
Heterogeneous chemistry of HONO 

and surface exchange 

 

 

 

A dissertation submitted to the 

Faculty of Biology, Chemistry and Geoscience 

at the University of Bayreuth 

for the degree of 

Dr. rer. nat. 

 

 

 

 

 

 

 

presented by 

Matthias Sörgel 

born in Nürnberg 

 

 

 

 

Bayreuth, January 2012 

 

 

  



  



Die vorliegende Arbeit wurde in der Zeit von April 2007 bis Januar 2012 an der 

Forschungsstelle für Atmosphärische Chemie der Universität Bayreuth unter der Betreuung 

von Herrn Prof. Dr. Cornelius Zetzsch angefertigt. 

 

 

Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowissenschaften der 

Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades 

Doktor der Naturwissenschaften (Dr. rer. nat.) 

 

 

 

 

 

Amtierende Dekanin:    Prof. Dr. Beate Lohnert 

Tag des Einreichens der Dissertation:  11. Januar 2012 

Tag des wissenschaftlichen Kolloquiums:  06. August 2012 

 

 

 

 

 

 

 

 

Prüfungsausschuss:  

Prof. Dr. Cornelius Zetzsch (Erstgutachter) 

Prof. Dr. Thomas Foken (Zweitgutachter) 

Prof. Dr. Andreas Held (Vorsitzender) 

Prof. Dr. Britta Planer-Friedrich 

Prof. Dr. Jürgen Senker 

 

Drittgutachter: Priv. Doz. Dr. Jörg Kleffmann 

 



  



Summary  I 

Summary 

 

Nitrous acid (HONO) is an important precursor of OH radicals, which are the key oxidizing 

species in the atmosphere and are therefore called the detergent of the atmosphere. Despite the 

importance of HONO for atmospheric chemistry and about 30 years of detailed research the 

exact formation mechanisms of both day-and night-time formation remain unclear. The main 

formation pathways discussed to date are heterogeneous reactions with NO2 as the HONO 

precursor or microbiological activity in soil. As the ground surface is a major source of 

HONO, the vertical distribution of HONO is very sensitive to the extent of vertical mixing. 

Additionally, some uncertainty in comparing laboratory and field measurements might be 

caused by the not yet clarified role of relative humidity and surface wetness on HONO 

formation and deposition, respectively. 

This study presents field measurements of HONO by fast (~ 5 min time resolution) and 

sensitive (~ 2 ppt detection limit) long path absorption photometers (LOPAPs). The analysis 

of the data addresses three major questions: a) Can the HONO daytime source be explained 

by light-induced NO2 conversion? b) What is the influence of vertical mixing on HONO 

mixing ratios, measured simultaneously in and above a forest canopy? c) Can the influence of 

relative humidity (RH) on HONO mixing ratios be inferred from the field measurements 

using time series analysis? 

During the Diel Oxidant Mechanism In relation to Nitrogen Oxides (DOMINO) campaign, 

HONO and other reactive trace gases were measured above a pine forest in south west Spain. 

In line with all recently published work, this study also found a substantial daytime formation 

of HONO.  This so called additional daytime source or unknown source was found to be 

slightly correlated (r² = 0.16) with actinic flux. Normalizing this unknown source to NO2 

mixing ratios improved the correlation (r² = 0.38), which indicates an influence of NO2 

availability. The coefficient of determination improved further to 0.47 by restricting the data 

to clear days and rejecting data from advection events. Thus, a fraction of the unknown source 

might be explained by light-induced NO2 conversion but other factors have to be taken into 

account. Two processes of light-induced NO2 conversion, proposed by recent laboratory 

studies, were shown to be negligible for the semirural conditions during our study. HONO 

photolysis was found to be the most important primary OH-radical source during DOMINO, 

contributing 20 % more OH than ozone photolysis integrated over the day. 
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Vertical exchange of HONO was studied at the “Waldstein-Weidenbrunnen” field site of the 

University of Bayreuth in the Fichtelgebirge Mountains in south east Germany. The 

simultaneous HONO measurements in and above a forest canopy highlighted the importance 

of turbulent exchange for the vertical distribution of HONO mixing ratios. The so-called 

coupling regimes of the forest (with the air layers above) were found to be a very useful 

micrometeorological concept to study vertical differences of mixing ratios in a forest. They 

denote which parts of the forest are coupled to the air layer above the canopy and thus take 

part in turbulent exchange of energy and matter. With this coupling tool it was possible to 

explain vertical mixing ratio differences by different sources and sinks and the magnitude of 

the difference by the intensity of vertical exchange. In order to evaluate the reliability of the 

vertical differences in HONO mixing ratios measured by two LOPAPs, these instruments 

have been compared side-by-side under field conditions. The comparison revealed that the 

LOPAPs agreed within 12 % relative error during dry conditions, but mixing ratios measured 

under rainy and foggy conditions were ambiguous. Studying the vertical mixing ratio 

differences of HONO, an unexpected result was that during late morning and around noon 

they were close to zero. As the lifetime of HONO below canopy of about 250 to 300 min was 

a factor of 25 to 30 longer than that above canopy of about 10 min, large mixing ratio 

differences would have been expected. The lack of these differences could be explained by 

efficient vertical mixing, which was indicated by a full coupling of the forest or a coupling by 

sweeps and only intermittent decoupling of the subcanopy during these periods. Around 

sunset, the whole forest became decoupled from the air layers above. This caused a steep 

increase in mixing ratio differences up to about 170 ppt due to a faster increase below canopy, 

indicating local formation below the canopy.  

HONO and RH are correlated due to their diurnal cycles which are mainly caused by 

radiation. This diurnal contribution has to be removed from the respective signals in order to 

extract correlations on other timescales. Singular System Analysis, a tool for time series 

analysis, has been applied successfully to remove diurnal variations and long-term trends 

from the HONO and RH time series of three different measurement campaigns. Correlations 

of the higher frequency contributions of the remaining signals were poor but slightly positive. 

The HONO mixing ratios increase exponentially with RH from about 25 % RH to about 70 % 

RH. This was not the case for measurements in marine air masses which were possibly 

influenced by an equilibrium with the sea surface. No clear correlation was found between 

around 70 and 95 % RH. Above 95 % RH, HONO mixing ratios decreased due to HONO 



Summary  III 

uptake in droplets and liquid films. These features are in line with previously proposed 

mechanisms for interactions of water and HONO on surfaces. 

The study highlighted the need to assess turbulent transport and surface properties in addition 

to chemistry for understanding the heterogeneous reactions and processes forming HONO.
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Zusammenfassung 

 

Salpetrige Säure (HONO) ist ein bedeutendes Vorläufermolekül für OH-Radikale. Diese 

wirken als bedeutendstes Oxidationsmittel in der Atmosphäre und werden deshalb auch 

Waschmittel der Atmosphäre genannt. Trotz ihrer Bedeutung für die atmosphärische Chemie 

und nach 30 Jahren intensiver Forschung sind die Bildungsmechanismen der salpetrigen 

Säure  nach wie vor nicht vollständig bekannt. Aktuell werden überwiegend heterogene 

Reaktionen von NO2 als HONO-Vorläufersubstanz diskutiert, und zwar sowohl für die 

Dunkelreaktion als auch für die lichtinduzierten Reaktionen. Als weitere mögliche Quelle 

wird die HONO-Freisetzung durch Mikroorganismen im Boden diskutiert. Da sich demnach 

die wichtigsten HONO-Quellen in Bodennähe befinden, ist die vertikale Verteilung von 

HONO stark von der Effizienz des Vertikaltransports abhängig. Beim Vergleich der in 

Labormessungen bestimmten HONO-Bildungsraten mit Feldmessungen besteht zudem 

Unsicherheit durch den möglichen Einfluss der Oberflächenfeuchte, die von der relativen 

Feuchte abhängt.  

Die Messungen der salpetrigen Säure wurden mit sogenannten Lang-Pfad-Absorptions- 

Photometern (LOPAP) durchgeführt. Diese Instrumente erlauben verhältnismäßig schnelle 

Messungen mit ca. 5 min Zeitauflösung und sind gleichzeitig sehr sensitiv (~ 2 ppt 

Nachweisgrenze). Die Analyse der gewonnenen Daten gliedert sich in drei Hauptbereiche: a) 

Kann die unbekannte Tagesquelle von HONO mit der lichtinduzierten Reduktion von NO2 

erklärt werden? b) Wie und wie stark beeinflusst die vertikale Durchmischung HONO 

Messreihen, die gleichzeitig im Wald und über dem Bestand gemessen wurden? c) Kann, 

unter Verwendung von Methoden der Zeitreihenanalyse, ein Einfluss der relativen Feuchte 

auf die HONO-Messwerte abgeleitet werden? 

Bei der Messkampagne „Diel Oxidant Mechanism In relation to Nitrogen Oxides 

(DOMINO)“ wurden HONO und andere Spurengase über einem Pinienwald in Südwest-

Spanien gemessen. In Übereinstimmung mit anderen kürzlich veröffentlichten Studien wurde 

auch hier eine bedeutende HONO-Tagesquelle gefunden. Es konnte eine schwache 

Korrelation dieser so genannten zusätzlichen oder unbekannten Quelle mit dem aktinischen 

Fluss festgestellt werden (r² = 0.16). Normiert man diese unbekannte Quelle auf die 

gleichzeitig gemessenen NO2-Werte, so verbessert sich die Korrelation zum aktinischen Fluss 

(r² = 0.38), was auf einen Einfluss der NO2-Verfügbarkeit hindeutet. Berücksichtigt man nur 

Sonnentage und schließt gleichzeitig Advektionsereignisse von der Analyse aus so erhält man 
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einen Korrelationskoeffizienten (r²) von 0.47. Daraus lässt sich schließen, dass zumindest ein 

Teil der HONO-Tagesquelle durch die lichtinduzierte NO2-Reduktion erklärbar ist. Jedoch 

scheinen auch andere Faktoren eine wichtige Rolle zu spielen. Für zwei kürzlich publizierte, 

aus Labormessungen abgeleitete Mechanismen der lichtinduzierten NO2-Umwandlung wurde 

allerdings kein nennenswerter Beitrag zur HONO-Tagesquelle festgestellt. Dies gilt 

zumindest für die Bedingungen während dieser Messkampagne, die jedoch auf andere 

ländliche Gegenden übertragbar sind. Über den Tag integriert war der Beitrag der HONO-

Photolyse zur OH-Radikal-Produktion um 20 % größer als derjenige der Ozonphotolyse, und 

somit verantwortlich für den größten Teil der Primärproduktion an OH-Radikalen.  

Die Messungen zum Vertikalaustausch von HONO in einem Waldökosystem wurden auf den 

Messflächen der Universität Bayreuth im Fichtelgebirge („Waldstein-Weidenbrunnen“) 

durchgeführt. Dieser Teil der Untersuchung unterstreicht die Bedeutung des turbulenten 

Austauschs für die vertikale Verteilung von HONO. Als äußerst wichtig für die Interpretation 

der vertikalen Differenzen der HONO-Mischungsverhältnisse erwiesen sich die sogenannten 

„Kopplungszustände“ des Waldes mit den Luftschichten darüber. Die Bestimmung der 

Kopplungszustände basiert auf der Detektion von organisierten Strukturen in der Turbulenz, 

so genannten kohärenten Strukturen. Durch die Betrachtung der Kopplungszustände war es 

möglich, die vertikalen Differenzen in den HONO-Mischungsverhältnissen, die jeweils über 

und im Bestand gemessen wurden, durch die Kombination verschiedener Quellen und Senken 

zu erklären und die Größe der Differenz auf den Vertikaltransport zurückzuführen. Um die 

Messunsicherheit für die vertikalen Differenzen zu bestimmen, wurden Vergleichsmessungen 

(side-by-side) mit den beiden LOPAPs im Feld durchgeführt. Unter trockenen Bedingungen 

waren keine systematischen Abweichungen festzustellen, und die Geräte stimmten innerhalb 

eines relativen Fehlers von 12 % überein. Bei Nebel und Regen hingegen waren die 

Abweichungen so groß, dass den Messergebnissen nicht vertraut werden kann. Die 

Differenzen der HONO-Mischungsverhältnisse vom späten Vormittag bis zum frühen 

Nachmittag lagen nahe bei null. Auf Grund der immensen Unterschiede der Lebensdauern der 

HONO Moleküle (~ 10 min über dem Bestand und 250-300 min darunter, durch die 

Beschattung durch das Kronendach) waren hohe vertikale Differenzen erwartet worden.  

Die kaum messbaren Unterschiede in den Mischungsverhältnissen konnten mit dem 

effizienten Vertikalaustausch erklärt werden. Dieser wurde durch die überwiegend 

vollkomme Kopplung des Waldes mit den darüber liegenden Luftschichten und nur 

zwischenzeitlicher Entkopplung des Stammraumes angezeigt. Mit der Entkopplung des 



Zusammenfassung  VI 

gesamten Bestandes bei Sonnenuntergang wurde die lokale Bildung von HONO in den sehr 

schnell ansteigenden HONO-Werten unterhalb der Krone sichtbar.  

Da HONO und relative Feuchte (RF) schon allein durch den Tagesgang der Strahlung 

korreliert sind, muss dieser Anteil der Signale vor einer Analyse, die nach Korrelation auf 

kürzeren Zeitskalen sucht, herausgefiltert werden. Mit diesem Ziel wurde „Singular System 

Analysis“, ein mathematisches Werkzeug der Zeitreihenanalyse, erfolgreich auf die Zeitreihen 

von HONO und RF aus den drei verschiedenen Messkampagnen angewandt. Der Tagesgang 

und Trends wurden erfolgreich separiert, die Korrelation der verbleibenden (höherfrequenten) 

Signale war jedoch nur sehr schwach, wenn auch für alle Messreihen leicht positiv. Die 

HONO-Mischungsverhältnisse stiegen von ca. 25 % bis ca. 70 % RF exponentiell mit der 

Feuchte an. Dies galt nicht für die Messwerte in marinen Luftmassen, die eventuell von einem 

Gleichgewicht mit der Meeresoberfläche beeinflusst waren. Zwischen 70 % und etwa 95 % 

RF gab es keine eindeutige Korrelation. Über 95 % waren die HONO-Werte durch die 

Aufnahme in Wasserfilme und Tropfen deutlich niedriger. Dieses Verhalten deckt sich mit 

den bereits vorgeschlagenen Mechanismen der Wechselwirkung von Wasser und HONO an 

Oberflächen.  

Die Studie hat gezeigt, wie wichtig - gerade für die Betrachtung der heterogenen Bildung von 

HONO - die Einbeziehung des Vertikaltransports und der (veränderlichen) Oberflächen-

eigenschaften ist.  
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Synthesis 

1 Introduction 

 

Nitrous acid (HONO) is a key compound to understand tropospheric oxidation chemistry. Its 

photolysis forms OH radicals which are called the “detergent” of the atmosphere due to their 

oxidizing power. Most compounds emitted into the atmosphere become more hydrophilic 

(e.g. NO	→	HNO3), less volatile (and then are incorporated into the particulate phase) or are 

finally oxidized to CO2 and water by this oxidation process. This accelerates the removal of 

the majority of compounds from the atmosphere by both dry and wet deposition (e.g. Crutzen 

and Zimmermann, 1991; Ehhalt, 1994). The whole system has been called the “self-cleansing 

capacity of the atmosphere”. HONO has been found to contribute substantially to primary OH 

formation close to the Earth’s surface. HONO typically contributes about one third of OH 

primary production, but published values range from about 10 to 60 % as summarized by 

Volkamer et al. (2010) and Sörgel et al. (2011b). Besides its importance for the atmospheric 

oxidation potential, HONO is part of acid and nutrient deposition to the biosphere. Moreover, 

growing concern exists about possible health effects due to the formation of nitrosamines 

(Hanst et al., 1977; Pitts et al., 1978) where HONO acts as the nitrosating agent, especially in 

indoor environments after wall reactions of HONO with nicotine (Sleiman et al., 2010). 

HONO is believed to be formed heterogeneously, with the main contribution arising from the 

ground surface (e.g. Wong et al., 2011a). Thus, HONO mixing ratios are very sensitive to 

vertical mixing.  

In the planetary boundary layer (PBL), turbulent diffusion is about five orders of magnitude 

faster than molecular diffusion (Foken, 2008). For example, a compound emitted at the 

surface (like HONO) would need about a month to be uniformly mixed in the lowermost 10 m 

by molecular diffusion only, whereas it takes only a few seconds by turbulent diffusion 

(Jacob, 1999). This has important implications for atmospheric chemistry as diffusion brings 

reactants which have different sources and sinks together. In 1940, Damköhler introduced a 

dimensionless number (now named Damköhler number), which compares the characteristic 

transport timescale to the timescale of a chemical reaction (Damköhler, 1940). Thus, the 

Damköhler number serves as a measure if a trace gas can be considered a quasi-inert tracer 

during transport (Da ≤ 0.01). For larger Damköhler numbers (0.01 < Da < 50) transport and 

chemistry play a role. According to McRae et al. (1982) above Da = 50 the reaction can be 
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regarded as diffusion controlled. If the reactants are not well mixed, they are segregated. This 

means that the effective rate constant is lower than that measured in the laboratory under well 

mixed conditions. The problem of segregation raised special attention in air chemistry 

modeling (e.g. Stockwell, 1995; Vila-Guerau de Arellano, 2003; Vinuesa and Vila-Guerau de 

Arellano, 2005; Ouwersloot et al., 2011). Recent development of fast sensors for reactive 

species allowed studying the effect of segregation in situ (e.g. Dlugi et al., 2010). Thus, in the 

real atmosphere a detailed interpretation of the chemistry is not possible without information 

about the turbulence. This thesis aims to shed light on the distribution of sources and sinks of 

HONO in forest environments. The identification of sources and sinks is a prerequisite for 

modeling studies and stimulates new laboratory studies about the nature of these sources and 

sinks. This work highlights in particular the need to carefully address transport phenomena in 

deriving source distributions and source strength of reactive species like HONO.  

 

 

1.1 Atmospheric chemistry of HONO 

 

Though HONO is an important compound in the troposphere and has been studied 

extensively since the unequivocal detection in the atmosphere (Perner and Platt, 1979), the 

formation pathways are poorly understood. There is a huge body of evidence that the 

heterogeneous disproportionation of NO2 to HONO and HNO3 is the dominant nighttime 

formation reaction (also called the “dark heterogeneous reaction”). This reaction was found to 

be first order in NO2 and water vapor (Sakamaki et al., 1983; Svennson et al., 1987; Pitts et 

al., 1984; Jenkin et al., 1988). It has been studied on a variety of natural and urban surfaces 

(Lammel and Cape 1996; Lammel, 1999). Still, the exact mechanism remains unclear. A 

detailed assessment of the different mechanisms has been given by Finlayson-Pitts et al. 

(2003) and Finlayson-Pitts (2009). In short: 

- The gas phase dimer of NO2 (N2O4) dissolves in aqueous films (Finlayson-Pitts et al., 

2003) 

- Chemisorption of water on mineral dust particles produces H, which reacts with NO2 

to form HONO (Gustafsson et al., 2008) 

- Disproportionation at the droplet surface is anion catalyzed (Yabushita et al., 2009¸ 

Kinugawa et al., 2011)) 



Synthesis  3 

Another pathway is the reaction of NO2 with reducing organic compounds (e.g. Gutzwiller et 

al., 2002a and 2002b). The proposed reactions involving NO (Calvert et al., 1994; Andres-

Hernandez et al., 1996; Saliba et al., 2001) were found to be of minor importance 

(summarized by Finlayson-Pitts et al., 2003 and Kleffmann, 2007). To date, the mechanism 

still remains unclear. Nevertheless, the nighttime formation rates of HONO measured in urban 

and rural environments are within a quite narrow range from 0.4 to 2 % h-1 with respect to 

NO2 (summarized by Su et al., 2008a and Sörgel et al., 2011a). The only known relevant gas-

phase source of HONO is the reaction of NO with OH, which is the back reaction of HONO 

photolysis that forms NO and OH. During daytime these reactions form a photostationary 

state (PSS), whereas during nighttime this HONO formation pathway is not important due to 

the absence of photochemically produced OH (and NO). All recent studies measured daytime 

HONO values substantially above the PSS which means that an additional daytime source 

exists (e.g. Kleffmann et al., 2005 and Kleffmann, 2007). This stimulated laboratory studies, 

which came up with various proposed mechanisms. These can be summarized as follows (a 

detailed assessment is given in the review of Kleffmann (2007) and in Appendix B and C of 

this work): 

- Reduction of NO2 on organic photosensitizers (e.g. George et al., 2005 and Stemmler 

et al., 2006) 

- Photolysis of nitrophenols (Bejan et al., 2006) 

- Photolysis of adsorbed HNO3 (e.g. Zhou et al., 2002, 2003 and 2011; Ramazan et al. 

2004) 

- NO2 reduction on irradiated mineral particles (Gustafsson et al., 2006, Ndour et al., 

2008) 

- Soil emissions from microbiological activity (Su et al., 2011) 

A promising pathway to explain HONO daytime production are so-called photosensitized 

reactions (e.g. George et al., 2005), although, these reactions have been demonstrated to play 

a minor role regarding the HONO formation on organic aerosols (Stemmler et al., 2007; 

Sosedova et al., 2011). However, as humic acids are ubiquitous in nature, these reactions may 

substantially contribute to daytime HONO formation on plant or building surfaces as well as 

soils (Stemmler et al., 2006). Very recent studies about photolysis of adsorbed HNO3 indeed 

showed enhanced light absorption of adsorbed HNO3 with respect to gas phase HNO3 (Zhu et 

al., 2008 and 2010). This makes a substantial contribution of this pathway to daytime HONO 

formation more realistic. As these laboratory studies found NO2* as main photolysis product, 
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Zhou et al. (2011) concluded that HONO formation by HNO3 photolysis also follows the 

photosensitized reduction of NO2 (Stemmler et al.,2006). HNO3 is the final oxidation product 

of NOx (Fig.1) and is thus believed to determine the atmospheric lifetime of NOx. HNO3 

photolysis therefore provides a pathway back to the atmospheric oxidation cycle of NOx 

(Fig.1). This mechanism is especially important for the oxidation capacity in remote areas 

with low atmospheric NOx burden. Another “way back” is the proposed HONO emission 

from soils due to microbiological activity (Kubota and Asami, 1985; Su et al., 2011). The 

denitrification by microbes is the only pathway to convert reactive nitrogen in the 

environment back to unreactive N2. The loss of intermediate products is responsible for the 

emissions of HONO and NO (Fig.1). Via nitrification, also fertilization with reduced nitrogen 

(NH3/NH4
+) can form reactive oxidized N- species (NO and HONO). 

 

Fig.1: A schematic view (not complete) of the atmospheric chemistry of reactive oxidized nitrogen and its 
interaction with the ground surface respectively soil (brown layer). Blue arrows denote pathways which are 
active during the whole day, black arrows contribute only in the absence of light, and red arrows only with light. 
 

Figure 1 presents a schematic view on atmospheric chemistry of oxidized inorganic nitrogen. 

Anthropogenic and biogenic emissions are mainly in the form of NO. NO is further oxidized 

in the atmosphere by O3 and OH to be finally deposited as HNO3 (e.g. Lerdau et al., 2000). 

During night, HNO3 is formed by heterogeneous hydrolysis from N2O5. N2O5 is formed only 

at nighttime because it requires the reaction of NO2 with the NO3 radical (formed by reaction 
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of O3 with NO2) which is very photolabile. If NO is oxidized to NO2 other than by O3 (e.g. by 

HO2, RO2 radicals), O3 is formed by this cycle from NO2 photolysis (Finlayson-Pitts and 

Pitts, 2000). If HONO is formed by other means than through reaction of NO with OH, OH 

radicals are formed by HONO photolysis. Thus, oxidized nitrogen has an important impact on 

the self-cleansing capacity of the atmosphere (day and nighttime).  

As can be seen in Fig. 1, the formation of HONO is mainly heterogeneous (reactions at 

surfaces). In principle, these can be both aerosol and ground (building, plant, soil,…) 

surfaces. There is strong evidence from field measurements that the ground is indeed the 

major source of HONO (e.g. Febo et al., 1996; Kleffmann et al., 2003; Zhang et al., 2009; 

Wong et al., 2011a, 2011b). Therefore, HONO mixing ratios are very sensitive to vertical 

mixing. 

Summarizing: The formation pathways of HONO remain unclear, although there are quite a 

lot mechanisms proposed. In the dark, the heterogeneous disproportionation of NO2 is the 

most probable source, whereas at daytime an additional light enhanced or photolytic source 

exists. HONO from microbiological activity may be a source both day and night. According 

to Su et al. (2011; supporting material) the HONO source strength is dependent inter alia on 

temperature (HONO equilibrium) and on transfer velocity (from soil to the atmosphere). 

These parameters exhibit a diurnal cycle which can lead to more efficient HONO transport to 

the atmosphere during daytime. The most probable HONO sources are located at the ground 

or in the soil itself. Therefore, as already mentioned above, HONO mixing ratios are very 

sensitive to vertical mixing. 

 

 

1.2 HONO chemistry and turbulent transport 

 

In rural and remote regions the HONO precursor NO2 is advected from source regions (e.g. 

cities, roads) and to some extent locally produced by oxidation of soil-emitted NO which 

reacts with ozone. The NO2 has to be transported to the surface where it reacts to form HONO 

(or is taken up by plants¸ e.g. Lerdau et al., 2000; Breuninger et al., 2011). HONO formed at 

the surface desorbs and is then transported back to the atmosphere. In stable conditions, 

upward transport is limited, thus HONO accumulates close to the ground. If HONO is 

predominantly formed by microbes or by HNO3 photolysis, NO2 deposition is of minor 

importance. During neutral or convective conditions (mostly daytime), vertical gradients are 
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less pronounced or hardly resolved by current instrumentation (~ 1 ppt detection limit). This 

can be seen in the vertical profiles of HONO in the boundary layer above a remote forest 

measured on a small airplane (Zhang et al., 2009). Thus, especially during stable conditions 

the measured mixing ratios and also the HONO/NO2 ratio depend on the measurement height 

(Stutz et al., 2002; Veitel, 2002; Wong et al., 2011a). Furthermore, the surface properties are 

altered by the adsorption of water. This has an influence on solubility (deposition) and on 

chemistry. Water is required as a reactant for the formation of HONO by heterogeneous 

disproportionation of NO2. However, with increasing adsorption of water molecules, surface 

active sites for other reactants (NO2) might be blocked (Lammel and Cape, 1996). Also, 

Gustafsson et al. (2006) report an inhibition of photocatalytic HONO formation due to 

adsorption of water. On the other hand, HONO is a weak acid which is taken up into liquid 

films depending on pH (Hirokawa et al., 2008). Furthermore, HONO can be salted out 

(become less soluble) in concentrated solutions, which was found for sulfuric acid (Becker et 

al., 1996) and ammonium sulfate solutions (Becker et al., 1998). A relation between gas phase 

HONO and relative humidity (RH) was found in many laboratory and field measurements 

(e.g. Arens et al., 2002; He et al., 2006;Trick, 2004; Stutz et al., 2004; Wainmann et al., 2001; 

Wojtal et al., 2010; Yu et al, 2009; Sörgel et al., 2011a; Rubio et al., 2008). In accordance 

with the formation of liquid films or droplets above 95 % RH (Burkhardt and Eiden, 1994; 

Lammel, 1999), lower HONO and HONO/NOx values above 95 % RH were reported (Stutz et 

al., 2004; Yu et al., 2009; Sörgel et al., 2011a). The behavior in the intermediate RH range 

(~20-95 %) is not well documented. The only mechanism provided so far is a Langmuir type 

mechanism where co-adsorbing water displaces HONO adsorbed to the surface (Trick, 2004; 

Stutz, 2005). Up to know it is unclear which role surface humidity plays for tropospheric 

HONO.  

A forest canopy adds more complexity as shown in a simplified scheme of daytime NOx and 

HONO chemistry within and above a forest canopy in Fig. 2. A key feature regarding 

photochemistry is the shading of the canopy which alters photochemical equilibriums. For 

example, the photolysis of the HONO precursor NO2 is faster above canopy, which results in 

a net downward flux of NO. In the shaded trunk space this downward mixed NO (together 

with soil emitted NO) reacts with ozone which was also photochemically produced above the 

canopy to regenerate NO2. However, NO2 is also deposited to the forest floor and the canopy. 

There it is taken up by plants (e.g. Lerdau et al., 2000; Breuninger et al., 2011) or reacts to 

form HONO. HONO itself is also deposited to the forest floor and the canopy, where it is 

taken up by the stomata (Schimang et al., 2006). As discussed earlier, the emission and 
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deposition of HONO might depend on RH, which has a distinct vertical gradient and is 

different within the canopy and at the forest floor. The scheme of NOx chemistry in forest 

environments is rather well established (Rummel et al., 2002, Horii et al., 2004; Foken et al., 

2011). Investigating the HONO sources and sinks in and above the forest canopy was part of 

this thesis. Additionally to the differences in chemistry the canopy might act like a gate, 

which separates these two distinct (photochemical) environments. The coupling between the 

forest canopy and the air layer above (”control mechanism of the gate”) depends on 

turbulence and might be represented by coupling regimes (Thomas and Foken, 2007).  

 

Figure 2: Schematic view of the daytime cycles of NOx and HONO above and below a canopy.  
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1.3 Surface exchange 

 

As mentioned above, the exchange of energy and matter between the Earth’s surface and the 

atmosphere is driven by turbulence which is generated by shear and buoyancy forces at the 

surface. In a first simplified view, a forest canopy can be regarded as a rough wall. Near-wall-

turbulence has been studied in hydrodynamics since the 1930s and has been found to be 

comprised of “classical random turbulence” and “organized motions” = “coherent structures” 

(Robinson, 1991). Similar to wall turbulence coherent motions were found to contribute 

significantly or even dominate momentum, heat and scalar exchange in tall canopies (Gao et 

al., 1989; Bergström and Högström, 1989; Barthlott et al., 2007; Thomas and Foken, 2007; 

Serafimovich et al., 2010). However, the turbulence structure above tall canopies has been 

found to differ from that of a rough wall. Due to the high roughness, a layer called roughness 

sublayer (Garratt, 1978, 1980) which extends to about three times the canopy height (e.g. 

Cellier and Brunet, 1992; Wenzel et al., 1997) lies between the “classical” boundary layer and 

the canopy. According to Raupach et al. (1996) the turbulence in the roughness sublayer is 

better characterized by a plane mixing layer than a boundary layer. These authors compare the 

instabilities which generate turbulence in the mixing of two air streams with different 

velocities (plain mixing) with those arising from the inflection point in the wind profile within 

the canopy. This is another difference to rough walls: Below the dense obstacle (canopy) a 

more open space (trunk space) exists, before, approaching the surface the horizontal wind 

speed tends to zero. Thus, the mean wind profile of a canopy is different from that of a 

boundary layer as it has an inflection point (secondary wind maximum). This inflection point 

is thought to cause instabilities which produce coherent eddies (Raupach et al., 1996; 

Finnigan, 2000). Thomas and Foken (2007) used the detection of coherent structures to infer 

so-called “coupling regimes”. The regimes denote which part of the canopy is coupled to the 

air layer above canopy and thus takes part in the exchange of energy and matter (Thomas and 

Foken, 2007; Serafimovich et al., 2010). Counter gradient fluxes (Denmead and Bradley, 

1985), which violate the flux gradient relationship of classical K-theory, were found to be 

caused by coherent exchange (Finnigan, 2000). Thus, the classical K-theory is not applicable 

within a forest canopy. In the roughness sublayer, fluxes are enhanced (with respect to the 

surface layer), and for the flux gradient relationship correction terms have to be applied 

(Cellier and Brunet, 1992; Garrett, 1992).  
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1.4 Time scales and spatial scales 

 

 

 

Fig.3: Spatial and temporal scales in the atmosphere adapted from Orlanski (1975). Forest canopy related 
transport processes (adapted from Foken et al., 2011) comprise turbulent transport in the canopy (black 
hexagon), vertical advection in the canopy (grey circle), transport above canopy (green triangle), coherent 
structures (red vertical bar), footprint averaged turbulent flux (pink triangle), and horizontal advection at canopy 
top (red square).The horizontal bars at the bottom mark chemical timescales for heterogeneous nighttime 
formation (black horizontal bar) and proposed daytime formation rate from NO2 (red horizontal bar). The time 
resolution of the LOPAP instrument is marked as blue diamond. The range of lifetimes of HONO due to 
photolysis is marked as red (daytime) and black (nighttime) arrow. 

 

Spatial scales and time scales of atmospheric motion are closely related (Orlanski, 1975; Fig. 

3). Studying the distribution or exchange of trace gases with the surface, one has to be aware 

that chemistry, biological and soil processes occur on spatial and temporal scales different of 

those of the related transport in the atmosphere. Thus, measurements of trace gases are not 

directly related to individual (chemical or physical) processes, but integrated via “volume 

averaging” or in the case of turbulent measurements over a footprint (so called “scale 

problem”; e.g. Foken et al., 2011). The discrepancy increases with increasing spatial/temporal 

scales (Foken et al., 2011). To address the problem of the overlapping (or non-overlapping) 
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scales was one of the major goals of the EGER project. In Fig. 3, canopy related transport 

phenomena (adapted from Foken et al., 2011) are shown in relation to spatial and temporal 

scales of atmospheric motion according to Orlanski (1975). Not shown here are the soil and 

biological processes which were a central part of the investigation of the EGER project. This 

graph is solely focused on chemical reactions governing the formation and fate of HONO as 

well as the instrumental limitations (temporal resolution) of the LOng Path Absorption 

Photometer (LOPAP, blue diamond), which are relevant for this thesis. Timescales of 

heterogeneous HONO formation (day and nighttime) were inferred from typical (rural) NO2 

conversion frequencies and typical HONO/NO2 ratios. These are given for the dark 

heterogeneous reaction (black horizontal line) as 1.5 % h-1 and 10 %, respectively (Su et al., 

2008a, Sörgel et al., 2011a), and are about 15 % h-1 and 3 %, respectively, for photo-enhanced 

formation (Sörgel et al., 2011c). An NO2 value of 1 ppb was taken as a typical rural value. 

Characteristic timescales for these reactions were calculated by taking the time which the 

conversion of NO2 takes at the given rate to reach 63 % of the final HONO/NO2 ratio. This is 

similar to the approach used by Dlugi (1993) using the lifetime of a molecule with respect to a 

certain reaction as a chemical timescale, i.e. the inverse of the reaction rate constant times the 

concentration of the reaction partner (for bimolecular reactions; τ = [x]k-1). If the lifetime of a 

molecule with respect to this certain reaction is not the limiting lifetime in a transport volume 

or, like for the NO-NO2-O3 triad, interchange reactions play a role, the approach of Lenschow 

(1982) is better to use.  

The LOPAP has a time resolution of 5 - 10 min. According to the scheme of Fig. 3 this means 

that each data point reflects a spatial integration of several hundred meters (volume 

averaging). Thus, only larger scale motions can be directly resolved by the LOPAP 

instrument. Furthermore, chemical timescales for formation (black and red horizontal bar) and 

loss (intensity of photolysis/ red and black arrow) are of the same magnitude as the timescales 

of the transport processes resolved by the LOPAP. Therefore, both chemistry and transport 

have an influence on HONO mixing ratios. Due to the limited lifetime of HONO due to 

photolysis, measurements during day are more locally influenced (within few km) than during 

night. 
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1.5 Challenges measuring HONO 

 

Especially during daytime and in remote areas, HONO mixing ratios are in the lower ppt 

range (e.g. Lammel and Cape, 1996; Kleffmann, 2007). The Differential Optical Absorption 

Spectroscopy (DOAS), a well-established optical method which detects HONO by its specific 

UV absorptions (Perner and Platt, 1979) was not capable of detecting daytime HONO mixing 

ratios of up to 200 ppt (in urban areas) until 2002 (Kleffmann, 2007). Nowadays, DOAS 

instruments are capable of measuring path averaged (up to 10 km) mixing ratios as low as 15 

ppt (Wong et al., 2011b). As summarized by Kleffmann (2007), all specific spectroscopic 

techniques have either too high detection limits (LOD) or suffer from experimental problems, 

whereas the sensitive wet chemical techniques (mainly denuders) suffer from interferences. 

Due to these limitations in either sensitivity or selectivity, new techniques have been 

developed. These include chemical ionization mass spectrometry (Roberts et al., 2010), cavity 

ringdown spectroscopy (Wang and Zhang, 2000), cavity enhanced spectroscopy (Gherman et 

al., 2008) and quantum cascade laser absorption spectroscopy (Lee et al., 2011). Still, many of 

these techniques suffer from high detection limits (> 100 ppt). Very recently, most of the 

available techniques have been compared in an intercomparison campaign (Formal 

Intercomparisons of Observations of Nitrous Acid/FIONA) in the atmospheric simulation 

chamber “EUPHORE” (Ródenas et al., 2011). Up to now the LOPAP is the only 

commercially available instrument which is a very sensitive wet chemical system where 

interferences have been minimized.  

The LOPAP is a fast (3 - 10 min time resolution) and sensitive (about 1 ppt detection limit) 

instrument. As wet chemical instruments are known to suffer from interferences, possible 

interferences of this instrument were studied extensively (Heland et al., 2001; Kleffmann et 

al., 2002; 2008; Kleffmann, 2006). Interferences in the LOPAP were minimized by an acidic 

sampling solution, an external sampling unit and a two channel system, which allows for 

correcting the interferences (Heland et al., 2001; Kleffmann et al., 2002; 2008; Kleffmann, 

2006).  

Some disadvantages of the LOPAP are the following:  

The instrument is calibrated with solutions prepared fom a nitrite standard solution by dilution 

with the sampling reagent in the field. These are not stable under daylight conditions 

(Kleffmann, personal communication 2011). Thus, calibrations have to be conducted in low 

light conditions or with effective shielding. The sampling solution is corrosive (1 mol L-1 

HCl) and due to the high number of tube connections within the instrument (which often 
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become loose) often floods the bottom of the instrument. Due to the outgassing of HCl, the 

electronics in the cover of the instrument may be affected. Furthermore, the loss of solution 

causes bubbles in the absorption tubes which cause a (continuous) reduction of the sensitivity. 

Due to the shift in the baseline (diurnal course) and unwanted peaks, the data processing is 

rather time consuming. 

 

2 Experiments and data 

 

The experimental work of this study was part of three Intensive Observation Periods (IOPs) at 

two different field sites. IOP I and IOP II of the ExchanGE processes in mountainous Regions 

(EGER) project where conducted at the “Waldstein Weidenbrunnen” field site of the 

University Bayreuth in the Fichtelgebirge Mountains in south-east Germany. The Diel 

Oxidant Mechanism In relation to Nitrogen Oxides (Domino) campaign took place at the 

“Atmospheric Sounding Station - El Arenosillo”, a platform of the Atmospheric Research and 

Instrumentation Branch of the Spanish National Institute for Aerospace Technology (INTA) 

at the Atlantic coast in south-west Spain. The DOMINO campaign was a “classical” air 

chemistry field campaign, with a comprehensive set of measurements regarding radicals (OH, 

HO2, RO2, NO3), radical precursors (O3, HONO, HCHO, H2O2), reactive nitrogen species 

(NO, NO2, HONO, PAN, NO3, N2O5), total OH reactivity, VOCs, and a very extensive set of 

aerosol parameters. There was also a good meteorological characterization, but no turbulence 

measurements. This Eulerian kind of experiment (“looking at the air masses passing by”) did 

not directly address interactions with the surface and boundary layer dynamics. In contrast, 

the EGER project was designed to study the surface interactions (within a tall canopy) in 

detail, at the expense of a complete set of chemical measurements. Therefore, not only 

temporal information but also vertical information about some reactive trace gasses (O3, NO, 

NO2, HONO) was collected. The detailed analysis of fluxes of non-reactive trace gasses (H2O 

and CO2), the turbulence structure and the coupling of the forest canopy with the air layers 

above allowed studying the influence of turbulence on the measured reactive trace gases. 
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2.1 The ExchanGE processes in mountainous Regions (EGER) 

project 

 

The focus of the EGER project was to study the energy and matter exchange in a “complex” 

terrain (dense and tall canopy on a mountain slope). During the Intensive Observation Periods 

(IOPs) of the EGER project simultaneous measurements of micrometeorological and 

chemical parameters were made in order to investigate the exchange of energy and matter 

between a forest ecosystem and the atmosphere. The IOPs took place in September 2007 and 

June/July 2008 to cover different periods of the growing season. The “Weidenbrunnen” 

research site is located in the Fichtelgebirge Mountains in south-east Germany (50°08 ’31’’N, 

11°52’01’’ E, 775 m above sea level) in a rural forested region. The site is covered by a 

Norway spruce (Picea abies (L.) Karst.) forest with a canopy height of 23 - 25 m (Staudt and 

Foken, 2007) and a mean leaf area index (LAI) of about 5 (Foken et al., 2011). A detailed 

description of the aims of the EGER project and the instrumental setup employed during the 

IOPs has been given by Foken et al. (2011). The measurements were made at three different 

sites in the forest stand. A slim 36 m high tower (“turbulence tower”) located about 60 m 

southeast of the main tower (31 m walk-up tower) was used for (undisturbed) turbulence 

measurements. The “forest floor exchange sites” were located about 30 m northwest (IOP I) 

and 17 m south (IOP II) of the main tower. Figure 4 shows a schematic view of the instrument 

setup during IOP I. The LOPAPs were set up close to the forest floor (forest floor exchange 

site) and just above canopy at the main tower. The turbulence measurements, used to 

investigate the coupling of the forest and the atmosphere, were made on a slim tower 

(“turbulence tower”).  
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Figure 4: Instrument setup (selection) during IOP I. On the left hand side the main tower with the psychrometer 
profile for temperature and relative humidity and the positions of the two LOPAPs. The graph on the right hand 
side shows the setup for the turbulence measurements. The graphs were adapted from Serafimovich et al. (2008).  

 

 

2.2 The Diel Oxidant Mechanism In relation to Nitrogen Oxides 

(DOMINO) campaign  

 

This international campaign took place at the “Atmospheric Sounding Station - El 

Arenosillo”, a platform of the Atmospheric Research and Instrumentation Branch of the 

Spanish National Institute for Aerospace Technology (INTA) dedicated to atmospheric 

measurements in the southwest of Spain (37° 05’ 48.03’’ N, 6° 44’ 07.47’’ W). The study was 

focused on a comprehensive set of measurements regarding air chemistry involving NOx, HOx 

and VOCs (http://www.atmos-chem-phys.net/special_issue246.html). The intention of the 

campaign (based on long term measurements of the prevailing wind direction) was to study 

the aged urban plume of Seville (~70 km east-north-east) after passing a large area of pine 

forest with VOC emissions. Unfortunately, during the campaign (mid November to mid 

December 2008) the prevailing winds were from the north-west and passed the highly 

industrialized area of Huelva (~ 15-25 km), advecting fresh industrial/vehicle emissions. 

Also, clean marine air was measured during westerly winds, as the measurement site was 

about 300 m inland from the coast of the Atlantic Ocean. The canopy of the pine forest 
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(average height around the measurement platform ~ 6 m; LAI ~ 1.5 (Gonçalves et al., 2010)) 

was not as dense as the spruce canopy at the EGER site (LAI ~5 (Foken et al., 2011)). The 

ground consisted mainly of dry sandy soil. The measurement platform was at 10 m height, 

thus about 4 m above the canopy. No turbulence measurements were available. A detailed 

assessment of surface exchange was therefore not possible. Fortunately, the comprehensive 

set of air chemical measurements allowed a detailed analysis of the HONO daytime source 

and its relation to NO2 and actinic flux.  

 

3 Objectives 

 

The overall aim of this thesis was to locate and quantify sources and sinks of HONO in rural 

forested areas. Other than in prior studies a stronger emphasis was placed on the influence of 

transport processes. Therefore, simultaneous measurements at different heights, to gain both 

temporal and spatial information, were planned. To achieve these overall goals, several sub 

goals have been defined, which are as follows: 

 

1) To characterize the precision of the LOPAP instruments by 

comparing them under field conditions. This is especially important 

for the validation of vertical mixing ratio differences. 

2) To quantify the HONO daytime source in rural forested environments 

and to evaluate if it is related (correlated) to a photochemical 

production of HONO from NO2. 

3) To exclude (as far as possible) proposed reactions which have 

negligible contribution to the HONO daytime source. 

4) To study the source and sink distributions within a forest canopy. Are 

the proposed sources in line with these distributions?  

5) To extract (as far as possible) which of the observed effects were 

caused by transport and which were caused by chemistry. 

6) To study the influence of relative humidity on HONO mixing ratios 

and provide tools to separate this influence from other influencing 

parameters.  
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4 Results  

 

The results are structured the following: 

A prerequisite, especially for studying the vertical mixing ratio differences, was to compare 

the LOPAPs side by side under field conditions. This is the first section as it contains 

important information for all other studies. The following three main parts of the thesis, the 

HONO daytime formation, the HONO vertical exchange and the influence of RH on HONO 

mixing ratios discuss the main results from the three manuscripts (Appendix B, C, D). 

 

4.1 Characterization of the LOPAPs 

The two LOPAPs used to measure vertical differences have been compared under field 

conditions (EGER IOP I¸Sörgel et al., 2011a). This was realized by mounting the external 

sampling units side-by-side (~ 50 cm distance) perpendicular to the main wind direction. The 

instruments were fed with the same reagent solutions via a T-piece. Calibrations and data 

processing (e.g. baseline fit, deleting unwanted peaks) were done by the two operators 

individually. As shown in Fig. 5 (insert) no systematic error was found (slope 0.97, intercept 

2.4 ppt) during dry conditions, thus the calibration and zero fit are robust although being 

processed by different operators. The instruments agreed within 12 % during dry conditions 

(two times standard deviation of the relative difference of the two instruments) which is 

within the estimated instrumental error (10-15 %, Heland et al., 2001). The physical (or 

chemical) reasons for the huge deviations between the two instruments during rainy and 

foggy conditions (indicated by visibility < 1000 m Fig. 5) are not clear yet. Potentially, the 

surfaces of the inlets (first centimeter of the hand-made stripping coils before contact with the 

sampling reagent) exhibited different wettability due to different roughness of the glass 

surface. During IOP I, HONO values were always above 15 ppt, which was suspected to be 

caused by interferences. However, values dropped below the detection limits (~2 ppt under 

these conditions) during measurements in a clean marine air mass with the same instruments 

in Spain (DOMINO), showing that in “HONO-free” background air no interferences exist 

which are not corrected by the two channel system.  
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Figure 5: Side-by-side measurements of the two LOPAP instruments from 27 September (noon) to 3 October 
2007 (noon) at the “Waldstein-Weidenbrunnen” research site. Relative differences of the HONO signals (black 
dots) and visibility range (red squares, dashed lines, maximum range 2000 m). The insert shows the regression 
obtained during dry conditions (N = 247) from 29 September (14:00 CET) to 2 October (10:00 CET) using 
standard major axis (SMA) regression. The upper panel shows the mixing ratios measured by the two LOPAP 
instruments. Missing values are due to zero air measurements and calibration of the LOPAP instruments. Taken 

from Sörgel et al., 2011a. 
 

4.2 Daytime source 

 

During daytime HONO is photolyzed to OH and NO. NO and OH react in a termolecular 

reaction which regenerates HONO. These reactions reach a photostationary state (e.g. 

Kleffmann et al., 2005). If the reaction of NO with OH would be the only HONO source 

during daytime, this cycle would not result in net OH radical formation. All recent studies 

measured HONO mixing ratios well above the photo stationary state (PSS), although only in 

few studies all quantities necessary to calculate the PSS were measured directly (summarized 

by Kleffmann, 2007; Sörgel et al., 2011b). During the DOMINO campaign all required 

quantities (NO, HONO, OH, j(HONO)) were measured directly, and the measurements were 

collocated. Measured HONO values were more than a factor of three higher than PSS values 

for most of the data (75 percentile). As OH measurements were possibly influenced by 
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interferences, the calculated PSS values represent rather upper limits. Thus, this study 

confirmed the existence of an additional daytime source. Furthermore, in this study the source 

strength of OH radical formation from HONO photolysis was compared to the “classical” 

primary OH source from ozone photolysis. Although the contribution of ozone photolysis was 

higher during intense UV insolation around noon, the integrated OH formation over the day 

was about 20 % higher from HONO photolysis. HONO was the most important primary OH 

radical source during the DOMINO campaign (Regelin, 2011).  

The additional daytime source can be calculated by combining known sources and sinks to a 

budget equation (Su et al., 2008b; Sörgel et al., 2011c). From this budget, the unknown 

HONO daytime source (Punknown) was derived, with the assumption dHONO/dt = 

P(roduction)-L(oss) = 0. The production terms consist of the dark heterogeneous formation 

(Phet), the reaction of NO with OH (PNO+OH) and the unknown source (Punknown) and therefore 

P = Phet + PNO+OH + Punknown. The loss terms are the deposition (Ldep), the photolysis (Lphot) and 

the reaction of HONO with OH and therefore L = Ldep+Lphot+LHONO+OH. Thus, the unknown 

source can be calculated as Punknown= L – (Phet+PNO+OH) + dHONO/dt. Hence, measured 

increases in concentrations (∆HONO/∆t > 0) mimic source terms, and decreasing 

concentrations (∆HONO/∆t < 0) mimic sink terms. As ∆HONO/∆t has a substantial 

contribution to the HONO budget (see Fig. 6) it was further analyzed. Firstly, to exclude 

additional source or sink terms simply caused by instrument variations, values of ∆HONO/∆t 

within the instrumental error (± 12 %) of the LOPAP have been omitted. The relative 

contribution of ∆HONO/∆t to the HONO budget was found to depend on the averaging time 

with the lowest contribution for 30 min averages as fluctuations are averaged out. 

Nevertheless, a higher time resolution of 5 min was chosen. Most of the ∆HONO/∆t values 

larger than the instrumental error of the LOPAP were caused by advection (simultaneous 

peaks e.g. in NOx, black carbon), where the arrival of the plume mimicked a source term 

whereas the fading mimicked a sink. Figure 6 shows the mean budget contribution of the 

different production (Phet, PNO+OH) and loss processes (Ldep, LHONO+OH, Lphot). Phet is the 

parameterized “dark heterogeneous” formation, which was parameterized from the nighttime 

increase of HONO mixing ratios (after Alicke et al., 2002). However, as discussed in detail by 

Sörgel et al. (2011c), it is questionable if these values are transferable to daytime conditions. 

This is because HONO is formed heterogeneously, and thus, the formation rate depends not 

only on the precursor (NO2) concentration but also on the available reactive surface in a given 

volume (surface to volume ratio; S/V). As the mixed volume (V) depends on vertical 

diffusivity, the S/V ratio in turn depends on atmospheric stability which is different during the 
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day and nighttime. During day, vertical mixing is typically enhanced (neutral or convective 

surface layer), which increases the mixed volume, and thus the S/V ratio becomes smaller. 

The gas phase reaction of NO with OH (PNO+OH) is the most important known formation 

reaction. The loss of HONO by deposition (Ldep) was parameterized in a simple way by 

scaling the deposition flux (deposition velocity times concentration) by the mixed layer height 

(after Harrison et al., 1996). As the loss by deposition occurs at surfaces (ground or aerosol) 

Ldep can also be regarded as a heterogeneous loss reaction which therefore is also sensitive to 

S/V. A constant mixed layer height of 1000 m was assumed for the parameterization. This 

may lead to an underestimation of the relative contribution of HONO loss by deposition in a 

shallow boundary layer, which might explain a “negative unknown source” in the morning 

and the afternoon (cf. Fig. 6). If wetting of surfaces in the morning and afternoon may be an 

alternative explanation is ongoing research. Nevertheless, the contribution of Ldep to the 

HONO budget is negligible during most of the day. Furthermore, the loss of HONO by the 

reaction of HONO with OH (PHONO+OH) is also almost negligible (< 5 % for all data). The 

dominating loss term during day is therefore photolysis (Pphot). The most important HONO 

formation term is Punkown.  

 

Figure 6: Contributions of production (bluish colours) and loss terms (hourly means 21st Nov. to 5th 
Dec.) as well as the unknown daytime HONO source Punknown. Taken from Sörgel et al., 2011c.  
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In order to improve the comparability with other studies (urban and remote regions) and to 

analyze the relation of Punknown to the most probable precursor NO2 and the actinic flux (light-

induced conversion) Sörgel et al. (2011c) introduced a normalization of Punknown by NO2. A 

very recent study about HONO daytime gradients used the same scaling approach (Wong et 

al., 2011b). It was shown (Fig. 7; Sörgel et al., 2011c) that the scaling efficiently removed the 

high HONO formation values caused by advection of polluted air in the morning. The 

normalization led to a slightly better linear correlation with the photolysis frequency of NO2 

(r² = 0.38 instead of 0.16). Furthermore, it provided evidence for the existence of an upper 

limit for NO2 conversion depending on light intensity (Fig. 7b; Sörgel et al., 2011c). The 

coefficient of determination could be further improved to 0.47 by restricting the data only to 

clear (dry) days and excluding the values influenced by advection (ΔHONO/Δt > relative error 

LOPAP, filled red dots Fig. 7). There might be several reasons for this weak correlation. 

Firstly, there are other local HONO sources like soil emissions (Su et al., 2011) or photolysis 

of adsorbed HNO3 (e.g. Zhou et al., 2011) which do not involve direct NO2 conversion. A 

hint in that direction might be that the highest conversion frequencies (NO2 to HONO in % h-1
 

Fig. 7b) were measured on a quite clean day with low NOx values. As important parameters 

(surface nitrate loading, content of photosensitizers on the surfaces, HONO soil emissions and 

vertical diffusivity) to quantify the source strength of these processes were not measured, only 

rough estimates of the contribution of these sources could be provided (Sörgel et al., 2011c). 

Secondly, NO2 and HONO exhibit different temporal variability, due to different chemical 

time scales. The NO2 lifetime with respect to photolysis is about a factor of three lower than 

that of HONO. On the other hand, the formation of NO2 by oxidation of NO (by O3 or HO2) is 

faster than the formation of HONO from NO2. Weaker correlations of HONO and NO2 (both 

daytime and nighttime) in distance to emission sources (cities) have been observed by 

Harrison et al. (1996). A very recent PhD thesis by Pöhler (2010) employed a DOAS with 

different light paths using tomography to infer two-dimensional trace gas distributions of 

HONO and NO2. HONO displayed a much lower spatial variability than NO2, presumably 

due to the slow heterogeneous formation (Pöhler, 2010). Thirdly, if HONO mixing ratios are 

governed by surface water absorption (and thus RH), the HONO signal but not the NO2 signal 

would be modulated by this effect. A detailed model approach which solves boundary layer 

dynamics, chemistry and effects of turbulence on chemistry as well as surface modifications 

(wetting) is required to solve this issue. 
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Figure 7: a) Unknown HONO daytime source (Punknown) in ppt h-1 versus j(NO2). b) Punknown normalized by NO2 
mixing ratios yielding a conversion frequency (% h-1). Figure a) contains only data points (N = 753) which could 
be normalized to NO2. Points where ΔHONO/Δt was larger than the relative error of the LOPAP (± 12 %) are 
marked as filled red points. Blue dashed lines are linear fits to the data yielding a) r² = 0. 16 and b) r² = 0.38. The 
grey dashed line in Fig. 7b presents an upper limit based on the mean of the five lowest points at (jNO2)min and 
five highest points at (jNO2)max. Taken from Sörgel et al. (2011c). 

 

Two reactions forming HONO via light-induced NO2 conversion were investigated in detail, 

as most parameters to calculate the HONO formation rate by these reactions were measured, 

i.e. the reduction of NO2 on irradiated soot (Monge et al., 2010) and the reaction of 

electronically excited NO2 with water vapor (Crowley and Carl, 1997; Li et al., 2008). The 

latter reaction, which forms HONO and OH in equal amounts, raised special attention and 

controversial discussion since the publication of Li et al. (2008). These authors found a rate 

constant for this reaction which was an order of magnitude higher than that originally 

measured by Crowley and Carl (1997) and confirmed by Carr et al. (2009). This higher value 

would have a substantial impact on the oxidation potential (Wennberg and Dabdub, 2008; 

Sarwar et al., 2009; Ensberg et al., 2010). During the DOMINO campaign the reaction of 

NO2* with water vapor was found to contribute less than 10 % to HONO formation even by 

taking the value of Li et al. (2008) as an upper limit (Sörgel et al., 2011c). A very recent study 

(Amedro et al., 2011) confirmed the lower value for the reaction rate constant measured by 

Crowley and Carl (1997) and Carr et al. (2009). Thus, this reaction contributed less than 1 % 

to Punknown. The same negligible contribution (< 1 %) was calculated for the reaction of NO2 

on irradiated soot for the conditions during DOMINO. Thus, for rural conditions (low NOx 

and black carbon) both reactions do not substantially contribute to HONO daytime formation.  
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4.3 HONO vertical exchange in a forest environment 

 

It is highly probable that HONO is formed heterogeneously mainly at ground surfaces both 

day and night. A forest provides a large surface area and, separated by the canopy, different 

environments with respect to light and humidity. During IOP I, HONO was measured just 

above the canopy (24.5 m) and close to the forest floor (0.5 m). The temporal evolution of the 

mixing ratios at the different heights and the corresponding mixing ratio differences have 

been analyzed with special emphasis on turbulent mixing (Sörgel et al., 2011a). For this 

detailed analysis the so called Golden Days of IOP I (20-25th of September 2007) where 

chosen. This was a warm and dry period between two rain events.  

The most astonishing but also clear result was that mixing ratio differences were around zero 

in the late morning to early afternoon (Fig. 8). Due to a longer lifetime of HONO (by a factor 

10 to 30) below canopy because of the shading by the canopy, huge concentration differences 

had been expected. This discrepancy could be explained by intense vertical mixing as 

indicated by the coupling regimes. The coupling regimes denote which part of the canopy is 

coupled to the air layer above, and thus indicates which part of the canopy takes part in the 

exchange of energy and matter (Thomas and Foken, 2007). During the period when 

concentration differences were close to zero the canopy was either fully coupled or coupled 

by sweeps with only intermittent decoupling of the subcanopy. Already in the afternoon 

(starting at 13:00 CET) the subcanopy becomes decoupled from the air layer above and 

mixing ratio differences increase. During this period mixing ratio differences were always 

negative (i.e. below canopy values higher than above) and exhibited low variability (Fig. 8). 

Around sunset the whole forest became decoupled from the air layer above and during night, 

wave motion dominated. Thus, vertical exchange was limited and different sources and sinks 

(above and below canopy) became obvious. After sunset, differences became even more 

negative (up to – 170 ppt), mainly caused by increasing values below canopy. In the absence 

of light (photolysis) this was attributed to local HONO formation below canopy (Sörgel et al. 

2011a). Around 21:00 CET the sign in mixing ratio differences changed due to increasing 

values above canopy. For some cases this could be attributed to advection of HONO-enriched 

air above canopy, which only partly penetrated into the canopy leading to mixing ratio 

differences up to ~240 ppt. The fact that advection became visible only after sunset can be 

related to the increasing influencing area due to the increase in HONO lifetime (from about 10 

min at noon to >> 1 h at night; cf. Fig. 3). The nearest (~ 30 km) relevant sources are the 

cities of Kulmbach and Bayreuth and the motorway A9 (9 km). Thus, taking a wind speed of 
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5 m s-1, transport from these sources would require a time of 100 min (> 2 h) and 30 min, 

respectively. Sörgel et al. (2011a) speculate if the constantly higher HONO values above 

canopy during the late night (apart from advection events) could be attributed to the wetting 

of the canopy due to water adsorption, caused by radiative cooling of the canopy top. Co-

adsorbing water replaces HONO at the surfaces, according to the mechanism provided by 

Trick (2004). The only clear influence of surface water was the scavenging of HONO at 

relative humidities > 95 %, which structured the HONO time series due to rain events 

associated with the occurrence of synoptic systems. Therefore, the interplay of HONO and 

RH was studied further with a tool for time series analysis (Sörgel et al., in preparation). 

 

 

Fig. 8. Box-and-whisker plot for coupling regimes (red open bars) and HONO mixing ratio differences (grey 
filled bars) for the five-day dry period 20–25 September 2007 at the “Waldstein-Weidenbrunnen” research site. 
Coupling regimes (right hand side) are: Wa (Wave motion ∼ no turbulent exchange), Dc (decoupled canopy ∼ 
whole canopy decoupled from the air layer above), Ds (decoupled subcanopy ∼ only subcanopy decoupled), Cs 
(coupled by sweeps ∼ canopy and subcanopy coupled by sweep motion) and C (fully coupled canopy). The 
upper panel shows the specific humidity difference between 21 m and the forest floor for comparison. The upper 
end of the boxes represents the 75th percentile, the lower end the 25th percentile and the line within the boxes 
the median. Whiskers denote the 10th (lower whisker) and 90th (upper whisker) percentiles. Outliers are marked 
as points (HONO difference) or squares (coupling regimes). If only whiskers appear, there are no other values 
between the values marked by the whiskers. For the boxes at 10:00 and 14:00 CET the median falls in line with 
the lower end of the boxes (Ds). Taken from Sörgel et al., 2011a. 
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4.4 Influence of RH on HONO mixing ratios 

 

 

Fig. 9. Simultaneous time series of HONO (right hand scales) at 0.5 m (lower graph, circles and lines) and 24.5m 
(upper graph, circles and lines), overlaid with a contour plot of the vertical profile of measured RH (left hand 
scale and color coded 50–92 %) for 23 September 2007 at the “Waldstein-Weidenbrunnen” research site. 
Missing values in the HONO measurements are due to zero air measurements. Sunrise and sunset (inferred from 
j(NO2) and global radiation measurements) are marked as vertical (orange) lines. The upper panel shows the 
mixing ratio differences between 24.5 m and 0.5 m (1HONO) and the coupling regimes in the forest. Taken from 
Sörgel et al. (2011a). 

 

In all time series (IOP I, IOP II and DOMINO) HONO seemed to be influenced by RH (co-

variation, signal dampening, increase or decrease correlated). An example is given in Fig. 9, 

where HONO measurements at two different heights were overlaid with a contour plot of the 

relative humidity profile on a clear and dry day (IOP I). The canopy height was 23 m. During 

night, HONO features at both heights seemed to be correlated to features in RH which extend 

throughout the canopy. In the morning, RH and HONO decrease due to increasing radiation. 

HONO mixing ratios decrease due to photolysis and RH due to surface heating. The peak in 

HONO and RH around noon was associated with passing clouds and a change in wind 

direction. The increase in HONO and RH in the late afternoon was caused by the decoupling 

of the forest and subsequent accumulation of HONO and water vapor emitted at the ground. 

The sharp increase of both quantities at 21:00 CET was caused by an air mass change. Thus, 
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for only one day several different correlations could be identified for different reasons (Sörgel 

et al., 2011a). This result stressed the importance to use tools for time series analysis in order 

to investigate causality between HONO and RH. 

Starting with “classical statistics” and taking all values from all campaigns, the linear 

correlation of HONO and RH was low (r=0.01). A first statistical analysis revealed that 

HONO values were log-normally distributed, whereas RH values were normally distributed or 

showed a bimodal distribution. Thus, for a linear correlation after Pearson the logarithmic 

HONO values have to be correlated with the RH values. This indeed improves the correlation, 

but mainly due to daytime data. Further improvement in the coefficient of determination was 

achieved by excluding HONO values measured in marine air masses during DOMINO which 

might be influenced by equilibrium with the sea surface (Wojtal et al., 2010). Nevertheless, 

taking only nighttime data, the coefficient of determination is still low (r² ~ 0.13).  

Part of the influence on the relation of HONO and RH might arise from variations of the 

HONO precursor NO2, but correlations of HONO and NO2 were weak as well, especially for 

IOP I (r² = 0.14 at 24 m and r² = 0.05 at 0.5 m). The very weak correlation of HONO with its 

precursor NO2 was the main motivation to think about the influence of RH. Although 

correlations of HONO with NO2 were higher for IOP II and particularly good for DOMINO 

(r² = 0.44), this reflects more a tendency (higher NO2 = higher HONO) than a strong 

correlation. This might be attributed to the rather slow formation of HONO from NO2 (max. 2 

% h-1). This means that HONO mixing ratios build up slowly are thus more evenly 

distributed, whereas NO2 values might be quite variable as indicated by the results of Pöhler 

(2010) and Harrison et al. (1996). Therefore, HONO values were not normalized to NO2 to 

avoid disturbances of the HONO to RH correlation due to variations in NO2. Usually, 

normalization to NO2 is done to account for changes in boundary layer height and precursor 

concentration. Some shortcomings of this scaling approach have already been discussed by Su 

et al. (2008 a). By applying Singular System Analysis (SSA), correlations on different time 

scales can be found and may possibly allow for a separation of HONO and NO2 and HONO 

and RH correlations. SSA (e.g. Elsner and Tsonis, 1996) was chosen for this analysis as it 

provides the opportunity to reconstruct the time series by using signal contributions associated 

to certain time scales. This is necessary to remove the signal contributions of the diurnal cycle 

of HONO and RH and the long term trends in order to identify correlations on shorter time 

scales which might be a hint at the interaction due to fast physical processes 

(adsorption/desorption).  
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The SSA analysis of the HONO and RH time series revealed that the main signal 

contributions were the long term trends and the diurnal cycle (about 98 % for RH and 50-80 

% for HONO). Therefore, it was rather challenging to extract correlations from the remaining 

signal as this contained both signal and noise. However, as can be seen in Fig. 10, the diurnal 

cycle and the long term trends are effectively removed by this technique. Only during the 

rainy periods (RH > 95 %) with almost constant values (RH ~ 98 - 100 %, HONO ~ 15 – 40 

ppt) this method induced a non-existent diurnal cycle (Fig. 10, 18.09 - 19.09). Filtered time 

series (without long term trends and diurnal cycle) of HONO were weak but positively 

correlated to the filtered RH signals pointing to at least some influence of RH on HONO apart 

from diurnal cycle and long term trends.  

 

 

Figure 10: Upper left panel: HONO measured (black dots) and reconstructed time series (red line) using the long 
term trends and the diurnal cycle; upper right panel: measured RH (black dots) and reconstructed time series (red 
line) using the first 11 EOFs; lower panels: residuals after subtracting the reconstructed time series from the 
measured time series for HONO (left) and RH (right). Taken from Sörgel et al. (2012). 
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5 Conclusions and outlook 

 

It has been demonstrated that two different LOPAP instruments agreed within 12 % under 

field conditions with no systematic deviation and reached a detection limit of about 2 ppt. 

Therefore, these instruments can be regarded as reliable to study the vertical distribution of 

HONO (especially small mixing ratio differences during daytime). However, these 

instruments exhibited large relative deviations (up to 100 %) during rainy and foggy 

conditions. Thus, the LOPAP is not reliable under these conditions. Further experiments to 

ascertain the possible causes (physical or chemical) are needed.  

A detailed budget analysis (sources and sinks) for HONO has been conducted for the 

DOMINO campaign (Sörgel et al., 2011c). This analysis put special emphasis on discussing 

the uncertainties in the parameterization of the dark heterogeneous HONO formation for 

daytime conditions. As this reaction is heterogeneous, measured mixing ratios depend on the 

surface to volume ratio (S/V). This ratio itself depends on vertical diffusivity and thus on 

atmospheric stability. Another prerequisite is the deposition of the HONO precursor NO2 

which is also influenced by vertical diffusivity, but presumably in the opposite direction. As 

the reaction mechanisms and the reaction rates on most natural surfaces are not exactly 

known, they have to be parameterized from the nighttime conversion rates (Alicke et al. 

2002). These conversion rates are quite similar (0.4 -2 % h-1) for different environments 

(summarized by Su et al., 2008a; Sörgel et al., 2011a). The deposition of HONO in turn can 

be regarded as a heterogeneous loss process and therefore, also as sensitive to S/V. 

Furthermore, both formation and deposition might be influenced by the amount of water 

adsorbed on surfaces. Presumably, such changes in S/V and surface wetness were responsible 

for the “negative” unknown source in the early morning and the late afternoon, as this could 

be either caused by overestimation of the source or underestimation of the loss processes. As 

the contribution of these terms to the budget might be higher in the morning and evening, they 

may change the shape of the diurnal profile of Punknown. This may be critical for studies which 

try to identify the photochemical processes by correlation of HONO formation with different 

geometries of light (like for example Wong et al. (2011b) with irradiance and actinic flux). 

Therefore, the relative contribution of the dark heterogeneous HONO source and the 

deposition sink to the HONO budget during daytime should be addressed by modeling studies 

resolving vertical diffusivity.  

The most important HONO loss term during DOMINO was photolysis, and the most 

important source term was the unknown source, followed by the combination reaction of NO 
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with OH, which contributed less than one third of the HONO formation. The unknown 

daytime source has been further analyzed with respect to its light dependence and the 

influence of the most probable precursor NO2 (light-induced NO2 conversion). It was 

confirmed that the HONO daytime source is light-dependent, but correlations were found to 

be weak. A normalization of the unknown source with NO2 values was introduced, which 

improved the correlation. This indicates an influence of NO2 availability. The maximum 

coefficient of determination that was achieved by restricting the data to clear days and 

excluding values associated to advection events was 0.47. The weak correlation (r²max = 0.47) 

of the normalized unknown source with light intensity might be caused by the presence of 

additional HONO sources which do not involve direct NO2 conversion such as HNO3 

photolysis (e.g. Zhou et al., 2011) and soil emissions from microbiological activity (Su et al., 

2011). Again, a model approach is required which can estimate the “real” source strength by 

taking vertical mixing and loss by photolysis (and to aerosols) into account. This source 

strength can then be compared to the source strength of possible ground sources. These 

include light-induced NO2 conversion on humic acids (Stemmler et al., 2006), HNO3 

photolysis at surfaces (e.g. Zhou et al., 2011), and HONO soil emissions (Su et al., 2011).  

Although the correlation of the normalized unknown source with light intensity was quite low 

(r²~ 0.4), an upper limit for light intensity dependent conversion was proposed. Two possible 

HONO formation pathways of light-induced NO2 conversion (Li et al., 2008; Monge et al., 

2010) were found to be negligible HONO sources (< 1 % contribution) for the conditions 

during DOMINO (median NO2 < 1 ppb and median black carbon < 500 ng m-3), and therefore 

most rural sites. Furthermore, this study confirmed that reactions for nighttime formation of 

HONO involving NO were not of atmospheric relevance. The integrated primary OH 

formation due to HONO photolysis was about 20 % higher than that of ozone, thus 

confirming the importance of HONO as an OH radical precursor. 

The influence of vertical mixing on HONO mixing ratio differences was investigated in detail 

during EGER IOP I in and above a dense (LAI ~ 5) and tall (~ 23 m) forest canopy. Despite 

the light dependence of daytime HONO formation and the different HONO lifetimes above 

and below canopy due to photolysis, mixing ratio differences were around zero at noon. As 

the differences in lifetimes (about 10 min above and up to 250 min below canopy around 

noon) were rather large, this unexpected result stressed the importance of the influence of 

vertical mixing on HONO mixing ratios. Identification of the coupling regimes (Thomas and 

Foken, 2007) has been found to be a very useful tool to study the influence of vertical 

exchange on mixing ratio differences. Even though the original paper about coupling regimes 
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(Thomas and Foken, 2007) already recognized the potential influence of coupling on reactive 

trace-gas species, this was the first study to use the coupling tool for interpretation of vertical 

mixing ratio differences. The importance of considering coherent exchange for the 

interpretation of gradients of trace gases in forests was recently highlighted by Steiner et al. 

(2011). Also recently, Foken et al. (2011) extended the use of this coupling scheme for the 

interpretation of other reactive and non-reactive trace-gas gradients as well as trace-gas fluxes 

and provided a more general discussion.  

It has been shown by this study (Sörgel et al., 2011a), that the mixing ratio differences of 

HONO were caused by different sources and sinks within and above the forest canopy, but 

that the magnitude of the differences depends on the vertical mixing. For example, around 

noon large differences were expected due to light dependent sources and sinks and shading by 

the canopy, but they were offset by efficient vertical exchange. The decoupling of the 

subcanopy in the early afternoon led to a faster increase in mixing ratios below canopy. The 

mixing ratio differences increased further around sunset when the whole forest was decoupled 

from the air layers above. HONO mixing ratios were up to 170 ppt higher below canopy, 

which was attributed to local formation below canopy. In the later night the sign of the mixing 

ratio differences changed due to increasing values above canopy. For some cases, especially 

extremely high mixing ratio differences of up to 240 ppt, this could be attributed to advection 

of HONO enriched air which only partly penetrated the canopy due to decoupling of the 

forest canopy. Therefore, the coupling regimes can be denoted as an essential tool for 

studying vertical trace gas profiles in tall vegetation. Furthermore, these results have 

important implications for above-canopy concentration and flux measurements, as it has been 

shown that sources and sinks below canopy or in the canopy are often decoupled from the 

measurements above canopy.  

Advection of HONO enriched or HONO depleted air masses can cause misinterpretations if 

attributed to local chemistry or physical processes. The analysis of the temporal and the 

corresponding spatial scales is useful to identify possible sources (e.g. traffic, industry) and 

sinks (e.g. ocean surface) other than the local sources and sinks. The area of influence 

increases with increasing lifetime and horizontal wind speed. The lifetime of HONO is 

limited by photolysis during daytime, whereas during nighttime it is only limited by 

deposition (which is comparatively slow). Only around noon when HONO lifetimes are 10 to 

15 min the measurements reflect local conditions. Decoupling of the subcanopy was 

identified as an opportunity to study local HONO formation despite long lifetimes of HONO 

in the early night (Sörgel et al. 2011a). Under these conditions, local formation below the 



Synthesis  30 

canopy has been observed in the early night (Sörgel et al., 2011a). However, decoupling only 

limits but does not prevent vertical exchange, and therefore, advection in the later night can 

also be observed at the forest floor. Therefore, considering the HONO lifetimes and the 

corresponding spatial scales is necessary to elucidate “how local” the measurements are.  

The influence of relative humidity on HONO mixing ratios could not be fully elucidated and 

is subject to ongoing research. A prerequisite to study correlations of HONO and RH on 

timescales less than a day is to remove the diurnal cycle from the time series. Both HONO 

and RH are correlated due to the diurnal cycle but this is simply caused by radiation 

(photolysis for HONO and heating for RH). Removing the diurnal cycle and long term trends 

was achieved by using Singular System Analysis (SSA), a statistical tool for time series 

analysis. SSA was found to effectively remove the long term trends and the diurnal cycle, but 

the remaining signal also contains all noise components of the original signal. Therefore, 

correlations might be disturbed by the noise. HONO values were log-normally distributed, 

and RH values followed a normal or bimodal distribution. Thus, for a linear correlation after 

Pearson the logarithm of HONO values has to be correlated with RH. SSA clarified that the 

main signal contributions arise from the long term trends on time scales of synoptic systems 

and it was possible to quantify these contributions. For RH it was about 98-99 %, whereas for 

HONO it was about 80 %, maybe due to the more complex structure of the HONO signal. 

 

This study demonstrates the importance of considering atmospheric transport phenomena like 

vertical diffusion and horizontal advection for the interpretation of HONO measurements. If 

only one measurement height and thus only the temporal evolution is available, the 

interpretation of chemistry alone is ambiguous. For quantifying the source strength of HONO 

at the ground surface flux measurements are needed. Up to now, only a few studies measured 

HONO fluxes over grassland by the gradient method (Harrison et al., 1996; Stutz et al., 2002). 

Two very recent studies (Zhou et al., 2011; Ren et al., 2011) employed relaxed eddy 

accumulation (REA) to measure HONO surface fluxes, but both used inlet lines which may 

cause problems due to interactions of HONO with the surface of the inlet (Heland et al., 2001; 

Kleffmann et al., 2002). However, even with a “perfect” flux measurement the flux above a 

forest does not represent the surface source as there are various sources and sinks within the 

canopy. An “ideal” approach would be a flux profile consisting of eddy covariance (EC) 

measurements, but to date HONO measurement techniques are not sufficiently fast for EC 

measurements. Although experimentally and technically challenging, REA techniques will be 

available in the near future and will provide HONO flux measurement capabilities. If these 
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measurements are applied above tall vegetation the coupling regime of the canopy to the 

atmosphere has to be considered. Furthermore, in order to verify the budget terms of HONO 

during daytime, air chemistry models which parameterize heterogeneous HONO formation 

and take boundary layer dynamics as well as surface modifications (i.e. wetting) into account 

have to be developed. 
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Abstract  

During the DOMINO (Diel Oxidant Mechanism In relation to Nitrogen Oxides) campaign in 

southwest Spain we measured simultaneously all quantities necessary to calculate a 

photostationary state for HONO in the gas phase. These quantities comprise the 

concentrations of OH, NO, and HONO and the photolysis frequency of NO2, j(NO2) as a 

proxy for j(HONO). This allowed us to calculate values of the unknown HONO daytime 

source. This unknown HONO source, normalized by NO2 mixing ratios and expressed as a 

conversion frequency (% h-1), showed a clear dependence on j(NO2) with values up to  
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43 % h-1 at noon. We compared our unknown HONO source with values calculated from the 

measured field data for two recently proposed processes, the light-induced NO2 conversion on 

soot surfaces and the reaction of electronically excited NO2* with water vapour, with the 

result that these two reactions normally contributed less than 10 % (< 1% NO2 + soot + hν; 

and < 10 % NO2* + H2O) to our unknown HONO daytime source. OH production from 

HONO photolysis was found to be larger (by 20 %) than the “classical” OH formation from 

ozone photolysis (O(1D)) integrated over the day. 

 

1 Introduction  

 

Nitrous acid (HONO) is an important OH radical precursor which serves as the “detergent” of 

the atmosphere due to its oxidizing power. Besides its importance for the atmospheric 

oxidation potential, HONO is part of acid and nutrient deposition to the biosphere. Moreover, 

growing concern exists about possible health effects due to the formation of nitrosamines 

(Hanst et al., 1977; Pitts et al., 1978) where HONO acts as the nitrosating agent, especially in 

indoor environments after wall reactions of HONO with nicotine (Sleiman et al., 2010). 

Despite three decades of research since the first unequivocal detection of HONO in the 

atmosphere (Perner and Platt, 1979), HONO formation processes in the atmosphere are still 

under discussion, especially during daytime where large discrepancies were found between 

mixing ratios calculated from known gas phase chemistry and measured daytime mixing 

ratios (Kleffmann et al., 2005). In the absence of light, the most favoured formation reaction 

is the heterogeneous disproportionation of nitrogen dioxide (NO2):  

 

2NO2 + H2O →  HONO + HNO3                    (R1) 

 

This reaction has been extensively studied on different materials like fluorinated polymers 

and different types of glass as reviewed by Lammel and Cape (1996), but also on building 

materials like concrete (Trick, 2004). It was found to be first order in NO2 and water vapour 

(Sakamaki et al., 1983; Svennson et al., 1987; Pitts et al., 1984; Jenkin et al., 1988). A 

mechanism involving the formation of the NO2 dimer (N2O4) in the gas phase was proposed 

(Finlayson-Pitts et al., 2003), but is not important in the real atmosphere (Kleffmann et al., 

1998; Gustafsson et al., 2008). Recently, evidence for a mechanism involving reaction 

between adsorbed NO2 and H (NO2 (ads) + H(ads) → HONO (ads)) present on the surface 
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following the dissociation of chemisorbed H2O was found in a study on mineral dust particles 

with isotopically labelled water (Gustafsson et al., 2008), but the results are probably not 

transferable from laboratory to field conditions (Finlayson-Pitts, 2009). The 

disproportionation reaction (R1) was found to be catalysed by anions at the surface of droplets 

(Yabushita et al., 2009; Kinugawa et al., 2011). In the absence of light, HONO formation 

from NO2 on soot deactivates quite rapidly and thus was concluded to be less important for 

atmospheric HONO formation except for freshly emitted soot (Kleffmann et al., 1999, Arens 

et al., 2001; Aubin and Abbatt, 2007). The mechanism was summarized as the reaction (R2) 

of reducing organic compounds {C-H}red with NO2 (Gutzwiller et al., 2002a). A reaction 

similar to (R2) was postulated for the aqueous phase (Gutzwiller et al., 2002b; Ammann et al., 

2005), but only proceeds at a relevant rate at high pH levels, since it is based on the well-

known charge transfer reaction of phenolate with NO2. 

 

NO2 + {C-H}red → HONO + {C}ox                  (R2) 

 

NO + NO2 + H2O → 2 HONO                 (R3) 

 

HNO3 (ads) + NO (g) → HONO + NO2                (R4) 

 

The reactions (R3) (via the intermediate N2O3) and (R4) proposed from field measurements 

(Calvert et al., 1994; Andres-Hernandez et al., 1996; Saliba et al., 2001) could neither explain 

laboratory results under low NOx conditions (Svensson et al., 1987; Jenkin et al., 1988; 

Kleffmann et al., 1998; Kleffmann et al., 2004;) nor field experiments with low NO mixing 

ratios (Harrison and Kitto, 1994; Alicke et al., 2003; this study).  

 

During daytime the dominant sink for HONO is photolysis according to (R5), which forms 

OH.  

 

HONO + hν  → NO + OH               (R5) 
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An additional sink is the reaction of HONO with OH (R6). 

 

HONO + OH → NO2 + H2O                           (R6) 

 

The back reaction (R7) regenerates HONO. 

 

NO + OH + M → HONO +M                (R7) 

 

At high insolation, (R5)-(R7) are supposed to be in a photostationary state (PSS) (Cox, 1974; 

Kleffmann et al., 2005). Only few studies (Kleffmann et al., 2005; Acker et al., 2006) 

measured all quantities necessary to calculate the photostationary state (no net OH formation), 

some with j(HONO) calculated from UV measurements (Ren et al., 2003; Ren et al., 2006). In 

all these studies measured HONO values exceeded the HONO values calculated from PSS. 

The “dark” heterogeneous formation (via (R1)/(R2)) was too slow (20-60 times) to explain 

this discrepancy (Kleffmann et al., 2003; Kleffmann et al., 2005). This stimulated laboratory 

studies about a light-induced conversion of NO2 to HONO or other photolytic sources of 

HONO as recently summarized by Kleffmann (2007). There are a variety of proposed sources 

dealing with light-induced NO2 reduction including NO2 reduction on irradiated mineral 

surfaces like TiO2 (Gustafsson et al., 2006; Ndour et al., 2008). Many studies focussed on the 

reduction of NO2 involving organic photosensitizers (George et al., 2005) like hydrocarbons 

on soot (Monge et al., 2010) or humic acids (Stemmler et al., 2006; Stemmler et al., 2007).  

As already proposed from smog chamber experiments (Killus and Whitten, 1990), photolysis 

of deposited HNO3/nitrate on surfaces was suggested as a daytime HONO source for rural 

forested environments by Zhou et al. (2002a, 2002b, 2003) and Raivonnen et al. (2006). This 

mechanism is still controversial since the photolysis of HNO3 was not found to be a 

photolytic source of HONO in chamber experiments (Rohrer et al., 2005), and quantum yields 

for HNO3/nitrate photolysis are too low in the gas phase and in solution (Kleffmann, 2007). 

The photolysis of HNO3 might be enhanced at surfaces (Finlayson-Pitts, 2009) or via organic 

photosensitizers as speculated by Kleffmann (2007). Recent studies showed the enhanced 

light absorption of surface adsorbed HNO3 compared to the gas phase (Zhu et al., 2008; Zhu 

et al., 2010), and thus higher photolysis rates of adsorbed HNO3. These laboratory studies 

identified NO2* as the main photolysis product. Zhou et al. (2011), who found that their 

HONO daytime source is correlated to the product of surface nitrate loading and the 
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photolysis frequency of HNO3, concluded that HONO formation by HNO3 photolysis at the 

surface occurs via the mechanism proposed by Stemmler at al. (2006). 

A direct HONO source is the photolysis of nitrophenols (Bejan et al., 2006) depending on 

pollution levels which govern the formation of nitrophenols.  

The contribution of the reaction of electronically excited NO2* with water vapour (R8) to the 

oxidation capacity of the troposphere was investigated in recent modelling studies (Wennberg 

and Dabdub, 2008; Sarwar et al., 2009; Ensberg et al., 2010). These studies focussed on 

ozone formation and concluded that there is an impact on oxidant formation for high NOx 

emissions when using the rate constant of Li et al. (2008) for reactive quenching of NO2*. 

Even with low NOx emissions the influence is still noticeable, whereas using the rate constant 

of Crowley and Carl (1997) the impact is negligible. The portion of the reactive quenching of 

NO2* by H2O (and thus the rate constant of (R8), k8) is still under discussion (Carr et al., 

2009; Li et al., 2009; Fang et al., 2010; Blitz, 2010). In their laboratory study, Crowley and 

Carl (1997) did not observe any OH production via (R8) and thus derived an upper limit for 

the reactive quenching of NO2* by H2O of k8 = 1.2 x 10-14 cm³ molecules-1 s-1. A recent study 

by Carr et al. (2009) confirmed these findings. In contrast to these studies which used 

unfocused laser beams, Li et al. (2008) observed OH production and report a one order of 

magnitude higher value for k8 = 1.7 x 10-13 cm3 molecules-1 s-1.  

 

NO2* + H2O → HONO + OH                (R8) 

 

In this study we quantify the gas phase photostationary state for HONO from measured values 

in Spain, calculate the values of the unknown HONO daytime source, and compare the latter 

with HONO formation from (R8) and the light-induced NO2 conversion on soot (Monge et 

al., 2010).  
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2 Experimental  

 

The Diel Oxidant Mechanism In relation to Nitrogen Oxides (DOMINO) campaign took 

place at the “Atmospheric Sounding Station - El Arenosillo”, a platform of the Atmospheric 

Research and Instrumentation Branch of the Spanish National Institute for Aerospace 

Technology (INTA) dedicated to atmospheric measurements in the southwest of Spain (37° 

05’ 48.03’’ N, 6° 44’ 07.47’’ W). The measurement site was about 300 m inland from the 

coast of the Atlantic Ocean in a large area of uniform pine (Pinus pinea L.) forest with sandy 

soil. Only sparse buildings and streets were located around the site. The average canopy 

height was about 6 m. The leaf area index (LAI) for this forested area is about 1-1.5 

(Gonçalves et al., 2010). About 15 kilometres to the northwest is the industrial area of 

Huelva, with refineries and other heavy industry. The metropolitan area of Seville is about 70 

km to the east-north-east. The campaign took place from mid November to mid December 

2008. 

Measurements of HONO were conducted at a height of 10 m above ground (~ 4 m above 

canopy) on a scaffold and at 1 m above ground, by commercial LOPAP instruments (LOng 

Path Absorption Photometer, QUMA Elektronik & Analytik, Wuppertal, Germany). The 

LOPAP is based on a wet chemical technique, with fast sampling of HONO as nitrite in a 

stripping coil and subsequent detection as an azo dye using long path absorption in 2.4 m long 

Teflon AF tubing. A detailed description of the instrument has been given by Heland et al. 

(2001) and Kleffmann et al. (2002). The instruments were placed outside directly on the 

scaffolds in ventilated aluminium boxes without temperature control. The temperature of the 

stripping coils was kept constant at 20 °C by thermostats to assure constant sampling 

conditions. The overall relative error of the LOPAP instruments was found to be 12 % in a 

recent side by side intercomparison in the field (Sörgel et al., 2011). Detection limits during 

DOMINO, calculated as 3 σ of the noise during zero air measurements, were between 1 and 

2.5 ppt.  

The instrument used to measure NOx was a high resolution and high sensitivity 

chemiluminescence detector (ECO-Physics CLD 790 SR, ECO-Physics, Dürnten, 

Switzerland) which carries out simultaneous in situ measurements of NO and NO2. NO is 

measured directly, however, NO2 is measured indirectly after conversion to NO using a blue 

light converter which is a solid state photolytic converter (Droplet Measurement 

Technologies, Boulder, Co, USA). A detailed description of the instrument, the calibration 
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techniques and the error calculation has been given by Hosaynali-Beygi et al. (2011). Air was 

sampled through a polytetrafluoroethylene (PTFE) inlet line which was mounted on top of a 

scaffold at the measurement site at a height of 10 m above the ground. From there an inlet line 

which consisted of 1/2" PTFE tubing was installed to the container. The last meter of the inlet 

line consisted of 1/4" PTFE tubing. The total uncertainty for the original 1 s data (at 2σ) based 

on the calculations of precision and accuracy is 6.04 ppt + 5 % of reading for NO and 8.29 ppt 

+ 8 % of reading for NO2 measurements. The residence time in the tubing was about 3 

seconds. The shift in the tubing due to the reaction of NO with O3 was thus less than 5 % for 

NO and less than 2 % for NO2 during the campaign. 

OH was measured by Laser Induced Fluorescence (LIF) with the “HORUS” (HydrOxyl 

Radical measurement Unit based on fluorescence Spectroscopy) instrument (Martinez et al., 

2010). The detection system was placed next to the LOPAP on top of the scaffold (10 m). The 

measurement uncertainty was ±18 %. Measured OH values present an upper limit due to 

interferences which can be up to a factor of two for some conditions (H. Harder, personal 

communication, 2011). The inlets for HONO, NOx and HOx measurements were collocated at 

10 m above ground on the scaffold.  

NO2 photolysis frequencies j(NO2) were measured by filter radiometers (Meteorologie 

consult, Königstein, Germany) on top of the scaffold, with an uncertainty of ± 5%. The 

HONO photolysis frequency (j(HONO)) was calculated by multiplying j(NO2) with a factor 

of 0.175 (Trebs et al., 2009). By comparing different parameterizations (Kraus and 

Hofzumahaus, 1998; Trebs et al., 2009), the uncertainty for the calculation of j(HONO) was 

estimated to be 5 %. The overall (4 π) photolysis frequency was calculated by increasing 

values of the downwelling radiation by 5 %, i.e. the portion of the upwelling radiation (albedo 

of UV radiation) at this site (Cancillo et al., 2005). 

Photolysis frequencies for O(1D) formation (j(O(1D)) were calculated using the TUV model 

(Version 4.1, e.g. Madronich et al., 1998) taking the ozone column from the NASA webpage 

(http://jwocky.gsfc.nasa.gov/teacher/ ozone_overhead.html).We firstly derived a factor for 

scaling modelled j(NO2) to measured j(NO2). This factor was then applied for scaling 

modelled j(O1D).  

Meteorological parameters like temperature, relative humidity (RH), atmospheric pressure, 

wind speed and wind direction were measured with a Vaisala WXT510 (Vaisala, Helsinki, 

Finnland) meteorological station on top of the MoLa (Mobile Laboratory) inlet system, which 

was at 10 m height 10 m southeast of the scaffold. For details see Diesch et al. (2011). 
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MoLa measured ozone by UV absorption with the “Airpointer” (Recordum, Mödling, 

Austria), water vapour mixing ratios by infrared absorption (LICOR 840, Li-COR, Lincol, 

USA) and black carbon with a Multi Angle Absorption Photometer (MAAP, Model 5012, 

Thermo Fischer Scientific, Whatman, USA). 

 

 

3 Results and discussion  

3.1 Meteorological and chemical conditions  

 

Figure 1 gives an overview of meteorological and chemical measurements during the 

experiment in November/December 2008. In the beginning of the campaign there was a fair 

weather period with moderate (about 3 m s-1) north-easterly winds (from inland Seville 

region). On November 24, the wind direction changed to northwest (along the coast from 

Huelva). From the 28th to 30th November, clean marine air with some plumes arrived at the 

site from the west. This was also the only period with rainfall, and HONO values were often 

around the detection limit (2 ppt). Ozone mixing ratios were about 30 ppb and showed a 

diurnal variation except for the clean air period with higher values (40 ppb) and no diurnal 

variation. A more detailed analysis of the ozone behaviour and the different wind sectors has 

been given by Diesch et al. (2011). 
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Figure 1: Overview of meteorological (RH, wind speed and wind direction) and chemical quantities (O3, NO, 
NO2, HONO, HONOPSS (calculated), HONO/NOx and HONO/NO2 ratios and j(HONO)).  
 
 

3.2 Photostationary state (PSS) 

3.2.1  Calculating the photostationary state/gas phase 

 

Regarding only the well-established gas phase formation (R7) and gas phase sink processes 

((R5) and (R6)) one can calculate the photostationary state (PSS) mixing ratio of HONO 

(Cox, 1974; Kleffmann et al., 2005), 
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[HONOPSS] is the equilibrium concentration, [NO] and [OH] are the measured NO and OH 

concentrations, and j(HONO) is the photolysis frequency of HONO. Rate constants for the 

termolecular reaction (R7) were calculated at atmospheric pressure from the fall-off curves 

(high and low pressure limit rate constants) according to the formulas given by the respective 

references (Atkinson et al., 2004; Sander et al., 2006). Values of k7 differed by 24 % 



Appendix B   51 

Atmos. Chem. Phys., 11, 10433–10447, 2011 

(constantly over the temperature and pressure range of our study): from IUPAC (Atkinson et 

al., 2004) k7,(298 K) = 9.8 x 10-12 cm3 molecules-1 s-1 and from JPL (Sander et al., 2006) k7,(298 K) 

= 7.4 x 10-12 cm3 molecules-1 s-1 . The calculated JPL value is consistent with the value 

(k7,(~298 K) = (7.4 ± 1.3 ) x 10-12 cm3 molecules-1 s-1) measured directly at atmospheric pressure 

by Bohn and Zetzsch (1997). We therefore prefer this value and use it for our calculations of 

the PSS. For the bimolecular reaction of HONO and OH (R6), a rate constant of k6,298 K = 6.0 

x 10-12  cm3 molecules-1 s-1 was taken from Atkinson et al. (2004).  

Uncertainties in the PSS mainly originate from OH measurements with an accuracy of  

± 18 %. This has some influence on HONO formation via (R7) but not much influence on the 

loss term, since HONO loss via (R7) was mostly less than 5 % of the total loss ((R5) + (R6)) 

during the whole campaign. As OH measurements may possibly suffer from interferences, the 

[HONOPSS] values are rather an upper limit. As a consequence, the unknown HONO source 

discussed in Sect. 3.3 is rather a lower limit. There is also some uncertainty in the j(HONO) 

values since the portions of the upwelling part of the radiation measured at the site were about 

0.3-0.5 of the downwelling (direct + diffuse). These high albedo values were presumably 

caused by the white container roofs and the aluminium scaffold below the sensor. As the 

minimum HONO lifetime (inverse photolysis frequency) is about 15 min around noon, our 

measurements at the 10 m scaffold do not reflect the local situation but an integration over a 

“footprint area” (Schmid, 2002; Vesala et al., 2008). Therefore, we chose an albedo value for 

UV radiation of the surrounding pine forest of 0.05 (Cancillo et al., 2005) which is more 

representative. 
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Figure 2: Daytime cycles of a) measured HONO mixing ratios, HONOmeas b) calculated HONO mixing 
according to Eq. (1), HONOPSS c) NO2 and d) NO mixing ratios as well as e) HONO/NOx ratios with the value 
of 0.8 % for direct emissions (Kurtenbach et al., 2001) marked as black line and black carbon concentration f). 
The boxes and whiskers represent a one hour time interval (centred in the middle) of five minute data (22-72 
data points) of 7 cloud free days (21 ,22, 23, 25, 26, 27th November and 2nd December). The upper ends of the 
boxes represent the 75th percentile, the lower bounds the 25th percentile and the line within the boxes the median. 
The upper whisker marks the last point within the 90th percentile and the lower whisker that of the 10th 
percentile. Data points outside the 10th and 90th percentile are marked individually as dots. 
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Figure 2 summarizes the diurnal courses of HONO and NOx for 7 cloud free days. On the 27th 

around noon, fair weather clouds were passing. These data points were rejected for further 

analysis to exclude effects from fluctuations in j(HONO). On 2nd of December, data was taken 

from a second LOPAP at 1 m height as there were no data available from the 10 m 

instrument. Both instruments have been demonstrated to agree within 12 % under dry field 

conditions in side-by-side measurements (Sörgel et al. 2011). Assuming efficient vertical 

mixing during the day, HONO mixing ratios at 1 m and 10 m height can be expected to be 

similar (Sörgel et al., 2011).  

The portion of HONO formed by known reactions in the gas phase ([HONOPSS], Fig. 2 b) is 

not negligible. The median contribution is 20 % (25 percentile is 13 %) of the measured 

HONO mixing ratios. On the other hand, the gas phase formation can explain only part of the 

measured HONO, as 75 % of the [HONOPSS] values contribute less than 30 % to the 

measured values. HONOmeas, HONOPSS, NO and NO2 have a similar diurnal cycle with the 

most pronounced feature being the maximum values around 9:00 UTC. This could be 

explained by local emissions which were trapped in the stable boundary layer before the 

breakup of the inversion in the morning. In the afternoon (15:00-16:00), this peak occurs less 

pronouncedly in NO and NO2 but very clearly in the PSS values, as OH values are about 

twice (~ 3x106 molecules cm-3) those at 9:00. From Figs. 2 b and d one can infer that 

[HONOPSS] values are correlated to NO mixing ratios (r²=0.78). Correlations to other input 

parameters of the PSS are low ([OH] r² = 0.006; j(HONO) r² = 0.01). Therefore, NO 

availability seems to be a driving force for HONO gas phase chemistry. Measured HONO 

mixing ratios (Fig. 2a) have a coefficient of determination  

r² = 0.49 with [NO2], and r²= 0.36 with [NO]. The relation of the HONO formation rate 

(which is more appropriate than HONO mixing ratios) and NO2 is discussed in detail in 

chapter (3.3). 

HONO/NOx ratios reach their daytime maximum in the early afternoon with median values 

around 4 % (Fig. 2 e), implying efficient NOx conversion. On the other hand, the maximum 

can also be attributed to sources independent from ambient NOx values such as soil emissions 

(Su et al., 2011), and HNO3 photolysis at surfaces (Zhou et al., 2011), which are not affected 

by the declining NOx values in the early afternoon. 
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3.2.2 Including the parameterized heterogeneous HONO formation into 

PSS calculations 

 

To sum up known HONO formation pathways, the heterogeneous formation ((R1)/(R2)) 

which was measured during nighttime may be  included as an additional source in the PSS 

(e.g. Alicke et al., 2002; Alicke et al., 2003) with the assumption that ((R1)/(R2)) continue at 

daytime in the same manner as at night.  

This assumption may not be true because even at night HONO formation (release) is not 

proceeding at the same rate all night. Studies about HONO fluxes (Harrison and Kitto, 1994; 

Harrison et al., 1996; Stutz et al., 2002; Stutz et al., 2004) explained that measured HONO 

formation is a net process (pseudo steady state) of release and deposition (see also discussion 

in Vogel et al. (2003)). A recent study by Wong et al. (2011) provides detailed information 

about HONO formation and deposition in the Nocturnal Boundary Layer (NBL) by 

combining vertical gradient measurements with 1-D model calculations. According to their 

results the ground surface accounts for most (~70%) of the HONO formation by NO2 

conversion but also for most of the loss (~70%). This confirms previous results from ground 

based field measurements (Harrison and Kitto, 1994; Stutz et al., 2002; Veitel, 2002; 

Kleffmann et al., 2003; Zhang et al., 2009; Sörgel et al., 2011), aircraft profiles (Zhang et al., 

2009) and modelling (Vogel et al., 2003) that the ground surface is a major source of HONO. 

Hence, turbulent exchange has a significant impact on near surface HONO mixing ratios as 

already proposed by Febo et al. (1996). These authors found a good correlation of HONO 

with radon, which is exclusively emitted from the ground. Furthermore, profiles from recent 

aircraft measurements were closely related to atmospheric stability with higher HONO values 

close to the ground and steeper gradients during stable conditions (Zhang et al., 2009). 

Therefore, mixing ratios are also expected to be controlled by the mixed volume which 

determines the surface to volume ratio (S/V). The conventional way to account for changes in 

S/V is the scaling of HONO or HONO production (PHONO) by NO2 or NOx (e.g. Alicke et al., 

2002; Alicke et al., 2003). It is assumed that NOx is also emitted close to the ground, and 

therefore is also sensitive to S/V and NO2 is the precursor of HONO.  As local sources/sinks 

of the compounds used for scaling (e.g. NOx) may disturb the HONO/NOx ratio, Su et al. 

(2008a) proposed a combined scaling using also black carbon (BC) and carbon monoxide 

(CO). To our knowledge, only two recent studies (Yu et al., 2009; Sörgel et al., 2011) tried to 

address S/V (ground and aerosol) directly by using inversion layer heights from SODAR 
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measurements to estimate mixed volumes. However, at night a stable boundary layer is 

formed where only intermittent turbulence provides some mixing (Stull, 1988). Therefore, a 

mixed volume cannot easily be defined. Apart from that, NO2 conversion frequencies 

measured in different environments around the world are all within a quite narrow range from 

0.4 to 1.8 % h-1 as summarized by Su et al. (2008a) and Sörgel et al. (2011). Conversion 

frequencies (FHONO, night) of 0.9-2 % h-1 for individual nights and a mean value of 1.5 ± 0.6 % 

h-1 were derived in this study using the approach of Alicke et al., (2002).  

In our study, nighttime HONO formation occurs presumably by (R1) and (R2). Formation 

through (R3), (R4) and (R7), all involving NO, is not considered to be important since HONO 

typically increased from sunset (17:30 UTC) to midnight, when NO mixing ratios were 

mostly (93 %) below the detection limit (LOD) of 6 ppt. Only 87 of 1232 five-minute mean 

values were above the LOD with median mixing ratios of 8 ppt, respectively. Therefore, a 

linear regression of the HONO/NOx ratio and HONO/NO2 ratio for all night time data yields a 

slope of 1.0 and an intercept of 0.02 % (r²=0.9986). Thus, both ratios can be regarded as 

equivalent during nighttime. There are no clear indications about the contribution of direct 

emissions. The closest emissions sources were the industrial area of Huelva (shortest distance 

~15 km) and the city of Huelva (city centre about 20 km).  Thus, transport times are in the 

range from one to two hours. Applying a conversion frequency for NO2 to HONO of about 1 

% h-1, which is within the range of published values (see above), yields a 1-2 % increase in 

HONO/NOx during the transport. Thus, HONO mixing ratios reaching the site are already 

two to threefold those originally emitted (HONO/NOx ~0.8 %, Kurtenbach et al., (2001)). 

Using the wind sector classification for the DOMINO site of Diesch et al. (2011) we found 

indeed lower HONO/NOx values at night for air masses passing Huelva than for other air 

masses from the continent. If this can be attributed to direct emissions is unclear. The 

transport occurs along the coast and therefore also mixing with HONO depleted marine air 

can cause lower HONO/NOx. HONO/NOx values for Huelva are indeed within the range of 

those for the “clean” marine sector. Therefore, we assume that (R1)/(R2) is the dominant 

nightime HONO formation pathway at the DOMINO site. 

 

Generally, a stable boundary layer is formed at nighttime in which turbulence is suppressed, 

whereas during daytime a mixed layer develops which is much more turbulent (e.g. Stull, 

1988). This has two opposing effects on (R1) and (R2) (especially if the ground surface is the 

dominant source). 
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1) During daytime turbulence is enhanced which means that NO2 is 

efficiently transported to the reactive surface. 

2) The surface to volume ratio (S/V) is lower during daytime, as the 

mixed volume increases (mixed layer), thus less reactive surface area 

per volume is available.  

 

If no deposition or advection occurs, HONO/NOx will rise continuously from sunset to 

sunrise, as photolysis is absent. We found decreasing HONO/NOx in the late night until 

sunrise which may point to the dominance of loss processes of HONO, e.g. deposition. 

Therefore, it is questionable if (R1) and (R2), i.e. heterogeneous formation, can simply be 

transferred to daytime conditions. As will be shown in Sect. 3.3 (Figs. 3 and 4), including this 

dark heterogeneous source as a daytime source in Eq. (3) to calculate the magnitude of the 

unknown daytime source Punknown yields mainly negative values in the early morning. This 

points to a missing sink like deposition (or a smaller source or both). Therefore, we did not 

consider this heterogeneous source for the PSS calculations.  

 

3.3 Missing daytime source 

 

As shown in Sect. 3.2 (Fig. 2) measured HONO values (HONOmeas) almost always exceed the 

[HONO]PSS values. Thus, an additional (unknown) HONO daytime source exists. Equation 

(2), which is similar to that of Su et al. (2008b), sums up the processes influencing HONO 

mixing ratios. 

 

hvdepOHHONOphotunknownhetemisOHNO TTLLLPPPP

kssources
dt

dHONO

++++−+++=

=−=

++ )()(

sin
                    (2) 

 

The source/production (Px) terms consist of the gas phase formation (PNO+OH, (R7)), the dark 

heterogeneous formation (Phet, via (R1)/(R2)) and direct emissions (Pemis). Punknown is the 

unknown HONO daytime source. The sink/loss processes (Ly) are photolysis (Lphot, (R5)), 

reaction of HONO with OH (LHONO+OH, (R6)), and dry deposition (Ldep). Note that the  terms 

for vertical (Tv) and horizontal advection (Th) can mimic source or  sink terms depending on 

the HONO mixing ratios of the advected air relative to that of the measurement site (and 
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height). If HONO has a ground source (or near surface aerosol source), Tv mimics a sink 

term, as vertical mixing dilutes HONO formed near the ground (see also discussion 3.2.2). 

The magnitude of Tv (without the contribution of the rising boundary layer in the morning) 

can be estimated by using a parameterization for dilution by background air provided by 

Dillon et al. (2002), i.e. Tv = k(dilution) ([HONO]-[HONO]background). Assuming a k(dilution) of 0.23 

h-1  (Dillon et al., 2002), a [HONO]background value of about 10 ppt (Zhang et al., 2009) and 

taking mean noontime [HONO] values of 35 ppt we can derive that Tv is about 4 ppt h-1. This 

value is about the same magnitude as Ldep as already suggested by Su et al. (2008b). 

Ldep can be parameterized by multiplying the measured HONO concentration with the dry 

deposition velocity and then scaling by the mixing height, in order to scale the loss at the 

ground to its contribution to total HONO loss in the mixed volume. Taking a deposition 

velocity of 2 cm s-1 (Harrison et al., 1996, Su et al., 2008b) and a mixing height of 1000 m, 

Ldep is in the order of a few ppt h-1 in our study which is indeed small (<3 % of Lphot 09:00-

15:30 UTC for 7 clear days N=312) compared to Lphot. As is discussed in more detail later, the 

relative contribution of Ldep might be higher in the morning and evening hours, as Lphot is 

smaller and a stable boundary layer is formed (mixed height << 1000 m, or stable conditions). 

Overall, Tv and Ldep are small loss terms (compared to Lphot). If their contributions are larger 

than assumed (especially in the morning and evening), Punknown is underestimated during these 

periods. 

Pemis cannot easily be determined, because its contribution varies with the source strength, the 

HONO lifetime, the horizontal wind speed and wind direction. Again, this contribution is 

assumed to be highest in the morning and in the evening (longer lifetimes = longer transport 

range). As there were no collocated emission sources, directly emitted HONO only 

contributed to the horizontal advection term (Th). Measured HONO/NOx ratios were always 

higher than those reported for direct emissions (max. reported 0.8 %) (Pitts et al., 1984; 

Kirchstetter et al., 1996; Kurtenbach et al., 2001; Kleffmann et al., 2003). Thus, no pure direct 

emissions were measured. Therefore, the contribution of directly emitted HONO to the 

HONO budget is uncertain, but Pemis can be assumed to be of minor importance around noon, 

as NOx values exhibit a minimum and show low variability. Furthermore, HONO lifetime is 

only about 15 min, so at typical wind speeds of about 3 m s-1, emissions have to occur within 

3 km to reach the site within their lifetime. Additionally, minimum values of HONO/NOx, 

which indicate fresh emissions, are independent of wind direction. 
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Simplifying Eq. (2), we can derive the unknown HONO daytime source, Punknown, from  

Eq.( 3).  

 

t

HONO
PPLLLP hetOHNOdepphotOHHONOunknown

∆

∆
+−−++= ++                                  (3) 

 

Punknow is not equal to OH production from HONO as for net OH formation a simple 

balancing of gas phase sources and sinks without further assumptions is applicable (POH = 

Lphot-LHONO+OH-PNO+OH). Mean diurnal contributions of the single terms and the values of 

Punknown are presented in Fig.3. PNO+OH, Lphot, LHONO+OH were calculated from measured values 

as already described for the PSS (Sect. 3.2.1). Phet was parameterized from the nighttime NO2 

conversion by ][)( 2, NOFtP nightHONOhet =  (Alicke et al., 2002) using FHONO,night = 1.5 % h-1
 

(Sect. 3.2.2). The differential dHONO/dt was substituted by the difference ∆HONO/∆t, which 

is the mixing ratio difference from the centre of the interval (5 min) to the centre of the next 

interval (LOPAP has 5 min time resolution) and accounts for changes in mixing ratio levels. It 

became obvious that point to point changes in HONO (∆HONO/∆t) were mostly smaller than 

the relative error of the instrument (± 12 %), and so we could not account for these changes. 

Values above this threshold were mainly caused by sharp HONO peaks which were 

accompanied with peaks in NO and BC. These plumes passed the site mainly in the morning 

hours (see Figs. 2, 3 and 4) with maximum HONO values comparable to the nighttime 

maxima (Fig.1). This indicates that especially in the morning, the advective term Th does play 

a role and the arrival of plumes at the site mimics a source term (∆HONO/∆t > 0), whereas 

their fading (∆HONO/∆t < 0) mimics a sink (Figs. 3 and 4). Also, the contribution of 

∆HONO/∆t to the HONO budget depends on the integration time of the HONO signal. 

Comparing 5, 15, 30 and 60 min values, the highest contribution is associated with the 5 min 

values and the lowest with the 30 min values (60 min values are possibly already influenced 

by the diurnal cycle). Besides less influence from advection, the lower contribution of 

∆HONO/∆t to the source and sink terms during the PRIDE-PRD-2004 experiment (Su et al., 

2008b) compared to our study could at least partly be caused by the lower time resolution for 

HONO measurements in that study.  
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Figure 3: Contributions of production (bluish colours) and loss terms (hourly means 21st  Nov. to 5th Dec.) as 
well as the unknown daytime HONO source Punknown from Eq. (3). 

 

The contributions of the terms of Eq (3) to the HONO budget (Fig.3) are as follows. The 

reaction between HONO and OH (LHONO+OH) has a very small contribution to HONO loss 

(mostly less than 5 % of Lphot). Dry deposition (Ldep) is also very small (mostly less than 3 % 

of Lphot). Around noon the main known HONO source is PNO+OH. Due to low NO2 levels 

around noon (see Fig.2) Phet is also very low during that period. The noon period is clearly 

dominated by loss via Lphot (the overall dominant loss process) and formation by the unknown 

HONO source (Punknown). Phet is higher in the morning and evening, respectively, provided that 

the parameterization (Sect. 2.3.2) is valid. Punknown is negative (Figs. 3 and 4) in the early 

morning and evening indicating a missing sink, since more HONO is formed by the “known 

sources” than is destroyed via photolysis. A likely sink is non-negligible deposition of 

HONO, whose relative contribution might be higher in the morning and evening hours (mixed 

height <<1000m). 
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Figure 4: a) unknown HONO daytime source (Punknown) in ppt h-1 for all days versus j(NO2). b) Punknown 
normalized by NO2 mixing ratios yielding a conversion frequency (% h-1). Figure a) contains only data points 
(N= 753) which could be normalized to NO2. Points where ∆HONO/∆t was larger than the relative error of the 
LOPAP (± 12 %) are marked as filled red points. Blue dashed lines are linear fits to the data with a) r² = 0. 16 
and b) r² = 0.38. The grey dashed line in Fig. 4a presents an upper limit based on the mean of the five lowest 
points at (jNO2)min and five highest points at (jNO2)max. 

 

Figure 4a shows all calculated values of the unknown HONO source (Punknown) in ppt h-1 (= 

7.37 x 103 molecules cm-3 s-1 at 1000 hPa and 273.15 K) versus j(NO2), as former studies (e.g. 

Vogel et al., 2003; Su et al., 2008b) proposed a correlation of this source to j(NO2). Values for 

Punknown range from about -700 to 1800 ppt h-1 (at noontime 10:00-14:00 UTC:  

105 ± 39 ppt h-1 for 7 clear days N= 195) which is within the range of other rural and urban 

studies (Kleffmann, 2007). The filled red dots in Fig. 4 are points where ∆HONO/∆t values 

were larger than the respective relative errors of the HONO measurements, and thus included 

in Eq.( 3).  Applying a linear fit to the data in Fig. 4 a yields a coefficient of determination (r²) 

of 0.16, and thus a rather weak linear correlation of Punknown versus j(NO2). 

As light-induced conversion of NO2 is thought to be the most probable source of HONO 

daytime formation, we normalized the unknown source by the NO2 mixing ratios to improve 

comparability to other environmental conditions (remote, urban, laboratory). This normalized 

Punknown presented in Fig. 4b has the same units (% h-1) as the nightime conversion frequency 

(FHONO,night) and can be referred to as a daytime conversion frequency assuming NO2 is the 

direct precursor as indicated by recent studies of light-induced NO2 conversion (e.g. Stemmler 

et al., 2006). Figure 4b indicates that NO2 levels indeed play an important role, as peak values 

of the daytime source, when scaled by NO2 mixing ratios, fall below an upper limit of 

conversion of Punknown,norm,max = (7490*j(NO2)-1.2) % h-1 . The coefficient of determination of 

the linear fit to all values (Fig. 4b blue dashed line) increased from 0.16 without to 0.38 with 

NO2 scaling. The correlation further improved to r² = 0.47 if only data from clear days were 
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taken and advection events were excluded (Fig. 5 insert).  Nevertheless, this means that less 

than 50 % of the variance is explained by the linear model of the normalized unknown HONO 

source increasing linearly with j(NO2). A possible reason are HONO sources which are 

independent of the NOx values such as HNO3 photolysis (Zhou et al., 2011) or soil emissions 

(Su et al., 2011).  These sources would cause an overestimation of the conversion frequencies 

at low ambient NOx levels. Nevertheless, normalizing by NO2 values seems to efficiently 

remove peak values in HONO formation during advection events.  

 

Figure 5: Diurnal cycle (only daytime) of the unknown HONO source (Punknown), normalized by NO2 mixing 
ratios from 7 cloud-free days (same as Fig. 2). To reflect more stationary conditions, only values 
where ∆ΗΟΝΟ/∆t was lower than the relative error of the LOPAP were included in this graph. The upper ends 
of the bars reflect the 75th percentiles, the lower bounds the 25th percentiles and the line in between the medians. 
The upper whiskers represents the 90th percentiles and the lower the 10th percentiles. The minimum number of 
data points per hour is 17 (7:00), the maximum is 59 (13:00), except for the values close to sunset (17:00) with 
only 8 data points. Orange dots and bars represent the mean and standard deviation of j(NO2) for these days, 
respectively. The insert shows the same data, but as correlation plot of normalized Punknown versus j(NO2). The r² 
of the regression line is 0.47.  

 

As can be seen from a comparison with the diurnal cycle of the normalized Punknown in Fig. 5, 

the contribution of Phet to daytime HONO is very low during most of the day. While the 

maximum dark heterogeneous conversion rates are around 2 % h-1, the normalized unknown 

source (presumably daytime NO2 conversion frequency) reaches median values of about 14 % 

h-1 around noontime, with maximum values up to 43 % h-1. Around noon Punknown is thus 

about 7 to 20 times faster than the parameterized nighttime conversion, which is in agreement 
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with Kleffmann et al. (2003), but a factor of three lower than found by Kleffmann et al. 

(2005). 

3.4 Potential contributions to the unknown HONO daytime source 

In this section we investigate the contributions of two possible reaction pathways recently 

investigated in laboratory studies following a light-induced conversion of NO2. 

3.4.1 NO2 conversion on irradiated soot 

 

We calculated HONO production rates from the reaction of NO2 on irradiated soot surfaces 

by extrapolating the reactive uptake coefficients (γ-values) derived in a laboratory study 

(Monge et al., 2010) to conditions we measured in the field. These γ-values were normalized 

to the Brunauer-Emmett-Teller surface (BET-surface) of the soot samples yielding a mass 

independent uptake (γ-BET). This γ-BET for NO2 was found to increase with increasing 

irradiance and with decreasing NO2 mixing ratios (Monge et al. 2010). Therefore, we used an 

extrapolation to lower NO2 values (<< 16 ppb) provided by D’Anna et al. (personal 

communication, 2010) leading to higher reactive NO2 uptake in our study (median daytime 

NO2= 0.9 ppb). For simplicity, we took a value of 100 m2 g-1 as the BET surface for soot, 

which is between the values (120-140 m2 g-1 from a propane flame) used by Monge et al. 

(2010) and a value of 97 m2 g-1 published for freshly emitted (81 m2 g-1 for oxidized) soot 

(Daly and Horn, 2009). It can be regarded as an upper limit for soot from natural and 

anthropogenic combustion (Rockne et al., 2000, Fernandes et al., 2003). Black carbon (BC) 

measurements were taken as proxy soot values. As a further simplification, we used a 

constant upper limit integrated (300-420 nm) photon flux of 1.91 x 1016 photons cm-2 s-1 

instead of varying it with the solar zenith angle. Therefore, the diurnal variation of the 

calculated values (Fig. 6) has to be viewed with caution. High values in the morning hours 

due to NO2 and BC peaks are actually lower due to lower irradiance values in the morning, 

and thus lower reactivity. Following Monge et al. (2010), we assumed a HONO production of 

60 % of the reactive NO2 uptake. Although we used upper limits for all calculations, the 

resulting values for the HONO production by this source (Fig. 6) are below 0.6 % of Punknown 

in 75 % of all cases (25 percentile = 0.2 % and median = 0.3 %). Thus, for conditions 

encountered during our campaign (daytime BCmedian ~ 300 ng m-3 and NO2,median ~ 0.9 ppb) this 

reaction has no noticeable influence on HONO daytime values. 
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3.4.2 Electronically excited NO2 reacting with water vapour 

In order to study the potential contribution of the controversially discussed reaction of 

electronically excited NO2 with water vapour (R8), we calculated its contribution to HONO 

and OH formation using the expression for OH production (= HONO production) from 

Crowley and Carl (1997). 

 

 ])[/][1/(])[( 2822 OHkMkNONOjR airexOH +=                      (4) 

 

jex(NO2) is the frequency of electronic excitation of NO2 beyond the dissociation threshold (> 

420 nm), and kair (~3*10-11, Crowley and Carl, 1997) the rate constant for non- reactive 

quenching with air. k8 is the rate constant for the reactive quenching with H2O, k8,Crowley = 1.2 

x 10-14
 cm3 molecules-1 s-1 according to Crowley and Carl (1997) and k8,Li = 1.7 x 10-13 cm3 

molecules-1 s-1 according to Li et al. (2008). We estimated jex(NO2) from measured j(NO2) by 

multiplying with a factor of 3.5 (Crowley and Carl, 1997) which is consistent with solar 

zenith angles < 70° (~ 60° around noontime).  

 

Figure 6: Comparison of different HONO daytime source strengths (blue: NO2 + soot + hν (Monge et al., 2010); 
red: NO2* + H2O (Li et al., 2008)) with the unknown HONO daytime source (black).  

 



Appendix B   64 

Atmos. Chem. Phys., 11, 10433–10447, 2011 

Referring to k8,Li as an upper limit, HONO and OH production rates calculated via Eq. (4) are 

in the order of a few ppt h-1. This contribution to Punknown is less than 8 % for 75 % of our data, 

with a median contribution of 4 %. Using k8,Crowley,  the values are one order of magnitude 

lower and thus negligible. These findings are in line with calculations from Crowley and Carl 

(1997) and with recent modelling studies (Wennberg and Dabdub, 2008; Sarwar et al., 2009; 

Ensberg et al., 2010) where this reaction was found to have a noticeable impact only at very 

high pollution levels, when using k8,Li. As we do not expect the value for k8 to be higher than 

reported by Li et al. (2008), we do not follow the approach of Wentzell et al. (2010) to 

explain the unknown HONO source by (R8) with varying k8 alone. A very recent paper by 

Amedro et al. (2011) confirms that the reaction of Li et al. (2008) followed a multi photon 

absorption process, and provides an upper limit for reactive quenching which is even lower 

than that of Crowley and Carl (1997). 

 

3.4.3  Important ground sources 

 

The proposed formation of nitrous acid on the ground follows two major pathways. The light-

induced NO2 conversion via organic photosensitizers (George et al., 2005; Stemmler et al., 

2006) and the microbiological formation of nitrite in the soil and the volatilization to the 

atmosphere as HONO (Kubota and Asami 1985; Su et al., 2011). As recent measurements of 

the photolysis of adsorbed HNO3 (Zhu et al., 2010) found NO2* as the main photolysis 

product, Zhou et al. (2011) assume that HONO formation by HNO3 photolysis also follows 

the mechanism of NO2 conversion provided by George et al.(2005) and Stemmler et al. 

(2006). Adsorbed HNO3 therefore acts as a reservoir or a source of NOx in rural environments 

(Zhou et al., 2002b, 2003, 2011). One might speculate if the reaction of NO2* formed by 

HNO3 photolysis at the surface with adsorbed water is also enhanced with regard to the gas 

phase reaction (R8), and thus can act as source of HONO from HNO3 photolysis. The relative 

contribution of HNO3 photolysis to direct NO2 conversion increases with surface nitrate 

loading and decreasing NOx values. This might be reflected in our measurements as some of 

the highest conversion frequencies (Fig. 4b) were measured on a “clean day” (NOx < 0.5 ppb). 

For a rough estimate of the contribution of direct NO2 conversion (on aerosol and ground 

surfaces) we took the estimates of Stemmler et al. (2007) which are about 1 ppt h-1 for humic 

acid aerosol and about 700 ppt h-1 for conversion at the soil surface in a 100 m mixed height 
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at 20 ppb NO2. We scaled these values to 1 ppb NO2 (observed NO2 values). As already 

concluded by Stemmler et al. (2007) the contribution of the aerosol is negligible  

(~0.05 ppt h-1). The ground source would contribute about 35 ppt h-1, i.e. one third of the 

missing source, applying a linear scaling with NO2.  

Regarding the soil emissions, there are no soil acidity and nitrate loading data available for 

the DOMINO campaign.  Therefore, it is at best speculative to derive a HONO source based 

on the numbers given by Su et al. (2011) as the resulting HONO fluxes vary by orders of 

magnitude. But as HONO soil flux values in the lowest range (low nitrogen loading and rather 

high pH) can already produce source strength in the right order of magnitude for Punknown, this 

HONO source might be a substantial contribution during DOMINO. 

All calculations about source strength at the ground are very sensitive to vertical mixing. 

Thus, as already addressed by Zhou et al. (2011), vertical transport determines the 

discrepancy between the effective source strength relative to that calculated at the 

measurement height. We conclude that only modelling which takes vertical transport into 

account can yield reliable estimates of the ground source contribution to the missing HONO 

source.  

 

3.5 Comparison of OH radical production from ozone and HONO 

photolysis 

 

OH production rates from ozone photolysis were calculated from ozone, H2O measurements 

and modelled jO(1D) values which were scaled by the ratio of measured and modelled j(NO2). 

OH production from O(1D) was calculated according to Crowley and Carl (1997) using the 

rate constants for O(1D) quenching by O2, N2 and O3 and the reaction with H2O taken from 

the IUPAC recommendations  (Atkinson et al., 2004 and updated values from the IUPAC 

homepage, http://www.iupac-kinetic.ch.cam.ac.uk/). These values are in good agreement (~ 3 

% higher) with the same calculations using the recommendations from Sander et al. (2006).  

The net OH production by HONO was calculated by balancing source and sink terms of OH 

by HONO in the gas phase (for k values see Sect. 3.2):  

 

]][[]][[])[( 67 OHHONOkOHNOkHONOHONOjPOH −−=                                     (5) 
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Although HONO mixing ratios (mean: 30 ppt) are three orders of magnitude lower than O3 

mixing ratios (mean: 35 ppb) around noon and OH production rates by O(1D)  exceed those of 

HONO photolysis by about 50 % around noon (11:00-13:00), the integrated daily OH 

production is about 20 % lower than that of HONO. Figure 7 shows the higher contribution of 

HONO photolysis to the OH formation in the morning and evening hours due to longer 

wavelengths (up to ~ 400 nm) associated with HONO photolysis. A special feature of our 

measurement site are the very high HONO values between 8:00 and 11:00, which can be 

attributed to advection (see Sect. 3.2 and 3.3). This leads to high POH values from HONO 

photolysis during that period.  

 

Figure 7: Comparison for the seven clear days of the campaign of calculated primary OH production by HONO 
and ozone photolysis (means and standard deviations).  

 

 

4 Conclusions 

 

The unknown HONO daytime source derived from our measurements was normalized by 

NO2 mixing ratios to improve comparability of HONO source strengths in different 

environmental and laboratory conditions. For the nighttime formation of HONO, we can 
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exclude that NO plays an important role as NO was mostly below the detection limit of about 

6 ppt. Inclusion of the parameterized nighttime HONO formation from NO2 (1.5 % h-1 in this 

study) as an additional source into the calculations of the unknown HONO daytime source 

(Punknown) yields mainly negative values in the early morning. This indicates the relevance of 

loss terms not taken into account (e.g. deposition) or overestimation of the dark 

heterogeneous formation in the morning and evening. Restricting the analysis only to cloud 

free days and the time around noon, when faster HONO photolysis leads to lifetimes around 

15 min and other loss processes for HONO are small compared to loss by photolysis, 

establishment of a PSS can be assumed. The mean source strength of Punknown under these 

conditions was about 100 ppt h-1 and thus in the lower range of values reported in the 

literature. Nevertheless Punknown was the dominant HONO source during day. The normalized 

unknown HONO source (or NO2 conversion frequency, if we assume that NO2 is the 

precursor) varied from slightly negative values in the morning and evening to an upper limit 

correlated with j(NO2). High median daytime NO2 conversion frequencies of ~14 % h-1 were 

found around noon, in addition to the 1.5 % h-1 HONO formation rate observed during night.  

Our results indicate light-induced HONO formation, possibly via conversion of NO2
 as 

indicated by lab experiments. This source is about an order of magnitude stronger than 

HONO formation during nighttime. We compared the HONO net source to values calculated 

for light-induced NO2 uptake on soot (Monge et al., 2010) and the reaction of electronically 

excited NO2
* with water vapour. The contribution of these reactions to HONO daytime values 

was mostly less than 10 % and cannot explain the HONO source strength derived in our 

study. Other processes like light-induced conversion of NO2 on irradiated organic materials 

like humic acids (Stemmler et al., 2006), or soil emissions (Su et al., 2011) might be more 

important. Additional measurements including detailed speciation of organic aerosols and 

determination of humic acids on ground and canopy surfaces are needed to quantify their 

contribution. Furthermore, a detailed assessment of the contribution of the ground sources 

requires profound knowledge of boundary layer processes. The unknown HONO daytime 

source is essential contribution to primary OH production, as photolysis of HONO exceeded 

the OH formation by ozone photolysis by 20 %. 
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Abstract  

 

We have combined chemical and micrometeorological measurements to investigate the 

formation and distribution of HONO throughout a forest canopy. HONO was measured 

simultaneously at two heights, close to the forest floor and just above canopy. The turbulent 

exchange between the forest and the atmosphere above was studied using vertical profiles of 

eddy covariance measurements of wind velocity, sonic temperature, water vapour and CO2. 

HONO mixing ratios at both heights showed typical diel cycles with low daytime values (~80 

ppt) and high nighttime values (up to 500 ppt), but were influenced by various sources and 

sinks leading to mixing ratio differences (above canopy minus below) of up to +240 ppt at 

nighttime. In the late afternoon and early night mixing ratios increased at higher rates near the 

forest floor, indicating a possible ground source. Due to the simultaneous decoupling of the 
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forest from the air layer above the canopy, mixing ratio differences reached about -170 ppt. 

From the late night until the early morning mixing ratios above the forest were typically 

higher than close to the forest floor. For some cases, this could be attributed to advection 

above the forest, which only partly penetrated the canopy. Measured photolysis frequencies 

above and below the forest canopy differed by a factor of 10-25 resulting in HONO lifetimes 

of about 10 min above and 100-250 min below the canopy at noontime. However, these 

differences of the main daytime HONO sink were not evident in the mixing ratio differences, 

which were close to zero during the morning hours. Effective turbulent exchange due to a 

complete coupling of the forest to the air layer above the canopy in the morning has offset the 

differences caused by the daytime photolytic sink and added to the interplay between different 

HONO production and loss processes. 
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1 Introduction 

 

Nitrous acid (HONO, HNO2) is currently gaining substantial attention due to its contribution 

to the tropospheric OH radical production, which is the ‘detergent’ of the atmosphere. Besides 

its importance for the atmospheric oxidation potential, it contributes to acid and nutrient 

deposition to the biosphere. Moreover, growing concern exists about possible health effects 

due to the formation of nitrosamines (Hanst et al., 1977; Pitts et al., 1978) where HONO acts 

as the nitrosating agent, especially in indoor environments, e.g., so called third hand smoke 

after wall reactions of HONO with nicotine (Sleiman et al., 2010). Despite three decades of 

research since the first unequivocal detection of HONO in the atmosphere (Perner and Platt, 

1979), HONO formation processes in the atmosphere are still under discussion, especially 

during daytime when large discrepancies were found between mixing ratios calculated from 

known gas-phase chemistry and measured daytime mixing ratios (Kleffmann et al., 2005). In 

the absence of light the most favoured formation reaction is the heterogeneous 

disproportionation of nitrogen dioxide (NO2):  

 

2NO2 + H2O → HONO + HNO3      (R1) 

 

This reaction has been extensively studied on different materials like fluorinated polymers 

and different types of glass as reviewed by Lammel and Cape (1996), but also on building 

materials like concrete (Trick, 2004). It was found to be first order in NO2 and water vapour 

(Sakamaki et al., 1983; Pitts et al., 1984; Svennson et al., 1987; Jenkin et al., 1988). A 

mechanism involving the formation of the NO2 dimer (N2O4) in the gas phase was proposed 

(Finlayson-Pitts et al., 2003), but is not important in the real atmosphere (Kleffmann et al., 

1998; Gustafsson et al., 2008). Recently, evidence for a mechanism involving reaction 

between adsorbed NO2 and H (NO2 (ads) + H(ads) → HONO (ads)) present on the surface 

following the dissociation of chemisorbed H2O was found in a study on mineral dust particles 

with isotopically labelled water (Gustafsson et al., 2008), but the results are probably not 

transferable from laboratory to field conditions (Finlayson-Pitts, 2009). In the absence of 

light, HONO formation from NO2 on soot decreases quite rapidly and thus was concluded to 

be less important for atmospheric HONO formation except for freshly emitted soot 

(Kleffmann et al., 1999; Arens et al., 2001; Aubin and Abbatt, 2007). The mechanism was 



Appendix C   78 

Atmos. Chem. Phys., 11, 841–855, 2011 

summarized as the reaction (R2) of reducing organic compounds {C-H}red with NO2 

(Gutzwiller et al., 2002a). 

 

NO2 + {C-H}red → HONO + {C}ox       (R2) 

 

NO + NO2 +H2O → 2 HONO       (R3) 

 

HNO3 (ads) + NO (g) → HONO + NO2      (R4) 

 

A similar reaction like R2 was postulated for the aqueous phase (Gutzwiller et al., 2002b; 

Ammann et al., 2005), but only proceeds at a relevant rate at high pH levels, since it is based 

on the well known charge transfer reaction of phenolate with NO2. The Reactions R3 (via the 

intermediate N2O3) and R4, involving NO proposed from field measurements (Calvert et al., 

1994; Andres-Hernandez et al., 1996; Saliba et al., 2001) could neither explain laboratory 

results under low NOx conditions (Svennson et al., 1987; Jenkin et al., 1988; Kleffmann et al., 

1998; Kleffmann et al., 2004;) nor field experiments with low NO mixing ratios (Harrison and 

Kitto, 1994). 

The daytime HONO formation recently discussed in an overview paper by Kleffmann (2007) 

was found to be about 60 times faster (Kleffmann et al., 2005) than the heterogeneous 

nighttime formation, and is even more controversial. There are a variety of proposed sources 

dealing with photoenhanced NO2 reduction including NO2 reduction on irradiated mineral 

surfaces like TiO2 (Gustafsson et al., 2006; Ndour et al., 2008). Many studies focussed on the 

reduction of NO2 involving organic photosensitizers (George et al., 2005) like hydrocarbons 

on soot (Monge et al., 2010) or humic acids (Stemmler et al., 2006; Stemmler et al., 2007). As 

already proposed from smog chamber experiments (Killus and Whitten, 1990), photolysis of 

deposited HNO3/nitrate on surfaces was suggested as a daytime HONO source for rural 

environments by Zhou et al. (2002a; 2002b; 2003) from field studies at low NOx conditions. 

The mechanism is still not convincing since the photolysis of HNO3 was not found to be a 

photolytic source of HONO in chamber experiments (Rohrer et al., 2005). Quantum yields for 

HNO3/nitrate photolysis are too low in the gas phase and in solution (Zhou et al. 2003; 

Kleffmann, 2007), but this process can be enhanced at surfaces (Finlayson-Pitts, 2009) or via 

organic photosensitizers as speculated by Kleffmann (2007). An additional source may be the 

photolysis of o-nitrophenols (Bejan et al., 2006) depending on pollution levels that govern the 

formation of nitrophenols. 
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A problem that arises when comparing kinetics derived from laboratory experiments with 

those calculated from field data is that the heterogeneous production may be decoupled from 

the release to the atmosphere (Finlayson-Pitts, 2009). Desorption processes of HONO formed 

at the surface or deposited to the surface might be governed by co-adsorption of water 

molecules as, e.g., formulated in a model developed for chamber measurements (Trick, 2004). 

Furthermore, the condensation of water vapour might block surface active sites (Lammel and 

Cape, 1996). This was found to inhibit photo-enhanced reactions (Gustafsson et al., 2006; 

Stemmler et al., 2007). The relative humidity (RH) dependence of HONO mixing ratios was 

investigated in several field (Stutz et al., 2004; Su et al., 2008; Qin et al., 2009; Yu et al., 

2009) and laboratory studies (Ammann et al., 1998; Wainmann et al., 2001; Arens et al., 

2002; Trick 2004) as well as its relation to nitrite in dew (Rubio et al., 2002; He et al., 2006; 

Rubio et al., 2008). The findings of all studies do not allow a simple interpretation of the 

relationship between RH and HONO mixing ratios as already stated by Lammel and Cape 

(1996), but should be taken into account for modelling activities (Stutz et al., 2004). For the 

heterogeneous formation not only the chemistry at the surface and adsorption/desorption of 

reactants and products are important, but also the available surface area per volume air (S/V) 

and the dispersion or accumulation of formed HONO depending on turbulent transport and, 

hence, on atmospheric stability. Correlations of HONO mixing ratios or HONO/NOx ratios, 

which should be less sensitive to boundary layer processes, with the aerosol surface 

concentration (S/Vaerosol) were often found (Lammel and Perner, 1988; Notholt et al., 1992; 

Andres-Hernandez et al., 1996), but a complete separation from boundary layer processes was 

not possible (Andres-Hernandez et al., 1996; Reisinger, 2000). Recent studies (Qin et al., 

2009; Yu et al., 2009) found a good correlation with PM10 (S/Vaerosol), but concluded that the 

aerosol surface is of minor importance compared to the ground surface. Thus, the relative 

importance of aerosol surface versus ground surface (vegetation, buildings) depends on the 

respective surface areas available, on the nature of these surfaces and on the turbulent mixing 

and the meteorological conditions at a specific site. There is ample evidence from other 

ground-based field measurements (Stutz et al., 2002; Veitel, 2002; Kleffmann et al., 2003; 

Zhang et al., 2009), aircraft profiles (Zhang et al., 2009) and modeling studies (Vogel et al., 

2003) that the ground surface is a major source of HONO. Hence, turbulent exchange has a 

significant impact on near surface HONO mixing ratios as already proposed by Febo et al. 

(1996). These authors found a good correlation of HONO with radon, which is exclusively 
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emitted from the ground. Furthermore, profiles from recent aircraft measurements were 

closely related to atmospheric stability (Zhang et al., 2009).  

The efficiency of the physicochemical and/or surface HONO production and of the uptake by 

forest vegetation and soils is determined by the interaction of turbulent transport and chemical 

reactions in and above the forest canopy. In this paper, we have investigated HONO mixing 

ratio differences between above and below a forest canopy using the coupling processes by 

coherent exchange (Thomas and Foken, 2007) between different canopy layers and the air 

above the canopy. The definition of so-called coupling regimes is based on the detection of 

coherent structures, which are organized structures in the turbulent (stochastic) flow. For the 

first time, we demonstrate how measurements of HONO can be combined with a 

micrometeorological approach in tall vegetation, providing an appropriate tool to investigate 

processes affecting HONO mixing ratios measured within and above the canopy. 

 

2 Experimental 

 

During the Intensive Observation Periods (IOPs) of the EGER project (ExchanGE processes 

in a mountainous Region) simultaneous measurements of micrometeorological and chemical 

parameters were made in order to investigate the exchange of energy and matter between a 

forest ecosystem and the atmosphere. The “Waldstein-Weidenbrunnen” research site is 

located in the Fichtelgebirge mountains in northeast Bavaria (50° 09 ’N, 11°52’ E, 775 m 

above sea level), Germany, in a rural forested region. There are no larger towns to the east 

within 70 km. The motorway (A9) is about 9 km to the west, running form north to south. The 

cities of Kulmbach (~ 30000 inhabitants) and Bayreuth (73000 inhabitants) are situated 30 km 

west and south-west, respectively. This site has been extensively studied by the University of 

Bayreuth (Matzner, 2004, Gerstberger et al. 2004) and is a part of the FLUXNET (Baldocchi 

et al., 2001). The site is covered by a Norway spruce (Picea abies (L.) Karst.) forest with a 

canopy height of 23 - 25 m (Staudt and Foken, 2007). An extensive description of the 

experiment and the meteorological conditions can be found in the experiment documentation 

by Serafimovich et al. (2008). Furthermore, an extensive overview with a detailed description 

of the aims of the EGER project and the instrumental setup during the IOPs is given in Foken 

et al. (2011). The measurements discussed in this paper were made at three different sites in 

the forest stand. A thin 36 m high tower (“turbulence tower”) located about 60 m southeast of 
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the main tower (31 m walk-up tower) was used for (undisturbed) turbulence measurements. 

The forest floor exchange site was located about 30 m northwest of the main tower.  

Simultaneous measurements of HONO were conducted at a height of 24.5 m (just above 

canopy) on the main tower and close to the forest floor in 0.5 m at the forest floor exchange 

site from 13 to 25 Sep. 2007. HONO was measured by two LOPAP instruments (LOng Path 

Absorption Photometer, QUMA Elektronik & Analytik, Wuppertal, Germany). The LOPAP 

is based on a wet chemical technique, with fast sampling of HONO as nitrite in a stripping 

coil and subsequent detection as an azo dye using long path absorption in 2.4 m long Teflon 

AF tubing. A detailed description of the instrument has been given by Heland et al. (2001) 

and Kleffmann et al. (2002). The instruments were placed outside in the forest or directly on 

the tower in ventilated aluminum boxes without temperature control. The temperature of the 

stripping coils was kept constant at 20°C by thermostats to assure constant sampling 

conditions. 

From 27 Sep. to 3 Oct. both LOPAPs were compared side-by-side near the forest floor at a 

height of 1 m. The sampling inlets had a distance of about 50 cm and were directed 

northwards to sample perpendicularly to the westerly flow. No T-piece was used as inlet to 

avoid artificial HONO formation or adsorption on the inner walls of the tubing. Both 

instruments were supplied with the same reagents via T-pieces. 

Temperature and humidity profiles were measured at the main tower using Frankenberger-

type psychrometers (Frankenberger, 1951). The relative humidity (RH) was calculated from 

the dry and wet bulb temperature of the psychrometers using the Magnus formula after 

Sonntag (1990) for the saturation vapour pressure and the Sprung formula for the actual 

vapour pressure (Foken, 2008). Psychrometers were mounted on the main tower at 0, 2, 5, 12, 

21 and 32 m. Additionally, visibility was measured with a PWD11 (Vaisala,Vantaa, Finland) 

present weather detector mounted on the main tower. 

Aerosol number size distributions were measured on the main tower at 28 m height using a 

Scanning Mobility Particle Sizer (SMPS, Grimm, Ainring, Germany). Boundary layer heights 

were derived from SODAR (SOund Detection And Ranging, Metek Meteorologische 

Messtechnik, Elmshorn, Germany) measurements at a nearby clearing.  

Vertical profiles of nitrogen oxides (NO and NO2) were measured on the main tower and on 

the forest floor exchange site by red-filtered detection of the chemiluminescence produced by 

the reaction of NO with O3 (CLD 780 TR, ECO Physics, Duernten, Switzerland). NO2 was 

photolytically converted to NO by exposure of the sample air to a solid-state blue-light 

converter (Meteorologie Consult, Königstein, Germany) and subsequently detected by the 
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chemiluminescence analyzer. Sample air was drawn through 55 m of non-transparent and 

heated PFA tubing from each inlet height. Inlet heights of the system were located at 0.05, 

0.3, 1, 2, 5, 10, 16, and 24 m. The lower heights of up to 2 m were located at the forest floor 

exchange site, while the upper heights were mounted at the main tower, for details see 

Moravek (2008).  

To detect the coupling regimes between the subcanopy, canopy and layer above the canopy 

the eddy-covariance measurements were used. Six eddy-covariance systems consisting of 

sonic anemometers and fast response CO2 and H2O gas analyzers were installed at the 

turbulence tower in 2.25, 5.5, 13, 18, 23 and 36 m. The wavelet transform was used to detect 

and extract ramp-like structures (coherent structures) from high frequency measurements of 

wind, sound temperature, CO2 and H2O concentrations (Thomas and Foken, 2005). These 

structures are responsible for the turbulent coherent transport of the momentum and matter in 

forested ecosystems. Analysis of a sensible heat transport by coherent structures reveals the 

portions of the forest canopy coupled by coherent exchange with the air above the canopy 

(Thomas and Foken, 2007). The experimental setup and the analysis of the coupling regimes 

during the EGER intensive observation periods are described in more detail by Serafimovich 

et al. (2010). 

The HONO photolysis frequency (j(HONO)) was calculated from the NO2 photolysis 

frequency measured by filter radiometers (Meteorologie Consult, Königstein, Germany) 

according to Kraus and Hofzumahaus (1998) and Trebs et al. (2009). The radiometers were 

mounted on top of the main tower at a height of 28 m, and at 2 m above the forest floor at the 

forest floor exchange site.  

For statistical computing the free statistics software “R” was used (http://www.R-project.org.). 

 

3 Results and discussion  

3.1 Comparison of the two LOPAP instruments  

 

The LOPAP instruments from the University of Bayreuth (UBAY) and the Max-Planck-

Institute for Chemistry (MPIC) were compared side-by-side at 1 m above the forest floor 

between 27 Sep. and 3 Oct. to evaluate the precision of the instruments. For this purpose the 

relative differences of the measured HONO mixing ratios were calculated by normalizing the 

difference of [HONO]UBAY minus [HONO]MPIC by the arithmetic mean of these mixing ratios. 
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The temporal evolution of these relative mixing ratio differences is shown in Fig. 1 together 

with the visibility as an indicator of foggy events. During rainy and foggy weather conditions 

indicated by the reduced visibility, we observed systematic deviations between the two 

LOPAP instruments. Large relative differences of the HONO signals during periods with low 

visibilities are related to fog events. Bröske et al. (2003) reported no measurable particle 

losses in the sampling glass coil for SOA (secondary organic aerosol) particles with diameters 

from 50-800 nm but Kleffmann et al. (2006) argued that large particles like fog droplets might 

be sampled by the coil. Thus, the sampling of fog droplets containing nitrite is a plausible 

explanation for deviations under wet conditions. However, this should affect both instruments 

by introducing more scatter and cannot explain the systematic deviation. Another potential 

reason could be that the surfaces of the inlets (first centimetre of the coils before contact with 

the sampling reagent) exhibited different wettabilites during these periods.  

 

 

Figure 1. Side-by-side measurements of the two LOPAP instruments from 27 Sep. (noon) to 3 Oct. 2007 (noon) 
at the “Waldstein-Weidenbrunnen” research site. Relative differences of the HONO signals (black dots) and 
visibility range (red squares, dashed lines, maximum range 2000 m). The insert shows the regression obtained 
during dry conditions (N = 247) from 29 Sep. (14:00 CET) to 2 Oct. (10:00 CET) using standard major axis 
(SMA) regression. The upper panel shows the mixing ratios measured by the two LOPAP instruments. Missing 
values are due to zero air measurements and calibration of the LOPAP instruments. 
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During the dry conditions (visibilities of more than 2000 m, which is the maximum detectable 

by the instrument) between 29 Sep. (14:00 CET) and 2 Oct. (10:00 CET) HONO levels 

ranged from 35 ppt to 170 ppt and the instruments agreed within 12 % (2σ), which is within 

the range of the estimated instrumental error under the given conditions (e.g., detection unit 

not air conditioned). Omitting the wet conditions before and after the dry period the relative 

errors correspond to a Gaussian distribution centred at zero. Thus, no systematic deviation of 

the instruments was found during dry conditions. The insert on Fig. 1 shows the correlation 

between the two instruments. Applying standard major axis regression analysis (Sokal and 

Rohlf, 1995; Legendre and Legendre, 1998), which is suitable for two random variables (e.g., 

Ayers, 2001) by reducing deviations perpendicularly to the regression line, yields an intercept 

of 2.3 ppt, which is close to the detection limit of the instruments (3σ-definition). The slope is 

0.97 and the coefficient of determination r² = 0.98 for the dry weather period. Kleffmann 

(2006) used a T-piece and PFA tubing in front of the sampling units to compare two LOPAP 

instruments in order to avoid any influence from inhomogeneities in the sampled air. The 

linear correlation of these two LOPAPs was very good over a large mixing ratio range from 

about 200 ppt to 1.6 ppb, with a slope of 0.993 and an intercept of 1.4 ppt. However, since it 

is well known that any tubing in front of the sampling unit may cause artefacts due to wall 

reactions of NO2 we avoided this approach. Furthermore, there was no dependency of the 

relative error on the friction velocity (u*) or the horizontal wind speed, indicating no 

significant influence from inhomogeneities in the sampled air. This is expected because the 

sampling units were only about 50 cm apart. At wind speeds as low as 0.5 m s-1 it took only 1 

s to pass both sampling units, whereas the response time of both instruments is about 7 min. 

Thus, small scale inhomogeneities should contribute equally to both signals.  

We conclude that the LOPAP instruments can be used to reliably measure vertical HONO 

mixing ratio differences under dry conditions.  

3.2 Factors controlling HONO mixing ratio levels  

 

3.2.1 General observations in the time series 

 

HONO is effectively scavenged by precipitation due to its good water solubility with a 

Henry`s law constant of about 50 mol L-1 atm-1 (Sander, 1999). Precipitation was found to 

structure the time series ranging from 13 of Sep. to 3 Oct. on a time scale of about a week due 
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to synoptic weather conditions (low and high pressure systems). Although not precisely 

measurable (see section 3.1) due to large relative errors of both instruments during foggy 

conditions, HONO values were clearly lower at both heights during these wet periods. 

HONO/NOx ratios were below 2 % at both heights because (due to lower Henry`s law 

constants of NO (about 2x10-3 mol L-1 atm-1) and NO2 (1-4 x 10-2 mol L-1 atm-1) (Sander, 

1999)) NOx is not significantly influenced by precipitation scavenging or enhanced deposition 

on wet surfaces. During the entire IOP, three dry periods occurred between rain events. Dry 

periods were characterized by steadily increasing nighttime HONO mixing ratios up to 500 

ppt, while HONO mixing ratios dropped during rain events to about 20 ppt. One of these dry 

periods (20 - 25 Sep.) is shown in Figs. 2 and 3. Below canopy measurements of HONO, NOx 

and HONO/NOx are presented together with rain fall measurements in Fig. 2. An overview 

graph for above canopy meteorological (wind direction, friction velocity, temperature, relative 

humidity and j(HONO)) and chemical (NO, NO2, HONO and ozone) measurements is given 

in Fig. 3.  

 

 

Figure 2. Time series of HONO at 0.5 m above the forest floor (red line), NOx (grey dashed line) and 
HONO/NOx ratio (black dotted line) from 18 (0:00 CET) to 26 (0:00 CET) Sep. 2007 at the “Waldstein-
Weidenbrunnen” research site. This dry period was delimited by rain events marked with blue dots (half hourly 
values).  
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Figure 3. The upper panel shows the wind direction above canopy (32 m) and the friction velocity (u*) at the top 
of the canopy (21 m). In the middle panel the trace gases (NO, NO2, O3 and HONO) measured above the canopy 
(24.5 m) are presented. Time series of the HONO photolysis frequency j(HONO) parameterized from the 
measured NO2 photolysis frequency at a height of 28 m (orange line and dots), relative humidity and air 
temperature measured at the canopy top (21 m) from 18 (0:00 CET) to 26 (0:00 CET) Sep. 2007 at the 
“Waldstein-Weidenbrunnen” research site are presented in the lower panel. 

 

During the dry period winds from south-west and south-east were dominating. Temperatures 

were increasing and daytime RH values were decreasing. The friction velocity (u*), which is 

a measure for the wind shear and thus wind generated turbulence, was calculated from eddy 

covariance measurements of horizontal and vertical wind speed. During the dry period u* is 

lower (especially at night) than before and afterwards. Significant NO values (at the above 

canopy level) were only measured during day. At the beginning of the dry period, HONO 

increased continuously with a rate of about 2 ppt h-1 without a pronounced diel cycle, 

although the 20 Sep. was a clear-sky day with j(HONO) values of about 0.002 s-1 around noon 

(see Fig. 3).  

An increasing trend in both the time series of the HONO mixing ratio and the HONO/NOx 

ratio is evident. To our knowledge this type of accumulation behaviour was not reported so 

far, and it was not directly linked to an increase of the precursor NO2 (Fig. 3). Although 

clarifying the reason for this is far beyond our applied measurement setup, a mechanism that 

might explain these observations would be the accumulation of (photo-) chemically formed or 
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deposited HONO at the surface and the subsequent release by increasing RH, according to a 

Langmuir-type surface mechanism proposed by Trick (2004) due to enhanced adsorption of 

water molecules and subsequent release of HONO, as RH increases in the late afternoon. 

Additionally, HONO formation due to photolysis of deposited HNO3/nitrate as suggested by 

Zhou et al. (2002a; 2002b; 2003) might be an explanation, since the precursor (“sticky” 

HNO3) is deposited efficiently to the canopy (Wolff et al., 2010) and accumulates at the 

needle surface (Zhou et al., 2002a). 

 

3.2.2 S/Vground versus S/Vaerosol 

 

The needle surface also constitutes the largest fraction of the total ground surface. Therefore, 

we estimated the ground surface from measurements of the projected plant surface neglecting 

stem and understory contributions. The average PAI (Plant Area Index) of this forest stand is 

5 m2 m-2 (Staudt et al., 2010). This projected area can be converted to a surface area by 

multiplying with π for wooden parts (assuming they are round), which contribute about 20 % 

(5-35 % (Gower et al., 1999)) to the PAI and by a factor of 2.65 derived by Oren et al. (1986) 

to convert the projected LAI (~ 80% of PAI) to the geometric needle surface. From that 

simple scheme we derive a total geometric surface of the crown of 13.7 m2 m-2 (10.6 m2 m-2 

needle surface and 3.6 m2 m-2 wooden surface). From SODAR (SOund Detection And 

Ranging) measurements we inferred an average NBL (Nocturnal Boundary Layer) height of 

120 m by a steep change in reflectivity of the sound signal. Using this value as an upper limit 

for the volume (1 m2 as base area), and for a lower limit ground surface the geometric needle 

surface of the canopy, we get a S/Vground of 0.1 m-1, which is an order of magnitude higher 

than e.g. reported by Yu et al. (2009). However, Yu et al. (2009) took only the inverse of the 

mixed layer height as S/Vground, not accounting for any roughness of the surface. Especially, 

during nighttime the boundary layer height represents an upper limit for the volume, because 

mixing is very limited within the stable thermally stratified NBL (Stull, 1988). Vogel et al. 

(2003) used a value of 0.1 m-1 to model heterogeneous HONO production in the lowest box of 

their model but increased S/V ground to 0.3 m-1, which matched the observations better. This 

is consistent with our observations that (S/Vground) 0.1 m-1 reflects a lower limit. In contrast, 

the S/Vground values given by Lammel and Cape (1996) were an order of magnitude higher, 

e.g., considering vegetation surfaces with 0.6-1.4 m-1 (for a mixed layer height of 100 m). 

Additionally, we calculated the aerosol surface from the measured aerosol number size 
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distributions and we found that S/Vaerosol was typically less than 1% of S/Vground. Due to the 

different reactivity and gas diffusivity for ground and aerosol surfaces a direct comparison of 

S/Vground and S/Vaerosol is complicated. Since we measured close to surfaces and these surface 

areas are about two orders of magnitude larger than the respective aerosol surface for the 

whole mixed layer, we expect the contribution of aerosol surfaces to HONO formation to be 

of minor importance in our study. This is in line with measurements from Kleffmann et al. 

(2003) who found that gradients of HONO were not related to gradients in S/Vaerosol. 

A decrease of the boundary layer height increases S/Vground. Hence, with the same surface 

more HONO is concentrated in a smaller volume. However, at the same time turbulence is 

suppressed during these stable conditions. This reduces the exchange between the atmosphere 

and the surface.  

3.2.3 Nighttime HONO conversion frequencies 

 

HONO nighttime conversion frequencies FHONO,night from the heterogeneous 

disproportionation of NO2 (cf. R1+R2) can be estimated for the dry periods. Su et al. (2008) 

discussed the problem of different scaling methods for HONO production and suggested to 

use a combined scaling approach of different quantities emitted close to the ground like black 

carbon (HONO/BC) or carbon monoxide (HONO/CO), and the “classical" HONO/NO2 or 

HONO/NOx. The scaling was (originally) introduced to reduce influences from boundary 

layer processes such as dilution or vertical mixing. However, local sources of the scaling 

quantities will affect the ratio (Su et al., 2008). As discussed above, humid surfaces or 

precipitation will also alter the HONO/NOx ratio due to different solubilities as well as the 

advection of NOx from road traffic during the morning hours at our site. Due to the lack of 

carbon monoxide (CO) and black carbon (BC) measurements we use the NOx scaling 

approach, which was used in many other studies (e.g. Sjödin, 1988; Alicke et al., 2002; 

Kleffmann et al., 2003;). The approach of Alicke et al. (2002) for inferring conversion 

frequencies, taking a linear increase of HONO during nighttime divided by the average NO2 

mixing ratio in this time interval is most commonly used.  
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There is still no reliable way of inferring HONO conversion frequencies using objective 

criteria. Yu et al. (2009) used a fixed time interval from 18:00 local time (LT) to midnight 

(LT) to determine HONO conversion frequencies. This approach leads to a very large scatter 

in our conversion frequencies. In addition, it yields mainly negative conversion frequencies in 

the lower height, because HONO increases already before sunset, thus starting at higher 

levels, and peak mixing ratios are reached before midnight. We also tried an approach 

different from the “classical” one, not using the maximum HONO mixing ratio as end point 

but the maximum HONO/NOx ratio that can be regarded as the maximum amount of HONO 

produced by NOx.  

  

1) Evaluating individual increases of HONO by the “classical” approach, excluding advection 

events and other disturbances 

 

This approach could be used for evaluating data from five nights of the whole IOP (13-25 

Sep.) and yielded a value of FHONO, night ± σ = (1.1 ± 0.65) % h-1 for the measurements above 

the canopy and a value of (0.75 ± 0.45) % h-1 close to the ground. The lower value for the 

lower height may be caused by choosing the starting point after sunset, whereas the first 

pronounced increase in HONO mixing ratios occurs already in the hours before sunset. Thus, 

the starting mixing ratio level is already higher at the lower height, whereas the increase at the 

upper height normally occurs later and is therefore completely captured. However, the 

influence of photochemistry has to be excluded for a proper comparison of heterogeneous 

production, and therefore we cannot use the data before sunset. The values of FHONO,night at 

both heights agree within their standard deviation (variation over five nights) and are 

consistent with literature values between 0.4 % h-1 and 1.8 % h-1 recently summarized by Su 

et al. (2008). The value for the upper height also compares quite well with a value of 1.4 ± 0.4 

% h-1 reported by Yu et al. (2009), which was not included in the comparison by Su et al. 

(2008).  

 

2) Evaluating the period from sunset to the maximum HONO/NOx ratio 

 

Conversion frequencies inferred by this approach are identical to the “classical” ones for the 

conditions during our campaign. The values and the variation of HONO/NOx ratios were 

mainly correlated to HONO mixing ratios (see Figs. 4 a, b). Therefore, the HONO/NOx 

maxima occurred simultaneously with the maximum HONO mixing ratios (Fig. 2). 
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Additionally, HONO mixing ratios were nearly independent of its precursor NO2 (see Fig. 

4c). A direct correlation could not be expected since the HONO formation rate dHONO/dt 

should correlate with NO2 instead of HONO mixing ratios, due to first order formation of 

HONO from NO2. Nevertheless, assuming similar heterogeneous conversion rates, higher 

NO2 values should cause higher HONO values and Fig. 4c should reflect this trend. The lack 

of this trend was attributed to the fact that in contrast to studies in urban areas low NO2 

mixing ratios were prevailing. About 90 % of the NO2 values were below 5 ppb and 70 % of 

the values ranged between 1 and 4 ppb, indicating quite constant NO2 levels. The highest 

HONO and HONO/NOx values typically occurred before or around midnight (see Fig. 2) at 

moderate (2-5 ppb) NO2 mixing ratios, whereas the highest NOx values occurred in the 

morning hours (advection from road traffic). The weak correlation of HONO to NOx does not 

necessarily mean that NO2 is not a precursor for HONO. We simply do not see a correlation, 

which is similar to results from another rural forest site (Zhou et al 2002a). This indicates that 

other processes like deposition or re-emission are also important. 

Nevertheless, conversion frequencies, as summarized above, are within the range of values 

reported in literature. Referring to the different conditions and methods used in these 

experiments, this range is narrow and might provide some guidance for modelling studies. 

 

 

Figure 4. Relationships of HONO and NOx for the measurement height close to the forest floor (0.5m) for the 
period 13 - 25 September at the “Waldstein-Weidenbrunnen” research site. The upper graphs (a, b) show a better 
correlation of HONO/NOx to HONO than to 1/NOx, i.e. variations in HONO/NOx are more likely explained by 
variations in HONO mixing ratios than by NOx values.  
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3.3 HONO mixing ratio differences and coupling regimes 

 

The investigation of the coupling regimes of the forest to the air layer above the canopy, as 

well as the coupling inside the forest is crucial to study the surface-atmosphere exchange of 

trace gases. The shaded and more humid subcanopy featured different environmental 

conditions than the atmosphere above the canopy, where the humidity was lower and 

photochemistry was more active. Vertical mixing processes link these two environments. As 

an indicator for the effectiveness of vertical mixing, the detection of coherent structures was 

used. Thomas and Foken (2007) state that the strong vertical motion typically associated with 

coherent structures enables them to penetrate deeply into the canopy forcing an exchange of 

air between different regions of the canopy. The residence time of air is therefore assumed to 

be controlled by the arrival frequency of coherent structures and limits the time available for 

physical, chemical and photochemical transformation of constituents within the canopy. 

Coherent structures are well organized in contrast to the random-like distributed turbulence 

(Holmes et al., 1996). They cause typical ramp like structures in time series of e.g. CO2 and 

H2O and can thus be separated from random-like turbulence, e.g. with a wavelet tool (Thomas 

and Foken 2005). A more detailed analysis of sensible heat exchange provides information 

about the portion of the canopy controlled by coherent exchange (exchange regimes). Thomas 

and Foken (2007) defined five different coupling regimes: 

Wave motion (Wa). The flow above the canopy is dominated by linear wave motion rather 

than by turbulence, and therefore decoupled from the subcanopy and the canopy.  

Decoupled canopy (Dc). The air above the canopy is decoupled from the canopy, because 

there is no transfer of energy and matter into and out of the canopy by coherent 

structures. 

Decoupled subcanopy (Ds). The layer above the canopy is coupled to the canopy, but 

decoupled from the subcanopy. 

Coupled sub canopy by sweeps (Cs). The coherent exchange between the canopy air and the 

subcanopy is forced by strong sweep motion of coherent structures only.  

Fully coupled canopy (C). The layer above the canopy, the canopy and the sub canopy are in a 

fully coupled state. 

The detailed analysis of the coherent exchange and the coupling regimes for this particular 

experiment is given in Serafimovich et al. (2010). 

 



Appendix C   92 

Atmos. Chem. Phys., 11, 841–855, 2011 

 

Fig. 5. Box-and-whisker plot for coupling regimes (red open bars) and HONO mixing ratio differences (grey 
filled bars) for the five-day dry period 20–25 September 2007 at the “Waldstein-Weidenbrunnen” research site.  
Coupling regimes (right hand side) are: Wa (Wave motion ∼ no turbulent exchange), Dc (decoupled canopy ∼ 
whole canopy decoupled from the air layer above), Ds (decoupled subcanopy ∼ only subcanopy decoupled), Cs 
(coupled by sweeps ∼ canopy and subcanopy coupled by sweep motion) and C (fully coupled canopy). The 
upper panel shows the specific humidity difference between 21 m and the forest floor for comparison. The upper 
end of the boxes represents the 75th percentile, the lower end the 25th percentile and the line within the boxes 
the median. Whiskers denote the 10th (lower whisker) and 90th (upper whisker) percentiles. Outliers are marked 
as points (HONO difference) or squares (coupling regimes). If only whiskers appear, there are no other values 
between the values marked by the whiskers. For the boxes at 10:00 and 14:00 CET the median falls in line with 
the lower end of the boxes (Ds).  
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Figure 6. HONO mixing ratio differences (grey bars, 10 min averages) and lifetime ratios (below to above 
canopy) (red bars, 30 min averages) for the five-day dry period 20-25 Sep. 2007 at the “Waldstein-
Weidenbrunnen” research site. The upper end of the boxes represents the 75th percentile, the lower end the 25th 
percentile and the line within the boxes the median. 

 

The diel cycle of HONO mixing ratio differences (above canopy minus below canopy) shown 

in Figs. 5 and 6 can be subdivided into four typical periods: 

 

1) Early night (17:30-21:00 CET): There was no photolytic sink (sunset at 17:30 CET), 

but also no turbulent exchange (Wa). These were from a micrometeorological 

perspective the most stable conditions during the day, with a complete decoupling of 

the forest from the layer above the canopy (Wa, Dc). Due to the increasing nighttime 

values in the dry period, absolute HONO differences increased as well and induced a 

higher variability at nighttime (Fig. 5). Mixing ratio differences of up to minus 170 ppt 

were measured. The higher HONO mixing ratios close to the forest floor in the early 

night can be explained by formation of HONO at the ground surface and accumulation 

in the trunk space, since the exchange with the layer above the canopy was very 

limited due to the decoupling of the forest. Above the canopy, mixing ratios increased 

at a lower rate or were fairly constant during this period, resulting in negative mixing 

ratio differences. The increasing differences could be observed similarly in the 
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specific humidity (Fig. 5), which was not affected by photolysis or chemical reactions. 

The sign of the HONO mixing ratio differences changed during the early night at 

about 21:00 CET, when mixing ratios above canopy rose quickly and exceeded the 

values measured near the ground. This effect was more pronounced at the end of the 

dry period, when nighttime maximum values were much higher than during the first 

two days after the rain event. 

 

2) Late night to early morning (21:00-06:30 CET): Increasing mixing ratios above the 

canopy, exceeding the values below the canopy caused positive mixing ratio 

differences (max. ~ 240 ppt). The main contribution to the large positive differences 

originates from the last two days (of the dry period) when mixing ratios where highest. 

On the 23rd this increase can be attributed to an air mass change (see section 3.4). On 

the 24th wind direction changes but other than on the 23rd other trace gases exhibit no 

significant change. In addition to these two extreme values, HONO and HONO/NOx 

are predominantly higher above the canopy all the time from 21:00 to sunrise. We see 

a relation to RH but can only speculate about the reasons, which might be e.g., a 

mechanism similar to that proposed by Trick (2004). On the other hand, at nighttime 

the HONO lifetime is only limited by deposition and thus quite long. Thus, advection 

may also be a possible explanation. To distinguish between advection and local 

emission more measurements and an adequate modelling approach would be required. 

 

3) Early morning to noon (6:30-13:00 CET): HONO mixing ratios decreased at both 

heights due to photolysis. The mixing ratio differences were close to zero (within the 

uncertainty of both instruments, see section 3.1), although photolytic lifetimes differed 

by a factor of 10-25 (median values) between both heights (Fig. 6). Around noon of 

clear-sky days, lifetimes were about 10 minutes above and 100-250 minutes below the 

canopy. If no exchange between both heights had occurred, a steep mixing ratio 

gradient should be observed. However, coupling of all forest compartments to the 

layer above the canopy was achieved during this period, as indicated by the 

dominance of C and Cs coupling regimes with Ds intermissions (Fig. 5). Hence, 

effective mixing has offset the differences in HONO lifetimes due to photolysis (Fig. 

6).  

4) Afternoon (13:00-17:30 CET): When decoupling of the subcanopy (Ds) became the 

predominant regime in the early afternoon (13:00 CET) and HONO lifetime ratios 
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increased to a factor of 25-40 (median values), we always measured negative mixing 

ratio differences with a surprisingly low variation over the entire dry period (Figs. 5 

and 6). 

 

 

 

The HONO/NOx vertical differences (not shown) have a similar diel cycle (see Figs. 5 and 6), 

as variations were mainly caused by the HONO mixing ratios (see section 3.2). Differences 

were in the range of -6 % (evening) to + 5 % (at night) and around zero from early morning to 

noon (very similar to HONO itself). Therefore, changes in the HONO mixing ratio 

differences can be attributed to changes in source or sink processes leading to higher (or 

lower) values in relation to NOx values. Under conditions with virtually no turbulent 

exchange of the forest with the layer above canopy (Dc and Wa regimes), which occurred in 

the late afternoon / early night, we found systematically higher values below canopy. This is 

an indication that HONO was formed and/or released at the ground.  

The diel cycle of the mixing ratio differences can be explained by differences in source and 

sink processes throughout the canopy, whereas the magnitude of these mixing ratio 

differences is determined by the exchange conditions as derived from the coherent structures. 

 

 

3.4 Case study: 23 September 

 

In order to exemplify the interplay of different HONO source and sink processes, Fig. 7 

shows a contour plot of RH and the HONO mixing ratios measured at 0.5 and 24.5 m above 

the ground on 23 September.  

From midnight to 06:30 CET, HONO mixing ratios were typically higher above the canopy 

than below. The HONO/NOx ratios were between 6 and 10 % at both heights. We found a 

positive correlation (r² = 0.78) with RH at 24.5 m but no correlation at the lower height (r² = 

0.07) during the same time period. This might be attributed to higher RHs up to 90% at the 

ground, representing a transition to a completely wetted vegetation surface (i.e. formation of 

epicuticular water films) above 90 % RH (Burkhardt and Eiden, 1994; Klemm et al., 1998; 

Lammel, 1999) thus leading to HONO uptake. 
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Figure 7. Simultaneous HONO time series at 0.5 m (lower graph, circles and lines) and 24.5 m (upper graph, 
circles and lines), overlaid with a contour plot of the vertical profile of measured RH (colour-coded 50-92 %) for 
23 Sep. 2007 at the “Waldstein-Weidenbrunnen” research site. Missing values in the HONO measurements are 
due to zero air measurements. Sunrise and sunset (inferred from j(NO2) as a proxy for j(HONO) and global 
radiation measurements) are marked as vertical (orange) lines. The upper panel shows the mixing ratio 
differences between 24.5 m and 0.5 m (∆HONO) and the coupling regimes in the forest. 
 

During the first two hours after sunrise (6:30-8:30 CET), HONO mixing ratios decreased 

continuously with a rate of 60 ppt h-1 above the canopy and with 40 ppt h-1 close to the forest 

floor. If only photolysis was active, the calculated loss rate (i.e., j(HONO)x[HONO]) above 

the canopy would be faster (76 ppt h-1) than observed. Below the canopy, the calculated loss 

rate would be much slower (5.5 ppt h-1) due to shading. This discrepancy can be explained by 

vertical mixing. Downward mixing of HONO-depleted air from aloft resulted in a much faster 

loss rate below the canopy than calculated from photolysis alone. The overall HONO loss is 

expected to be faster than the photolytic loss alone since the mixed layer growth in the 

morning contributes to a decrease of near surface HONO that was trapped in the 

thermodynamically stable NBL. 

From 8:30 CET until noontime, slightly decreasing HONO mixing ratios (10-15 ppt h-1 most 

likely due to photolysis and mixing) were accompanied by a fast decrease of RH by 6 % h-1 

due to surface heating, causing rising surface temperatures. Therefore both measured 

variables were well correlated, but the correlation was mainly driven by radiation. Even 
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though HONO lifetimes above and below canopy differ by a factor of 10 to 25 (median 

values) in the morning (Fig. 6), the difference in HONO mixing ratios is less than 5 ppt (Fig. 

7 upper panel) from 10:00 to 12:00 CET, which is within the uncertainty of both instruments. 

This can be explained by vertical exchange, taking place within the HONO lifetime above 

canopy. 

Just after noontime, we observed a pronounced increase of HONO mixing ratios and of 

HONO/NOx ratios at both heights, with a simultaneous increase of RH by 10%. These 

patterns were most likely caused by passing clouds, increasing the HONO lifetime by a factor 

of three (from 9 min to 26 min above canopy, see Fig. 3), but were also related to a change in 

wind direction. 

After the noontime peak, HONO mixing ratios decreased again at both heights but with a 

lower rate below canopy due to the 10 times lower photolysis frequencies. Further increases 

of lifetime ratios in the afternoon from 25 to 40 may have contributed to the increasing 

differences. While these differences were counter-balanced by effective vertical mixing, as 

indicated by a predominantly full coupling of the forest to the air layer above the canopy (C, 

Cs) in the morning hours, in the afternoon the HONO mixing ratio differences were 

maintained due to a lack of effective vertical mixing in the decoupled subcanopy (Ds) regime. 

Thus, only during periods when the subcanopy or even the whole forest are decoupled from 

the layer above the canopy, the different loss and production processes acting close to the 

forest floor and in the upper canopy become obvious. We propose a combination of lifetime 

differences due to shading of the canopy and the intensity of vertical mixing to explain the 

observed mixing ratio differences during daytime. 

About two hours before sunset, HONO mixing ratios started to increase at both measurement 

heights. Above canopy, an increase rate of 40 ppt h-1 led to a slightly higher level of HONO 

mixing ratios of 70 ± 16 ppt, whereas close to the forest floor, an increase rate of about 90 ppt 

h-1 resulted in a higher and nearly constant level of about 200 ± 20 ppt. The steep increase in 

HONO mixing ratios at the ground coincided with an obvious RH increase below canopy, 

which is not as pronounced as above canopy. 

After sunset, photolysis no longer affects the atmospheric lifetime of HONO. Thus, the 

occurrence of different HONO mixing ratios and at the same time different HONO/NOx ratios 

(about 5 % higher below canopy) at the two measuring heights provide evidence for different 

HONO-source processes throughout the canopy. The slight increase above the canopy and the 

strong increase below canopy in the absence of solar radiation and turbulent exchange with 

the air layer above canopy (Wa) give a strong indication that HONO was formed and released 
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at the ground. We found a good correlation (r² = 0.74) of HONO and RH for the whole period 

from 16:00 to 20:30 CET close to the forest floor due to accumulation of HONO and 

humidity below the canopy after decoupling of the forest. Above the canopy the correlation 

coefficient is very weak (r² = 0.3). 

Between 20:30 and 21:00 CET a steep increase of HONO mixing ratios was observed. This 

event is considered to be dominated by an air mass change and not by local HONO 

production or release, although there are no clear signals in wind speed or direction. But 

almost all quantities (except NO) changed substantially (see Fig. 3). For example, ozone 

mixing ratios dropped by about 20 ppb (at 24.5 m), RH increased by 16 % from 20:30 to 

22:00 CET and NOx increased from about 2 ppb to 4.5 ppb, which could not be explained by 

local chemistry alone. Maximum HONO mixing ratios were reached at 21:30 CET with 480 

ppt above and 340 ppt below the canopy. This resulted in HONO/NOx ratios of up to 18 % 

above the canopy. 

After 21:00 CET, the HONO mixing ratios decreased again at both heights while RH 

continued to increase. Thus, a negative RH dependence was observed with coefficients of 

determination of 0.9 at 24.5 m height (RH = 78-85 %) and 0.94 at 0.5 m height (RH = 88-93 

%). The slopes are nearly identical but the humidity range is very different. Therefore, it is 

speculative at best to draw any conclusions about the underlying physical or chemical 

processes. Although we often found a good correlation of HONO and RH, we could not infer 

a simple relationship between RH and HONO mixing ratios. One reason for this is that both 

quantities exhibited a diel cycle that was affected by different (independent) environmental 

factors, e.g. radiation. HONO was formed near the ground and accumulated during nighttime, 

whereas RH increased due to cooling of the surface and evaporation still occurring in the 

afternoon and subsequent accumulation. During daytime HONO was photolyzed, whereas RH 

decreased due to surface heating although evaporation is enhanced. HONO and RH both 

decreased during daytime due to dilution by mixing with dryer and HONO depleted air from 

aloft. The only obvious relation are declining HONO mixing ratios at RHs above 95 % as 

already observed by Yu et al (2009). 

 

4 Conclusions 

 

For the first time, we have measured HONO mixing ratios simultaneously at two heights 

within and above a forest canopy using interference-corrected wet chemical analyzers (two 
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LOPAP instruments). The instruments agreed within 12 % (2σ) during side-by-side 

measurements under fair and relatively dry weather periods, allowing for a detailed 

interpretation of the measured mixing ratio differences. The measured HONO mixing ratios 

were influenced by a combination of several processes, such as (a) available surface area for 

heterogeneous formation, (b) co-deposition of species related to HONO formation, (c) HONO 

desorption from the surface and interaction with RH and (d) turbulent exchange of air masses 

between the forest and the atmosphere above (coupling).  

The combination of micrometeorological and chemical measurements allowed us to explain 

the diel variations of the HONO mixing ratio differences measured below and above a spruce 

forest canopy. Differences of source or sink processes between above and below canopy 

became obvious only during periods when they were not overcome by turbulent mixing. For 

example, rising mixing ratios close to the forest floor in the late afternoon and early night, 

when the forest canopy was decoupled from the air layer above, provided a clear indication of 

HONO formation at the ground surface. Higher mixing ratios above the forest canopy in the 

late night until the morning were in some cases due to advection above the forest, which did 

only partly penetrate the canopy. In the morning, vertical exchange was most efficient and 

thus differences in HONO mixing ratios varied around zero despite large differences of 

photolysis frequencies (factor of 10-25) below and above the canopy.  

Moreover, we observed a build-up of HONO during dry periods that was not related to a 

build-up of its precursor NO2. We could not infer a simple relationship between RH and 

HONO mixing ratios. This study particularly demonstrated the strong effect of turbulent 

vertical transport and the influence of humidity conditions on HONO mixing ratios within and 

above the forest canopy. Nevertheless, in order to further untangle and quantify all different 

HONO sources and sinks, additional measurements both in the laboratory and in the field are 

required. 
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Abstract  

This study investigates the relation of atmospheric nitrous acid (HONO) and relative humidity 

(RH) from three different field campaigns. As mixing ratios of HONO and RH co-vary on 

different timescales, especially considering a pronounced diurnal cycle, we used Singular 

System Analysis (SSA) to extract signal contributions from these different timescales. By 

using the advantage of SSA to reconstruct the signal and by choosing only long term trends 

and variations associated with the diurnal cycle for reconstruction, we were able to extract the 

residual signal containing the higher frequency contributions. As this residual signal is only 

about 2 % of the original RH signal and about 20 % of the original HONO signal, 

identification of processes which couple RH and HONO by correlation studies was not fully 

convincing. However, other than measured time series, all residual time series (N = 4 pairs) 

showed a slight positive correlation (r~0.2) of HONO with RH pointing to a potential 
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influence of RH on HONO formation on shorter timescales. The basic analysis of the data set 

revealed, that HONO values were log-normal distributed and RH values were normal or 

bimodal distributed. Thus the logarithmic HONO values were better correlated to RH. 

Furthermore, the data set was found to be structured similar to a previously published scheme 

for surface wetness.   

 

1 Introduction  

 

Mixing ratios of many compounds of interest in atmospheric chemistry exhibit a diurnal cycle 

that is forced by solar radiation (i.e. through photolysis, photochemical reactions, heating or 

turbulence).  These parallel diurnal cycles cause a correlation of all species exhibiting the 

diurnal cycle. Thus it is often difficult to identify correlations other than the diurnal cycle. 

Singular System Analysis or Singular Spectrum Analysis (SSA) has become a widely used 

tool in geosciences (but not yet in atmospheric chemistry) to extract periodic and anharmonic 

oscillations as well as trends from a time series (e.g. Elsner and Tsonis, 1996). Employing 

SSA opens the possiblity to reconstruct the time series by selecting certain oscillations, which 

allow us to reconstruct the signal by removing the oscillations associated with the diurnal 

cycle. Oscillations other than the diurnal cycle can thus be identified in the remaining part of 

the signal. In addition, the reconstructed signal can be analysed for correlations on longer or 

shorter timescales than the diurnal cycle. 

Many field and laboratory studies (e.g. Arens et al., 2002; He et al., 2006; Trick, 2004; Stutz 

et al., 2004; Wainmann et al., 2001; Yu et al, 2009; Sörgel et al., 2011a; Rubio et al., 2008) 

report a relation between gas phase HONO and relative humidity (RH) or dew. Dew is a sink 

for HONO in addition to scavenging by precipitation (Rubio et al.,2002; Rubio et al. 2008; He 

et al., 2006) but HONO might be re-released during evaporation of dew (Rubio et al., 2002; 

He et al., 2006). In accordance with the formation of liquid films or droplets above 95 % RH 

(Lammel, 1999), lower HONO mixing ratios and HONO/NOx ratios were reported above 95 

% RH (Stutz et al., 2004; Yu et al., 2009; Sörgel et al., 2011a). Furthermore, HONO can be 

salted out from concentrated ammonium sulphate and sulphuric acid solutions (Becker et al., 

1996; Becker et al., 1999), and its uptake in solutions is pH dependant (Hirokawa et al., 

2008). The influence of surface water on HONO formation at humidities lower than 95 % is 

less clear. From chamber measurements, Trick (2004) and Stutz (2005) proposed HONO 

adsorption and desorption by a Langmuir-type mechanism, were HONO desorption from the 
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surface is accelerated by co-adsorption of water molecules. Additional effects could be the 

blocking of surface active sites for heterogeneous HONO formation due to water adsorption 

(Lammel and Cape, 1996), or reduced chemisorption of H2O at high humidities, (Gustavsson 

et al., 2008) if the chemisorption mechanism holds (Finlayson-Pitts, 2009). Although many 

possible processes and mechanisms were reported neither the formation mechanism nor the 

adsorption and desorption processes for HONO are clear. Lammel and Cape (1996) have 

already stated that both quantities (HONO and RH) exhibit a very pronounced diurnal cycle 

forced by solar radiation. However, RH is forced by the heating and cooling of surface air 

whereas HONO by photolysis and turbulent mixing. 

Therefore, we use SSA in the present study for separating the signals from the diurnal cycles 

of HONO and RH in order to identify the possible influence of the above mentioned 

processes in the remaining signal. 

 

2 Methodology  

2.1 Mathematical background 

 

One of the basic ideas of SSA is to use tools developed for multivariate time series for single 

time records (Elsner and Tsonis, 1996). In practice this is achieved by forming lag-shifted 

copies of the time series. A detailed description and the mathematical background of SSA are 

given in textbooks (e.g. Elsner and Tsonis, 1996; Golyandina et al., 2001) and more recent 

methodological articles (e.g. Ghil et al., 2002; Golyandina and Osipov, 2007). 

Here, we briefly summarize the fundamental concepts: 

From the time series {xt: t=1,2,…,Nt}, a matrix of lagged vectors Vi = (xi, xi+1, …,xi+L-1)
T with 

1 ≤ i ≤ N is formed and N =Nt -L+1, where L is the embedding dimension or window length. 

The window length is one free parameter to choose for the analysis. In principal, the choice of 

L is a compromise between information content and statistical confidence (Elsner and Tsonis, 

1996), as the window length determines the longest oscillations possible to identify. Thus, a 

large L improves the detection of long term trends, but provides less statistical confidence. 

The suggested range for L ranges from about Nt/11 (Ghil et al., 2002) to close to Nt/2 

(Golyandina and Osipov, 2007). 

A trajectory or augmented matrix X is formed from these lagged vectors, which has the 

dimension N by L. 

X = [V1:…:VN]                  (1) 
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The lagged-covariance matrix S can be computed from the product of the trajectory matrix 

and its transposed normalized by N: S = (1/N) XXT.  

This matrix is then decomposed into its eigenvalues λk and eigenvectors Uk by means of 

singular value decomposition (SVD). The L eigenvectors Uk of the lag-covariance matrix S 

are called temporal empirical orthogonal functions (EOFs). The eigenvalues λk of S account 

for the partial variance in the direction Uk. In general, the eigenvectors exhibit a distinct 

Fourier spectrum such that the dominant frequency of the eigenvectors can be identified by 

applying Fourier transform and taking the largest Fourier component (Gudmundson, 2007). 

The sum of all λk gives the total variance of the original time series xt. Therefore, a subset of 

λk represents a portion of the variance of the original signal. 

The principal components ak can be calculated by projecting the original time series on the 

eigenvectors: 
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with i = 1, 2, …, N and j = 1, 2, …, L. 

By choosing only a selection of principal components the time series can be filtered. As a 

complete reconstruction is computationally intensive, we chose to reconstruct only the leading 

(first) EOFs and subtract them from the originally time series. The residual was analysed for 

correlations on shorter timescales than the diurnal cycle and long term trends, which were 

contained in the first EOFs. 

2.2 Experimental 

 

In this paper we compare measured data of HONO and RH from three field campaigns. The 

two Intensive Operating Periods (IOP I and IOP II) of the project “ExchanGE processes in a 

mountainous Region” (EGER) took place at a spruce forest site in the Fichtelgebirge 

Mountains in south-east Germany.  For IOP I, which was conducted in September 2007, we 

measured RH and HONO at two heights in parallel below and above the canopy as described 

by Sörgel et al. (2011a). IOP II took place in June/July 2008 with HONO and RH 
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measurements 1 m above the forest floor. A detailed description of the experiment and the 

meteorological conditions during both IOPs has been given by Foken et al. (2011).   

Measurements of HONO were conducted by commercial LOPAP instruments (LOng Path 

Absorption Photometer, QUMA Elektronik & Analytik, Wuppertal, Germany). The LOPAP 

is based on a wet chemical technique, with fast sampling of HONO as nitrite in a stripping 

coil and subsequent detection as an azo dye using long path absorption in 2.4 m long Teflon 

AF tubing. Detailed descriptions of the instrument have been given by Heland et al. (2001) 

and Kleffmann et al. (2002). The instruments were placed outside directly on the scaffolds in 

ventilated aluminium boxes without temperature control. The temperature of the stripping 

coils was kept constant at 20 °C by thermostats to assure constant sampling conditions. The 

overall relative error of the LOPAP instruments was found to be 12 % in a recent side by side 

intercomparison in the field (Sörgel et al., 2011a). During IOP I and IOP II detection limits of 

the LOPAPs ranged from 1 to about 4 ppt. 

Humidity profiles during IOP I and II were measured at the main tower using Frankenberger-

type psychrometers (Frankenberger, 1951). The relative humidity (RH) was calculated from 

the dry and wet bulb temperature of the psychrometers using the Magnus formula after 

Sonntag (1990) for the saturation vapour pressure and the Sprung formula for the actual 

vapour pressure (Foken, 2008).  

The campaign “Diel Oxidant Mechanism In relation to Nitrogen Oxides” (DOMINO) took 

place from mid-November to mid-December 2008 at a pine forest site in south west Spain. A 

description of the experimental setup has been given by Sörgel et al. (2011b). Detection limits 

for the LOPAPs during DOMINO, calculated as 3 σ of the noise during zero air 

measurements, were between 1 and 2.5 ppt. Relative humidity (RH) and wind direction were 

measured with a WXT510 (Vaisala, Helsinki, Finland) meteorological station on top of the 

MoLa (Mobile Laboratory) inlet system, which was at 10 m height 10 m southeast of the 

scaffold, were the LOPAP was placed (also at 10 m height).  

For the calculations of SSA we used the free statistics software “r” (version 2.13.0, 

http://www.r-project.org/). The package for calculating SSA (package ‘simsalabim’ version 

0.1-3) was provided by Gudmundson (2008). The extension of SSA to time series with 

missing values according to Schoellhamer (2001) and Golyandina and Osipov (2007) was 

used. 
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3 Results and discussion  

3.1 “Classical statistics” of HONO and RH 

 

If we follow the hypothesis of a relation of HONO and RH we can start by discussing a 

simple scatter plot (Fig.1a). Obvious features are low HONO values at low relative humidity 

as well as low values above 95 % RH. Maximum values occur between 70 and 90 % RH. In 

different campaigns, the increase of HONO values starts at different RHs, which at this stage 

might point to a simple coincidence (night-time increase of both quantities) instead of 

physical or chemical reasons. The same coincidence can be observed for the IOP I values 

measured at two different heights but at the same time (Fig. 1: IOP I 0.5 m and IOP I 24 m). 

RH values are higher close to the ground and thus maximum HONO values occur at higher 

RH. In order to determine the coefficient of determination for the overall HONO and RH 

relation, we investigated the distributions of HONO and RH values. Relative humidity values 

were either normal or bimodal distributed, whereas HONO values were log-normal 

distributed. Therefore, the logarithm of the HONO values has to be correlated with the RH 

values (Fig 1b).  

 

Figure 1: a) HONO values from three different campaigns versus relative humidity. DOMINO (winter, Spain), 
IOP I (autumn, Germany), IOP II (summer, Germany). b) The same data (without DOMINO marine) with 
HONO data on a logarithmic scale.  

 

There seems to be an overall RH dependence of the HONO maximum values with an increase 

up to 85 % RH and then continuously lower values with a steep decrease above 95 %. Based 

on the studies of Burkhardt and Eigen (1994) and Klemm et al. (1999), Lammel (1999) 

proposed a scheme of surface wetness. In this scheme below 55 % RH surfaces are regarded 
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as “dry”, between 55 % and 90 % RH they are classified as “partially wet” and as “wet” 

above 90 % RH.  This classification corresponds quite well with the features in Fig. 1 (a and 

b). From Fig. 1 it seems that log HONO values are well correlated to RH values up to about 

65 % RH. As most of the values in this RH interval are daytime values this might be simply 

caused by the co-variation of HONO and RH due to the diurnal cycle. For example for 

DOMINO daytime RH and HONO values are well correlated (r² = 0.71) but HONO is 

declining due to photolysis and RH due to surface heating. But also for the night-time values 

(fig. 2 a) this relation persists, although there are only few data points available and the 

correlation can still be caused by the diurnal cycle (simultaneous increase of HONO and RH 

in the early night).  On these “dry” surfaces three proposed mechanisms might play a role: 

- The availability of surface water for the reaction with NO2 (HONO formation first 

order with respect to water and NO2 (e.g. Sakamaki et al., 1983; and summarized by 

Finlayson-Pitts, 2009))  

- Amount of chemisorbed water for reaction with NO2 and reduced chemisorption with 

increasing amounts of water at the surface (Gustafsson et al., 2008) 

- A Langmuir-type mechanism, where co-adsorbing water replaces HONO at the 

surface which is released to the gas phase (Trick, 2004, Stutz, 2005)  

The term “partially wet” denotes that only part of the surface (e.g. of a leaf) is “wet” due to 

deliquescence of deposited compounds which are (partly) water soluble (Burkard and Eiden, 

1994). This means, that in the transition region both, dry and wet surfaces exist. In the 

deliquescing particles themselves several processes can change HONO uptake, respectively 

release, in dependence of the liquid water content. As HONO uptake in liquid films or 

droplets is governed by pH (Hirokawa et al., 2008) a lowering in pH values due to 

evaporation of water (Klemm, 1988) might enhance release and hinder uptake of HONO. 

Furthermore, HONO is salted out in concentrated sulphuric acid and ammonium sulphate 

solutions (Becker et al., 1996; Becker et al., 1999), which might be transferrable to other 

concentrated solutions. One might speculate if the growing liquid film due to deliquescing salt 

particles displaces HONO adsorbed to the surface. The HONO might then be released to the 

atmosphere either due to low pH or high ionic strength in the liquid film as described above.  

These processes would explain the occurrence of a maximum in gas phase HONO mixing 

ratios before the rising liquid water content enhances solubility of HONO. That both, uptake 

and release of HONO, can take place on these “partially wet” surfaces might explain the high 

variability of HONO values in this RH region.  
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The only obvious feature is the sharp decline of HONO values above 95 % RH as already 

observed by other groups (e.g. Stutz et al., 2004; Yu et al., 2009). This could be attributed to 

the formation of liquid films which take up HONO (i.e. “wet” surface) or to rain events 

(where droplets and liquid films take up HONO). Another result regarding “wet” surfaces was 

that the removal of HONO values associated with wind directions (140 - 330°) originating 

from the sea during DOMINO (based on the analysis of Diesch et al., 2011), substantially 

improved the correlation (see also sect. 3.3). These values were presumably influenced by the 

equilibrium with the sea surface as proposed by Wojtal et al. (2010). 

 

 

Figure 2: Night-time data of HONO versus RH are shown on the left hand side. The colour code 
denotes the level of the NO2 precursor. The NO2 levels are categorized by low (< 1.1 ppb = 25 
percentile), middle (1.1 - 3.2 / 25 - 75 percentile) and high (> 3.2 = 75 percentile) values. On the right 
hand side, HONO values versus NO2 values are shown for the same data.  
 

Another influence on the relation of HONO and RH might arise from variations of the HONO 

precursor NO2, but correlations of HONO and NO2 were weak as well, especially for IOP I  

(r² = 0.14 at 24 m and r² =  0.05 at 0.5 m). The low or non-existent correlation of HONO with 

its precursor NO2 was the starting point to think about the influence of RH. Although 

correlations of HONO with NO2 were higher for IOP II and especially good for DOMINO  

(r² = 0.44), the NO2 levels reflect more a tendency (higher NO2 <=> higher HONO) than a 

strong correlation (Fig. 2). This might be attributed to the rather slow formation of HONO 

from NO2 (max. 2 % h-1). This means that HONO mixing ratios build up slowly and are thus 

more evenly distributed, whereas NO2 values might be quite variable as indicated by the 

results of Pöhler (2010) and Harrison et al. (1996). Therefore, HONO values were not 

normalized to NO2 to avoid disturbances of the HONO to RH correlation due to variations in 

NO2. Usually, normalization to NO2 is done to account for changes in boundary layer height 

and precursor concentration. Some shortcomings of this scaling approach have already been 
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discussed by Su et al. (2008 a). Furthermore, correlations on different timescales can be found 

by applying the SSA, and may possibly allow for a separation of HONO and NO2 and HONO 

and RH correlations. The SSA (e.g. Elsner and Tsonis, 1996) was chosen for this analysis as it 

provides the opportunity to reconstruct the time series by using signal contributions associated 

with certain timescales (oscillations). This is necessary to remove the signal contributions of 

the diurnal cycle of HONO and RH and the long term trends in order to identify correlations 

on shorter timescales which might be a hint at the interaction with fast physical processes 

(adsorption/desorption). 
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3.2 Dominant frequencies in HONO and RH time series and their 

contribution to the signals 

 

As described in detail in sect. 2.1, the embedded time series of HONO and RH are 

decomposed into eigenvectors and eigenvalues by means of single value decomposition 

(SDV). The eigenvalues are ordered by their decreasing rank (i.e. signal contribution). A 

Fourier-transform of the eigenvectors yields their dominant frequency respectively dominant 

periodic time τ. 

 

 

Figure 3: Dominant periodic times (τ) in hours of the eigenvectors for different window lengths (L) ordered by 
decreasing rank of the eigenvalues for the HONO time series measured at 0.5 m during IOP I. 

 

As the window length is the only free parameter to choose for the SSA, Fig. 3 shows the 

dependency of the frequency of the 25 leading EOFs (ordered by decreasing rank, i.e. 

contribution to the signal) for different window lengths. The time series “IOPI 0.5 m” 

included Nt = 1585 points (10 min average values). Thus, window lengths from 300 to 700 

equal Nt/5 to nearly Nt/2, which corresponds to 50 to 116 hours (Fig. 2, “long term trends”). 
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For all chosen window lengths, the first leading EOF has the window length as dominant 

periodic time (τ) which consists of the mean value respectively mean trend. For L close to 24 

hours (50-67 hours; L=300 and L=400) the next important periodic time is the diurnal cycle. 

In contrast, for longer window lengths, the first three EOFs represent long term signals. The 

whole time-series under study is limited to 11 days. Therefore, oscillations due to high and 

low pressure regimes (~ 7 days)  identified visually by Sörgel et al. (2011a) in this time series 

are not captured by SSA. Due to its good water solubility, HONO is washed out by rain and 

increases during the dry periods (Sörgel et al., 2011a). These strong forcing mechanisms, 

which are not resolved by the maximum possible L, may be the reason for the dominance of 

eigenvectors with the main frequency being the window length. The diurnal cycle is identified 

as an important signal contribution independent of the choice of L, thus providing confidence 

for further analysis after subtraction of the diurnal cycle. We chose the maximum L=700 for 

further analysis of all time series.  

 

Figure 4: Dominant periodic times (τ) in hours of the eigenvectors (ordered by decreasing rank) of RH (open 
circles) and HONO (red triangles) from IOP I close to the forest floor.  

 

Figure 4 shows the τ values of the first 25 EOFs of HONO and RH (which contribute about 

80-90 % to the HONO signal and 98 % to the RH signal, cf. Fig. 5). The first 10 EOFs are 

almost identical and represent the long term trends and the diurnal cycle. The pairs of 
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eigenvectors with the same frequency denote oscillations (Vautard and Ghil, 1989; Elsner and 

Tsonis, 1996; Ghil et al., 2002) which can be harmonic or anharmonic. These co-variations 

can be attributed to a real cause (wash out by rain) on the longer timescales, but the diurnal 

cycles of both might be simply co-variations due to solar radiation. The diurnal cycle of RH is 

mainly driven by the temperature, with lower values at higher temperatures during the day 

and increasing values during cooling at night. For HONO the photolysis (UV part of solar 

radiation) is the most important sink during the day, whereas HONO accumulates at night. As 

humidity mainly originates from evaporation (soil) or evapotranspiration (plants) and 

previous studies suggest HONO formation at the ground (e.g. Febo and Perrino, 1996; 

Harrison et al., 1996; Zhang et al., 2009; Sörgel et al., 2011a,b; Wong et al., 2011), both RH 

and HONO mixing ratios are sensitive to the mixing height (dilution by vertical mixing). The 

mixing height and thus vertical turbulent diffusion respectively exhibit a diurnal cycle as well. 

Therefore, HONO and RH are expected to be correlated at the timescale of the diurnal cycle 

but not necessarily due to interaction of chemical or physical processes.  

 

 

Figure 5: Cumulative signal contribution in % of the first 100 EOFs of HONO and RH for all campaigns.  

 

As the sum of all eigenvalues represents the total variance of the original time series one can 

express the signal contribution of the EOFs by the contribution of their associated eigenvalues 

to the total variance (Vautard and Ghil, 1989). A first obvious difference between HONO and 

RH time series is the amount of variance explained by the leading EOFs (Fig.5). The first 

EOF, which consists of the mean and long term trends, comprises more than 98 % of the RH 

signal but only about 50 to 80 % of the HONO signal. This might be attributed to the 
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statistical distributions of the underlying data sets. HONO values are log-normal distributed 

whereas RH values are more or less normal or bimodal distributed. Figure 5 shows the 

eigenvalues contribution in % of the total sum of eigenvalues (= 100 %) plotted by decreasing 

rank. This can be interpreted similar to a so called “scree-diagram”, where the eigenvalues 

themselves are plotted by decreasing rank (i.e. decreasing value). The “scree-diagram” can be 

used for a first simple separation into the EOFs comprising the signal and those for the noise. 

Typically, the signal part is assigned to the first EOFs before the break in the slope (looks like 

a hockey stick) of the “scree-diagram”, but especially for larger L (as used in this study) there 

might be no “noise floor” and the break is smoothed (Vautard and Ghil, 1989). The break for 

RH values already occurs after three EOFs whereas for HONO the break occurs after eight 

EOFs.  However, apparently the first 20 to 30 eigenvalues still contain signal information.   

 

 

 

3.3 Correlations in the signals after subtraction of diurnal and long 

term contributions 

 

In order to extract possible correlations of HONO and RH apart from the diurnal cycle and the 

long term trends, which are the dominant signal contributions (Fig. 4 and 5 sect. 3.2), we 

subtract these contributions from the original time series. Figure 6 (upper panel) shows the 

measured time series and the reconstructed time series of HONO and RH for IOP I 0.5m 

using the first 11 EOFs.  Using all 700 EOFs, the reconstruction would be identical to the 

original time series, but this complete reconstruction would be very computational intensive.  
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Fig. 6: Upper left panel: HONO measured (black dots) and reconstructed time series (red line) using the first 11 
EOFs; upper right panel: measured RH (black dots) and reconstructed time series (red line) using the first 11 
EOFs; lower panels: residuals after subtracting the reconstructed time series from the measured ones for HONO 
(left) and RH (right). 

 

The lower panel of Fig. 6 shows the residuals after subtracting the reconstructed time series 

containing long term trends and the diurnal cycle.  For both HONO and RH, trends are 

efficiently removed. Also, oscillations in the residuals have higher frequencies than the 

diurnal cycle, thus also proving that the diurnal cycle has been removed and higher frequency 

contributions remain. Only during the rainy periods (18th to 20th
 September) with almost 

constant RH and HONO values this method induced a diurnal cycle by restricting the 

reconstruction to the first EOFs (Fig. 6). Table 1 contains the correlation coefficients of the 

measured time series (“original”), the residuals after subtracting long term and diurnal 

contributions (“orig-RC”), and the residuals from subtracting the RCs not from the original 

time series, but also from a reconstructed one with higher frequency contributions (first 20 to 

30 EOFs) which is equivalent to reconstruct RC11 to RC30 (“RC-RC”).  
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Table 1: Correlation coefficients (according to Pearson and Spearman) of the measured time series of HONO 

and RH (“original”), the residuals after subtracting the reconstructed time series (“orig-RC”) and the residuals 

using not the original time series but a reconstructed time series with higher frequency contributions (“RC-RC”).  

Correlation 

coefficient 

IOP I 0.5m IOP I  24m IOP II DOMINO 

original   

(Spearman) 

0.009 0.234 0.467 -0.042 

0.74* 

orig-RC  

(Pearson) 

0.163 0.225 0.309 0.189 

orig-RC  

(Spearman) 

0.163 0.270 0.311 0.206 

RC-RC   

(Pearson) 

0.021 0.131 0.192 0.224 

RC-RC  

(Spearman) 

-0.003 0.148 0.243 0.268 

* Correlation coefficient derived excluding values with marine influence. 

 

As described in sect. 3.1, HONO values were log-normal distributed and RH values were 

normal or bimodal distributed. Therefore, for the original time series only the rank correlation 

(Spearman) coefficients are given. The values are quite variable (~ -0.04 to 0.47). The poor 

correlations obtained for the DOMINO data were presumably caused by the equilibrium of 

HONO with the sea surface as proposed by Wojtal et al. (2010), as the correlation improved 

substantially to 0.74 by removing values associated with marine air masses.  

Correlations of the residuals after subtraction (“orig-RC”) of long term and diurnal 

contributions are less variable (0.16 - 0.31) and thus all slightly positive correlated.  

An attempt to improve the correlation by reducing the contribution of noise (“RC-RC”) did 

not result in higher correlation coefficients. All correlations for “RC-RC” except for 

“DOMINO” are lower than the correlations of the original time series and that of the residuals 

"orig-RC". This attempt was based on the visual inspection of the “scree diagram” (see 

section 3.2), and it was first concluded from the visual inspection that the first 20 to 30 EOFs 

still contain signal. This is possibly not the case, and relatively large signal contributions 

(between EOF 11 and EOF 30) are noise components. Thus, it remains to be solved by using 

more sophisticated tools like Monte-Carlo-SSA (e.g. Allen and Smith, 1996) whether the 

correlations are weak due to the influence of noise, or if the noise causes the correlation. With 

this method the significance of oscillations or signal contributions can be tested against a 

noise model (white noise and coloured noise, e.g. Allen and Smith., 1996). This would help to 

create a set of RCs which contain signal information alone and use them for reconstruction.  
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Furthermore, the interaction of HONO and RH on timescales shorter than the diurnal 

variation is not necessarily a linear (Pearson) or a monotonic function (Spearman). On the 

other hand, the heterogeneous formation reaction of HONO from the disproportionation of 

NO2 has a first order dependence on water vapour (e.g. Sakamaki et al., 1983). But this 

reaction should be also sensitive to NO2. Possibly, the better correlations of HONO and RH as 

well as HONO and NO2 during DOMINO and IOP II were caused by the prevailing dry 

weather and thus more values under “dry surface” conditions. Under the dry surface 

conditions HONO and RH are expected to be positively correlated due to a) first order 

dependence of heterogeneous HONO formation on water vapour (e.g. Sakamaki et al. 1983), 

b) possibly due to HONO replacement by co-adsorption of water (Trick, 2004; Stutz, 2005). 

Furthermore, if we only take the dry period of IOP I 0.5m (i.e. from 20th to 25th of Sept.; cf. 

Fig. 5) the correlation coefficients improve from 0.16 to 0.34 (Spearman), which is close to 

the values of the summer campaign “IOP II”. 

 

 

4 Conclusions 

 

In contrast to other studies, which can be interpreted as an attempt to estimate the influence of 

RH on the modulation of the amplitude of the diurnal cycle of HONO (e.g. Stutz et al., 2004; 

Yu et al., 2009), we tried to identify the interactions of HONO and RH on shorter timescales. 

To achieve this goal, the diurnal cycle and the long term trends have to be removed from the 

signal. SSA has been shown to successfully detect long term trends and the signal 

contributions of the diurnal cycle in HONO and RH time series. Therefore, it was possible to 

reconstruct the time series from the signal contributions of the diurnal cycle and the long term 

trends by subtracting it from the measured one (original). Trends and the diurnal cycle were 

efficiently removed by this method, and the residuals where slightly positive correlated for 

all-time series. Unfortunately, identification of correlations which are an indicator (but not a 

proof) for underlying processes in the remaining signal (2-20 %) was quite a challenge. There 

might be several reasons:  

- the remaining signal also contains noise contributions, which might be resolved by a 

better separation of signal and noise by more sophisticated tools like Monte Carlo SSA 

- the amplitude of the HONO signal is modulated by RH instead of the signal directly 

depending on RH 
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- other parameters like the HONO precursor NO2 are more important for the variations  

than RH alone 

- time resolution of the instruments (about 10 min for HONO) is still too low to resolve 

these processes 

- precision of the HONO measurements (about 12 %) is still too low  

The overall picture of the relation of HONO and RH was found to fit quite well to the scheme 

of surface wetness proposed by Lammel (1999) as “dry” (< 55 % RH), “partially wet” (55 – 

90 % RH) and “wet” (> 90 % RH). Below 60/65 % RH correlations of HONO and RH were 

high, but consist of a few (< 100) data points only. For DOMINO a good correlation was 

obtained only after removing values from marine air masses.  The mostly lower HONO 

values were presumably caused by the equilibrium with the sea surface as proposed by Wojtal 

et al. (2010).  In the RH range of the “dry” surface the first order dependence of HONO 

formation on water vapour (e.g. Sakamaki et al., 1983) and the displacement of HONO from 

the surface by co-adsorbing water (proposed by Trick, 2004; Stutz, 2005) are proposed to 

cause the correlation. The “partially wet” surfaces denote a mixture of processes, as “dry” and 

wet surfaces coexist. The “partially wet” surfaces are caused by deliquescing salts. They can 

either release or take up HONO depending on ionic strength and pH (Becker et al., 1996; 

Becker et al. 1998; Hirokawa et al., 2008). This might be responsible for the high variability 

of HONO in the corresponding RH range (~70 to 95 %), which is accompanied with low 

correlations to both RH and NO2. A rather clear result denotes the “wet” surfaces as HONO 

values drop above 95 % RH. This has already been observed by other groups (e.g. Stutz et al., 

2004; Yu et al., 2009). 

Another point, which should be considered in future studies, was that HONO values were log-

normal distributed, whereas RH values were normal or bimodal distributed. Thus, for a 

standard (Pearson) correlation the log (HONO) values have to be taken or the rank correlation 

coefficient (Spearman) has to be used instead.  

Thus, SSA has proven to be a useful tool to extract signal contributions aside the diurnal 

cycle, which is important for atmospheric chemistry. Nevertheless, further investigation of the 

noisy residuals needs more sophisticated statistical tools or higher frequency and less noisy 

time series.  
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