price trajectory and if possible to choose one
which is optimal for the given supply. Otherwise the heuristic converges.

Adding up the corresponding single supply revenues yields that no other price tra-
jectory is better for the given supply. For the price trajectories 2 and 3 the revenues for
the given supply also amount to 27. The approach converges with objective function
value 27.

An alternative would be to start with the “best” price trajectory – that means the
price trajectory t which yields for our scenario e the highest objective function value of
the single supply relaxation SLDP-CB({e → t}). This is Price trajectory 3. The best
revenue in terms of single supplies for this trajectory is 51 which is given by supply
(4, 5) for Branch 1 and (3, 1) for Branch 2. Price trajectory 1 yields just an revenue of
30 with supply (1, 2) for Branch 1 and (2, 1) for Branch 2. The revenue for Trajectory 2
amounts to 50 and results from a delivery of (4, 3) for Branch 1 and (3, 1) for Branch 2.

That means we start with Price trajectory 3 and compute the best supply in terms
of κ = 1 chosen lot-type. The optimal supply for this trajectory is given by supplying
3 times Lot-type (1, 2) to both branches. The resulting revenue amounts to 42.

Now we have to reject the current price trajectory again and to compute the best
trajectory in terms of the current supply. According to the single supply revenues this is
also Price trajectory 3. For Trajectory 1 the revenue amounts to 18 and for Trajectory 2
it amounts to 38.5. That means the approach converges with a revenue of 42.

Solving ISPO for this example to optimality yields an optimal solution value of
46.50 which results from supplying Lot-type (2, 1) three times to Branch 1 and two
times to Branch 2. Price trajectory 1 is optimal.

For this example neither using the “best” trajectory nor the “first” trajectory – which
is also the “worst” – as start trajectories lead to a solution with small gaps. The gaps
amount 41.94% for the “first” and 9.68% for the “best” trajectory.

Thus, in general we can not assume such a good performance as on our instances.
We want to state some specialties of our real-world instances: For our instances the

range between the lower and upper bound as a rule amounts to about maximal 10% of
I + I−I

2 , see Remark 1. In this example it is much higher, namely 200%. Moreover in
the real-world case the deviation among the demands is with mostly zero or one sold
items less.

Although at this point we can not evidence a general warranty of goodness for
ISPO-PingPong, the bounds in terms of our real-world instances are small enough to
justify practical use.

9.5 Conclusion of the chapter
We presented the Branch&Bound solver ISPO-BAB which solves the Integrated Size
and Price Optimization Problem for all tested instances to optimality. We branch on
maps “scenario to price trajectory”. Dual bounds are obtained by extensions of the
wait-and-see solution from stochastic programming.
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For practical use at our industrial partner we propose the heuristic ISPO-PingPong.
The principle is to alternate size and price optimization until convergence. This is
possible because of the special structure of ISPO – the reversible recourse. We show
that ISPO-PingPong for the tested real-world instances yields solutions with an average
optimality gap of 0.19% – the maximum gap amounts 0.69% – in averagely 12.77
minutes.



Chapter 10

DISPO in practical application
– real-world experiments

The collaboration with our industrial partner gave us the opportunity to test the practical
relevance of DISPO in a real-world field study.

With real-world experiments we want to verify that DISPO performs better than
the method currently in use at the partner, i.e. the LDP together with a manual de-
termination of mark-downs. For that reason the DISPO-team performed a so-called
single-blind experiment where test and control branches compete against each other.
We give some basics about statistical experiments in Section 10.1 before we apply
them in Section 10.2 to our field studies.

During the cooperation also field studies only in terms of price optimization were
performed. In Section 10.3 we will outline the main results. We show how heavily
mark-downs can directly affect the number of sales and that price optimization can
also increase the realized revenue.

Because performing a field study is expensive in terms of work and money we es-
timated the potential of improvement a change from LDP to ISPO-based supply would
bring along. The results – which we outline in Section 10.4 – convinced our partner
and the DISPO-team to perform a five-month field study.

With DISPO we could finally increase the realized revenue about more than 1.5
percentage points. Moreover by regarding the field study as a statistical experiment
we can give a statement about the significance of the result. We present the details in
Section 10.5.

10.1 Performing statistical experiments
With real-world experiments we want to figure out if DISPO – or also price optimiza-
tion as a part of DISPO – performs better than the methods currently implemented at
our partner. Moreover we want the results to be statistically significant.

In order to apply statistical methods later on we want to introduce some statistical
basics in this section. We start with a classification of blind experiments in Subsec-
tion 10.1.1. We outline the term statistical significance in Subsection 10.1.2. To make
a point about statistical significance we have to perform a test of significance. We
mention the most common tests in Subsection 10.1.3 before we focus on the Wilcoxon
signed-rank test in Subsection 10.1.4.

124
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In this section we are mainly guided by [FPP07], [Raj06] and [Kan06].

10.1.1 Blind experiments
A blind experiment is a statistical experiment where not all people involved are in-
formed about certain aspects to avoid bias.

Blind experiments are typically applied in medical tests. The group of probands is
divided into a test and a control group where the test group gets the medicament and
the control group just a placebo. If one wants to examine the effect of a medicament
it is usual that the experimentees are not informed in which group they are. Otherwise
the experimentees might be affected by this information. If all other involved persons
– except the experimentees – have full information about the categorization we talk
about a single-blind experiment.

In some cases it is useful that also the researchers do not know about the category
of the tested persons. They might treat the probands accordingly. In this case we would
talk about a double-blind experiment.

10.1.2 Statistical significance
If our new method performs worse or better than the method currently in use we want
to state how big the role of chance for this result was. If the probability that the result
could be caused by pure chance is not small enough we would not give general state-
ments about a better or worse performance. The so-called null hypothesis says that the
method leads to no differences (or also to no better/worse performance). An alternative
hypothesis that it does. A test is statistically significant if the probability that its out-
come is the result of chance is smaller than a predefined significance level. A common
choice for the significance level is 5%. To make a point about statistical significance a
so-called test staticstic is computed. A test statistic is defined as a measurement of the
difference between the data and the statement of the null hypothesis, [FPP07]. The test
statistic follows a test distribution. If the probability to obtain the test statistic under the
test distribution – the so-called p-value – is smaller than the significance level – then
we call the result statistically significant – we reject the null hypothesis and rely on the
alternative hypothesis. Rejecting the null hypothesis does not mean that the alternative
hypothesis is true. It is only an evidence that the result is not caused by random.

10.1.3 Statistical tests in general
To evidence statistical significance there are several statistical tests. There are tests for
related samples and tests for unrelated samples. A sample is called unrelated if groups
of different individuals are compared. For related samples we compare groups with
individuals related pairwise to an individual from the other group. Which test can be
applied also depends on the kind of the data: Are the observations nominal, ordinal
or given by a distribution? Parametric tests assume a specific distribution while non-
parametric tests do not.

We distinguish between two-sided and one-sided tests. A two-sided test considers
both, a better and a worse performance of the test sample simultaneously. The null-
hypothesis says that both methods perform the same way, the alternative hypothesis that
they do not. With a one-sided test we are only interested in a better/worse performance
of the “new method”. The null-hypothesis says that it performs not better/not worse,
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the alternative that it does. Because in our case we are interested in a worse or better
performance we focus on one-sided tests in the following.

A common approach for two unrelated normal distributed samples is Student’s t-
test. The t-test compares differences between the means of the particular samples and
compares them with the corresponding standard error to determine if the two samples
arise from the same distribution. For related normal distributed samples the t-test can
also be applied in a similar way. For further information see for example [FPP07].

In the case that no distribution for the observations can be assumed (but also for
observations from a specific distribution) non-parametric tests can be applied. The
tests for non-parametric ordinal data assign ranks to the observations. As test statistic
rank-sums are computed. The test distribution is the distribution of the rank-sums.

For unrelated samples the Mann-Whitney test is commonly used. At first all obser-
vations are ordered increasingly and ranks are assigned in terms of the ordering. Then,
by summing up all ranks of one sample the rank sum – the test statistic – is computed.
To determine the role of random one computes the p-value as the probability to get
the observed rank-sum (or for one-sided tests the observed rank-sum or a higher/lower
one) among all other possible rank-sums.

For related samples there is a similar approach named Wilcoxon signed-rank test.

10.1.4 Wilcoxon signed-rank test
In order to certify statistical significance for two related ordinal samples Wilcoxon
signed-rank test is very common. The test is named after Frank Wilcoxon who pre-
sented it together with the rank sum test for non-paired observations also called Mann-
Whitney test in [Wil45]. Wilcoxon signed-rank test is an alternative to the Student’s
t-test if no normal distribution can be assumed. It yields a statement about the symmet-
ric distribution of the pair differences around the median.

The test can be performed as one-sided or two-sided test. For our purposes only
the one-sided test is relevant. Therefore we formulate Wilcoxon signed-rank test as
one-sided test.

It is checked if the differences of the ordered paired observations (test − control)
are distributed symmetrically around or right of the median x̃ or symmetrically around
or left of the median x̃. Thus, the null hypothesis in the first case is

H0 : x̃ ≤ 0, (10.1)

and the alternative hypothesis
H1 : x̃ > 0. (10.2)

In the second case, the null-hypothesis is

H0 : x̃ ≥ 0, (10.3)

and the alternative hypothesis
H1 : x̃ < 0. (10.4)

In the first case the null hypothesis is equivalent to the statement that the distribu-
tions of the paired observations for the two samples are identical or that the distribution
of the test sample is shift to the left. In the second case that they are identical or that
the distribution of the test sample is shift to the right.

We now describe the different steps for performing the Wilcoxon signed-rank test.
They are illustrated on the following small example.
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We assume our observations for the test and the control sample are given as stated
in the subsequent table.

observation 1 2 3
test 0.45 0.58 0.63

control 0.52 0.55 0.46

1. Computing the differences of the paired observations

We compute the differences of the observations for each test-control pair. This yields:

observation 1 2 3
difference −0.07 0.03 0.17

2. Ordering the absolute values increasingly and assigning ranks

The next step is to order the absolute values of the differences from above increasingly.
Additionally we store the sign of each difference: It says if the value for the observation
from the test sample was higher or lower than the related observation from the control
sample. The observations get ranks according to the ordering.

observation 2 1 3
abs. diff. 0.03 0.07 0.17

sign + − +
rank 1 2 3

If absolute differences for test-control pairs are equal we talk about ties. If for
example the three signed differences −0.03, 0.03 and 0.07 were observed there would
be no obvious ranking. Rank 1 or rank 2 could be assigned to both of the two first
differences. In this case it is common to assign the mean of the ranks the observations
would occupy. In our case the first and the second observation get rank 2+1

2 = 1.5
while the third observation gets rank 3.

3. Computing the test-statistic – the rank-sum

Now the rank sum as test-statistic is computed by adding up all ranks with an associated
difference with positive sign. If we want to check if the test distribution against the
control distribution is shift to the right (as alternative hypothesis), with n test-control
pairs the null-hypothesis is equivalent to that case that the rank sum is n(n+1)

4 or lower.
If we are interested in a left shift of the test distribution the null-hypothesis is equivalent
to that case that the rank sum is near n(n+1)

4 or higher. (It is n(n+1)
2 =

∑n
i=1 i the sum

of all ranks according to the Gaussian sum.)
In our example the rank sum is 1 + 3 = 4.

4. p-value

With the rank-sum as test statistic and the distribution of the rank sums as test distribu-
tion we are now able to compute the p-values for both one-sided tests.

In the first case – the test of a shift to the right for the test distribution – this is the
probability of getting the observed rank-sum or a higher one by chance. In the case of
checking a shift to the left we compute the probability of getting the observed rank-sum
or a smaller one by chance.
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For our small example this is easily done. We just have to compute the relative
frequency of the observed rank sum and higher/smaller rank-sums among all possible
rank-sums.

We denote the probability for getting a rank-sum of k or higher for a sample of test-
control pairs with size n in the following by Pn(X ≥ k); the probability for getting a
rank-sum of k or smaller by Pn(X ≤ k).

We consider all possible assignments of ranks and signs to our observations:

1 2 3 rank-sum

+ + + 6
+ + − 3
+ − + 4
− + + 5
+ − − 1
− + − 2
− − + 3
− − − 0

Our observed rank-sum for the example amounts to 4. The probability to get a rank-
sum of 4 or higher than 4 by chance is P3(X ≥ 4) = 3

8 = 37.50%. The probability
for obtaining a rank-sum of 4 or lower by chance is P3(X ≤ 4) = 6

8 = 75%.
In this example we cannot deny both null-hypothesises because both probabilities

are greater than our significance level of 5%. Indeed the probability for randomly
observing higher values for the test sample is smaller than the probability for randomly
observing lower values. But both results are not significance. The probabilities that the
results are caused by chance are too high.

For higher numbers of observations we can exploit the fact that the test statistic of
the Wilcoxon rank-sum test can be approximated by the normal distribution, see for
example [Mon10].

10.2 Performing our field-studies
as statistical experiments

Now we want to apply the approaches outlined in the last section to real-world field-
studies in terms of DISPO. In the first preliminary studies the DISPO-team performed,
the industrial partner provided pairs of articles. These were similar products sometimes
differing in color only. Randomly the DISPO-team categorized the set of articles in test
and control articles. The control articles were in the hand of the industrial partner while
the new methods were applied on the test articles: The DISPO team performed a test
for related samples where the samples are the test and the control articles. Related are
the pairs of articles provided by the partner.

But the differences between the popularity of the articles was so enormous that a
reliable statement about a better or worse performance of the new method in terms of
realized revenue was not possible. Comparability of the articles was not given.

To evaluate performance of different supply policies anyhow we developed meth-
ods to at least make a statement about performance in terms of the size compliance.
This means that we measure how well the supply per branch and size meets the related
demand. This is – similar to the empirical estimation, see Chapter 3, Section 3.2.1 –
done by observing the sales for an article to the day until 50% of the overall supply
over all branches and sizes are sold. Because nearly all items are sold at the end of the
selling time, we only observe the products within this “50%-time frame” to be able to
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observe differences for the particular branches and sizes. If then we detect that a size is
sold comparatively fast then we can assume an undersupply of this size. It speaks for
an oversupply if the items of the considered size stay comparatively long in a branch.
To indicate such behaviors we developed measurements to compare the selling speed
of the different sizes. One of them is the normalized sales rate deviation. It is based on
the consideration that a size-compliant supply would yield small differences among the
sales for the different sizes for the observed time frame. This difference is measured
by the standard deviation. Because the exact day when 50% of the articles are sold out
can not always be measured we scale the sales rates for the different sizes to a mean of
50%. Another measurement is the so-called top-dog deviation. The top-dop deviation
measures the difference between the probability that a size s is sold out first and the
probability that s is sold out last. If the supply was size-compliant both probabilities
should be nearly equal. Significance is measured by Wilcoxon’s rank-sum test. For
further reading see [KKR12].

Because the important performance metric, the realized revenue – its maximiza-
tion is the aim of our industrial partner – is not measurable by observing articles, the
DISPO-team chose a different test set-up. Instead of categorizing the articles in test and
control articles pairs of similar branches were provided by our industrial partner. In or-
der to obtain statistically assessable results, our industrial partner grouped branches
into pairs according to economic key figures, like the size of the stores and revenue.
Whether a branch was assigned to be a test or a control branch in such a pair was de-
cided randomly. We will benefit from this controlled test set-up because we can apply
the Wilcoxon signed-rank test to check significance of the results. For our industrial
partner this test set-up brings about a higher effort and additional costs. This is also the
reason why the DISPO-team did not perform this kind of test set-up earlier. Because
usually all branches were informed the same way about mark-downs etc. our partner
now had to divide the information flow. Another aspect is that for example different
prices for an article in neighbouring branches lead to confusion and maybe to loss of
image with customers. Especially in terms of the supply there were some other features
about the performance of the field study we will mention in Section 10.5. But overall
from our point of view a classification in test and control branches was the best way to
obtain convincing results: While the popularity of non-replenished fashion articles is a
priori not predictable, the assignment test-control-pair is based on exact comparisons
of economic key figures.

The field-studies are designed similar to a single-blind experiment. Neither the
employees or customers of the test branches nor the ones of the control branches knew
about their participation in a field study.

We test statistical significance by applying the Wilcoxon signed-rank test since
there is no indication that the observations indeed follow a normal distribution (or any
other distribution). In the following we compare relative sales or relative revenues.
Relative sales mean that we divide the number of sales in a branch by the related sup-
ply. Relative revenue means dividing the realized revenue by the maximum possible
revenue. Both concepts are described in detail later on. We order our test-control pairs
according to the absolute differences in terms of the observed quantity. The ranks are
assigned accordingly with a positive sign if the test branch wins – if the revenues or
the sales are higher than in the control branch – and otherwise a negative sign. With n
test-control pairs and a observed rank-sum of k the p-value for a better performance of
the test branches is given by Pn(X ≥ k), for a worse performance by Pn(X ≤ k).
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10.3 POP-RH in real-world studies
At this point we want to share the main results of two field-studies we performed to ob-
tain informations about the performance of the price optimization with receding hori-
zon POP-RH, see 2.5.4. Price optimization was performed every sales week again
exploiting latest sales figures, i.e. the knowledge about the scenario in effect. The
DISPO-team performed different experiments from which we want to sketch out the
results of the two last ones where the test set-up described above was applied. While
for the first outlined experiment we were mainly concerned with the evaluation we per-
formed and evaluated the second experiment completely. At first we will show that
mark-downs can have a significant influence on the sales. Then our focus lies on the
realized revenue.

10.3.1 Performing price optimization with receding horizon – POP-
RH

In the field studies in terms of price optimization both, the test branches and the control
branches, were supplied by our industrial partner. The control branches were com-
pletely managed by our partner who performs the mark-downs there. Two weeks after
sales start the DISPO-team/we began to perform the price optimization process in the
test branches. This time is needed to assign the scenario in effect according to the
observed sales figures.

To exploit always the latest sales figures, at the end of each week. the demand
estimation according to the observed sales was updated, see Chapter 3, 3.2.6. Then,
price optimization was applied to compute an updated price policy. If the optimal
price trajectory suggested a mark-down in the following two time periods the industrial
partner was advised to implement exactly this mark-down.

We want to remark at this point, that because of the high amount of data our project
partner had to transfer to the DISPO team, the proposed mark-downs could not exactly
be applied the week after the evaluation of the latest sales figures. The mark-downs
were applied one week later. In detail the sales data was available for the DISPO-
team between Monday morning and Tuesday evening. Then the in terms of latest
sales figures optimal price trajectory was computed. The partner obtained the by the
POP-RH proposed mark-downs at the latest on Tuesday evening. Depending on the
sales start of the article the mark-downs were performed the week after on Tuesday or
Friday.

The partner provided all transactions and additional data on a server. Additionally
to the about 8 GB of data that was needed for empirical demand estimation at the
beginning of the field studies every week 4 GB of new data which included latest
transaction data were transferred.

10.3.2 Sales increase by mark-downs
From the beginning of November 2009 until the end of March 2010 the DISPO-team
performed a field study in terms of price optimization at the industrial partner. Com-
pared were 26 test branches with 26 control branches.

There was one specialty. Because the partner had to get rid of old articles – old
means winter products – to create space for the spring articles the DISPO-team decided
to include penalty costs in the objective of the POP (without mark-down costs).
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For Period k the penalty costs per remaining item are given by

pen(k) :=

{
0.1ap · 2 1

2 (k−ω+6) k ∈ K : k ≥ ω − 6,

0 otherwise.
(10.5)

The penalty costs depend on the current period, the current stock and the acquisi-
tion price. It is ω the number of weeks for the product from the sales start until the
end of the field study. Penalty costs only arise in the last 6 weeks of the experiment.
Because of the factor 1

2 in the exponent, the penalty costs which depend from 10% of
the acquisition price double all two weeks. For each non-sold item at Period k these
costs were added in the objective of the POP. The idea is that each remaining item uses
space that is needed for new products. Because at that time the DISPO-team had no
estimation of the cost that remaining items would cause this artificial penalization was
used.

The remaining parameter setting is given as stated in Table 10.3 (from the line
four)1. POP-RH is performed as described in 10.3.1.

For the reason to get unbiased results the DISPO-team restricted the complete test
set of 3050 articles to 1037 articles which were supplied to all test and control branches
(we also performed an evaluation for all articles, the main result does not distinguish).

While in the control branches for the 1037 articles only 980 mark-downs were
performed including the penalty costs led to 1928 mark-downs in the test branches.

In Figure 10.1 the effect of mark-downs for a sample of 66 of the 1037 articles is
recognizable. We see that 6 weeks before the field study ends the “bad sellers” start to
boom. If we look for example at the article which is depicted by the green rhombus,
we see that this product is mark-downed at sales week 12 to about 0.25 of the starting
price. We see that the sales increase rapidly in the next two sales weeks. We made this
observation also for other articles and different sales weeks, see Appendix B.

We observed an average sales rate of 84.6 for the control branches and 90.4 for
the test branches, respectively. This result is highly significant (in terms of Wilcoxon
signed-rank test) with a p-value of nearly 0.00%.

The observed increase of sales by applying POP-RH (with penalty costs for non-
sold items) in contrast to manual decisions on mark-downs is significant.

Because of the artificial penalty costs in the objective at this point we are not able
to make a statement about the influence on the realized revenue. For this purpose we
performed another field study.

10.3.3 Earnings increase by mark-downs
To compare POP-RH with manual decision making about mark-downs also in terms
of money we performed another field study. Analogously to the previously described
experiment all articles were supplied by our industrial partner. From 30 pairs of com-
parable branches the categorization in test and control branch happened randomly.

For this experiment we tried to model the reality as exactly as possible: POP-RH
based on realistic estimations on all occurring costs. Our partner estimated fixed and
variable mark-down costs. The fixed mark-down cost amount to µf = 7.0 while the
variable mark-down cost µv per item lie between 0.12 and 0.21 depending on the com-
modity group. It is qkmax = 2, that means after the last real sales periods two additional
mark-downs are assumed. The remaining parameters are as stated in Table 10.3.

1In order not to reveal company internals, we state all values/costs with respect to artificial but consistent
monetary units.
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Figure 10.1: Effect of mark-downs



CHAPTER 10. REAL-WORLD EXPERIMENTS 133

sample relative realized objective gross yield sales

test 0.4774 0.6524 0.7891
control 0.4698 0.6494 0.7945

Table 10.1: Performance metrics – 2nd field study POP-RH

Originally there were 4668 products included in the test. To get possibly non-
biased result our evaluation uses only 2298 from them which were supplied to all test
and control branches.

We state some performance metrics for the test and control branches in Table 10.1.
We will focus on the relative realized objective which we will define in the follow-

ing.
For each test-control pair of branches, the realized revenues over all articles in A

were compared. That means, in particular, that expensive articles have a larger influ-
ence on the result than cheap articles. This point of view is in line with our partner’s
point of view.

For reasons of comparability we divide the realized revenue by maximum possible
revenue in terms of the objective of the POPê.

This means for an initial stock Iab,s for the considered branch b, size s and article
a and a starting price πa0 we compute the relative realized objective of the mark-down
decision ta = (ta0 , t

a
1 , . . . , t

a
kmax

) with t =
(
ta
)
a∈A for Branch b as

RROPOP(b) =
objective of POPê for b achieved by t

maximal possible objective
=

−
∑
a∈A

∑
s∈S

Iab,s · apa +
∑
k∈K

exp(−ρk)
(∑
a∈A

∑
s∈S

r̂ak,b,s − µ̃akn̂ak
)

∑
a∈A

∑
s∈S I

a
b,s · (πa0 − apa)

. (10.6)

Depending on Article a, apa denotes the acquisition price, πa0 the starting price and
Iab,s the initial stock per branch and size. During the sales process, we observed r̂ak,b,s
(the realized yield for Branch b and Size s in Period k) for Article a and n̂ak (mark-down
in Period k – yes or no).

Since we only consider a subset of branches we have to take into account that fixed
mark-down costs must be scaled with respect to the number of considered branches.
This way, we get mark-down costs µ̃ak for period k.

Because all test and control branches were supplied by our partner and now our
focus lies on the price optimization stage we do not regard costs for supply in terms of
lots as lot-opening costs and pick costs as they appear in ISPO.

We see that the mean relative realized objective in the test branches is about 0.76
percentage points higher than in the control branches. Also in terms of the other perfor-
mance metrics POP-RH beats the manual price optimization. Yet, with a rank-sum of
285 and P30(X ≥ 285) = 14.47% and P30(X ≤ 285) = 86% Wilcoxon signed-rank
test yields no significance. Still, the p-value for a better performance caused by pure
chance is with 14.47% comparatively small.
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Figure 10.2: Change of supply by ISPO

10.4 Potential of ISPO
By integrating price optimization in the decision on the supply we hope to increase the
realized revenue.

To get an idea of how good ISPO meets the realized demand of the different sizes
we performed a test on 136 real instances for which we were in possession of transac-
tion data. Because at this time all articles at our industrial partner were supplied by the
LDP we can use real sales figures to compare the two models LDP and ISPO.

In Figure 10.2 we depicted the change of supply by ISPO against the supply that
LDP yields. The size of the bubbles is related to the summed up number of sizes over
all branches and articles which are sold out in the week marked at the x-axis. The
bigger the bubble the more sizes per branch and article are sold out in that week.

The position of the bubbles on the y-axis describes the difference between the sup-
ply determined by ISPO and the realized supply computed by the LDP.

For example, let us consider an article for which a particular size in a particular
branch is sold out 5 weeks after sales start. If for this article, branch and size ISPO
would yield a supply of 5 and LDP would yield a supply of 3, then this article,branch
and size would increase the relative size of the bubble at (5,2).

We see, that the size of bubbles decreases in terms of the sellout date for positive
values on the y-axis, while the size increases for negative ones. This means, ISPO
would deliver more items per branch and size the earlier the supplied items by the
LDP were sold out and ISPO would deliver less items per branch and size the later the
supplied items by the LDP were sold out. This is exactly the behavior we would expect
to obtain a more size conform supply and an indication that ISPO leads to a more size
conform supply than the LDP.

To measure the possible improvement also in terms of money we compared the
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Figure 10.3: Comparision of different models for size optimization

three models LDP, SLPD and ISPO. For the same 136 instances we solved the LDP
and SLDP exactly, ISPO – because of the long runtime – heuristically. To compare the
three models with respect to monetary effects we evaluated them on the objective of
ISPO.

For the optimal solutions of LDP and SLDP we computed the associated acquisi-
tion costs, pick costs and lot opening costs and then applied price optimization (Algo-
rithm 3) to get the yield for the optimal price trajectory in terms of the supply. Sub-
tracting all costs for supply from the yield provides the related objective value of ISPO.

The gaps between the objective of the heuristic solution of ISPO and the objective
in terms of ISPO by fixing the supply computed by the LDP and SLDP are depicted
in Figure 10.3. These gaps can be seen as a practical application of the value of the
stochastic solution VSS, see Section 5.3.2. We measure the loss by non-regarding the
second stage in the sales process or particularly in terms of the LDP by non-regarding
random.

The vertical lines illustrate the relative improvement in terms of money for the
particular instance. In terms of the LDP, ISPO could lead to an improvement about
2.27 percentage points of revenue, in terms of the SLDP about 1.52 percentage points.

The theoretical potential of increasing the revenue by 2.27 percentage points was
encouraging and therefore our partner and the DISPO-team decided to deploy DISPO
– ISPO combined with POP-RH – in a real-world field study.
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10.5 DISPO – the field study
Parts of this section are presented in similar fashion in [KKR11b]. We performed our
real-world field study as described above as a controlled statistical experiment to com-
pare DISPO with the currently applied LDP together with manual price optimization.2

10.5.1 Preparation
Additionally to the estimation of the potential of ISPO we outlined in Section 10.4,
there were some other work we/the DISPO-team and our partner were concerned with
in the time before the field study began.

The DISPO-team had to confer with the partner about the exact test set-up. The in
Section 10.2 described partition in test and control branches was chosen. To supply the
test branches according to our proposal pre-packs had to be opened and items had to
be removed or added by our industrial partner. Therefore the partner decided to use its
German online-shop to compose the lots for the test branches after the lots arrived at
the headquarters.

Moreover the participating commodity groups were chosen. These were three com-
modity groups with comparatively many sizes, see 10.5.2. The involved persons also
arranged an appropriate point in time for the field study .

We met with those responsible of the sales department to come to an realistic esti-
mation of the fixed and variable mark-down cost and the salvage value.

It was also discussed if advertising campaigns and special offers should be allowed.
The results will follow in Subsection 10.5.2.

For performing POP-RH we could take the most scripts and programs developed
by the former DISPO-team that were used in former field studies.

To detect potential weak points and to practice the procedure on both sides, we
performed a test field study together with the IT department of our partner. Additionally
potential inconsistencies in terms of the used data formats should be eliminated. The
test data our partner provided us included relevant data for all planned orders for the last
season of the year 2010, historical data for demand estimation and current transaction
data for all commodity groups. Overall this was about 6.6 GB of data.

For this data – after we performed the empirical estimation – we computed a supply
policy by ISPO-PingPong and provided our partner the results for the test branches.

We also tested the process for performing POP-RH. That means with respect to
latest sales figures we computed an optimal mark-down strategy via the POPê and
informed our partner about proposed mark-downs for the subsequent two weeks.

The test field study among others led to some adjustments of scripts and readin
routines.

10.5.2 Setup of the field study
It was necessary to select a small set of articles for the field study because the orders
had already been placed in terms of lot-types, and the adaption of the supply for the
test branches to the results of the new method is a too expensive logistic operation to
be carried out for each article.

2A comparision between ISPO and complete manual planning was not possible, because nearly all articles
at our industrial partner are supplied by the LDP now.
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The test branches were supplied in terms of the – by ISPO-PingPong (Algorithm 15)
computed – solution of ISPO. Since there are global constraints for the overall num-
ber of supplied items we actually computed the supply for all branches with the new
method – and so did our industrial partner with the LDP. Our proposed supply was then
implemented only for the test branches; the supply of the control branches (and also all
remaining branches) was implemented as computed by the LDP by our project partner.

The field study ran from end of May until end of September 2011 for 81 articles
from three different commodity groups – women overgarments fashion (wof), women
overgarments classic (woc) and women underwear (wu). The sales process for these
articles started between May 2011 and mid of June 2011 so that all articles could be
observed for a time period of 15 to 17 weeks. Some further relevant properties of the
used test articles are stated in Table 10.2. Our demand estimation, see 3.2, is based on
historical data in a time frame from September 2009 to September 2010.

commodity group number of articles number of sizes

wof 9 6
woc 9 3
wu 5 6

Table 10.2: Properties of the test articles.

Table 10.3 shows the parameter setting we used in ISPO for the field study. Our lot-
type opening costs δi and pick costs pcost were estimated on the basis of a thourough
cost accounting. This cost accounting also revealed that more than four lot-types can
only be handled if the area for internal stock-turnover is increased substantially. The
discount factor ρ is derived from an estimation of the capital binding cost. Whenever
other reasons than interest rates favor faster stock-outs this can be increased. The fact
that we did not account for mark-down costs µk just reflects the fact that at the time
of the design of the experiment our partner could simply not provide a realistic value
for this. An adaption of ISPO-PingPong was not possible until the beginning of the
experiment due to time constraints.

parameter setting

κ 4
pcost 0.0545

δ1 100
δi, i > 1 50

E {low, normal, high} (period-0 sales ∈ [0, 10 %)/[10 %, 30 %]/(30 %, 100 %])
dnormal
k,p,b,s from empirical distribution and interpolation of historic sales in commodity group
dek,p,b,s α× dnormal

k,p,b,s (α from historic sales in scenario e compared to scenario normal)
Prob(e) from empirical distribution of historic sales in commodity group

kobs 2 (i.e., realization of e and earliest mark-down after 2 periods)
kmax periods (= weeks) until end of season (article dependent)

ρ 0.000974868
pmax 4 (five prices including start price and salvage value)
µk 0

πkmax dependent on commodity group ∈ [15%, 30%] of the starting price π0

Table 10.3: Parameter setting for the field study.
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Advertising campaigns and special offers

From time to time our industrial partner performs different campaigns – triggered by
exogeneous reasons like new competing stores and the like – in its branches. Articles
from a commodity group are all marked down at the same time or they sell three shirts
for the price of two and so on.

The question was how to deal with this? Prohibiting these measures would certainly
make the result less biased. However, if our partner decided to implement DISPO this
effects would occur anyway. DISPO has to deal with them. In order to better assess
the practicability of DISPO, we decided not to forbid campaigns in the test and control
branches: A method the performance of which vitally relies on laboratory conditions
with all exogenous disturbances removed cannot be used in practice anyway.

Stock transfers

There are two types of stock transfers. On the one hand branches perform stock trans-
fers caused by single customer requirements. If the requested product is not available
in a branch the employees have the possibility to obtain it from an other branch. On
the other hand there are systematical stock transfers which are caused by an undersup-
ply of a size in a branch. Then the sales department decides to restock items from a
oversupplied branch to a branch where there is a shortage.

While the transfers caused by customer requirements in our partner’s view for the
field study can not be forbidden the DISPO-team and our partner decided to prohibit
all systematical stock transfers. Because they compensate wrong supply – maximizing
the realized revenue by a size-compliant supply is the aim of our method – they would
bias the result in such a way that it might be useless.

10.5.3 Evaluation
Our test set of articles is denoted by A. For reasons of comparability we consider for
each branch the objective value of ISPO divided per merchandise value over all articles
from the set A. We distinguish the corresponding variables and parameters for the
different articles a ∈ A by a superscript a. Apart from that the parameters name are
identical to the formulation of ISPO, Problem 6.

For an initial stock Iab,s for the considered branch b, size s and and a starting price
πa0 we compute the relative realized objective for branch b of the independent non-
anticipative decisions

RROISPO(b) =
objective of ISPO achieved for b
maximal possible objective for b

=

−
∑
a∈A

∑
`∈L

∑
m∈M

x
a
b,`,m · c

a
b,`,m −

κ∑
i=1

δ̃i · zai +
∑
k∈K

exp(−ρk)
(∑
a∈A

∑
s∈S

r̂
a
k,b,s − µ̃

a
kn̂

a
k

)
−
∑
a∈A

∑
`∈L

∑
m∈M xab,`,m · c

a
b,`,m −

∑κ
i=1 δ̃i · zai +

∑
a∈A

∑
s∈S I

a
b,s · π

a
0

. (10.7)

Depending on article a, the entity zai indicates that an i-th lot-type was used. During
the sales process, we observed r̂ak,b,s (the realized yield for Branch b and Size s in
Period k) for Article a and n̂ak (mark-down in Period k – yes or no).

Since we only consider a subset of branches we have to take into account that pick
costs, costs for additional lot types, and fixed mark-down costs must be scaled with
respect to the number of considered branches. This way, we get a marginal cost δ̃i
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Figure 10.4: RROtest −RROcontrol for ordered test-control-pairs – all 81 articles

for the i-th selected lot-type and mark-down costs µ̃ak for period k. (For a complete
notational reference see the problem formulation of ISPO in Chapter 6).

For the evaluation of the field study we used transaction data from our industrial
partner, analogous to the historical data we use for demand estimation. From this data
we obtained the daily sales per branch and size and the realized sales price. But this
data yields not all information we needed. We did not have full access to the supply
in terms of lot-types in the control branches because the partner did not store the data
for all articles. So we had to reconstruct the lot-types from the transaction data. In the
most cases we can exactly determine the lot-type which is used in a branch. But we
know from former field studies that not for all branches exactly the computed lot-type
is also delivered. Sometimes there is one item less ore more supplied for a size. We
therefore counted a lot-type as ”new“ lot-type if at least three branches were supplied
with this lot-type. Otherwise we assumed that this lot-type resulted from an ”old“ lot-
type by wrong delivery. Then for this ”wrong“ lot-type only one time pick costs were
counted. We want to emphasize that this kind of adaption – if it affects the results – is
a disadvantage for the test branches and thus for DISPO. Because every branch has to
be supplied by at least one lot-type pick cost always arise at least once.

Allowing campaigns and special offers sometimes leads to the fact that the realized
sales price differs from the determined price – either in the test branches or in the
control branches. Moreover we cannot exclude that some items are bought at a reduced
rate because of material defect or the like. There are two possibilities: Either we take
the determined price per week for the computation of the RRO or the realized one. We
decided for the realized price. We want to test the real-world behavior of DISPO and
as already stated in 10.5.2 mark-downs beyond the determined prices are part of it.

10.5.4 Results of the field study
The relative realized revenues per branch are shown in Table 10.4 for each test-control
pair in the second and third column.

We see that on average, the use of the new method gains almost two percentage
points compared to the old method.

We apply the Wilcoxon signed-rank test. The differences of the observations, here
RROtest − RROcontrol – at the fourth column of Table 10.4 are ordered increasingly
according to their absolute values (depicted in Figure 10.4). The signed ranks are
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test-control-pair RROtest RROcontrol RROtest − RROcontrol signed rank

1 0.6333 0.6214 0.0119 2
2 0.6764 0.6080 0.0683 19
3 0.5919 0.6072 −0.0154 −5
4 0.6056 0.5898 0.0159 6
5 0.6637 0.5663 0.0974 26
6 0.6228 0.6031 0.0197 8
7 0.6377 0.6500 −0.0123 −3
8 0.5832 0.5845 −0.0013 −1
9 0.5968 0.5731 0.0237 11

10 0.5372 0.6276 −0.0904 −23
11 0.5651 0.5489 0.0163 7
12 0.5333 0.5904 −0.0571 −18
13 0.5782 0.5570 0.0212 9
14 0.6381 0.4940 0.1441 28
15 0.5054 0.5845 −0.0791 −21
16 0.5927 0.4993 0.0934 25
17 0.5872 0.4943 0.0929 24
18 0.6078 0.5691 0.0388 16
19 0.5762 0.6476 −0.0714 −20
20 0.5682 0.5323 0.0359 14
21 0.5133 0.4250 0.0883 22
22 0.5272 0.5547 −0.0275 −12
23 0.4015 0.5942 −0.1926 −30
24 0.4628 0.4860 −0.0232 −10
25 0.5168 0.4646 0.0522 17
26 0.5843 0.4621 0.1222 27
27 0.5658 0.4137 0.1521 29
28 0.4989 0.4608 0.0380 15
29 0.5466 0.5607 −0.0141 −4
30 0.5593 0.5272 0.0320 13

∅ 0.5692 0.5499 0.0193 5.7

Table 10.4: RROs for the test-control-pairs – all 81 articles

stated in the fifth column of the table. At first glance we can see that the differences
are not distributed equally. The test branches perform visibly better. This is also the
result of the Wilcoxon signed-rank test. For the data we get a rank-sum of 318. The
probability for getting an equal or higher rank-sum is P30(X ≥ 318) ≈ 4.02%. Thus,
with a probability of 4.02% for a better performance of the test branches resulted by
chance we get for the 81 test articles a significant result for an improvement of DISPO
– against the LDP with manual planning of mark-downs.

However, we observed that some operational anomalies like failed price cuts in the
control branches. In order to estimate the influence of the new method in the most con-
servative fashion, we removed all articles which may have been affected by systematic
disturbances of operations. This led to a second set of articles A′ with only 23 articles
remaining.

The particular RROs per branch are stated in Table 10.5, the corresponding differ-
ences RROtest − RROcontrol are depicted in Figure 10.5. We see that in the case of
heavily cleaned-up data the RRO for the test branches is still more than 1.5 percentage
points higher than in the control branches. We repeated the Wilcoxon signed-rank test
for this smaller test set. The test now yields a rank-sum of 271, which leads to a prob-
ability of P30(X ≥ 271) = 22% that a better performance of the test-branches was
observed by chance. Thus, for the heavily cleaned-up data we still observe a relevant ef-
fect (1.5 percentage points improvement) whose observation can no longer be testified
as significant. This is essentially caused by the fact that for such a small (but relevant)
effect the sample set A′ is simply no longer large enough to prove significance. Still,
the probability for a randomly better performance is with 22% much higher than the
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test-control-pair RROtest RROcontrol RROtest − RROcontrol signed rank

1 0.4215 0.6673 −0.2458 −28
2 0.5874 0.4758 0.1116 18
3 0.6572 0.4865 0.1708 25
4 0.5948 0.4773 0.1175 21
5 0.5491 0.4153 0.1338 24
6 0.5799 0.5117 0.0682 13
7 0.4833 0.5454 −0.0621 −12
8 0.4648 0.5124 −0.0476 −9
9 0.5051 0.4923 0.0128 2

10 0.4933 0.6094 −0.1162 −19
11 0.4926 0.4998 −0.0071 −1
12 0.4205 0.4706 −0.0501 −10
13 0.4352 0.3746 0.0607 11
14 0.7046 0.2860 0.4186 30
15 0.4547 0.5281 −0.0734 −14
16 0.5146 0.3846 0.1300 22
17 0.5285 0.4247 0.1038 17
18 0.4802 0.5081 −0.0279 −3
19 0.3562 0.4865 −0.1303 −23
20 0.4119 0.4496 −0.0377 −5
21 0.2195 0.2577 −0.0382 −6
22 0.4274 0.5437 −0.1163 −20
23 0.2262 0.6415 −0.4153 −29
24 0.4006 0.3252 0.0754 16
25 0.3779 0.4244 −0.0465 −8
26 0.4759 0.4008 0.0750 15
27 0.5926 0.3971 0.1955 26
28 0.4458 0.4116 0.0342 4
29 0.4540 0.4985 −0.0445 −7
30 0.5278 0.3050 0.2228 27

∅ 0.4761 0.4604 0.0157 2.57

Table 10.5: RROs for the test-control-pairs – heavily cleaned-up data, 23 arti-
cles

sample relative realized objective gross yield sales

test 0.4761 0.6829 0.7951
control 0.4604 0.6744 0.8021

Table 10.6: Alternative performance metrics, heavily cleaned-up data.

probability for a randomly worse performance given by P30(X ≤ 271) = 78.6%.
So far, we assessed the quality of the decisions of the various methods on the basis

of our objective function that was carefully engineered together with our partner. Yet,
it is interesting to see that the new two-stage method outperforms the old method in
some very important criteria at the same time. In Table 10.5.4 we list average RRO
per branch, relative gross yields, and relative sales for all test-control-pairs. For both
revenue and gross yield we see improvements. In contrast to this, the number of sales
is only minimally smaller for DISPO.

Now, which decisions have been taken differently by the new method? Table 10.7
shows the differences in the lot-type designs of the new and the old method for the
23 remaining articles.3 The most obvious effect is that the number of different lot-
types used is usually smaller for the ISPO than for the LDP. Since the old method tries
to approximate a fractional demand as closely as possible by a supply distribution on

3Since the lot-type design of the control branches had to be reconstructed from incomplete data – see
Subsection 10.5.3, the multiplicities for the control branches do not always add up to 30. The lot-types are
reliable, though.
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Figure 10.5: RROtest − RROcontrol for ordered test-control-pairs – heavily
cleaned up data, 23 articles

the basis of suitable lot-types, it will usually use as many lot-types as possible, even
if the improvements of a new lot-type are small. The goal of the new method is not
to meet the demand as closely as possible but to earn as much money as possible.
Obviously, an additional lot-type is not always justified by higher predicted profits in
ISPO. Consequently, ISPO does not suggest to use such a new lot-type. In the table
we clearly see that lot-type (1, . . . , 1) is very often used. This is the result of the rule
that each branch has to receive at least one piece in every size – a fact that reduces the
potential for improvement and should be taken into account when the effect (1.5 to 2
percentage points improvement) of using the new method is assessed.
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no. lots delivered to test branches by new method lots delivered to control branches by old method

1 4(2,2,3,4,3,3),19(1,1,1,1,1,1),7(1,1,2,2,2,2) 13(1,1,1,1,1,1),7(1,1,1,2,2,1),5(1,1,2,2,3,2),3(2,3,3,4,4,3)
2 4(2,2,3,4,3,3),19(1,1,1,1,1,1),7(1,1,2,2,2,2) 13(1,1,1,1,1,1),7(1,1,1,2,2,1),5(1,1,2,2,3,2),3(2,3,3,4,4,3)
3 5(2,2,3,4,3,3),18 (1,1,1,1,1,1),7(1,1,2,2,2,2) 15(1,1,1,1,1,1),7(1,1,1,2,2,1),3(2,3,3,4,4,3),3(1,1,2,2,3,2)
4 5(2,2,3,4,3,3),18(1,1,1,1,1,1),7(1,1,2,2,2,2) 12(1,1,1,1,1,1),8(1,1,1,2,2,1),3(1,1,2,2,3,2),3(2,3,3,4,4,3)
5 5(2,2,3,4,3,3),18(1,1,1,1,1,1),7(1,1,2,2,2,2) 13(1,1,1,1,1,1),7(1,1,1,2,2,1),4(1,1,2,2,3,2),4(2,3,3,4,4,3)
6 5(2,2,3,4,3,3),18(1,1,1,1,1,1),7(1,1,2,2,2,2) 14(1,1,1,1,1,1),7(1,1,1,2,2,1),6(1,1,2,2,3,2),3(2,3,3,4,4,3)
7 5(2,2,3,4,3,3),18(1,1,1,1,1,1),7(1,1,2,2,2,2) 14(1,1,1,1,1,1),7(1,1,1,2,2,1),6(1,1,2,2,3,2),3(2,3,3,4,4,3)
8 5(2,2,3,4,3,3),18(1,1,1,1,1,1),7(1,1,2,2,2,2) 12(1,1,1,1,1,1),7(1,1,1,2,2,1),7(1,1,2,2,3,2),3(2,3,3,4,4,3)

10 13(1,1,1,2,2,2),17(1,1,1,1,1,1) 6(2,2,2,3,4,4),8(1,1,1,2,3,3),12(1,1,1,2,2,2),4(1,1,1,1,1,1)
11 13(1,1,1,2,2,2),17(1,1,1,1,1,1) 6(2,2,2,3,4,4),8(1,1,1,2,3,3),12(1,1,1,2,2,2),4(1,1,1,1,1,1)
12 13(1,1,1,2,2,2),17(1,1,1,1,1,1) 6(2,2,2,3,4,4),8(1,1,1,2,3,3),12(1,1,1,2,2,2),4(1,1,1,1,1,1)
14 13(1,1,1,2,2,2),17(1,1,1,1,1,1) 9(1,1,2,2,2,2),9(1,1,1,1,1,1),3(1,1,2,2,1,1),6(1,1,1,1,2,2)
16 10(1,1,1,2,2,2),7(1,1,2,2,2,2),13(1,1,1,1,1,1) 14(1,1,2,2,3,3),5(2,2,3,4,4,4),11(1,1,1,2,2,2)
17 10(1,1,1,2,2,2),7(1,1,2,2,2,2),13(1,1,1,1,1,1) 14(1,1,2,2,3,3),5(2,2,3,4,4,4),11(1,1,1,2,2,2)
18 10(1,1,1,2,2,2),7(1,1,2,2,2,2),13(1,1,1,1,1,1) 14(1,1,2,2,3,3),5(2,2,3,4,4,4),11(1,1,1,2,2,2)

19 18(3,2,1),12(2,1,1) 10(4,2,1),19(3,2,1)
20 8(1,3,2),22(1,2,1) 10(1,2,1),6(2,4,3),11(1,3,2),2(1,1,1)
21 8(1,3,2),22(1,2,1) 22(1,2,1),6(1,1,1),2(1,3,1)
22 7(2,4,3),11(1,2,1),4(2,3,2),8(1,3,2) 16(1,2,1),7(2,4,3),3(1,3,2),1(1,2,2)
23 18(3,2,1),12(2,1,1) 1(2,1,1),9(4,2,1),18(3,2,1),1(1,1,1)

Table 10.7: Supply for the test and control branches in terms of lots.
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article RRO #mark-downs
article test control test control

1 0.5137 0.5171 1 1
2 0.5177 0.4939 1 1
3 0.6578 0.5956 1 1
4 0.5738 0.6391 1 0
5 0.6494 0.6620 1 1
6 0.6477 0.6012 0 1
7 0.5314 0.4452 0 1
8 0.5090 0.3518 1 1
9 0.2493 0.1840 1 1

10 0.2363 0.1848 1 1
11 0.4246 0.4167 1 1
12 0.6183 0.6079 1 1
13 0.2924 0.1982 0 1
14 0.6257 0.6462 0 1
15 0.7812 0.7817 0 1
16 0.7812 0.7295 0 1
17 0.3164 0.3175 1 1
18 0.2864 0.2184 1 1
19 0.6225 0.6358 0 0
20 0.5017 0.5591 0 0
21 0.5553 0.5592 0 1
22 0.6240 0.6229 1 0
23 0.4824 0.5216 1 0
∅ 0.5217 0.4995 0.6087 0.7826

Table 10.8: RROs and mark-downs per article

Also in terms of performing mark-downs differences are recognizable. On the
heaviliy cleaned-up data set of 23 articles, the new price optimization suggested all-
together 14 mark-downs in the test branches, while the manual strategy in the control
branches led to 18 mark-downs on the same set. To evaluate the influence of mark-
downs we consider the realized relative revenue for article a. It is given by

RROISPO(a) =
objective of ISPO achieved for a
maximal possible objective for a

=

−
∑
b∈B

∑
`∈L

∑
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x
a
b,`,m · c

a
b,`,m −

κ∑
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exp(−ρk)
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s∈S

r̂
a
k,b,s − µ̃

a
kn̂
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k

)
−
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a
b,`,m −
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i=1 δ̃i · zai +

∑
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∑
s∈S I

a
b,s · π

a
0

. (10.8)

See the formulation of ISPO, Problem 6 for the exact notation.
We state the RROs per article in the set A′ for the test-control branches in Ta-

ble 10.8. Moreover the number of mark-downs per article for the test and for the
control branches are stated in the third and fourth column.

In the test branches the mean relative revenue per article amounts to 2.22 percent-
age points more than in the control branches. To see in which cases we performed
better than the sales department with its manual planning we divided the articles in
four subsets. We consider

1. articles which are marked down as well in the test-branches as in the control
branches – also denoted as ”both“,

2. articles which are marked down only in the test-branches – ”just test“,

3. articles which are marked down only in the control-branches – ”just control“,

4. articles which are marked down neither in the test nor in the control branches –
”none“.
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both just test just control none
test control test control test control test control

RRO 0.4526 0.4136 0.5601 0.5945 0.6021 0.5659 0.5621 0.5974
sample size 11 3 7 2

Table 10.9: Mean RROs versus mark-downs

com. group no. predicted realized gap

wof 1 527.96 318.64 −0.3965
wof 2 527.96 285.88 −0.4585
wof 3 900.39 490.29 −0.4555
wof 4 900.39 603.34 −0.3299
wof 5 900.39 533.66 −0.4073
wof 6 391.20 482.88 0.2343
wof 7 391.20 415.96 0.0633
wof 8 700.42 656.63 −0.0625
wof 9 700.42 521.56 −0.2554

woc 10 620.24 440.91 −0.2891
woc 11 620.24 435.63 −0.2976
woc 12 620.24 497.15 −0.1984
woc 13 957.87 666.63 −0.3041
woc 14 957.87 545.82 −0.4302
woc 15 957.87 622.68 −0.3499
woc 16 631.84 680.98 0.0778
woc 17 631.84 664.36 0.0515
woc 18 631.84 651.06 0.0304

wu 19 393.90 292.29 −0.2580
wu 20 624.91 414.50 −0.3367
wu 21 262.52 297.26 0.1324
wu 22 371.35 508.94 0.3705
wu 23 421.82 364.31 −0.1363

∅ −0.1742
sd 0.2388

Table 10.10: Comparison of objective function values – predicted by ISPO ver-
sus realized.

The mean RROs per article according to these subsets of articles are stated in Ta-
ble 10.9. In the case that the article is marked down as well in the test branches as
in the control branches we can observe an about 3.9 percentage points higher revenue
for the test branches. In the case that the articles were just marked down in the con-
trol branches this difference amounts to 3.62 percentage points. For the set of articles
where only mark-downs were performed in the test branches the control branches yield
averagely 3.44 percentage points higher revenue and 3.53 percentage points in the sub-
set of articles for which in both samples no mark-downs are performed: We perform
better solely in the cases where mark-downs were performed for the control branches.

Yet, the sample sizes are very small. So it is not possible to assess significant
results.

Nevertheless, let us consider the case were mark-downs are performed in both sam-
ples. What are the differences in the mark-down decisions of DISPO and the mark-
downs decided by our partner? DISPO as a rule decides later on mark-downs. In seven
of the eleven articles ISPO proposed a later mark-down – averagely 10 days – than
the sales department at our partner. For these articles an about 2.69 percentage points
higher RRO can be observed. If DISPO decides on an earlier mark-down than our part-
ner it is averagely 33 days earlier. For these articles our method yields averagely an
about 6.02 percentage points higher RRO.
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com. group no. predicted realized gap

wof 1 232.295 194 −0.1649
wof 2 232.295 177 −0.2380
wof 3 231.724 180 −0.2232
wof 4 231.724 210 −0.0937
wof 5 231.724 198 −0.1455
wof 6 227.202 235 0.0343
wof 7 227.202 214 −0.0581
wof 8 225.305 253 0.1229
wof 9 225.305 226 0.0031

woc 10 204.52 203 −0.0074
woc 11 204.52 206 0.0072
woc 12 204.52 207 0.0121
woc 13 199.606 221 0.1072
woc 14 199.606 204 0.0220
woc 15 199.606 218 0.0922
woc 16 225.639 251 0.1124
woc 17 225.639 237 0.0504
woc 18 225.639 235 0.0415
wu 19 138.836 125 −0.0997

wu 20 122.689 95 −0.2257
wu 21 124.373 123 −0.0110
wu 22 191.482 213 0.1124
wu 23 138.836 130 −0.0636

∅ −0.0267
sd 0.1133

Table 10.11: Comparison of sales – predicted by ISPO versus realized.

In Tables 10.10 and 10.11 we show how well ISPO predicted the expected function
values and the expected sales. While the prediction quality of the expected function
values seems unsatisfactory, the prediction of sales is quite good. That sales can be
predicted well is more an indication for the fact that essentially everything is sold any-
way. What matters more is how much money can be earned by these sales. And this
in turn indicates that it is vital to estimate the return when it comes to decide about the
distribution of supply. Although our predictions are presumably biased, the volatility
even in one commodity group is very high (expressed by the standard deviation): a gap
of zero is still inside the interval “average minus standard deviation” through “average
plus standard deviation”.



Chapter 11

Conclusion

Our aim was to develop a decision support system for the optimization of supply at a
fashion retailer.

In this context we deployed the two-stage stochastic program ISPO where the first
stage is the supply in terms of lot-types (size optimization) and mark-downs act as
recourse (price optimization).

To exploit current sales figures, after the by ISPO computed supply is adopted
by the industrial partner, the mark-down strategy is updated every week. Therefore
we use a closed looped policy developed by the former DISPO-team. For practical
purposes we had to develop the faster approach POP-DYN for solving the underlying
Price Optimization Problem. We devised dominance rules for mark-down strategies
and exploited them in a fast dynamic programming approach.

We proposed the Branch&Bound solver ISPO-BAB to compute an exact solution
of ISPO. The principal idea is to enumerate all price-trajectories for each scenario a
priori and then to solve the size optimization stage for the fixed strategies. By map-
ping scenarios to price trajectories ISPO simplifies to an SLDP which can be solved by
state-of-the-art MIP solvers. To prune the Branch&Bound tree we apply dual bounds
based on the wait-and-see solution from stochastic programming. We extended the
wait-and-see solution by considering subsets of scenarios. To accelerate our algorithm
we relaxed the wait-and-see solution, on the one side by permitting independent single
supply for branches and sizes instead of lot-types and on the other side by LP relax-
ations. We compute costlier dual bounds only on demand.

Still, our exact solver only serves us as a benchmarking tool. For practical purposes
we developed the fast heuristic ISPO-PingPong with a small optimality gap. This ap-
proach exploits the fact – we call it reversible recourse – that for every valid price
trajectory there exists a feasible supply policy.

We performed a field study as a statistical experiment where we compared test
against control branches. We were able to evidence averagely higher realized revenues
of DISPO against a manual mark-down policy together with a supply policy – based
on the LDP developed by the former DISPO-team – that does not regard the effect of
mark-downs.

Both, ISPO-PingPong in terms of goodness and efficiency and the fast optimal
dynamic programming solver POP-DYN for the weekly adaption of the mark-down
strategy could be applied by our industrial partner

Until now an MIP solver is used to solve the underlying Stochastic Lot-type Design
Problems in the heuristic ISPO-PingPong. We stated how to reduce an SLDP to κ

147
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LDPs. The particular LDPs could fast be solved by applying the SFA heuristic that
does not use any (commercial) state-of-the-art MIP solver. If our industrial partner
decided to implement ISPO-PingPong our first step would be to adapt it in this way to
economize license fees. We expect that this adaption would only have a small influence
on the optimality gap of the solution.

In terms of the cooperation with our industrial partner our focus was mainly on the
practical side. With the development of DISPO we succeeded. Moreover we could
obtain some theoretical results as the dominance rules for the price optimization prob-
lem or our extended wait-and-see solution. A starting point for future research is the –
theoretical and empirical – comparison of extended wait-and-see solutions with com-
mon dual bounds from stochastic programming like the introduced bounds derived
from group subproblems. We are also interested in finding other two-stage stochastic
problems with a similar structure, i.e. reversible recourse. We hope for the possibility
to apply the ideas of our exact solver to them. It may be that ISPO-BAB could be
generalized for these kind of problems.

We want conclude this thesis by adding the most important practical results that
were obtained during the cooperation with our industrial partner to Figure 1.1 from the
introduction.

In a preliminary study the former DISPO-team could evidence a mean improve-
ment of 0.85 percentage points in terms of the gross yield by replacing former used
standard lot-types with the supply that is proposed by the Lot-type Design Problem
LDP. According to what our industrial partner says the actual improvement is much
higher. In a field study in terms of Price optimization on its own we observed an about
0.76 percentage points higher relative realized revenue for the test branches. By inte-
grating size and price optimization the improvement in terms of the relative realized
revenue amounts to 1.57 percentage points: Supply and mark-down strategies inter-
act substantially. The decision support system DISPO tackles this interaction and is
suitable for practical use.

BuyingBuying
Dep.Dep.

  DISPODISPO

SalesSales
Dep.Dep.

fixing 
overall 
order 

quantity

order & 
distribution
to branches

opt. quantity of
(S,M,L,XL)-
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  different lot types)

review sales success 
and opt. pricing

sales 
start

initial stock

expected revenue

labeling sellout

+1.57pp
+0.85pp

+0.76pp +

Figure 11.1: Integration of DISPO into the business process – results



Appendix A

ISPO-PingPong – further
results

At this point we depict further computational results for ISPO-PingPong, Algorithm 15.
For all test instances from the set Itest

6 , Appendix E, we depict optimality gaps per half
iteration (size or price optimization stage), progress of optimality gaps, number of
iterations and runtime. We consider maximal solving times tb of 20 and 60 seconds for
the SLDPL̂

(
WE

)
with 50 or 100 traversed κ-subsets, nrκ. The results for 20 seconds

and 100 subsets are stated in Chapter 9.
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Figure A.1: 20 seconds solving time and 50 κ-subsets
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Figure A.2: 60 seconds solving time and 50 κ-subsets
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Appendix B

Sales increase by mark-downs –
further results

In Chapter 10, Figure 10.1, we illustrated the sales increase caused by mark-downs for
a subset of articles in the related field study. At this point we present the results for the
rest of the articles.
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Figure B.1: Effect of mark-downs – 7 weeks selling time



APPENDIX B. SALES INCREASE BY MARK-DOWNS – FURTHER RESULTS155

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  2  3  4  5  6  7  8  9  10  11

p
ri
c
e
 l
e
v
e
l

sales week

ratio price/starting price 
 sales start 11 weeks before field study’s end

 1 article

mean
median

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  2  3  4  5  6  7  8  9  10  11

re
l.
 s

a
le

s

sales week

rel. sales 
 sales start 11 weeks before field study’s end

 1 article

mean
median

Figure B.2: Effect of mark-downs – 11 weeks selling time
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Figure B.3: Effect of mark-downs – 13 weeks selling time



APPENDIX B. SALES INCREASE BY MARK-DOWNS – FURTHER RESULTS157

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  2  3  4  5  6  7  8  9  10  11  12  13  14

p
ri
c
e
 l
e
v
e
l

sales week

ratio price/starting price 
 sales start 14 weeks before field study’s end

 153 articles

mean
median

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  2  3  4  5  6  7  8  9  10  11  12  13  14

re
l.
 s

a
le

s

sales week

rel. sales 
 sales start 14 weeks before field study’s end

 153 articles

mean
median

Figure B.4: Effect of mark-downs – 14 weeks selling time
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Figure B.5: Effect of mark-downs – 15 weeks selling time
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Figure B.6: Effect of mark-downs – 16 weeks selling time
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Figure B.7: Effect of mark-downs – 17 weeks selling time
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Figure B.8: Effect of mark-downs – 19 weeks selling time
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Figure B.9: Effect of mark-downs – 20 weeks selling time
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Figure B.10: Effect of mark-downs – 21 weeks selling time



Appendix C

Single supply revenues for the
accompanying example

In the following tables we state the single supply revenues āe→tb,s,n for the accompanying
example, Section 4.7. The indices for the price trajectories t are given in the row and
the number of items in the columns. For demand exceeding supplies, see Observa-
tion 2, of more than n items the additional revenue per item is given at the column with
label “n+”.

low scenario, branch 1, size S
t/n 1 2 3 4 4+

0 10.49 20.84 26.08 26.34 0.26
1 10.49 20.84 26.06 26.22 0.16
2 10.49 20.84 24.41 24.57 0.16
3 10.49 19.59 24.84 25.00 0.16
4 10.49 19.59 22.84 23.20 0.06
5 10.49 18.61 19.96 20.71 0.16

low scenario, branch 1, size L
t/n 1 2 3 4 5 5+

0 10.49 20.93 31.25 34.98 35.24 0.26
1 10.49 20.93 31.25 33.43 33.59 0.16
2 10.49 20.93 31.25 31.94 32.10 0.16
3 10.49 20.93 28.75 33.49 33.65 0.16
4 10.49 20.93 28.75 31.94 32.00 0.06
5 10.49 20.93 26.79 28.14 28.83 0.16

low scenario, branch 2, size S
t/n 1 2 2+

0 10.43 17.66 0.26
1 10.43 16.15 0.16
2 10.43 14.66 0.16
3 10.18 14.41 0.16
4 10.18 12.85 0.06
5 9.98 11.21 0.16

low scenario, branch 2, size L
t/n 1 2 3 3+

0 10.49 20.81 23.05 0.26
1 10.49 20.56 23.00 0.16
2 10.49 20.37 21.29 0.16
3 10.49 18.32 21.51 0.16
4 10.49 18.32 19.72 0.06
5 10.49 16.36 17.63 0.16
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normal scenario, branch 1, size S
t/n 1 2 3 4 5 6 7 8 8+

0 10.49 20.98 31.36 41.69 51.91 52.16 52.42 52.68 0.26
1 10.49 20.98 31.36 41.69 49.43 52.12 52.28 52.44 0.16
2 10.49 20.98 31.36 41.69 47.49 48.82 48.98 49.14 0.16
3 10.49 20.98 31.36 39.19 44.46 49.67 49.83 49.99 0.16
4 10.49 20.98 31.36 39.19 44.46 45.69 46.34 46.40 0.06
5 10.49 20.98 31.36 37.23 38.58 39.92 41.25 41.41 0.16

normal scenario, branch 1, size L
t/n 1 2 3 4 5 6 7 8 9 9+

0 10.49 20.98 31.47 41.85 52.23 62.50 69.70 69.96 70.22 0.26
1 10.49 20.98 31.47 41.85 52.23 62.50 66.71 66.87 67.03 0.16
2 10.49 20.98 31.47 41.85 52.23 62.50 63.72 63.88 64.04 0.16
3 10.49 20.98 31.47 41.85 52.23 57.50 62.77 66.98 67.14 0.16
4 10.49 20.98 31.47 41.85 52.23 57.50 62.77 63.89 63.95 0.06
5 10.49 20.98 31.47 41.85 52.23 53.58 54.93 56.28 57.50 0.16

normal scenario, branch 2, size S
t/n 1 2 3 4 4+

0 10.49 20.86 31.10 35.32 0.26
1 10.49 20.86 29.61 32.30 0.16
2 10.49 20.86 28.45 29.31 0.16
3 10.49 20.36 25.62 28.81 0.16
4 10.49 20.36 24.82 25.70 0.06
5 10.49 19.97 21.32 22.42 0.16

normal scenario, branch 2, size L
t/n 1 2 3 4 5 6 6+

0 10.49 20.98 31.36 41.62 45.84 46.10 0.26
1 10.49 20.98 31.36 41.13 45.83 45.99 0.16
2 10.49 20.98 31.36 40.74 42.07 42.58 0.16
3 10.49 20.98 31.36 36.63 41.86 43.03 0.16
4 10.49 20.98 31.36 36.63 38.67 39.44 0.06
5 10.49 20.98 31.36 32.71 34.05 35.27 0.16

high scenario, branch 1, size S
t/n 1 2 3 4 5 6 7 8 9 10 10+

0 10.49 20.98 31.43 41.81 52.14 62.40 67.61 67.87 68.13 68.39 0.26
1 10.49 20.98 31.43 41.81 52.14 61.65 66.87 67.78 67.94 68.10 0.16
2 10.49 20.98 31.43 41.81 52.14 61.07 62.40 63.50 63.66 63.82 0.16
3 10.49 20.98 31.43 41.81 49.89 55.16 60.40 64.61 64.77 64.93 0.16
4 10.49 20.98 31.43 41.81 49.89 55.16 58.41 59.64 60.23 60.29 0.06
5 10.49 20.98 31.43 41.81 48.12 49.47 50.83 52.16 53.49 53.77 0.16

high scenario, branch 1, size L
t/n 1 2 3 4 5 6 7 8 9 10 11 12 12+

0 10.49 20.98 31.47 41.95 52.33 62.71 73.04 83.29 90.58 90.84 91.10 91.36 0.26
1 10.49 20.98 31.47 41.95 52.33 62.71 73.04 82.30 86.70 86.86 87.02 87.18 0.16
2 10.49 20.98 31.47 41.95 52.33 62.71 73.04 81.52 82.82 82.98 83.14 83.30 0.16
3 10.49 20.98 31.47 41.95 52.33 62.71 70.54 75.81 81.08 86.30 87.17 87.33 0.16
4 10.49 20.98 31.47 41.95 52.33 62.71 70.54 75.81 81.08 82.71 83.09 83.15 0.06
5 10.49 20.98 31.47 41.95 52.33 62.71 68.58 69.93 71.28 72.63 73.97 74.80 0.16

high scenario, branch 2, size S
t/n 1 2 3 4 5 5+

0 10.49 20.90 31.23 41.45 45.87 0.26
1 10.49 20.90 31.23 39.02 41.96 0.16
2 10.49 20.90 31.23 37.12 38.07 0.16
3 10.49 20.90 28.58 33.83 37.42 0.16
4 10.49 20.90 28.58 32.39 33.40 0.06
5 10.49 20.90 26.50 27.84 29.11 0.16
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high scenario, branch 2, size L
t/n 1 2 3 4 5 6 7 8 8+

0 10.49 20.98 31.43 41.80 52.07 59.47 59.73 59.99 0.26
1 10.49 20.98 31.43 41.80 52.07 57.64 59.66 59.82 0.16
2 10.49 20.98 31.43 41.80 52.07 54.03 55.23 55.39 0.16
3 10.49 20.98 31.43 41.30 46.57 51.81 55.81 55.97 0.16
4 10.49 20.98 31.43 41.30 46.57 49.66 50.89 51.28 0.06
5 10.49 20.98 31.43 40.90 42.25 43.60 44.94 45.88 0.16



Appendix D

Demand estimation via logistic
regression

Coef S.E. Wald Z P
y ≥ 1 −2.99121 0.256641 −11.66 0.0000
y ≥ 2 −5.72449 0.262209 −21.83 0.0000
y ≥ 3 −8.23650 0.320577 −25.69 0.0000
y ≥ 4 −9.23334 0.407111 −22.68 0.0000
at 1.26649 0.063337 20.00 0.0000
we −0.05551 0.004702 −11.81 0.0000
st 0.83864 0.016701 50.22 0.0000
sp −0.10739 0.007625 −14.08 0.0000
pr
sp −1.02588 0.092116 −11.14 0.0000

branch=683 0.40555 0.251831 1.61 0.1073
branch=701 0.42276 0.294544 1.44 0.1512
branch=894 -0.06808 0.327038 −0.21 0.8351

branch=1096 0.91454 0.250584 3.65 0.0003
branch=1160 1.14606 0.253172 4.53 0.0000
branch=1224 0.51938 0.297256 1.75 0.0806
branch=1375 0.04119 0.326919 0.13 0.8997
branch=1384 0.62334 0.270225 2.31 0.0211
branch=1395 0.11656 0.331805 0.35 0.7254
branch=1432 0.10299 0.300083 0.34 0.7315
branch=1456 0.42631 0.294990 1.45 0.1484
branch=1484 0.78789 0.251974 3.13 0.0018
branch=1486 0.41850 0.302300 1.38 0.1662
branch=1490 0.40608 0.263508 1.54 0.1233
branch=1527 0.73817 0.260580 2.83 0.0046
branch=1569 0.85198 0.254985 3.34 0.0008
branch=1599 0.55777 0.274892 2.03 0.0425
branch=1687 0.34086 0.295072 1.16 0.2480
branch=1720 0.06354 0.322239 0.20 0.8437
branch=1863 0.68430 0.254801 2.69 0.0072
branch=1882 0.66197 0.265527 2.49 0.0127
branch=1929 0.30273 0.258620 1.17 0.2418
branch=1964 1.00468 0.261322 3.84 0.0001
branch=1991 0.74825 0.256327 2.92 0.0035
branch=2056 0.17367 0.259544 0.67 0.5034
branch=2066 0.65254 0.278156 2.35 0.0190
branch=2093 0.42737 0.267164 1.60 0.1097
branch=2096 0.68954 0.275137 2.51 0.0122
branch=2182 0.24661 0.304765 0.81 0.4184

size=40 0.50225 0.292677 1.72 0.0862
size=44 0.56607 0.277932 2.04 0.0417

branch=683 * size=40 −0.16792 0.332657 −0.50 0.6137
branch=701 * size=40 −0.25824 0.390047 −0.66 0.5079
branch=894 * size=40 −0.42118 0.444107 −0.95 0.3429

branch=1096 * size=40 −0.61760 0.335986 −1.84 0.0660
branch=1160 * size=40 −0.62938 0.338675 −1.86 0.0631
branch=1224 * size=40 −0.80276 0.422501 −1.90 0.0574
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branch=1375 * size=40 −0.69846 0.464456 −1.50 0.1326
branch=1384 * size=40 −0.56853 0.366081 −1.55 0.1204
branch=1395 * size=40 −0.27257 0.441727 −0.62 0.5372
branch=1432 * size=40 −0.14160 0.401816 −0.35 0.7245
branch=1456 * size=40 −0.37085 0.396080 −0.94 0.3491
branch=1484 * size=40 −0.54529 0.335403 −1.63 0.1040
branch=1486 * size=40 −0.89554 0.433163 −2.07 0.0387
branch=1490 * size=40 −0.49841 0.351879 −1.42 0.1567
branch=1527 * size=40 −0.23725 0.343948 −0.69 0.4903
branch=1569 * size=40 −0.63781 0.340548 −1.87 0.0611
branch=1599 * size=40 −0.44313 0.367939 −1.20 0.2285
branch=1687 * size=40 −0.82185 0.415250 −1.98 0.0478
branch=1720 * size=40 −0.65954 0.456013 −1.45 0.1481
branch=1863 * size=40 −0.64082 0.341226 −1.88 0.0604
branch=1882 * size=40 −0.58157 0.362610 −1.60 0.1087
branch=1929 * size=40 −0.38308 0.343194 −1.12 0.2643
branch=1964 * size=40 −0.80925 0.353476 −2.29 0.0221
branch=1991 * size=40 −0.70503 0.346181 −2.04 0.0417
branch=2056 * size=40 −0.20091 0.342676 −0.59 0.5577
branch=2066 * size=40 −0.75010 0.379073 −1.98 0.0478
branch=2093 * size=40 −0.28578 0.354499 −0.81 0.4202
branch=2096 * size=40 −0.48101 0.370227 −1.30 0.1939
branch=2182 * size=40 −0.72650 0.424956 −1.71 0.0873
branch=683 * size=44 −0.35055 0.320565 −1.09 0.2742
branch=701 * size=44 −0.74507 0.404248 −1.84 0.0653
branch=894 * size=44 −0.17317 0.424871 −0.41 0.6836

branch=1096 * size=44 −0.31359 0.322606 −0.97 0.3310
branch=1160 * size=44 −0.75593 0.327884 −2.31 0.0211
branch=1224 * size=44 −0.87093 0.412327 −2.11 0.0347
branch=1375 * size=44 −0.56869 0.441446 −1.29 0.1977
branch=1384 * size=44 −0.38354 0.351260 −1.09 0.2749
branch=1395 * size=44 −0.81523 0.458873 −1.78 0.0756
branch=1432 * size=44 −0.10744 0.388336 −0.28 0.7820
branch=1456 * size=44 −0.16553 0.378482 −0.44 0.6619
branch=1484 * size=44 −0.67481 0.328498 −2.05 0.0400
branch=1486 * size=44 −0.69392 0.409814 −1.69 0.0904
branch=1490 * size=44 −0.24879 0.337260 −0.74 0.4607
branch=1527 * size=44 −0.42538 0.334314 −1.27 0.2032
branch=1569 * size=44 −0.50459 0.327853 −1.54 0.1238
branch=1599 * size=44 −0.19827 0.348966 −0.57 0.5699
branch=1687 * size=44 −0.80178 0.385743 −2.08 0.0377
branch=1720 * size=44 −0.19315 0.417738 −0.46 0.6438
branch=1863 * size=44 −0.74270 0.330676 −2.25 0.0247
branch=1882 * size=44 −0.59922 0.352444 −1.70 0.0891
branch=1929 * size=44 −0.27425 0.332048 −0.83 0.4088
branch=1964 * size=44 −0.66239 0.338624 −1.96 0.0504
branch=1991 * size=44 −0.42093 0.331364 −1.27 0.2040
branch=2056 * size=44 −0.24034 0.331231 −0.73 0.4681
branch=2066 * size=44 −0.62307 0.366819 −1.70 0.0894
branch=2093 * size=44 −0.83065 0.344630 −2.41 0.0159
branch=2096 * size=44 −0.45605 0.356120 −1.28 0.2003
branch=2182 * size=44 −0.74137 0.412177 −1.80 0.0721



Appendix E

Instances

In terms of computational tests we created real instances from several CSV-files we
obtained from our industrial partner. There were different CSV-files containing the re-
lated commodity group, supplied branches and sizes, benchmark data as starting price
and remaining price steps, mark-down costs, overall supply, bounds for the lot-types,
etc.. We used historical transaction data for demand estimation, Chapter 3. We stan-
dardized input by condensing all data concerning an an article/instance in an XML-file.
As well the exact solver ISPO-BAB as our heuristic ISPO-PingPong use the XML-file
as only input. For price optimization on its own, POP-DYN, additionally the supply
per branch and size in the form of an CSV-file has to be provided.

We denote the set of real instances by I. The benchmark data for all of these
instances is outlined in the tables E.1 to E.17. We always consider the three scenarios
“low seller”, “normal seller” and “high seller’. Their probabilities are given in the last
three columns of the tables. The observation time for all these instances amounts to
kobs = 2, the number of sales periods is given by |K| = 14, i.e. kmax = 13 (3 months
or 13 weeks is the regular selling time per product at our industrial partner). The set of
multiplicities is given by M = {1, 2, 3}.

We consider lot-types with one item at minimum vmin = 1 and three items at
maximum per size and per branch, vmax = 3. The minimum of items per lot-type
amounts to vlmin = 6, the maximum vlmax = 18. For example for the instances with
|S| = 6 this yields 729 different lot-types.

From the instances with 6 sizes |S| = 6 for some tests we created smaller test in-
stances by only considering the first 30 branches in the order as they appear in the cor-
responding XML-file. For these smaller instances we consider only 5 periods: |K| = 5
or kmax = 4. The remaining data is as given. We set the bounds for overall supply to
I = 210 and Ī = 240. All lot-types with at least one item per size and at most three
items per size are considered. The number of items in a lot-type lies between 6 and 12.
This yields 435 different lot-types. This set of instances is denoted by I test

6 .
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

1 4 14256 14544 6 1626 0,37 0,28 0,35
2 4 14256 14544 6 1626 0,44 0,28 0,28
3 4 14256 14544 6 1626 0,37 0,28 0,35
4 4 14256 14544 6 1626 0,37 0,28 0,35
5 4 14256 14544 6 1626 0,25 0,36 0,39
6 4 14256 14544 6 1626 0,25 0,36 0,39
7 4 14256 14544 7 1626 0,16 0,38 0,46
8 4 11088 11312 5 1626 0,54 0,22 0,24
9 4 11088 11312 5 1626 0,54 0,22 0,24

10 4 11088 11312 5 1626 0,78 0,22 0
11 4 11088 11312 5 1626 0,54 0,22 0,24
12 4 11088 11312 5 1626 0,54 0,22 0,24
13 4 11088 11312 5 1626 0,54 0,22 0,24
14 4 9405 9595 3 1626 0,07 0,3 0,64
15 4 9405 9595 3 1626 0,16 0,4 0,44
16 4 7524 7676 4 1626 0 0,08 0,92
17 4 7524 7676 4 1626 0 0,08 0,92
18 4 9306 9494 3 1626 0,22 0,43 0,35
19 4 9306 9494 3 1626 0,22 0,43 0,35
20 4 13167 13433 3 1626 0,22 0,43 0,35
21 4 11286 11514 3 1626 0,22 0,43 0,35
22 4 11286 11514 3 1626 0,22 0,43 0,35
23 4 11286 11514 3 1626 0,22 0,43 0,35
24 4 11286 11514 3 1626 0,22 0,43 0,35
25 4 11088 11312 3 1626 0,22 0,43 0,35
26 4 11088 11312 3 1626 0,22 0,43 0,35
27 4 9504 9696 3 1626 0,22 0,43 0,35
28 2 6336 6464 3 1626 0,32 0,38 0,3
29 2 6336 6464 3 1626 0,32 0,38 0,3
30 4 7920 8080 3 1626 0,33 0,3 0,37
31 4 9356 9544 4 1370 0,33 0,3 0,37
32 4 12474 12726 4 1626 0,33 0,3 0,37
33 4 11088 11312 5 1626 0,33 0,3 0,37
34 4 11088 11312 5 1626 0,33 0,3 0,37
35 4 9504 9696 4 1626 0,21 0,37 0,42
36 4 9504 9696 4 1626 0,21 0,37 0,42
37 4 9504 9696 4 1626 0,34 0,38 0,29
38 4 9504 9696 4 1626 0,34 0,38 0,29
39 2 7920 8080 4 1626 0,34 0,38 0,29
40 2 7920 8080 4 1626 0,34 0,38 0,29
41 2 7920 8080 4 1626 0,34 0,38 0,29
42 3 9504 9696 4 1626 0,32 0,29 0,38
43 3 9504 9696 4 1626 0,32 0,29 0,38
44 4 14256 14544 6 1626 0,37 0,28 0,35
45 4 16929 17271 6 1626 0,18 0,31 0,51
46 4 16929 17271 6 1626 0,18 0,31 0,51
47 4 16929 17271 6 1626 0,18 0,31 0,51
48 4 16929 17271 6 1626 0,16 0,38 0,46
49 4 16929 17271 6 1626 0,34 0,24 0,42
50 4 16929 17271 6 1626 0,16 0,38 0,46

Table E.1: Real instances – part 1
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

51 4 16929 17271 6 1626 0,16 0,38 0,46
52 4 16929 17271 6 1626 0,16 0,38 0,46
53 4 16929 17271 6 1626 0,25 0,36 0,39
54 4 15840 16160 7 1626 0,38 0,34 0,28
55 3 15840 16160 7 1626 0,34 0,32 0,34
56 3 15840 16160 7 1626 0,38 0,34 0,28
57 4 15840 16160 7 1626 0,49 0,32 0,19
58 3 15840 16160 7 1626 0,34 0,32 0,34
59 4 11286 11514 4 1626 0,37 0,2 0,43
60 4 11286 11514 4 1626 0,42 0,3 0,28
61 4 16929 17271 6 1626 0,34 0,33 0,34
62 4 16929 17271 6 1626 0,25 0,26 0,5
63 4 16929 17271 6 1626 0,37 0,28 0,35
64 4 16929 17271 6 1626 0,37 0,28 0,35
65 4 16929 17271 6 1626 0,37 0,28 0,35
66 4 16929 17271 6 1626 0,37 0,28 0,35
67 4 16929 17271 6 1626 0,25 0,26 0,5
68 4 13167 13433 5 1626 0,33 0,33 0,34
69 4 13167 13433 5 1626 0,33 0,33 0,34
70 4 13167 13433 5 1626 0,33 0,33 0,34
71 4 13167 13433 5 1626 0,33 0,33 0,34
72 4 13167 13433 5 1626 0,33 0,33 0,34
73 4 13167 13433 5 1626 0,33 0,33 0,34
74 2 11088 11312 5 1626 0,33 0,33 0,34
75 2 11088 11312 5 1626 0,33 0,33 0,34
76 2 11088 11312 5 1626 0,45 0,29 0,26
77 2 11088 11312 5 1626 0,45 0,29 0,26
78 2 11088 11312 5 1626 0,45 0,29 0,26
79 2 11088 11312 5 1626 0,45 0,29 0,26
80 4 13167 13433 5 1626 0,54 0,22 0,24
81 4 13167 13433 5 1626 0,54 0,22 0,24
82 4 13167 13433 5 1626 0,54 0,22 0,24
83 4 15840 16160 7 1626 0,49 0,32 0,19
84 4 19305 19695 7 1626 0,38 0,34 0,28
85 4 19305 19695 7 1626 0,38 0,34 0,28
86 4 19305 19695 7 1626 0,38 0,34 0,28
87 4 19305 19695 7 1626 0,38 0,34 0,28
88 4 19305 19695 7 1626 0,38 0,34 0,28
89 4 19305 19695 7 1626 0,38 0,34 0,28
90 4 18810 19190 7 1626 0,38 0,34 0,28
91 4 19305 19695 7 1626 0,38 0,34 0,28
92 4 9306 9494 3 1626 0,22 0,43 0,35
93 4 11286 11514 3 1626 0,22 0,43 0,35
94 4 9504 9696 3 1626 0,22 0,43 0,35
95 4 9306 9494 3 1626 0,22 0,43 0,35
96 3 7920 8080 2 1626 0,22 0,43 0,35
97 4 9306 9494 3 1626 0,32 0,38 0,3
98 4 16929 17271 6 1626 0,32 0,38 0,3
99 2 6336 6464 3 1626 0,32 0,38 0,3

100 2 6336 6464 3 1626 0,32 0,38 0,3

Table E.2: Real instances – part 2
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

101 4 10395 10605 3 1626 0,21 0,5 0,29
102 4 10395 10605 3 1626 0,21 0,5 0,29
103 4 10395 10605 3 1626 0,21 0,5 0,29
104 4 10395 10605 4 1626 0,21 0,5 0,29
105 3 6336 6464 4 1636 0,21 0,5 0,29
106 4 12474 12726 4 1626 0,33 0,3 0,37
107 4 12474 12726 4 1626 0,33 0,3 0,37
108 4 10395 10605 3 1626 0,33 0,3 0,37
109 4 10395 10605 3 1626 0,33 0,3 0,37
110 4 10395 10605 3 1626 0,5 0,31 0,2
111 4 10395 10605 3 1626 0,5 0,31 0,2
112 4 9504 9696 4 1626 0,34 0,38 0,29
113 4 9504 9696 4 1626 0,34 0,38 0,29
114 4 9504 9696 4 1626 0,34 0,38 0,29
115 4 9504 9696 4 1626 0,34 0,38 0,29
116 4 12474 12726 4 1626 0,21 0,37 0,42
117 4 12474 12726 4 1626 0,21 0,37 0,42
118 4 12474 12726 4 1626 0,32 0,29 0,38
119 4 11286 11514 4 1626 0,32 0,5 0,18
120 4 11286 11514 4 1626 0,33 0,25 0,42
121 4 11286 11514 4 1626 0,38 0,33 0,29
122 4 11286 11514 4 1626 0,26 0,26 0,48
123 4 9504 9696 4 1626 0,33 0,34 0,33
124 4 14256 14544 6 1626 0,37 0,28 0,35
125 4 16929 17271 6 1626 0,25 0,36 0,39
126 4 16929 17271 6 1626 0,16 0,38 0,46
127 4 16929 17271 6 1626 0,16 0,38 0,46
128 4 16929 17271 6 1626 0,25 0,36 0,39
129 4 16929 17271 6 1626 0,16 0,38 0,46
130 4 16929 17271 6 1626 0,18 0,31 0,51
131 4 16929 17271 6 1626 0,18 0,31 0,51
132 4 11088 11312 5 1626 0,6 0,08 0,32
133 4 15840 16160 7 1626 0,39 0,3 0,31
134 4 11286 11514 3 1626 0 0,3 0,7
135 4 9504 9696 3 1626 0,22 0,43 0,35
136 4 11088 11312 3 1626 0,22 0,43 0,35
137 4 14256 14544 6 1626 0,32 0,38 0,3
138 4 10395 10605 4 1626 0 0 1
139 4 13167 13433 5 1636 0,44 0,28 0,28
140 4 16929 17271 6 1636 0,44 0,28 0,28
141 4 16929 17271 6 1636 0,34 0,33 0,34
142 4 16929 17271 6 1636 0,37 0,28 0,35
143 4 16929 17271 6 1636 0,2 0,48 0,32
144 4 16929 17271 6 1636 0,25 0,26 0,5
145 4 16929 17271 6 1636 0,25 0,26 0,5
146 4 13167 13433 5 1636 0,33 0,33 0,34
147 4 13167 13433 5 1636 0,33 0,33 0,34
148 2 13167 13433 5 1636 0,45 0,29 0,26
149 4 13167 13433 5 1636 0,36 0,33 0,31
150 4 13167 13433 5 1636 0,54 0,22 0,24

Table E.3: Real instances – part 3
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

151 4 13167 13433 5 1636 0,78 0,22 0
152 4 13167 13433 5 1636 0,47 0,26 0,27
153 4 13167 13433 5 1636 0,54 0,22 0,24
154 4 13167 13433 5 1636 0,56 0,18 0,26
155 4 13167 13433 5 1636 0,49 0,32 0,19
156 4 15840 16160 7 1636 0,34 0,32 0,34
157 4 13167 13433 5 1636 0,56 0,18 0,26
158 4 15840 16160 7 1636 0,38 0,34 0,28
159 4 13167 13433 5 1636 0,38 0,34 0,28
160 4 13167 13433 5 1636 0,34 0,32 0,34
161 4 9405 9595 3 1636 0,07 0,3 0,64
162 4 9405 9595 3 1636 0,16 0,4 0,44
163 4 7524 7676 4 1636 0 0,08 0,92
164 4 7524 7676 4 1636 0 0,08 0,92
165 4 9405 9595 3 1636 0,22 0,43 0,35
166 4 9405 9595 3 1636 0,22 0,43 0,35
167 4 11088 11312 3 1636 0,22 0,43 0,35
168 4 11088 11312 3 1636 0,22 0,43 0,35
169 2 6336 6464 3 1636 0,22 0,43 0,35
170 4 5643 5757 3 1636 0,32 0,38 0,3
171 4 12474 12726 4 1636 0,33 0,3 0,37
172 4 12474 12726 4 1636 0,33 0,3 0,37
173 4 12474 12726 4 1636 0,33 0,3 0,37
174 4 9504 9696 4 1636 0,33 0,3 0,37
175 4 9504 9696 4 1636 0,33 0,3 0,37
176 4 9504 9696 4 1636 0,33 0,3 0,37
177 4 9504 9696 4 1636 0,33 0,3 0,37
178 4 9504 9696 4 1636 0,21 0,37 0,42
179 4 9504 9696 4 1636 0,21 0,37 0,42
180 4 9504 9696 4 1636 0,21 0,37 0,42
181 4 9504 9696 4 1636 0,21 0,37 0,42
182 4 13167 13433 5 1636 0,34 0,38 0,29
183 4 13167 13433 5 1636 0,34 0,38 0,29
184 4 10395 10605 5 1636 0,32 0,29 0,38
185 4 10395 10605 5 1636 0,32 0,29 0,38
186 4 11286 11514 4 1636 0,38 0,33 0,29
187 4 11286 11514 4 1636 0,33 0,25 0,42
188 4 11286 11514 4 1636 0,33 0,25 0,42
189 4 11286 11514 4 1636 0,38 0,33 0,29
190 4 11286 11514 4 1636 0,32 0,5 0,18
191 4 9504 9696 4 1636 0,38 0,33 0,29
192 4 16929 17271 6 1636 0,34 0,24 0,42
193 4 13167 13433 6 1636 0,47 0,29 0,24
194 4 16929 17271 6 1636 0,18 0,31 0,51
195 4 16929 17271 6 1636 0,18 0,31 0,51
196 4 16929 17271 6 1636 0,16 0,38 0,46
197 4 16929 17271 6 1636 0,16 0,38 0,46
198 4 16929 17271 6 1636 0,16 0,38 0,46
199 4 16929 17271 6 1636 0,16 0,38 0,46
200 4 16929 17271 6 1636 0,25 0,36 0,39

Table E.4: Real instances – part 4
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

201 4 13167 13433 5 1636 0,33 0,33 0,34
202 4 13167 13433 5 1636 0,33 0,33 0,34
203 4 13167 13433 5 1636 0,22 0,36 0,41
204 4 13167 13433 5 1636 0,22 0,36 0,41
205 4 13167 13433 5 1636 0,33 0,33 0,34
206 4 13167 13433 5 1636 0,33 0,33 0,34
207 4 13167 13433 5 1636 0,47 0,26 0,27
208 4 13167 13433 5 1636 0,54 0,22 0,24
209 4 9504 9696 3 1636 0,22 0,43 0,35
210 4 11088 11312 3 1636 0,22 0,43 0,35
211 4 11088 11312 3 1636 0,22 0,43 0,35
212 4 11088 11312 3 1636 0,22 0,43 0,35
213 3 9504 9696 4 1636 0,21 0,5 0,29
214 3 7920 8080 4 1636 0,21 0,5 0,29
215 3 7920 8080 4 1636 0,21 0,5 0,29
216 4 9504 9696 4 1636 0,33 0,3 0,37
217 4 12672 12928 4 1636 0,33 0,3 0,37
218 4 6336 6464 3 1636 0,5 0,31 0,2
219 4 6336 6464 3 1636 0,5 0,31 0,2
220 4 6336 6464 3 1636 0,5 0,31 0,2
221 4 6336 6464 3 1636 0,5 0,31 0,2
222 4 11286 11514 4 1636 0,21 0,37 0,42
223 4 11286 11514 4 1636 0,21 0,37 0,42
224 4 11286 11514 4 1636 0,21 0,37 0,42
225 4 11286 11514 4 1636 0,21 0,37 0,42
226 4 11286 11514 4 1636 0,34 0,38 0,29
227 4 11286 11514 4 1636 0,34 0,38 0,29
228 4 11286 11514 4 1636 0,34 0,38 0,29
229 4 10395 10605 4 1636 0,32 0,29 0,38
230 4 10395 10605 4 1636 0,32 0,29 0,38
231 4 13167 13433 5 1636 0,35 0,39 0,26
232 4 13167 13433 5 1636 0,33 0,34 0,33
233 4 13167 13433 5 1636 0,33 0,34 0,33
234 4 13167 13433 5 1636 0,33 0,34 0,33
235 4 13167 13433 5 1636 0,42 0,3 0,28
236 4 14256 14544 6 1636 0,37 0,28 0,35
237 4 14256 14544 6 1636 0,47 0,29 0,24
238 4 19305 19695 7 1636 0,38 0,34 0,28
239 4 19305 19695 7 1636 0,49 0,32 0,19
240 4 19305 19695 7 1636 0,38 0,34 0,28
241 4 18810 19190 7 1636 0,49 0,32 0,19
242 4 19305 19695 7 1636 0,38 0,34 0,28
243 4 15840 16160 7 1636 0,39 0,3 0,31
244 4 19305 19695 7 1636 0,38 0,34 0,28
245 4 19305 19695 7 1636 0,38 0,34 0,28
246 4 18810 19190 7 1636 0,49 0,32 0,19
247 4 9405 9595 3 1636 0,07 0,3 0,64
248 4 9405 9595 3 1636 0,07 0,3 0,64
249 4 9405 9595 3 1636 0,07 0,3 0,64
250 4 9405 9595 3 1636 0,07 0,3 0,64

Table E.5: Real instances – part 5
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

251 4 9405 9595 3 1636 0,07 0,3 0,64
252 4 9405 9595 3 1636 0,07 0,3 0,64
253 4 9405 9595 3 1636 0,07 0,3 0,64
254 4 9405 9595 3 1636 0,16 0,4 0,44
255 4 9405 9595 3 1636 0,22 0,43 0,35
256 4 9405 9595 3 1636 0,22 0,43 0,35
257 4 11088 11312 3 1636 0,22 0,43 0,35
258 4 11088 11312 3 1636 0,22 0,43 0,35
259 2 6336 6464 3 1636 0,22 0,43 0,35
260 4 9405 9595 3 1636 0,32 0,38 0,3
261 4 12474 12726 3 1636 0,33 0,3 0,37
262 4 14553 14847 3 1636 0,33 0,3 0,37
263 4 12474 12726 3 1636 0,33 0,3 0,37
264 4 14553 14847 3 1636 0,33 0,3 0,37
265 4 14256 14544 6 1636 0,37 0,28 0,35
266 4 15840 16160 7 1636 0,25 0,36 0,39
267 4 15840 16160 7 1636 0,16 0,38 0,46
268 3 15840 16160 7 1636 0,38 0,34 0,28
269 4 12672 12928 4 1636 0,22 0,43 0,35
270 4 11088 11312 5 1636 0,42 0,3 0,28
271 4 16929 17271 6 1646 0,34 0,33 0,34
272 4 13167 13433 5 1646 0,44 0,28 0,28
273 4 16929 17271 6 1646 0,25 0,26 0,5
274 4 16929 17271 6 1646 0,37 0,28 0,35
275 4 16929 17271 6 1646 0,2 0,48 0,32
276 4 16929 17271 6 1646 0,37 0,28 0,35
277 4 16929 17271 6 1646 0,2 0,44 0,36
278 4 16929 17271 6 1646 0,1 0,43 0,48
279 4 16929 17271 6 1646 0,37 0,28 0,35
280 4 16929 17271 6 1646 0,34 0,24 0,42
281 4 16929 17271 6 1646 0,18 0,31 0,51
282 4 16929 17271 6 1646 0,34 0,24 0,42
283 4 16929 17271 6 1646 0,16 0,38 0,46
284 4 16929 17271 6 1646 0,16 0,38 0,46
285 4 16929 17271 6 1646 0,25 0,36 0,39
286 4 16929 17271 6 1646 0,16 0,38 0,46
287 4 16929 17271 6 1646 0,16 0,38 0,46
288 4 16929 17271 6 1646 0,16 0,38 0,46
289 4 13167 13433 5 1646 0,47 0,29 0,24
290 4 16929 17271 6 1646 0,25 0,36 0,39
291 4 16929 17271 6 1646 0,16 0,38 0,46
292 4 13167 13433 5 1646 0 0,13 0,87
293 4 16929 17271 6 1646 0,18 0,31 0,51
294 2 11088 11312 5 1646 0,33 0,33 0,34
295 4 11088 11312 5 1646 0,54 0,22 0,24
296 4 10395 10605 7 1646 0,49 0,32 0,19
297 3 15840 16160 7 1646 0,38 0,34 0,28
298 4 11286 11514 3 1646 0,22 0,43 0,35
299 4 16929 17271 6 1646 0,32 0,38 0,3
300 4 7524 7676 3 1646 0,32 0,38 0,3

Table E.6: Real instances – part 6
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

301 3 9405 9595 3 1646 0,32 0,38 0,3
302 4 12474 12726 4 1646 0,21 0,5 0,29
303 4 12474 12726 4 1646 0,21 0,5 0,29
304 4 10395 10605 3 1646 0,21 0,5 0,29
305 4 10395 10605 3 1646 0,21 0,5 0,29
306 4 14553 14847 5 1646 0,33 0,3 0,37
307 4 10395 10605 5 1646 0,33 0,3 0,37
308 4 14553 14847 5 1646 0,33 0,3 0,37
309 4 10395 10605 5 1646 0,33 0,3 0,37
310 4 9504 9696 4 1646 0,33 0,3 0,37
311 4 11088 11312 4 1646 0,33 0,3 0,37
312 4 12474 12726 3 1646 0,5 0,31 0,2
313 4 12474 12726 3 1646 0,5 0,31 0,2
314 4 9504 9696 4 1646 0,21 0,37 0,42
315 4 9504 9696 4 1646 0,21 0,37 0,42
316 4 9504 9696 4 1646 0,34 0,38 0,29
317 4 9504 9696 4 1646 0,34 0,38 0,29
318 4 13167 13433 5 1646 0,35 0,39 0,26
319 4 13167 13433 5 1646 0,33 0,34 0,33
320 4 11286 11514 4 1646 0,33 0,34 0,33
321 4 11286 11514 4 1646 0,33 0,34 0,33
322 4 13167 13433 5 1646 0,42 0,3 0,28
323 4 14256 14544 6 1646 0,37 0,28 0,35
324 4 13514 13786 5 1646 0,39 0,3 0,31
325 4 13514 13786 5 1646 0,39 0,3 0,31
326 4 13167 13433 5 1646 0,49 0,32 0,19
327 4 13514 13786 5 1646 0,38 0,34 0,28
328 4 13167 13433 5 1646 0,38 0,34 0,28
329 4 11286 11514 3 1646 0,22 0,43 0,35
330 4 11633 11867 3 1646 0,22 0,43 0,35
331 4 9306 9494 3 1646 0 0,3 0,7
332 4 7920 8080 2 1646 0,22 0,43 0,35
333 4 11088 11312 3 1646 0,22 0,43 0,35
334 4 11088 11312 3 1646 0,22 0,43 0,35
335 3 7524 7676 3 1646 0,32 0,38 0,3
336 3 7524 7676 3 1646 0,32 0,38 0,3
337 4 9405 9595 3 1646 0,32 0,38 0,3
338 2 7920 8080 4 1646 0,21 0,37 0,42
339 2 7920 8080 4 1646 0,21 0,37 0,42
340 2 11088 11312 6 1646 0,34 0,38 0,29
341 2 11088 11312 6 1646 0,34 0,38 0,29
342 4 16929 17271 6 1646 0,25 0,26 0,5
343 4 16929 17271 6 1646 0,2 0,48 0,32
344 4 16929 17271 6 1646 0,34 0,33 0,34
345 4 16929 17271 6 1646 0,2 0,48 0,32
346 4 16929 17271 6 1646 0,25 0,26 0,5
347 4 16929 17271 6 1646 0,37 0,28 0,35
348 4 16929 17271 6 1646 0,37 0,28 0,35
349 4 16929 17271 6 1646 0,37 0,28 0,35
350 4 13167 13433 5 1646 0,47 0,29 0,24

Table E.7: Real instances – part 7
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

351 4 16929 17271 6 1646 0,34 0,24 0,42
352 4 16929 17271 6 1646 0,16 0,38 0,46
353 4 16929 17271 6 1646 0,16 0,38 0,46
354 4 16929 17271 6 1646 0,34 0,24 0,42
355 4 13167 13433 5 1646 0,18 0,31 0,51
356 4 13167 13433 5 1646 0,25 0,36 0,39
357 4 13167 13433 5 1646 0,18 0,31 0,51
358 4 13167 13433 5 1646 0,25 0,36 0,39
359 4 16929 17271 6 1646 0,16 0,38 0,46
360 4 13167 13433 5 1646 0,25 0,36 0,39
361 4 13167 13433 5 1646 0,18 0,31 0,51
362 4 16929 17271 6 1646 0,25 0,36 0,39
363 4 19305 19695 7 1646 0,38 0,34 0,28
364 4 19305 19695 7 1646 0,49 0,32 0,19
365 4 19305 19695 7 1646 0,38 0,34 0,28
366 4 19305 19695 7 1646 0,39 0,3 0,31
367 4 19305 19695 7 1646 0,34 0,32 0,34
368 4 19305 19695 7 1646 0,38 0,34 0,28
369 4 19305 19695 7 1646 0,49 0,32 0,19
370 4 9405 9595 3 1646 0,07 0,3 0,64
371 4 9405 9595 3 1646 0,07 0,3 0,64
372 4 9405 9595 3 1646 0,07 0,3 0,64
373 4 9405 9595 3 1646 0,16 0,4 0,44
374 4 9405 9595 3 1646 0,16 0,4 0,44
375 4 9405 9595 3 1646 0,16 0,4 0,44
376 4 7524 7676 0 1646 0 0,08 0,92
377 4 7524 7676 0 1646 0 0,08 0,92
378 4 7524 7676 0 1646 0 0,08 0,92
379 4 7524 7676 0 1646 0 0,08 0,92
380 3 9504 9696 3 1646 0,22 0,43 0,35
381 3 9504 9696 3 1646 0,22 0,43 0,35
382 3 9504 9696 3 1646 0,22 0,43 0,35
383 4 11088 11312 3 1646 0,22 0,43 0,35
384 2 6336 6464 3 1646 0,32 0,38 0,3
385 4 5940 6060 4 1646 0,33 0,3 0,37
386 4 12672 12928 4 1646 0,33 0,3 0,37
387 4 9504 9696 4 1646 0,33 0,3 0,37
388 4 9504 9696 4 1646 0,33 0,25 0,42
389 4 13167 13433 5 1646 0,42 0,3 0,28
390 4 13167 13433 5 1646 0,2 0,48 0,32
391 4 16929 17271 6 1646 0,2 0,48 0,32
392 4 16929 17271 6 1646 0,2 0,48 0,32
393 4 13167 13433 5 1646 0,44 0,28 0,28
394 4 14256 14544 6 1646 0,16 0,38 0,46
395 2 13167 13433 5 1646 0,45 0,29 0,26
396 2 13167 13433 5 1646 0,45 0,29 0,26
397 4 13167 13433 5 1646 0,33 0,33 0,34
398 4 13167 13433 5 1646 0,33 0,33 0,34
399 4 13167 13433 5 1646 0,33 0,33 0,34
400 4 13167 13433 5 1646 0,33 0,33 0,34

Table E.8: Real instances – part 8
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

401 4 13167 13433 5 1646 0,54 0,22 0,24
402 4 13167 13433 5 1646 0,54 0,22 0,24
403 4 13167 13433 5 1646 0,54 0,22 0,24
404 4 13167 13433 5 1646 0,47 0,26 0,27
405 4 13167 13433 5 1646 0,47 0,26 0,27
406 4 11286 11514 3 1646 0,22 0,43 0,35
407 4 9405 9595 3 1646 0,22 0,43 0,35
408 4 13167 13433 3 1646 0,22 0,43 0,35
409 4 13167 13433 3 1646 0,22 0,43 0,35
410 4 7524 7676 3 1646 0,22 0,43 0,35
411 4 8316 8484 3 1646 0,32 0,38 0,3
412 4 8316 8484 3 1646 0,32 0,38 0,3
413 4 12474 12726 3 1646 0,21 0,5 0,29
414 4 12474 12726 3 1646 0,21 0,5 0,29
415 4 12474 12726 4 1646 0,33 0,3 0,37
416 4 12474 12726 4 1646 0,33 0,3 0,37
417 4 12672 12928 4 1646 0,33 0,3 0,37
418 4 9504 9696 4 1646 0,33 0,3 0,37
419 4 10395 10605 3 1646 0,5 0,31 0,2
420 4 10395 10605 3 1646 0,5 0,31 0,2
421 4 9504 9696 4 1646 0,21 0,37 0,42
422 4 9504 9696 4 1646 0,21 0,37 0,42
423 4 9504 9696 4 1646 0,21 0,37 0,42
424 4 9504 9696 4 1646 0,21 0,37 0,42
425 4 11286 11514 4 1646 0,36 0,33 0,31
426 4 11286 11514 4 1646 0,33 0,25 0,42
427 4 11088 11312 5 1646 0,42 0,3 0,28
428 4 11088 11312 5 1646 0,42 0,3 0,28
429 3 11088 11312 5 1646 0,42 0,3 0,28
430 3 11088 11312 5 1646 0,42 0,3 0,28
431 3 11088 11312 5 1646 0,42 0,3 0,28
432 4 14256 14544 6 1646 0,47 0,29 0,24
433 4 14256 14544 6 1646 0,16 0,38 0,46
434 2 7920 8080 2 1646 0,22 0,43 0,35
435 4 11088 11312 3 1646 0,22 0,43 0,35
436 4 9504 9696 4 1646 0,21 0,37 0,42
437 4 9504 9696 4 1646 0,21 0,37 0,42
438 4 9504 9696 4 1646 0,34 0,38 0,29
439 4 9504 9696 4 1646 0,34 0,38 0,29
440 2 11088 11312 6 1646 0,34 0,38 0,29
441 3 9504 9696 4 1646 0,32 0,29 0,38
442 3 9504 9696 4 1646 0,32 0,29 0,38
443 4 14256 14544 6 1656 0,37 0,28 0,35
444 13 16929 17271 7 1646 0,16 0,38 0,46
445 4 16929 17271 6 1656 0,18 0,31 0,51
446 4 16929 17271 6 1656 0,16 0,38 0,46
447 4 16929 17271 6 1656 0,25 0,36 0,39
448 4 16929 17271 6 1656 0,16 0,38 0,46
449 4 16929 17271 6 1656 0,34 0,24 0,42
450 4 13167 13433 5 1656 0,47 0,29 0,24

Table E.9: Real instances – part 9
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

451 4 16929 17271 6 1656 0,16 0,38 0,46
452 4 16929 17271 7 1656 0,16 0,38 0,46
453 4 16929 17271 6 1656 0,16 0,38 0,46
454 4 13167 13433 5 1656 0,33 0,33 0,34
455 4 13167 13433 5 1656 0,33 0,33 0,34
456 4 13167 13433 5 1656 0,33 0,33 0,34
457 4 13167 13433 5 1656 0,33 0,33 0,34
458 2 13167 13433 5 1656 0,45 0,29 0,26
459 2 13167 13433 5 1656 0,45 0,29 0,26
460 4 13167 13433 5 1656 0,78 0,22 0
461 4 13167 13433 5 1656 0,54 0,22 0,24
462 4 13167 13433 5 1656 0,54 0,22 0,24
463 4 13167 13433 5 1656 0,54 0,22 0,24
464 4 13167 13433 5 1656 0,47 0,26 0,27
465 4 13167 13433 5 1656 0,47 0,26 0,27
466 4 13167 13433 5 1656 0,47 0,26 0,27
467 4 13167 13433 5 1656 0,47 0,26 0,27
468 4 11088 11312 5 1656 0,54 0,22 0,24
469 4 15840 16160 7 1656 0,49 0,32 0,19
470 4 15840 16160 7 1656 0,38 0,34 0,28
471 4 15840 16160 7 1656 0,38 0,34 0,28
472 4 15840 16160 7 1656 0,39 0,3 0,31
473 3 9504 9696 3 1656 0,22 0,43 0,35
474 4 11088 11312 3 1656 0,22 0,43 0,35
475 4 11088 11312 3 1656 0,22 0,43 0,35
476 4 11088 11312 3 1656 0,22 0,43 0,35
477 4 14256 14544 4 1656 0,33 0,3 0,37
478 4 9504 9696 4 1656 0,33 0,3 0,37
479 4 9504 9696 4 1656 0,33 0,3 0,37
480 4 9504 9696 4 1656 0,33 0,3 0,37
481 4 9504 9696 4 1656 0,33 0,3 0,37
482 4 9504 9696 4 1656 0,33 0,3 0,37
483 4 7920 8080 3 1656 0,5 0,31 0,2
484 4 11286 11514 4 1656 0,21 0,37 0,42
485 4 11286 11514 4 1656 0,21 0,37 0,42
486 4 11286 11514 4 1656 0,21 0,37 0,42
487 4 11286 11514 4 1656 0,21 0,37 0,42
488 4 10395 10605 4 1656 0,32 0,29 0,38
489 4 10395 10605 4 1656 0,32 0,29 0,38
490 4 10395 10605 4 1656 0,32 0,29 0,38
491 4 10395 10605 4 1656 0,32 0,29 0,38
492 4 9504 9696 4 1656 0,38 0,33 0,29
493 4 13167 13433 5 1656 0,33 0,34 0,33
494 4 13167 13433 5 1656 0,33 0,34 0,33
495 4 13167 13433 5 1656 0,42 0,3 0,28
496 4 13167 13433 5 1656 0,33 0,34 0,33
497 4 13167 13433 5 1656 0,33 0,34 0,33
498 4 16929 17271 6 1656 0,34 0,33 0,34
499 4 16929 17271 6 1656 0,34 0,33 0,34
500 4 16929 17271 6 1656 0,37 0,28 0,35

Table E.10: Real instances – part 10
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

501 4 16929 17271 6 1656 0,2 0,48 0,32
502 4 16929 17271 6 1656 0,34 0,33 0,34
503 4 16929 17271 6 1656 0,37 0,28 0,35
504 4 19305 19695 7 1656 0,39 0,3 0,31
505 4 19305 19695 7 1656 0,38 0,34 0,28
506 4 19305 19695 7 1656 0,49 0,32 0,19
507 4 19305 19695 7 1656 0,38 0,34 0,28
508 4 9504 9696 3 1656 0,22 0,43 0,35
509 4 9504 9696 3 1656 0,22 0,43 0,35
510 3 9504 9696 3 1656 0,22 0,43 0,35
511 4 12672 12928 4 1656 0,22 0,43 0,35
512 4 11088 11312 3 1656 0,22 0,43 0,35
513 3 6336 6464 3 1656 0,21 0,5 0,29
514 4 9504 9696 4 1656 0,42 0,3 0,28
515 4 9504 9696 4 1656 0,42 0,3 0,28
516 4 9504 9696 4 1656 0,42 0,3 0,28
517 4 13167 13433 5 1656 0,42 0,3 0,28
518 4 9504 9696 4 1656 0,33 0,34 0,33
519 4 13167 13433 5 1656 0,33 0,34 0,33
520 4 11088 11312 5 1656 0,33 0,34 0,33
521 4 16929 17271 6 1656 0,16 0,38 0,46
522 4 16929 17271 6 1656 0,16 0,38 0,46
523 4 16929 17271 6 1656 0,16 0,38 0,46
524 4 13167 13433 5 1656 0,47 0,29 0,24
525 4 16929 17271 6 1656 0,16 0,38 0,46
526 4 16929 17271 6 1656 0,16 0,38 0,46
527 4 16929 17271 6 1656 0,25 0,36 0,39
528 4 13167 13433 5 1656 0,33 0,33 0,34
529 4 13167 13433 5 1656 0,33 0,33 0,34
530 4 13167 13433 5 1656 0,33 0,33 0,34
531 4 13167 13433 5 1656 0,33 0,33 0,34
532 4 13167 13433 5 1656 0,33 0,33 0,34
533 4 13167 13433 5 1656 0,33 0,33 0,34
534 4 13167 13433 5 1656 0,33 0,33 0,34
535 4 13167 13433 5 1656 0,33 0,33 0,34
536 4 13167 13433 5 1656 0,33 0,33 0,34
537 2 13167 13433 5 1656 0,45 0,29 0,26
538 2 13167 13433 5 1656 0,45 0,29 0,26
539 2 13167 13433 5 1656 0,45 0,29 0,26
540 4 13167 13433 5 1656 0,54 0,22 0,24
541 4 13167 13433 5 1656 0,54 0,22 0,24
542 4 13167 13433 5 1656 0,54 0,22 0,24
543 4 13167 13433 5 1656 0,47 0,26 0,27
544 4 13167 13433 5 1656 0,47 0,26 0,27
545 4 9405 9595 3 1656 0,07 0,3 0,64
546 4 9405 9595 3 1656 0,16 0,4 0,44
547 4 9405 9595 4 1656 0,07 0,3 0,64
548 4 9405 9595 3 1656 0,07 0,3 0,64
549 4 9405 9595 3 1656 0,07 0,3 0,64
550 4 9405 9595 3 1656 0,07 0,3 0,64

Table E.11: Real instances – part 11
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

551 4 7920 8080 3 1656 0,22 0,43 0,35
552 4 9504 9696 3 1656 0,22 0,43 0,35
553 4 9504 9696 3 1656 0,22 0,43 0,35
554 4 9504 9696 3 1656 0,22 0,43 0,35
555 4 11088 11312 3 1656 0,22 0,43 0,35
556 4 11088 11312 3 1656 0,22 0,43 0,35
557 4 9504 9696 4 1656 0,33 0,3 0,37
558 4 12672 12928 4 1656 0,33 0,3 0,37
559 4 9504 9696 4 1656 0,33 0,3 0,37
560 4 13167 13433 5 1656 0,42 0,3 0,28
561 4 16929 17271 6 1656 0,2 0,48 0,32
562 4 16929 17271 6 1656 0,37 0,28 0,35
563 4 13167 13433 5 1656 0,2 0,44 0,36
564 4 16929 17271 6 1656 0,37 0,28 0,35
565 4 16929 17271 6 1656 0,37 0,28 0,35
566 4 16929 17271 6 1656 0,25 0,26 0,5
567 4 16929 17271 6 1656 0,37 0,28 0,35
568 4 16929 17271 6 1656 0,34 0,33 0,34
569 4 13167 13433 5 1656 0,2 0,48 0,32
570 4 16929 17271 6 1656 0,37 0,28 0,35
571 4 16929 17271 6 1656 0,37 0,28 0,35
572 4 16929 17271 6 1656 0,34 0,33 0,34
573 4 13167 13433 5 1656 0,1 0,43 0,48
574 4 15840 16160 7 1656 0,38 0,34 0,28
575 4 9405 9595 3 1656 0,22 0,43 0,35
576 4 9405 9595 3 1656 0,22 0,43 0,35
577 4 9306 9494 3 1656 0,22 0,43 0,35
578 4 9405 9595 2 1656 0,22 0,43 0,35
579 4 11088 11312 3 1656 0,22 0,43 0,35
580 4 11088 11312 3 1656 0,22 0,43 0,35
581 1 5643 5757 3 1656 0,32 0,38 0,3
582 4 13959 14241 3 1656 0,21 0,5 0,29
583 3 6336 6464 3 1656 0,21 0,5 0,29
584 3 6336 6464 3 1656 0,21 0,5 0,29
585 4 9405 9595 3 1656 0 0 1
586 4 11286 11514 4 1656 0,33 0,3 0,37
587 4 11286 11514 4 1656 0,33 0,3 0,37
588 4 9405 9595 4 1656 0,33 0,3 0,37
589 4 11286 11514 4 1656 0,33 0,3 0,37
590 4 12474 12726 4 1656 0,34 0,38 0,29
591 4 14553 14847 4 1656 0,34 0,38 0,29
592 4 14553 14847 4 1656 0,34 0,38 0,29
593 3 18612 18988 4 1656 0,21 0,37 0,42
594 3 18612 18988 4 1656 0,21 0,37 0,42
595 3 18612 18988 4 1656 0,21 0,37 0,42
596 4 11286 11514 4 1656 0,38 0,33 0,29
597 4 11286 11514 4 1656 0,33 0,25 0,42
598 4 11286 11514 4 1656 0,36 0,33 0,31
599 4 11286 11514 4 1656 0,38 0,33 0,29
600 4 14256 14544 6 1676 0,37 0,28 0,35

Table E.12: Real instances – part 12
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

601 4 16929 17271 6 1676 0,34 0,24 0,42
602 4 13167 13433 5 1676 0,47 0,29 0,24
603 4 16929 17271 6 1676 0,16 0,38 0,46
604 4 16929 17271 6 1676 0,16 0,38 0,46
605 4 13514 13786 5 1676 0,38 0,34 0,28
606 4 13514 13786 5 1676 0,49 0,32 0,19
607 4 13514 13786 5 1676 0,38 0,34 0,28
608 4 13167 13433 5 1676 0,49 0,32 0,19
609 4 9405 9595 3 1676 0,22 0,43 0,35
610 4 9306 9494 3 1676 0,22 0,43 0,35
611 4 11286 11514 3 1676 0,22 0,43 0,35
612 4 11088 11312 3 1676 0,22 0,43 0,35
613 4 11088 11312 3 1676 0,22 0,43 0,35
614 1 5643 5757 3 1676 0,32 0,38 0,3
615 4 9405 9595 3 1676 0,32 0,38 0,3
616 4 9405 9595 3 1676 0,32 0,38 0,3
617 3 9504 9696 4 1676 0,32 0,29 0,38
618 3 9504 9696 4 1676 0,32 0,29 0,38
619 3 11088 11312 5 1676 0,42 0,3 0,28
620 4 16929 17271 6 1676 0,2 0,44 0,36
621 4 13167 13433 5 1676 0,34 0,33 0,34
622 4 16929 17271 7 1676 0,2 0,48 0,32
623 4 16929 17271 6 1676 0,37 0,28 0,35
624 4 16929 17271 6 1676 0,37 0,28 0,35
625 4 13167 13433 5 1676 0,2 0,44 0,36
626 4 16929 17271 6 1676 0,37 0,28 0,35
627 4 16929 17271 6 1676 0,34 0,33 0,34
628 4 16929 17271 6 1676 0,2 0,48 0,32
629 4 16929 17271 6 1676 0,1 0,43 0,48
630 2 13167 13433 5 1676 0,45 0,29 0,26
631 4 13167 13433 5 1676 0,54 0,22 0,24
632 4 13167 13433 5 1676 0,54 0,22 0,24
633 4 13167 13433 5 1676 0,54 0,22 0,24
634 4 13167 13433 5 1676 0,54 0,22 0,24
635 4 13167 13433 5 1676 0,47 0,26 0,27
636 4 13167 13433 5 1676 0,47 0,26 0,27
637 4 13167 13433 5 1676 0,47 0,26 0,27
638 4 11088 11312 5 1676 0,54 0,22 0,24
639 4 9405 9595 3 1676 0,07 0,3 0,64
640 4 9405 9595 3 1676 0,07 0,3 0,64
641 4 9405 9595 3 1676 0,07 0,3 0,64
642 4 9405 9595 3 1676 0,07 0,3 0,64
643 4 9405 9595 3 1676 0,16 0,4 0,44
644 4 9405 9595 3 1676 0,16 0,4 0,44
645 4 11088 11312 3 1676 0,22 0,43 0,35
646 4 11088 11312 3 1676 0,22 0,43 0,35
647 4 9504 9696 3 1676 0,22 0,43 0,35
648 4 9504 9696 3 1676 0,22 0,43 0,35
649 4 11088 11312 3 1676 0,22 0,43 0,35
650 4 7920 8080 3 1676 0,22 0,43 0,35
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

651 4 9504 9696 4 1676 0,33 0,3 0,37
652 4 12672 12928 4 1676 0,33 0,3 0,37
653 4 9504 9696 4 1676 0,33 0,3 0,37
654 4 9504 9696 4 1676 0,33 0,3 0,37
655 4 9504 9696 4 1676 0,33 0,3 0,37
656 4 9504 9696 4 1676 0,33 0,3 0,37
657 3 11088 11312 5 1676 0,34 0,38 0,29
658 4 9504 9696 4 1676 0,21 0,37 0,42
659 4 9504 9696 4 1676 0,21 0,37 0,42
660 2 9504 9696 5 1676 0,34 0,38 0,29
661 2 9504 9696 5 1676 0,34 0,38 0,29
662 4 9504 9696 4 1676 0,34 0,38 0,29
663 4 11286 11514 4 1676 0,36 0,33 0,31
664 4 11286 11514 4 1676 0,33 0,25 0,42
665 4 11286 11514 4 1676 0,38 0,33 0,29
666 4 11286 11514 4 1676 0,36 0,33 0,31
667 2 9504 9696 5 1676 0,38 0,33 0,29
668 4 11088 11312 5 1676 0,33 0,34 0,33
669 4 13167 13433 5 1676 0,47 0,29 0,24
670 4 16929 17271 6 1676 0,16 0,38 0,46
671 4 16929 17271 6 1676 0,16 0,38 0,46
672 4 19305 19695 7 1676 0,38 0,34 0,28
673 4 19305 19695 7 1676 0,39 0,3 0,31
674 4 19305 19695 7 1676 0,38 0,34 0,28
675 4 19305 19695 7 1676 0,49 0,32 0,19
676 4 19305 19695 7 1676 0,39 0,3 0,31
677 4 19305 19695 7 1676 0,38 0,34 0,28
678 4 19305 19695 7 1676 0,49 0,32 0,19
679 4 19305 19695 7 1676 0,38 0,34 0,28
680 4 19305 19695 7 1676 0,38 0,34 0,28
681 4 19305 19695 7 1676 0,34 0,32 0,34
682 4 19305 19695 7 1676 0,34 0,32 0,34
683 4 11088 11312 3 1676 0,22 0,43 0,35
684 4 11088 11312 3 1676 0,22 0,43 0,35
685 4 11088 11312 3 1676 0,22 0,43 0,35
686 4 9504 9696 3 1676 0,5 0,31 0,2
687 2 9504 9696 5 1676 0,38 0,33 0,29
688 4 13167 13433 5 1676 0,33 0,34 0,33
689 4 13167 13433 5 1676 0,33 0,34 0,33
690 4 13167 13433 5 1676 0,33 0,34 0,33
691 4 13167 13433 5 1676 0,33 0,34 0,33
692 4 13167 13433 5 1676 0,33 0,34 0,33
693 4 13167 13433 5 1676 0,42 0,3 0,28
694 4 13167 13433 5 1676 0,35 0,39 0,26
695 4 11187 11413 5 1676 0,42 0,3 0,28
696 4 16929 17271 6 1676 0,34 0,33 0,34
697 4 13167 13433 5 1676 0,1 0,43 0,48
698 4 16929 17271 6 1676 0,2 0,44 0,36
699 4 16929 17271 6 1676 0,34 0,33 0,34
700 4 16929 17271 6 1676 0,34 0,33 0,34
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

701 4 13167 13433 5 1676 0,2 0,44 0,36
702 4 16929 17271 6 1676 0,2 0,44 0,36
703 4 13167 13433 5 1686 0,54 0,22 0,24
704 4 13167 13433 5 1676 0,38 0,34 0,28
705 4 13167 13433 5 1676 0,39 0,3 0,31
706 4 13167 13433 5 1676 0,38 0,34 0,28
707 4 13514 13786 7 1676 0,49 0,32 0,19
708 4 13514 13786 7 1676 0,39 0,3 0,31
709 4 13167 13433 5 1676 0,38 0,34 0,28
710 4 13514 13786 7 1676 0,38 0,34 0,28
711 4 10395 10605 3 1676 0,22 0,43 0,35
712 4 7920 8080 2 1676 0,22 0,43 0,35
713 2 6336 6464 3 1676 0,22 0,43 0,35
714 4 9504 9696 3 1676 0,22 0,43 0,35
715 4 11088 11312 3 1676 0,22 0,43 0,35
716 4 9405 9595 3 1676 0,32 0,38 0,3
717 4 6237 6363 6 1676 0,32 0,38 0,3
718 1 6237 6363 3 1676 0,32 0,38 0,3
719 2 6237 6363 3 1676 0,32 0,38 0,3
720 2 6237 6363 3 1676 0,32 0,38 0,3
721 4 13959 14241 3 1676 0,21 0,5 0,29
722 4 13959 14241 3 1676 0,21 0,5 0,29
723 4 12474 12726 4 1676 0,33 0,3 0,37
724 4 10395 10605 4 1676 0,33 0,3 0,37
725 4 9306 9494 3 1676 0,5 0,31 0,2
726 4 9306 9494 3 1676 0,5 0,31 0,2
727 4 12474 12726 4 1676 0,34 0,38 0,29
728 4 12474 12726 4 1676 0,34 0,38 0,29
729 4 12474 12726 4 1676 0,34 0,38 0,29
730 4 12474 12726 4 1676 0,21 0,37 0,42
731 4 12474 12726 4 1676 0,21 0,37 0,42
732 4 12474 12726 4 1676 0,21 0,37 0,42
733 4 14553 14847 4 1676 0,32 0,29 0,38
734 4 14553 14847 4 1676 0,32 0,29 0,38
735 4 14553 14847 4 1676 0,32 0,29 0,38
736 4 11286 11514 4 1676 0,38 0,33 0,29
737 4 11286 11514 4 1676 0,33 0,25 0,42
738 4 11286 11514 4 1676 0,38 0,33 0,29
739 4 11286 11514 4 1676 0,38 0,33 0,29
740 4 11286 11514 4 1676 0,38 0,33 0,29
741 4 14256 14544 6 1676 0,37 0,28 0,35
742 4 14256 14544 6 1676 0,37 0,28 0,35
743 4 13167 13433 5 1676 0 0,13 0,87
744 4 16929 17271 6 1676 0,16 0,38 0,46
745 4 16929 17271 6 1676 0,16 0,38 0,46
746 4 13167 13433 5 1676 0 0,13 0,87
747 4 16929 17271 6 1676 0,16 0,38 0,46
748 4 19305 19695 7 1676 0,39 0,3 0,31
749 4 19305 19695 7 1676 0,49 0,32 0,19
750 4 19305 19695 7 1676 0,38 0,34 0,28

Table E.15: Real instances – part 15
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

751 4 19305 19695 7 1676 0,38 0,34 0,28
752 4 19305 19695 7 1676 0,39 0,3 0,31
753 4 19305 19695 7 1676 0,38 0,34 0,28
754 4 19305 19695 7 1676 0,38 0,34 0,28
755 4 19305 19695 7 1676 0,49 0,32 0,19
756 4 19305 19695 7 1676 0,49 0,32 0,19
757 4 7524 7676 3 1676 0,07 0,3 0,64
758 4 9405 9595 3 1676 0,07 0,3 0,64
759 4 9405 9595 3 1676 0,07 0,3 0,64
760 4 9405 9595 3 1676 0,07 0,3 0,64
761 4 9405 9595 3 1676 0,16 0,4 0,44
762 4 9405 9595 3 1676 0,16 0,4 0,44
763 4 9405 9595 3 1676 0,07 0,3 0,64
764 4 9405 9595 3 1676 0,07 0,3 0,64
765 4 9405 9595 3 1676 0,16 0,4 0,44
766 4 9405 9595 3 1676 0,16 0,4 0,44
767 4 9405 9595 3 1676 0,07 0,3 0,64
768 4 9405 9595 3 1676 0,22 0,43 0,35
769 4 9405 9595 3 1676 0,22 0,43 0,35
770 4 9405 9595 3 1676 0,32 0,38 0,3
771 4 14553 14847 4 1676 0,21 0,37 0,42
772 4 14553 14847 4 1676 0,21 0,37 0,42
773 4 12474 12726 4 1676 0,32 0,29 0,38
774 4 12474 12726 4 1676 0,32 0,29 0,38
775 4 9504 9696 4 1676 0,33 0,25 0,42
776 4 9504 9696 4 1676 0,36 0,33 0,31
777 4 9504 9696 4 1676 0,33 0,25 0,42
778 4 11286 11514 4 1676 0,42 0,3 0,28
779 4 11286 11514 4 1676 0,33 0,34 0,33
780 4 11286 11514 4 1676 0,33 0,34 0,33
781 4 16929 17271 6 1686 0,34 0,33 0,34
782 4 13167 13433 5 1686 0,2 0,48 0,32
783 4 13167 13433 5 1686 0,2 0,44 0,36
784 4 16929 17271 6 1686 0,37 0,28 0,35
785 4 16929 17271 6 1686 0,37 0,28 0,35
786 4 16929 17271 6 1686 0,1 0,43 0,48
787 4 13167 13433 5 1686 0,2 0,44 0,36
788 4 16929 17271 6 1686 0,37 0,28 0,35
789 4 13167 13433 5 1686 0,47 0,26 0,27
790 4 11286 11514 3 1686 0,22 0,43 0,35
791 4 9306 9494 3 1686 0,22 0,43 0,35
792 4 11286 11514 3 1686 0,22 0,43 0,35
793 4 11286 11514 3 1686 0,22 0,43 0,35
794 4 11088 11312 3 1686 0,22 0,43 0,35
795 3 7524 7676 3 1686 0,32 0,38 0,3
796 3 6336 6464 3 1686 0,21 0,5 0,29
797 4 9504 9696 4 1686 0,33 0,3 0,37
798 4 12672 12928 4 1686 0,33 0,3 0,37
799 3 9504 9696 4 1686 0,33 0,3 0,37
800 3 9504 9696 4 1686 0,33 0,3 0,37
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no. κ I Ī |S| |B| Prob(low) Prob(normal) Prob(high)

801 4 9504 9696 4 1686 0,33 0,3 0,37
802 4 9504 9696 4 1686 0,33 0,3 0,37
803 4 12672 12928 4 1686 0,33 0,3 0,37
804 4 9504 9696 4 1686 0,21 0,37 0,42
805 4 9504 9696 4 1686 0,21 0,37 0,42
806 4 9504 9696 4 1686 0,34 0,38 0,29
807 4 9504 9696 4 1686 0,34 0,38 0,29
808 4 11286 11514 4 1686 0,33 0,25 0,42
809 4 11286 11514 4 1686 0,36 0,33 0,31
810 4 11286 11514 4 1686 0,38 0,33 0,29
811 4 11286 11514 4 1686 0,38 0,33 0,29
812 4 13167 13433 5 1686 0,2 0,48 0,32
813 4 16929 17271 6 1686 0,37 0,28 0,35
814 4 16929 17271 6 1686 0,37 0,28 0,35
815 4 16929 17271 6 1686 0,37 0,28 0,35
816 4 16929 17271 6 1686 0,16 0,38 0,46
817 4 16929 17271 6 1686 0,16 0,38 0,46
818 4 16929 17271 6 1686 0,16 0,38 0,46
819 4 16929 17271 6 1686 0,16 0,38 0,46
820 4 16929 17271 6 1686 0,16 0,38 0,46
821 4 13167 13433 5 1686 0,33 0,33 0,34
822 4 13167 13433 5 1686 0,33 0,33 0,34
823 2 13167 13433 5 1686 0,45 0,29 0,26
824 2 13167 13433 5 1686 0,45 0,29 0,26
825 4 13167 13433 5 1686 0,54 0,22 0,24
826 4 13167 13433 5 1686 0,54 0,22 0,24
827 4 13167 13433 5 1686 0,47 0,26 0,27
828 4 13167 13433 5 1686 0,47 0,26 0,27
829 4 13167 13433 5 1686 0,47 0,26 0,27
830 4 13167 13433 5 1686 0,47 0,26 0,27
831 4 14207 14493 5 1686 0,38 0,34 0,28
832 4 13167 13433 5 1686 0,42 0,3 0,28
833 4 13167 13433 5 1686 0,33 0,34 0,33
834 4 13167 13433 5 1686 0,33 0,34 0,33
835 4 13167 13433 5 1686 0,33 0,34 0,33
836 4 13167 13433 5 1686 0,2 0,48 0,32
837 4 16929 17271 6 1686 0,37 0,28 0,35
838 4 13167 13433 5 1686 0,37 0,28 0,35
839 4 16929 17271 6 1686 0,2 0,44 0,36
840 4 16929 17271 6 1686 0,37 0,28 0,35
841 4 18810 19190 6 1686 0,16 0,38 0,46
842 4 11286 11514 4 1686 0,22 0,43 0,35
843 4 11286 11514 4 1686 0,22 0,43 0,35
844 4 15048 15352 3 1686 0,22 0,43 0,35
845 4 16286 16614 3 1686 0,22 0,43 0,35
846 3 7920 8080 2 1686 0,22 0,43 0,35
847 4 11286 11514 3 1686 0,22 0,43 0,35
848 2 6237 6363 3 1686 0,32 0,38 0,3
849 2 6336 6464 3 1686 0,32 0,38 0,3
850 3 6237 6363 3 1686 0,21 0,5 0,29
851 2 5643 5757 3 1686 0,21 0,5 0,29
852 4 11286 11514 4 1686 0,33 0,3 0,37
853 4 11286 11514 4 1686 0,33 0,3 0,37
854 4 11286 11514 4 1686 0,33 0,3 0,37
855 4 12474 12726 3 1686 0,5 0,31 0,2
856 4 12474 12726 3 1686 0,5 0,31 0,2
857 4 9504 9696 4 1686 0,34 0,38 0,29
858 4 9504 9696 4 1686 0,34 0,38 0,29
859 4 9504 9696 4 1686 0,21 0,37 0,42
860 4 13167 13433 5 1686 0,42 0,3 0,28

Table E.17: Real instances – part 18
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ich, dass ich nicht anderweitig mit oder ohne Erfolg versucht habe, diese oder eine
andere Dissertation einzureichen. Ich habe keine gleichartige Doktorprüfung an einer
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