
On Efficient Solution Methods for

Mixed-Integer Nonlinear and

Mixed-Integer Quadratic

Optimization Problems

Von der Universität Bayreuth

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

vorgelegt von

Thomas Lehmann

geboren in Nürnberg

1. Gutachter: Prof. Dr. Klaus Schittkowski

2. Gutachter: Prof. Dr. Jörg Rambau

Tag der Einreichung:

Tag des Kolloquiums:

Fakultät für Mathematik, Physik und Informatik
Angewandte Informatik VII

Abstract1

In this thesis we focus on solution methods for convex mixed-integer nonlinear opti-
mization problems (MINLP). As one main result, we propose a new algorithm guar-
anteeing global optimality for convex MINLPs under standard assumptions. The new
algorithm called MIQP-supported outer approximation (MIQPSOA) incorporates the
successive solution of convex mixed-integer quadratic programs (MIQP) in a linear
outer approximation framework. An extensive numerical competitive study based on
several different MINLP solvers shows, that a first implementation of the new method
performs well in terms of both the reliability and the efficiency. Since the new method
is designed to solve simulation-based optimization problems arising in practical engi-
neering applications, the main performance criterion is the number of function eval-
uations required to solve a problem. Furthermore, the test results indicate, that the
integration of mixed-integer search steps, resulting from the solution of convex MIQPs,
significantly improves the reliability and the efficiency compared to well-known linear
outer approximation methods.

After reviewing available solution techniques for convex MINLP problems, we present
the algorithmic set-up as well as the convergence proof of MIQPSOA. As pointed out
in this dissertation, MIQPSOA is a first step towards a convergent MINLP solution
method, that solely relies on the successive solution of convex MIQPs as proposed
by Exler and Schittkowski. Finally, we present an extensive numerical test case study
considering different solution methods for convex MINLPs.

The second part of this thesis deals with efficient solution techniques for convex mixed-
integer quadratic programs, that arise as subproblems during the solution of MINLPs
by MIQP-based algorithms, such as MIQPSOA. First, we briefly review latest de-
velopments in state-of-the-art mixed-integer linear (MILP) solvers, since we want to
develop a MIQP solver that incorporates the most successful components of MILP
solvers. As we focus on branch-and-bound methods, one main component is an ef-
ficient and robust sub-solver for continuous quadratic programs, which is able to
perform warmstarts. On the other hand, cutting planes have led to a tremendous
speed-up of mixed-integer linear solvers during the last 20 years. As a consequence,
we extend an efficient construction method for disjunctive cutting planes, such that
it can be applied for MIQPs.

Extensive numerical tests show, that the performance of a branch-and-bound solver
can be significantly increased by exploiting warmstarts. Furthermore, it turns out,
that in a majority of the test cases, where disjunctive cutting planes exist, the cal-
culation times are reduced up to a factor of more than 5. Nevertheless there are also
instances, where the presents of disjunctive cutting planes significantly slows down the
performance. Due to the efficient cut generation method developed within this thesis,
the generation of cutting planes has almost no influence on the calculation time, if
no disjunctive cuts exist, which is the case in about 45 % of all test instances. As a

1 The research was supported by Shell SIEP Rijswijk, GameChanger Project IDC-2005050006,
SIEP-EPR-RIR

ii

consequence, the application of cutting planes for MIQPs needs further attention and
especially a dynamic cut management might be very profitable. Finally, we compare
the performance of our branch-and-cut solver MIQL with the solver SCIP, which is
one of the state-of-the-art MILP solvers, that can also solve MIQPs. These tests in-
dicate, that MIQL outperforms SCIP on hard MIQP instances, while SCIP is faster
for simpler test cases.

Zusammenfassung2

Im Fokus dieser Dissertation stehen Optimierungsverfahren für konvexe, gemischt-
ganzzahlige, nichtlineare Optimierungsprobleme (MINLP). Ein wesentliches Resultat
dieser Arbeit ist die Entwicklung eines neuen Lösungsverfahren. Dieser Algorithmus,
der MIQP-supported Outer Approximation (MIQPSOA) genannt wird, garantiert
globale Optimalität der Lösung unter üblichen Voraussetzungen. MIQPSOA basiert
auf der sukzessiven Lösung von konvexen, gemischt-ganzzahligen, quadratischen Teil-
problemen (MIQP) innerhalb eines Linear Outer Approximation Ansatzes. Eine aus-
führliche numerische Studie mehrerer verschiedener MINLP-Lösungsverfahren zeigt,
dass die erste Implementierung der neuen Methode sehr effizient und gleichzeitig ro-
bust ist. Da wir hauptsächlich simulations-basierte Optimierungsprobleme aus An-
wendungen des Ingenieurswesens lösen, stellt die Anzahl der innerhalb des Lösungs-
prozesses benötigten Funktionsauswertungen das wichtigste Performance-Kriterium
dar. Die numerische Analyse zeigt, dass die Integration von gemischt-ganzzahligen
Suchschritten, die aus der Lösung der MIQP-Teilprobleme bestimmt werden, sowohl
die Robustheit als auch die Effizienz im Vergleich zum bekannten Verfahren der Linear
Outer Approximation deutlich verbessert.

Nachdem wir bekannte Verfahren zur Lösung von konvexen, gemischt-ganzzahligen,
nichtlinearen Optimierungsproblemen vorgestellt haben, wird der Algorithmus MIQP-
SOA motiviert und beschrieben. Anschließend werden seine Konvergenzeigenschaften
untersucht und Konvergenz für konvexe MINLPs bewiesen. Außerdem werden zu-
künftige Verfahren skizziert, die Konvergenz für konvexe Probleme garantieren könnten
und allein auf der sukzessiven Lösung von konvexen MIQPs basieren. Abschließend
vergleichen wir die Performance und die Robustheit von verschiedenen MINLP Opti-
mierungsverfahren.

Der zweite Teil der Dissertation beschäftigt sich mit effizienten Lösungsverfahren für
konvexe, gemischt-ganzzahlige, quadratische Optimierungsprobleme, die als Teilprob-
leme in MIQP-basierten Lösungsverfahren, wie beispielsweise MIQPSOA, auftreten.
Ausgehend von einer kurzen Zusammenfassung der wichtigsten Entwicklungen bei
aktuellen Lösungsverfahren für gemischt-ganzzahlig lineare Optimierungsprobleme
(MILP), wird ein MIQP-Löser entwickelt. Dieser Löser namens MIQL beruht auf
den wesentlichen Komponenten von aktuellen MILP-Lösungsverfahren. Da es sich bei
MIQL um ein QP-basiertes Branch-and-bound Verfahren handelt, ist der effiziente und
robuste Teilproblem-Löser für kontinuierliche quadratische Probleme von entschei-
dender Bedeutung. Besonders wichtig ist dabei die Fähigkeit, verwandte Probleme
schnell mit sogenannten Warmstart-Methoden lösen zu können. Ein weiteres Hauptau-
genmerk dieser Arbeit ist die Verwendung von allgemeinen Schnittebenen-Verfahren
für nicht-basis Lösungen, wie sie bei der kontinuierlichen Relaxierung der MIQPs
auftreten. Die Anwendung von Schnittebenen hat bei MILP-Lösern zu einer erhe-
blichen Steigerung der Leistungsfähigkeit geführt, weshalb in dieser Dissertation erst-

2 The research was supported by Shell SIEP Rijswijk, GameChanger Project IDC-2005050006,
SIEP-EPR-RIR

iv

malig effiziente Konstruktionsverfahren für Schnittebenen entwickelt werden, die auch
für MIQPs angewendet werden können.

Eine ausführliche numerische Analyse zeigt, dass die Performance des Branch-and-
bound Verfahrens durch Warmstarts signifikant verbessert werden kann. Weiterhin
kann man feststellen, dass in der Mehrzahl der Fälle, in denen Schnittebenen des Types
”disjunctive cutting planes” existieren, die Rechenzeiten deutlich, bis zu einem Faktor
von mehr als 5, reduziert werden können. Trotzdem gibt es auch vereinzelte Instanzen,
bei denen die Rechenzeit durch die Integration von disjunctive cutting planes stark
erhöht wird. Das in dieser Dissertation entwickelte Schnittebenen-Verfahren selbst
beeinflusst die Rechenzeit kaum. Dies ist besonders dann von Vorteil, falls keine dis-
juncitve cutting planes existieren, was bei der verwendeten Testbibliothek in circa 45
Prozent der Probleme der Fall ist.

Zusammenfassend bleibt festzustellen, dass die Verwendung von Schnittebenen-Ver-
fahren für MIQPs weitere Forschung notwendig macht und besonderes ein dynamis-
ches Schnitt-ebenen-Management sehr profitabel erscheint. Im Vergleich zum Löser
SCIP, der zu den besten Lösern für MILPs gehört und auch MIQPs lösen kann, stellt
sich heraus, dass MIQL gerade bei schwierigen MIQP-Problemen deutlich überlegen
ist.

CONTENTS

1. Introduction . 1

2. Available Nonlinear Solution Techniques 13

2.1 Basic Theory of Continuous Nonlinear Optimization 13

2.2 Sequential Quadratic Programming and the Trust Region Method of
Yuan . 19

2.3 Review on Solution Techniques for Convex MINLPs 24

2.4 NLP-based Branch-and-Bound . 29

2.5 Linear Outer Approximation . 36

2.6 Generalized Benders’ Decomposition 48

2.7 Extended Cutting Plane Method . 49

2.8 LP/NLP-based Branch-and-Bound . 50

2.9 Integration of Branch-and-Bound and SQP 51

2.10 An Extension of Yuan’s Trust Region Method for Mixed-Integer Opti-
mization . 55

2.11 Convex Mixed-Integer Quadratic Programming 56

3. A new MIQP-based MINLP Solution Method 67

3.1 MIQP-Supported Linear Outer Approximation 67

3.2 Convergence Analysis . 88

3.3 Aspects of Implementation and Future Research 100

4. Review on Disjunctive Cutting Planes for MILPs 105

4.1 Linear Programming Basics . 108

4.2 Introduction on Disjunctive Cutting Planes 112

4.3 Simple Disjunctive Cuts . 117

4.4 The Simple Disjunctive Cut and the CGLP 119

4.5 An Efficient Cut Generation Procedure for Disjunctive Cutting Planes . 122

5. Disjunctive Cutting Planes for non-basic Solutions 133

5.1 Solving the full CGLP . 134

5.2 A First Efficient Cut Generation Method for Disjunctive Cuts for Non-
basic Solutions . 136

5.2.1 Construction of a basic solution by basis crushing 137

vi CONTENTS

5.2.2 Construction of a basic solution by the introduction of an arti-
ficial constraint . 139

5.2.3 A suitable artificial Constraint for an efficient Cut-Generation
Method for non-basic Solutions 142

5.3 An Improved Cut Generation Method for Disjunctive Cuts for Non-
basic Solutions . 152

6. Numerical Results . 165

6.1 Comparative Study of MINLP Solution Methods 165

6.1.1 Academic Test Problems . 168

6.1.2 Test Problems from Petroleum Engineering 169

6.2 Solving Convex MIQP Problems . 171

6.2.1 Survey of Algorithmic Settings for MIQP Solvers 172

6.2.2 Numerical Results for MIQP Solver MIQL 174

7. Conclusion . 179

Appendix 181

A. Detailed MINLP Results . 183

A.1 Academic Test Set . 183

A.2 Test Cases from Petroleum Industry . 200

B. Detailed MIQP Results . 211

LIST OF FIGURES

1.1 Graphical Representation of a Well Relinking Network 9

1.2 The Savarak Gas Production System, Barton and Selot [97] 11

2.1 Underestimating the Objective Function 28

2.2 Overestimating the Feasible Region . 28

2.3 Illustration of Branch-and-Bound Search Tree 32

2.4 NLP-based Branch-and-Bound . 35

2.5 Linear Outer Approximation . 47

2.6 Extended Cutting Plane Method . 50

2.7 LP/NLP-based Branch-and-Bound . 51

3.1 MIQP-supported Outer Approximation 84

4.1 Simple Disjunctive Cutting Plane . 119

4.2 Disjunctive Cutting Plane . 122

5.1 Simple Disjunctive Cut in the Limit . 145

5.2 Alternative Simple Disjunctive Cut . 150

viii List of Figures

LIST OF TABLES

1.1 Speed-up Factors for Mixed-Integer Linear Programming, Bixby [26] . . 6

6.1 Initial Parameter-Setting for MIQPSOA 168

6.2 Performance Results for a Set of 100 Academic Test Problems 168

6.3 Performance Results for a Set of 55 Test Problems from Petroleum
Industry . 171

6.4 MIQL Settings . 175

6.5 MIQL Results . 176

A.1 Criteria for detailed MINLP Results . 183

A.2 Description of Academic Test Cases . 184

A.3 Characteristics of Academic Test Cases 186

A.4 Detailed Results of MISQP for the Academic Test Set 188

A.5 Detailed Results of MISQP without Fine-tuning for the Academic Test
Set . 191

A.6 Detailed Results of MISQPOA for the Academic Test Set 193

A.7 Detailed Results of MIQPSOA for the Academic Test Set 195

A.8 Detailed Results of a Linear Outer Approximation Method for the Aca-
demic Test Set . 197

A.9 Detailed Results of MINLPB4 for the Academic Test Set 200

A.10 Characteristics of Shell Test Cases . 201

A.11 Detailed Results of MISQP for the Shell Test Set 202

A.12 Detailed Results of MISQP without Fine-tuning for the Shell Test Set . 204

A.13 Detailed Results of MISQPOA for the Shell Test Set 205

A.14 Detailed Results of MIQPSOA for the Shell Test Set 206

A.15 Detailed Results of a Linear Outer Approximation Method for the Shell
Test Set . 208

A.16 Detailed Results of MINLPB4 for the Shell Test Set 209

x List of Tables

B.1 Criteria for detailed MIQP Results . 211

B.2 Detailed MIQP Results . 221

1. INTRODUCTION

Mixed-integer nonlinear programming (MINLP) is a challenging optimization area,
since it combines nonlinear programming and mixed-integer programming. Although
there exists lots of different applications, only few efficient solution methods are de-
veloped yet and most of them are hardly applicable for practical problems relying on
complex simulation software. This thesis is focused on the development and the im-
plementation of algorithms for solving mixed-integer nonlinear optimization problems
arising in industrial engineering applications.

In mixed-integer nonlinear programming a nonlinear scalar objective function is min-
imized subject to nonlinear equality and inequality constraints,

x ∈ X, y ∈ Y :

min f(x, y)

s.t. gj(x, y) = 0, j = 1, . . . ,me,

gj(x, y) ≥ 0, j = me + 1, . . . ,m.

(1.1)

The number of equality constraints is denoted by me, while m is the total number of
constraints. The two sets X and Y are defined by lower bounds xl ∈ Rnc , yl ∈ Nni
and upper bounds xu ∈ Rnc , yu ∈ Nni on continuous and integer variables,

X := {x ∈ Rnc : xl ≤ x ≤ xu},
Y := {y ∈ Nni : yl ≤ y ≤ yu},

(1.2)

where nc is the number of continuous variables and ni is the number of integer vari-
ables. The total number of variables is denoted by

n := nc + ni. (1.3)

All model functions may depend on continuous variables x ∈ Rnc and integer variables
y ∈ Nni . Note, that binary variables are also contained in Y, i.e., yi ∈ B := {0, 1} for
some i ∈ I := {1, . . . , ni}. I denotes the index set of integer and binary variables.
The index set of the continuous variables is given by J, while the index set of the
constraints of MINLP (1.1) is defined by

J := J= ∪ J> = {1, . . . ,m}, (1.4)

with
J= := {1, . . . ,me},

J> := {me + 1, . . . ,m}.
(1.5)

2 1 Introduction

It is assumed that the functions f(x, y) and gj(x, y), j = 1, . . . ,m, are twice con-
tinuously differentiable subject to all x ∈ X. We consider general problems and do
not restrict our research to specific formulations, e.g., problems where f(x, y) and
g(x, y) := (g1(x, y), . . . , gm(x, y))

T depend linearly on the integer variables y ∈ Y. A
linear relationship between integer variables and problem functions is often assumed
and exploited by specifically tailored algorithms, see, e.g., Floudas [52].

An important subclass of problem (1.1) are convex mixed-integer nonlinear optimiza-
tion problems given by

x ∈ X, y ∈ Y :

min f(x, y)

s.t. gj(x, y) ≥ 0, j ∈ J>.

(1.6)

Problem (1.6) may in addition contain me linear equality constraints given by

aTj

(
x

y

)
− bj = 0, j ∈ J=, (1.7)

with aj ∈ Rn, j ∈ J= and bj ∈ R, j ∈ J=, but they are omitted in the sequel to
improve the readability. Problem (1.6) differs from the general mixed-integer nonlin-
ear program (1.1), since it possesses a convex feasible region and a convex objective
function. This means, that the inequality constraints gj(x, y), j ∈ J> are concave on
X× YR while the objective function is convex on X× YR with

YR := {y ∈ Rni : yl ≤ y ≤ yu}, (1.8)

i.e., the set YR is the continuous relaxation of Y. Furthermore all functions are twice
differentiable subject to x ∈ X and y ∈ YR. In general, a continuous relaxation of a
mixed-integer program is a relaxation of the original problem, where integer variables
are replaced by continuous variables, i.e., the domain of the integer variables Y is
relaxed by the set YR.

There exists a variety of different algorithms for solving the convex mixed-integer
nonlinear optimization problem (1.6) to global optimality, see, e.g., Floudas [52],
Grossmann and Kravanja [61] or Bonami, Kilinc and Linderoth [28] for review pa-
pers. This thesis focuses on the development of solution methods for general convex
MINLP problems based on the successive solution of mixed-integer quadratic sub-
problems. Furthermore, the proposed algorithm should successfully be applied to solve
simulation-based optimization problems arising in engineering applications. The re-
sulting algorithm, called MIQP-supported outer approximation (MIQPSOA), as well
as the solution methods, that are reviewed in Chapter 2, rely on gradient information.

The general mixed-integer nonlinear program (1.1) or the convex counterpart (1.6)
can be tackled by a variety of different algorithms. In general, one can distinguish be-
tween heuristic approaches and global optimization techniques. Heuristic methods can

3

not guarantee global optimality. Furthermore, global optimization techniques can be
applied heuristically, if some requirements are not satisfied, e.g., applying a method
that guarantees global optimality for a convex MINLP (1.6) to solve a non-convex
MINLP (1.1). Other heuristic approaches are stochastic search methods such as pat-
tern search algorithms searching the integer space, see Audet and Dennis [7].

If MINLP (1.1) is explicitly given in algebraic form, global optimization techniques
can be applied, see, e.g., Couenne developed by Belotti et al. [21]. It is also possible to
replace the integrality condition by continuous nonlinear constraints and to solve the
resulting highly non-convex program by continuous global optimization algorithms,
see, e.g., Li and Chou [77]. Nowak et al. [82] derive lower bounds by linear outer
approximations, while upper bounds are provided by local nonlinear programming
(NLP) solution techniques. The quality of the upper and lower bound is successively
improved by spatial branching. Often specialized exact solution methods or heuristics
are tailored for specific MINLP problem instances. These techniques can be very
efficient but their application is restricted, see e.g., Möller [81] or Fügenschuh et
al. [55].

In practice, the requirements of available solution methods are often violated. Many
simulation-based mixed-integer nonlinear problems are not relaxable and model func-
tions are often highly non-convex. A practical situation is considered by Bünner,
Schittkowski and van de Braak [33], where typical integer variables are the number of
fingers and layers of an electrical filter. Moreover, some of these approaches require de-
tection of infeasibility of continuous nonlinear programs, which is highly unattractive
from the computational point of view.

Within this thesis a new algorithm for solving convex mixed-integer nonlinear opti-
mization problems is developed. In contrast to available solution methods, it is based
on the successive solution of strictly convex mixed-integer quadratic programming
(MIQP) subproblems. The motivation is to extend the well-known concept of sequen-
tial quadratic programming (SQP), which is one of the most widely used solution
technique for practical continuous nonlinear optimization methods. A corresponding
algorithm whose implementation is called Mixed-Integer Sequential Quadratic Pro-
gramming (MISQP) has already been proposed by Exler and Schittkowski [45]. It
turns out, that it can very efficiently be applied to solve simulation-based mixed-
integer optimization problems, see Chapter 6, but no convergence proof even for con-
vex MINLPs (1.6) could be given.

Mixed-integer quadratic programming has not received much attention in optimiza-
tion in the past. At present a number of researchers starts to focus on mixed-integer
quadratic programming, see e.g., Buchheim, Caprara and Lodi [32]. Nevertheless, only
few theory and some software is available, e.g., the solver SCIP developed by Achter-
berg [2] and the solver CPLEX, developed by IBM/ILOG [41]. This is especially
the case, if we consider the MIQP formulation with a quadratic objective function
and linear constraints, see (1.9), which is closely related to mixed-integer linear pro-
gramming (MILP). One reason is that mixed-integer linear solvers are very powerful

4 1 Introduction

nowadays, which implies that MILPs are set up whenever possible. An application
of mixed-integer quadratic programming is portfolio optimization, see Bienstock [25].
Since MISQP, see Section 2.10, and MIQPSOA, proposed in Section 3.1, are based on
the successive solution of strictly convex mixed-integer quadratic programs (MIQP),
fast and robust algorithms are required for solving these problems. Every speed-up
obtained for the solution of MIQP problems directly increases the efficiency of the
MIQP-based MINLP solvers.

We consider the mixed-integer quadratic program possessing a strictly convex objec-
tive function restricted by linear equality and inequality constraints:

x ∈ X, y ∈ Y :

min
1

2

(
xT , yT

)
B

(
x

y

)
+ cT

(
x

y

)
s.t. AE

(
x

y

)
= bE,

AI

(
x

y

)
≥ bI.

(1.9)

x and y denote the vectors of the continuous and integer variables, respectively, while
B ∈ Rn×n is a positive definite matrix and c ∈ Rn holds. X and Y are defined by the
upper and lower bounds on both the continuous and the integer variables, see (1.2). nc
denotes the number of continuous variables and ni is the number of integer variables.
The total number of variables is denoted by n, i.e., n := ni+nc. Equality constraints
are denoted by AE ∈ Rme×n and bE ∈ Rme , while inequality constraints are given by
AI ∈ Rmi×n and bI ∈ Rmi . Therefore me denotes the number of equality constraints,
while mi is the number of inequality constraints.

An appropriate solution approach for MIQP (1.9) is branch-and-bound, which is a gen-
eral concept to solve optimization problems, see Dakin [42] and Section 2.4. Branch-
and-bound is especially applied for solving mixed-integer optimization problems, but
it also plays a crucial role in global optimization of continuous non-convex nonlinear
programming problems, see Tawarmalani and Sahinidis [99]. Section 2.4 provides a
detailed introduction on the general branch-and-bound concept. For mixed-integer
optimization problems a branch-and-bound method usually starts by solving the con-
tinuous relaxation of the original problem, i.e., the set Y is replaced by YR. We denote
the optimal solution of the continuous relaxation by (x̄, ȳ) ∈ X× YR, while the opti-
mal solution of the original problem is given by (x∗, y∗) ∈ X × Y. Since (x̄, ȳ) is the
optimal solution of a relaxation, the corresponding value of the objective provides a
lower bound on the optimal objective value at the solution (x∗, y∗). If ȳ ∈ Y holds,
(x̄, ȳ) is the optimal solution of the mixed-integer optimization problem. Otherwise,
the branch-and-bound method commonly continues by choosing an integer variables
yi possessing a fractional value at ȳ, i.e., ȳi /∈ N. Considering ȳi the problem can
be partitioned into two disjoint problems with more stringent bounds derived from
ȳi, i.e., yi ≤ bȳic and yi ≥ dȳie. Repeating this process leads to an enumeration of
the integer search space, which terminates as soon as the optimal solution is found

5

and its optimality is proved. This enumeration process can be illustrated by a search
tree. The nodes commonly correspond to relaxations of the partitioned subproblems.
Applying a branch-and-bound method for solving strictly convex MIQP yields strictly
convex quadratic relaxations, that can be solved efficiently by continuous quadratic
programming (QP) solvers.

Strictly convex mixed-integer quadratic programming is a special case of convex
mixed-integer nonlinear programming. As a consequence, a convex MIQP can also
be solved by other algorithms apart from branch-and-bound methods. Some of these
techniques are presented in Chapter 2. These methods often rely on linear relaxations
of nonlinear problem functions, that are iteratively refined during the optimization
process. Since the feasible region of a MIQP is already described by linear constraints,
these approaches work on the exact feasible region and no iterative refinement sub-
ject to the constraints is necessary. In contrast to branch-and-bound methods, these
solution techniques allow the application of powerful mixed-integer linear solvers, on
the cost of solving a hopefully small sequence of mixed-integer linear problems, see
e.g., Section 2.5 for further details.

The branch-and-bound approach is the classical way to solve mixed-integer programs.
All state-of-the-art solvers for mixed-integer linear programming (MILP) rely on the
branch-and-bound concept. But MILP solvers contain lots of additional components
increasing the performance of the branch-and-bound enumeration. The integration of
these techniques led to a huge progress and turned mixed-integer linear solvers into
very powerful algorithms. Their tremendous improvement is based on three major
components, as presented by Bixby for the solver CPLEX of IBM/ILOG [41]:

• Powerful continuous linear solvers possessing excellent warmstart features. When
performing a warmstart, an algorithm exploits information of previous runs on
similar problems, which can significantly reduce the computational effort.

• A large variety of cut generators allowing the construction of deep cutting planes,
tightening the feasible region of the continuous relaxation.

• Advanced presolve techniques reducing the problem complexity prior to the
branch-and-bound enumeration process.

Apart from these three techniques other components helped to increase the power of
state-of-the-art mixed-integer linear solvers, e.g., heuristics. The largest improvement
is caused by the generation of cutting planes, see Table 1.1, which shows the improve-
ments caused by different techniques. Solution methods combining branch-and-bound
and the generation of cutting planes are called branch-and-cut solvers.

6 1 Introduction

Technique Factor of Speed-up

Cutting planes 53.7
Presolve 10.8

Branching rules 2.9
Heuristics 1.4

Node presolve 1.3
Probing on dives 1.1

Tab. 1.1: Speed-up Factors for Mixed-Integer Linear Programming, Bixby [26]

MIQPs and MILPs only differ in the objective function, since both possess a poly-
hedral feasible region. As a consequence, all mixed-integer linear techniques, that are
independent of the objective function, can be applied directly for MIQPs as well. Es-
pecially, all presolving procedures, where the objective function has no influence can
be used in a MIQP solver.

Nevertheless, the solution of MIQPs by the branch-and-bound approach does hardly
profit from these developments. The main difference between NLP-based branch-and-
bound for solving MINLPs and QP-based branch-and-bound for solving strictly convex
MIQPs, is the reduced effort needed to solve a QP instead of a NLP.

One major task of this dissertation is to develop a branch-and-cut mixed-integer
quadratic solver, that is influenced by the improvements of MILP solvers. By in-
corporating mixed-integer linear techniques, we want to improve the performance
significantly compared to pure branch-and-bound methods.

In general, a branch-and-cut method consists of three algorithmic components. Obvi-
ously, an enumeration routine is required to carry out the branch-and-bound process.
Furthermore, the subproblems corresponding to the nodes of the constructed search
tree need to be solved. Therefore, the second component is a QP solver possessing
appropriate warmstart features for solving the continuous relaxations. The last com-
ponent are cut generators, which tighten the problem formulation of the quadratic
relaxation. The generation of cutting planes for MIQP problems is a major task of
this thesis.

In mixed-integer linear programming, cutting planes have been studied since a famous
paper of Gomory [59] in 1958. Traditionally, a cutting plane is a linear inequality,
that cuts off the solution of a relaxation of the original problem, while retaining
all feasible integer solutions. Therefore, cutting planes truncate the feasible region
of the relaxation and leave the feasible region of the original problem unchanged.
As a consequence, they lead to an improved lower bound given by the relaxation.
Considering general mixed-integer nonlinear programming, cutting planes can be used
to solve convex MINLP problems, see Section 2.7.

Although cutting planes have been applied very successfully within branch-and-cut
solvers for mixed-integer linear programming, there are almost no results on the gener-

7

ation of cutting planes for mixed-integer quadratic programming. That’s why cutting
planes are analyzed in the context of mixed-integer quadratic programming problems,
in order to develop a MIQP branch-and-cut solver.

All our technical expertise obtained in the last couple of years is implemented in the
mixed-integer quadratic solver MIQL. Implementation details and a definition of the
calling parameters can be found in Lehmann et al. [71].

There are plenty of different applications leading to mixed-integer nonlinear models.
Since this research was supported by the company Shell, we focus on applications aris-
ing in petroleum industry. In other areas many applications lead to MINLP problems,
see Floudas [52]. The reason is that the problem class MINLP provides lots of free-
dom to describe difficult interactions. The bottleneck is the lack of efficient solution
methods.

In this thesis we gain insights into mixed-integer nonlinear optimization problems
arising in petroleum industry. We present briefly three different realistic applications
that lead to a variety of test cases: lift gas distribution, well relinking, and the Sarawak
SGPS model, see Barton and Selot [97]. The complexity of the corresponding models
varies from easy-to-solve toy problems to extremely complex applications.

The output of an oil field is increased significantly by injecting lift gas, see e.g., Wang
and Litvak [106]. The goal is to maximize the total oil production subject to a given
limited amount of lift gas. Lift gas is typically injected into different wells and the
major difficulty is the so-called non-instantaneous response of some wells. This means
that the oil production is only increased, if a certain threshold of injected lift gas is
exceeded. Otherwise the lift gas is wasted.

Some of these non-instantaneous wells become active at the optimal solution, i.e., need
to be provided with a certain amount of lift gas exceeding the corresponding threshold.
As a consequence, non-instantaneous wells cannot be ignored. If the lift gas model
is set up as a continuous nonlinear problem, gradient-based solvers easily run into
difficulties, since the gradient of the model functions for non-instantaneous wells is
zero until the threshold is exceeded. To avoid this situation the corresponding models
can be extended by introducing binary variables to turn on and off non-instantaneous
wells. As a consequence, the problem class changes from NLP to MINLP and we
obtain only sensible gradient information.

Since the output of an oil field should be maximized subject to the injection of lift gas,
one function evaluation corresponds to a simulation of the response of the oil field.
It cannot be expected that the injection leads to an immediate increase of the oil
production and therefore the simulation has to comprise some years. Thus, function
evaluations are very time-consuming for this application.

To be able to deal with this application without having to install the simulation tools,
a simplified, analytic problem formulation for lift gas optimization can be modeled
in different ways. The lift gas curves for each well describe the response of the oil
field depending on the amount of lift gas, that is injected. They can be constructed

8 1 Introduction

by linearly interpolating table data. Thus, the corresponding model functions are
not differentiable and violate a basic assumption of available solution methods, see
Chapter 2. Replacing these non-differentiable functions by fitting differentiable func-
tions overcomes this drawback. Nevertheless, this modeling is inappropriate, since the
corresponding gradients are zero on large areas inside the domain of the variables.
Therefore, every gradient-based solution method does not gain sufficient information,
within such an area. As a consequence, progress towards an optimal solution can
hardly be obtained by any gradient-based method. It is possible to model the main
characteristics of lift gas optimization problems by a convex MINLP. Therefore, con-
vergence towards the global optimum is guaranteed by NLP-based branch-and-bound
or other methods, see Chapter 2. Nevertheless, such methods are very expensive in
terms of the number of function evaluations, see Chapter 6.

Well relinking problems are non-convex mixed-integer nonlinear optimization prob-
lems, where the total oil flow in a network is to be maximized. The network consists of
a given number of source nodes and a number of sink nodes. Each source node has to
be connected to exactly one sink node, while the total capacity at the sinks is limited
in terms of pressure and flow. Each source node has a nonlinear pressure-flow char-
acteristic, while the total flow within the network is bounded. Figure 1.1 illustrates
source nodes on the left and sink nodes on the right hand side. Every source is con-
nected to each sink. So-called network conditions ensure that exactly one connection
is active for each source node.

For the first variant of well relinking models, sinks are disconnected. In an extended
second model, compressors are included, which allow connections between sinks. The
compressors possess limited resources and their configuration is part of the optimiza-
tion. In general, pressure and flow depend on each other. The higher the pressure, the
smaller is the corresponding flow and vice versa. This relation is called well perfor-
mance curve and typically varies among the sources which are also called wells. The
pressure flow interactions are modeled by nonlinear functions, whereas the network
is represented by binary variables and split factor constraints to ensure the required
network conditions.

The Sarawak SGPS model is a large non-convex mixed-integer nonlinear program to
model the upstream gas production system, see Barton and Selot [97]. The model in-
cludes a multi-product network, nonlinear pressure-flow rate relationships, production-
sharing contracts and operational rules. It was inspired by the Sarawak gas production
system (SGPS), which consists of 12 offshore fields and three associated gas fields.
The optimal routing of gas within the network has to ensure a given level of quality
at the liquefied natural gas (LNG) plants, see Figure 1.2. The network is controlled
by regulating pressures.

The SGPS is operated by a single operating company, although several parties own
the fields and the LNG plants. Thus, the operator has to consider a complex system
of production-sharing contracts, which may even prohibit the supply of a certain field
to a specified plant.

9

Fig. 1.1: Graphical Representation of a Well Relinking Network

The model is designed to plan optimal steady-state operations over a short term
period, i.e., two to twelve weeks. It consists of two interacting submodels. The first
one considers the physical constraints associated with the current production network
and facilities. It is called infrastructure model. The second one models consumer
requirements, operational rules, contractual obligations, and is called contractual rule
model.

The resulting MINLP problem consists of 827 variables including 23 binary variables,
where 702 of the total 1094 constraints are equations. It is implemented in the mod-
eling language GAMS, see Brooke et al. [31]. In Barton and Selot [19] it is claimed
that the production rate can be increased by around 2.5 %, which is equivalent to an
increase of 60-70 million dollar in annual revenue.

This thesis is subdivided as follows. Chapter 2 provides a brief review on well-known
theory of continuous nonlinear programming, see Section 2.1 and on available meth-
ods for both continuous and convex mixed-integer nonlinear optimization problems,
see Section 2.2 to Section 2.8. Section 2.9 reviews an innovative approach of Leyf-
fer [76] based on the work of Borchers and Mitchell [29] to integrate the solution of
continuous nonlinear subproblems, which arise during NLP-based branch-and-bound,
in the corresponding enumeration scheme. The research presented in this thesis is
motivated by an innovative solution approach for MINLPs derived from nonlinear

10 1 Introduction

programming techniques. The corresponding algorithm is an extension of a sequen-
tial quadratic programming (SQP) trust region method and is proposed by Exler
and Schittkowski [45]. The corresponding implementation is called MISQP, which is
described in Section 2.10. In contrast to most other available solution techniques, it
can be applied under realistic conditions enforced by simulation-based mixed-integer
nonlinear optimization problems. Extensive numerical tests show, that this approach
yields good results for academic test cases and practical applications in petroleum
industry. Furthermore, we present the basic concepts of a branch-and-bound solution
method for strictly convex mixed-integer quadratic optimization problems in Sec-
tion 2.11. It contains a brief description of a continuous quadratic solver and analyses
the possibility of performing warmstarts during branch-and-bound.

Encouraged by the promising numerical results obtained by MISQP and the absence
of a convergence proof, a new algorithm called MIQPSOA is developed in Chap-
ter 3. Based on the successive solution of strictly convex mixed-integer quadratic
subproblems, it guarantees convergence properties for convex mixed-integer nonlinear
programs. The algorithm is motivated and described in Section 3.1. The convergence
analysis is carried out in Section 3.2 and the direction of future research towards pure
MIQP-based techniques is pointed out in Section 3.3 together with some implemen-
tation aspects.

In Chapter 4 we introduce some basic theory on linear programming. Furthermore,
we review the basic concept of disjunctive programming and the related disjunctive
cutting planes. The main focus is the efficient generation of disjunctive cutting planes
for MILPs proposed by Balas and Perregaard [17].

Chapter 5 subsumes our research on cutting planes for MIQPs. In Section 5.1 we focus
on disjunctive cutting planes, that can be constructed for non-basic solutions, which
correspond to solutions of the continuous relaxation of a MIQP. Since the standard
construction method is very expensive, we extend the efficient generation method for
basic solutions to non-basic solutions, see Sections 5.2 and 5.3. This yields an efficient
cut generator for MIQPs.

Apart from theoretical analysis, we focus on the development of software. It is sup-
posed to be able to tackle simulation-based optimization problems arising in engi-
neering applications. We present numerical performance data for different solution
methods, which are based on the implementation of the proposed theoretical con-
cepts. The results are obtained for a large number of both academic and engineering
test cases and are presented in Chapter 6.

Note, that we always consider minimization problems unless stated otherwise.

11

Fig. 1.2: The Savarak Gas Production System, Barton and Selot [97]

12 1 Introduction

2. AVAILABLE NONLINEAR
SOLUTION TECHNIQUES

One major goal of this thesis is the development of new solution methods for con-
vex mixed-integer nonlinear optimization problems. The basis are the well-known and
widely established sequential quadratic programming methods (SQP). They are to
be extended for mixed-integer optimization problems, such that global optimality is
guaranteed for convex MINLPs (1.6). In this chapter, we introduce some basic theory
on nonlinear programming (NLP) and review the trust region method of Yuan [112],
which can solve NLP problems efficiently. Furthermore, we give an overview on existing
solution techniques for convex mixed-integer nonlinear optimization problems. Fur-
thermore, we present an innovative approach proposed by Exler and Schittkowski [45],
which motivates the development of a new solution method called MIQPSOA, pre-
sented in Chapter 3. Finally, we present some of your work on the solution of convex
MIQPs, focusing on warmstarts.

2.1 Basic Theory of Continuous Nonlinear

Optimization

In this section, we provide a brief review on basic theory of continuous nonlinear
programming. All other sections, dealing with nonlinear programming will refer to
these basic definitions and theorems. We consider the general continuous nonlinear
program given by

x ∈ Rn :

min f(x)

s.t. gj(x) = 0, j = 1, . . . ,me,

gj(x) ≥ 0, j = me + 1, . . . ,m.

(2.1)

The continuous nonlinear optimization problem (2.1) is obtained from MINLP (1.1),
if the integer variables y ∈ Nni are omitted or relaxed, i.e., ni = 0 and n = nc. The
index set of the constraints of NLP (2.1) is defined by

J := J= ∪ J> = {1, . . . ,m} (2.2)

14 2 Available Nonlinear Solution Techniques

with
J= := {1, . . . ,me},

J> := {me + 1, . . . ,m}.
(2.3)

Furthermore, the bounds on the continuous variables introduced in (1.2) are integrated
in the constraints gj, j ∈ J. This means, that the original nonlinear constraints, for
the moment denoted by m̃, are extended by n upper and n lower bounds on the
continuous variables, i.e.,

gm̃+i(x) := −xi + e
T
i xu ≥ 0, ∀i ∈ {1, . . . , n},

gm̃+n+i(x) := xi − e
T
i xl ≥ 0, ∀i ∈ {1, . . . , n},

(2.4)

where ei denotes the i-th unit vector. Nevertheless, we denote the feasible domain
induced by the bounds on the continuous variables by X, i.e.,

X := {x ∈ Rn : gm̃+i(x) ≥ 0, i ∈ {1, . . . , 2n}}. (2.5)

To be consistent with standard notation, we define the number of constraints to be
m := m̃ + 2n and extend the index set J> accordingly. me still denotes the number
of equality constraints.

The objective function f(x) and the constraints gj(x), j = 1, . . . ,m, are twice con-
tinuously differentiable subject to x ∈ X. Moreover, the feasible region is given by
Definition 2.1.

Definition 2.1. The feasible region of NLP (2.1) is defined by the set

F := {x ∈ Rn : gj(x) = 0, j = 1, . . . ,me}

∩ {x ∈ Rn : gj(x) ≥ 0, j = me + 1, . . . ,m} .
(2.6)

Inequality constraints can be divided into active and inactive ones, defined by the
subsequent definition.

Definition 2.2. The constraint gj, j ∈ {me + 1, . . . ,m} is active at x ∈ F, if

gj(x) = 0 (2.7)

holds. Moreover, the active set at x ∈ F is defined by

A(x) := {j ∈ {1, . . . ,m} : gj(x) = 0} . (2.8)

The process of finding a feasible point x∗ ∈ F, which minimizes the objective function
f(x) of the nonlinear program (2.1) is called nonlinear programming. We distinguish
between local and global minima.

2.1 Basic Theory of Continuous Nonlinear Optimization 15

Definition 2.3. x∗ ∈ F is a local minimum of NLP (2.1), if there exists a neighbor-
hood U(x∗) such that

f(x∗) ≤ f(x) (2.9)

holds, for all x ∈ U(x∗) ∩ F.

x∗ ∈ F is a global minimum of (2.1), if

f(x∗) ≤ f(x) (2.10)

holds, for all x ∈ F.

The nonlinear program (2.1) is associated with the Lagrangian function combining
the objective and the constraints via the Lagrangian multipliers.

Definition 2.4. The Lagrangian function of NLP (2.1) is given by

L(x, λ, µ) := f(x) −
∑
j∈J=

µjgj(x) −
∑
j∈J>

λjgj(x) (2.11)

where µ ∈ Rme and λ ∈ Rm−me with λj ≥ 0, ∀j ∈ J> are called Lagrangian multipliers.
The Lagrangian multipliers are considered as dual variables, while x ∈ Rn are the
primal variables.

The introduction of Lagrangian multipliers µ ∈ Rme and λ ∈ Rm−me allows the
distinction of active constraints according to Definition 2.5.

Definition 2.5. The active constraint gj(x), j ∈ A(x) and at x ∈ F is strongly active,
if the corresponding Lagrangian multiplier λj or µj respectively, is not equal to zero.
The set of strongly active constraints is denoted by AS(x).

We want to introduce necessary and sufficient optimality criteria for nonlinear pro-
gramming. Especially the necessary first order optimality conditions describing a KKT
point given in Theorem 2.1 is of practical importance, since it is frequently used as a
stopping criterion by NLP solvers. A regularity condition has to be satisfied to guaran-
tee the existence of a KKT point. One sufficient condition is the linear independence
constraint qualification (LICQ).

Definition 2.6. The linear independence constraint qualification (LICQ) is satisfied
at a feasible point x ∈ F, if the gradients of the constraints included in the active set
A(x) are linear independent at x.

First order necessary optimality conditions for NLP (2.1) can be stated as follows.

Theorem 2.1. Let x∗ ∈ F be a local minimum of (2.1), where f and g are twice
continuously differentiable, and let the LICQ be satisfied at x∗, see Definition 2.6.

16 2 Available Nonlinear Solution Techniques

Then there exist µ∗ ∈ Rme and λ∗ ∈ Rm−me such that the following Karush-Kuhn-
Tucker (KKT) conditions hold

∇xL(x∗, λ∗, µ∗) = 0, (2.12)

gj(x
∗) = 0, j = 1, . . . ,me, (2.13)

gj(x
∗) ≥ 0, j = me + 1, . . . ,m, (2.14)

λ∗j ≥ 0, j = me + 1, . . . ,m, (2.15)

λ∗j gj(x
∗) = 0, j = me + 1, . . . ,m. (2.16)

If (x∗, λ∗, µ∗) satisfies the KKT conditions, i.e., (2.12) - (2.16), it is called KKT-point
or stationary point.

Proof. See e.g., Jarre and Stoer [66].

The Lagrangian multipliers (λ∗, µ∗) are unique, if the LICQ condition holds, see Schit-
tkowski and Yuan [96]. Second order sufficient optimality conditions are given by the
subsequent theorem, see, e.g., Jarre and Stoer [66].

Theorem 2.2. Let the following conditions be satisfied for NLP (2.1):

1. f(x) ∈ C2(Rn) and g(x) = (g1(x), . . . , gm(x))
T ∈ C2(Rn).

2. Let (x∗, λ∗, µ∗) ∈ Rn×m be a KKT-point of NLP (2.1).

3. For all s ∈ L(x∗) with

L(x∗) :=

{
s ∈ Rn :

∇xgj(x∗)Ts = 0, j ∈ AS(x∗),
∇xgj(x∗)Ts ≥ 0, j ∈ (A(x∗)\AS(x∗)) ∩ J>

}
(2.17)

and s 6= 0,

sT∇2xL(x∗, λ∗, µ∗)s > 0 (2.18)

holds, where AS(x∗) is the set of strongly active constraints at x∗ ∈ F, see Defi-
nition 2.5.

Then x∗ is a strict local minimum of NLP (2.1), i.e., ∃ ε1 > 0, ε2 > 0, such that
∀ x ∈ {x ∈ F : ‖x− x∗‖ < ε2}

f(x) ≥ f(x∗) + ε1‖x− x∗‖2 (2.19)

holds.

Proof. See e.g., Jarre and Stoer [66].

2.1 Basic Theory of Continuous Nonlinear Optimization 17

Many nonlinear programming algorithms incorporate second order information. In the
remainder, we denote the Hessian of the Lagrangian function with respect to x by

H(x) := ∇2x L(x, λ, µ) ∈ Rn×n. (2.20)

In many applications, the evaluation of H(x) is too expensive. Furthermore, the
Hessian matrix might be indefinite. Approximating H(x) via appropriate updating
schemes, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update given by
Definition 2.7, yields a positive definite approximation, which can be computed effi-
ciently, see e.g., Schittkowski and Yuan [96] or Jarre and Stoer [66]. We denote the
Hessian or its approximation in iteration k by Bk ∈ Rn×n.

Definition 2.7. The BFGS Quasi-Newton Update in iteration k is given by

Bk+1 := Bk +
dkL(d

k
L)
T

(dk)TdkL
−
Bkdk(dk)TBk

(dk)TBkdk
(2.21)

with

dkL := ∇xL(xk+1, λk, µk) −∇xL(xk, λk, µk) ∈ Rn, (2.22)

dk := xk+1 − xk ∈ Rn. (2.23)

dk is also called search direction. The matrix B0 is commonly initialized by the identity
matrix of appropriate dimension.

In general, NLP (2.1) is solved iteratively by a sequence of subproblems, which are
efficiently solvable. At each iterate xk ∈ X a subproblem is formulated and the next
iterate is determined by the solution of the current subproblem. The sequence of iter-
ates

{
xk
}

is supposed to converge towards a stationary point, if certain requirements
are satisfied.

In nonlinear programming, local and global convergence properties are distinguished.
The local convergence behavior of an algorithm describes the rate of convergence in the
neighborhood of a stationary point x∗ ∈ F. We distinguish three different convergence
rates.

Definition 2.8. An iteration sequence
{
xk
}

converges with linear convergence rate
towards a stationary point x∗ ∈ F, if there exists a c1 ∈]0, 1[with

‖xk+1 − x∗‖ ≤ c1‖xk − x∗‖, (2.24)

for all k > k̄ for some fixed k̄.

An iteration sequence
{
xk
}

converges with superlinear convergence rate towards a
stationary point x∗ ∈ F, if there exists a sequence

{
ck
}
⊂ R+, satisfying lim

k→∞ ck = 0,
and

‖xk+1 − x∗‖ ≤ ck‖xk − x∗‖, (2.25)

18 2 Available Nonlinear Solution Techniques

holds for all k > k̄ for some fixed k̄.

An iteration sequence
{
xk
}

converges with quadratic convergence rate towards a sta-
tionary point x∗ ∈ F, if there exists a finite constant c2 > 0 with

‖xk+1 − x∗‖ ≤ c2‖xk − x∗‖2, (2.26)

for all k > k̄ for some fixed k̄.

The property, that an algorithm converges towards a stationary point x∗ indepen-
dently of the starting point x0 ∈ X is called global convergence. Note, that a globally
convergent NLP solver, does not guarantee to find a global minimum according to
Definition 2.3, instead it finds a stationary point from any starting point x0 ∈ X.

Global convergence properties are ensured by so-called globalization techniques. In
the literature, different approaches can be found, such as

1. trust region methods, see Vardi [103], Byrd, Schnabel and Shultz [35] and Omo-
jokun [84],

2. filter methods, see Fletcher and Leyffer [51],

3. and line search methods, see Armijo [6].

The well-known and widely used sequential quadratic programming (SQP) methods,
converge with a superlinear convergence rate towards a KKT point, if appropriate
requirements are satisfied, see Schittkowski and Yuan [96]. An essential assumption
is, that the search step determined by the SQP subproblem, is accepted without
adjustments in a neighborhood of a KKT point. This might be prevented by applying
globalization techniques, i.e., they might force a modification of the search direction
even in a neighborhood of the KKT point. This phenomenon is known as the Maratos
effect, see Maratos [78].

Many techniques have been proposed to prevent the Maratos effect, e.g.,

1. watch-dog techniques, see Chamberlain et al. [39],

2. second order correction techniques, see Fletcher [49], Mayne and Polak [79] and
Fukushima [56],

3. usage of smooth exact penalty functions or the augmented Lagrange function as
merit function, see Schittkowski [93], Powell and Yuan [88],[89] and Ulbrich [101],

4. non-monotone techniques, see Ulbrich and Ulbrich [102] and Gould and Toint [60].

In our implementation of MIQPSOA, which is proposed in Chapter 3, second order
correction steps are applied to avoid the Maratos effect. A second order correction
step tries to correct constraint violations, that are caused by the SQP search step by
considering second order information. The second order correction step is obtained by
solving a second subproblem in the corresponding iteration, see e.g., Yuan [112] for
further details.

2.2 Sequential Quadratic Programming and the Trust Region Method of Yuan 19

2.2 Sequential Quadratic Programming and the

Trust Region Method of Yuan

In this section, we review a trust region algorithm yielding a stationary point for the
continuous nonlinear program (2.1). To simplify readability we assume that the box
constraints are included in the nonlinear constraints g(x), see (2.5). It was proposed by
Yuan [112] and is closely related to the well-known sequential quadratic programming
methods. The most common nonlinear programming algorithms are interior point
methods, e.g., Wächter and Biegler [105] or sequential quadratic programming (SQP)
methods, e.g., Schittkowski and Yuan [96]. These nonlinear programming algorithms
converge globally towards a stationary point. A global minimum can only be guaran-
teed for convex problems, e.g., the continuous relaxation of the convex MINLP (1.6).

Nonlinear programming problems naturally arise during the solution process of convex
mixed-integer nonlinear optimization problems (1.6), e.g., as continuous relaxation or
by fixing the integer variables y ∈ Nni . We focus on the trust region method proposed
by Yuan [112], since it is the base for a novel MINLP solution method presented in
Section 3.1.

Every SQP method is based on solving a series of continuous quadratic (QP) sub-
problems. In iteration k a quadratic subproblem is constructed by linearizing the
constraints at the current iterate xk. The objective function is a quadratic approx-
imation of the Lagrangian function L(x, λ, µ) of NLP (2.1), see Definition 2.4 and
Definition 2.7 for a suitable choice of the matrix Bk forming the quadratic term in the
objective function. The subproblem in iteration k is given by

d ∈ Rn :

min ∇xf(xk)Td+ 1
2
dTBkd

s.t. gj(x
k) +∇xgj(xk)Td = 0, j = 1, . . . ,me,

gj(x
k) +∇xgj(xk)Td ≥ 0, j = me + 1, . . . ,m.

(2.27)

The solution of QP (2.27) is denoted by dk. The next iterate xk+1 is obtained either
directly, i.e., xk+1 = xk+dk, if a trust region constraint d ≤ ‖∆k‖ is included, where ∆k

denotes the trust region radius. Or it is obtained by a line search, i.e., xk+1 = xk+αkdk,
with αk ∈ (0, 1] reducing the step-length αk until a sufficient descent with respect to
an appropriate merit-function is obtained.

The subproblems of the trust region method of Yuan [112] approximate the L∞-penalty
function introduced in Definition 2.9 instead.

Definition 2.9. The L∞-penalty function Pσ(x) associated with the penalty parameter
σ ∈ R+ and x ∈ Rn is given by

Pσ(x) = f(x) + σ‖g(x)−‖∞, (2.28)

20 2 Available Nonlinear Solution Techniques

with

g(x)− := (g1(x)
−, . . . , gm(x)

−)T (2.29)

gj(x)
− :=

{
gj(x), j = 1, . . . ,me

min{gj(x), 0}, j = me + 1, . . . ,m.
(2.30)

In each iteration k the trust region method constructs a model of the original problem
based on the current iterate xk. Typically, the accuracy and therefore the quality of
the model decreases with an increasing distance from xk. To control the quality of the
model, the maximal distance from the current iterate is restricted by the trust region
radius ∆k.

In iteration k Yuan’s trust region algorithm approximates the L∞-penalty function
leading to the following problem:

d ∈ Rn :

min Φk(d)

s.t. ‖d‖∞ ≤ ∆k,

(2.31)

where the objective function is given by

Φk(d) := ∇x f(xk)Td+
1

2
dTBkd

+ σk‖(g(xk) + [∇x g(xk)]Td)−‖∞.
(2.32)

Note, that problem (2.31) is equivalent to a quadratic program, see Yuan [112]. There-
fore, it can be solved efficiently by any QP solver, e.g., QL of Schittkowski [94]. The
optimal solution of subproblem (2.31) is denoted by dk. It provides a search direction
to determine the next iterate, i.e.,

xk+1 = xk + dk. (2.33)

Problem (2.31) predicts a decrease in the L∞-penalty function. We define

Predk := Φk(0) −Φk(dk). (2.34)

If the subsequent stopping criterion

dk = 0 (2.35)

and certain assumptions hold, the current iterate xk is one out of three stationary
points, that are defined below. One of these stationary points corresponds to a KKT-
point of NLP (2.1), see Yuan [112].

To reduce the constraint violation a penalty parameter is introduced, that penalizes
the violation of constraints. If feasibility is not sufficiently improved, the penalty

2.2 Sequential Quadratic Programming and the Trust Region Method of Yuan 21

parameter σk has to be increased. The increase of the penalty parameter is controlled
by a parameter δk ∈ R with δk > 0.

Comparing the predicted reduction given by (2.34), with the realized decrease of
the L∞-penalty function, the quality of model associated with problem (2.31) can be
judged. The corresponding measure is denoted by

rk :=
Pσk(x

k) − Pσk(x
k + dk)

Predk
. (2.36)

If the model corresponding to problem (2.31) is of poor quality, e.g. rk ≤ 0, the trust
region radius has to be decreased. Otherwise, the trust region radius can be extended.
Subsuming all components we can specify the trust region method of Yuan [112].

Algorithm 2.1. (Trust Region Method of Yuan)

1. Given x0 ∈ Rn, ∆0 > 0, B0 ∈ Rn×n symmetric and positive definite, δ0 > 0,
σ0 > 0 and k := 0.

Evaluate the functions f(x0) and g(x0) and determine gradients ∇xf(x0) and
∇xg(x0).

2. Solve subproblem (2.31) determining dk.

If stopping criterion (2.35) is satisfied, then STOP.

Else evaluate f(xk + dk), g(xk + dk) and Pσk(x
k + dk).

Evaluate the quality of the model with respect to the L∞-penalty function
by rk (2.36).

3. Check for a descent with respect to the L∞-penalty function.

If rk > 0, then update iterate, i.e., set xk+1 := xk + dk.

Else set xk+1 := xk, Bk+1 := Bk, ∆k+1 := 1
4
‖dk‖∞, k := k+ 1.

GOTO Step 2.

4. Adapt trust region radius:

∆k+1 :=


max{∆k, 4‖dk‖∞}, if rk > 0.9,
∆k, if 0.9 ≥ rk ≥ 0.1,
min{ 1

4
∆k, 1

2
‖dk‖∞}, if rk < 0.1.

(2.37)

Choose Bk+1, such that Bk+1 is any symmetric, positive definite matrix.

Penalty Update:

22 2 Available Nonlinear Solution Techniques

If

Φk(0) −Φk(dk) ≤ σkδk min
{
∆k, ‖g(xk)−‖∞} , (2.38)

then set

σk+1 := 2σk, (2.39)

δk+1 :=
1

4
δk. (2.40)

Else set

σk+1 := σk, (2.41)

δk+1 := δk. (2.42)

5. Compute ∇x f(xk+1) and [∇x g(xk+1)], set k := k+ 1 and GOTO Step 2.

The trust region method of Yuan converges towards a stationary point, if Assump-
tion 2.1 is satisfied, see Yuan [112] and Jarre and Stoer [66].

Assumption 2.1. 1. f(x) and gj(x), j = 1, . . . ,m are continuously differentiable
∀x ∈ Rn.

2. The sequences {xk} and {Bk} are bounded ∀ k.

Moreover, we review the theoretical properties of Algorithm 2.1, according to Yuan [112].
The limit of ‖g(xk)−‖∞ exists, if the sequence of penalty parameter {σk} goes to in-
finity.

Lemma 2.1. If Assumption 2.1 holds and σk →∞, then lim
k→∞ ‖g(xk)−‖∞ exists.

Proof. See Yuan [112].

Algorithm 2.1 converges towards one of three different stationary points, see Yuan [112].
These are either a KKT-point for problem (2.1) as specified in Theorem 2.1. Or it is
a infeasible stationary point or a singular stationary point.

Yuan [112] defines an infeasible stationary point as follows.

Definition 2.10. Let F be the feasible region of NLP (2.1). x∗ ∈ Rn\F is called an
infeasible stationary point, if

1. ‖g(x∗)−‖∞ > 0

2. min
d∈Rn
‖(g(x∗) + [∇x g(x∗)]Td)−‖∞ = ‖g(x∗)−‖∞

2.2 Sequential Quadratic Programming and the Trust Region Method of Yuan 23

holds.

An infeasible stationary point is a minimizer of the infinity norm of the linearized
constraints, see Yuan [112]. In contrast to an infeasible stationary point, a singular
stationary point is feasible. It is defined as follows.

Definition 2.11. Let F be the feasible region of NLP (2.1). x∗ ∈ F is called a singular
stationary point, if the following conditions hold.

1. ‖g(x∗)−‖∞ = 0.

2. There exists a sequence {x̂k} converging towards x∗ such that ‖g(x̂k)−‖∞ > 0 and

lim
k→∞ min

‖d‖∞≤‖g(x̂k)−‖∞
‖(g(x̂k) + [∇x g(x̂k)]Td)−‖∞

‖g(x̂k)−‖∞ = 1. (2.43)

In addition a stationary point is defined as follows.

Definition 2.12. Let F be the feasible region of NLP (2.1). x∗ ∈ F is called a sta-
tionary point, if the following conditions hold.

1. ‖g(x∗)−‖∞ = 0.

2. If

∇xgj(x∗)Ts ≥ 0, j ∈ J> (2.44)

∇xgj(x∗)Ts = 0, j ∈ J= (2.45)

hold for s ∈ Rn, then

∇xf(x∗)Ts ≥ 0 (2.46)

is satisfied

Note, that a stationary point according to Definition 2.12 corresponds to a KKT-point
of NLP (2.1), see Jarre and Stoer [66].

The following theorem shows, that the trust region method of Yuan converges towards
a KKT point, if the sequence of penalty parameters {σk} is bounded.

Theorem 2.3. If Assumption 2.1 holds and the sequence of penalty parameters {σk}

is bounded, one member of the sequence of iterates {xk} is a stationary point speci-
fied in Definition 2.12 or the sequence {xk} generated by Algorithm 2.1 possesses an
accumulation point that is a stationary point.

Proof. See Yuan [112].

24 2 Available Nonlinear Solution Techniques

If the sequence of penalty parameters {σk} is unbounded and the constraints are
violated in the limit, Yuan’s trust region method converges towards an infeasible
stationary point given by Definition 2.10.

Lemma 2.2. If Assumption 2.1 holds, lim
k→∞σk =∞ and lim

k→∞ ‖g(xk)−‖∞ > 0, then the

sequence {xk} possesses an infeasible stationary point of NLP (2.1) as an accumulation
point.

Proof. See Yuan [112].

If the sequence of penalty parameters {σk} is unbounded but the constraint violation
goes to zero, Yuan’s trust region method converges towards a singular stationary point
as specified in Definition 2.11.

Lemma 2.3. If Assumption 2.1 holds, lim
k→∞σk = ∞ and lim

k→∞ ‖g(xk)−‖∞ = 0, then

the sequence {xk} generated by Algorithm 2.1 possesses a singular stationary point of
NLP (2.1) as an accumulation point.

Proof. See Yuan [112].

2.3 Review on Solution Techniques for Convex

MINLPs

There exists a variety of different algorithms to solve convex mixed-integer nonlinear
optimization problems given by problem (1.6), see, e.g., Floudas [52], Grossmann
and Kravanja [61] or Bonami, Kilinc and Linderoth [28] for review papers. This thesis
focuses on the development of solution methods for convex MINLP problems based on
the successive solution of mixed-integer quadratic subproblems. Our new algorithm
called MIQP-Supported Outer Approximation (MIQPSOA) proposed in Chapter 3
as well as the solution methods, that are reviewed in this chapter rely on gradient
information.

In general, for solving any mixed-integer optimization problem the existence of lower
and upper bounds is of major importance. These bounds refer to the value of the
objective function of the mixed-integer program. For a lower bound f, f(x∗, y∗) ≥ f
holds at the optimal solution (x∗, y∗), while f(x∗, y∗) ≤ f holds for an upper bound f.

The existing solution methods can be classified into branch-and-bound algorithms,
methods based on the successive solution of mixed-integer linear relaxations and ad-
vanced methods integrating continuous nonlinear and mixed-integer techniques.

Branch-and-bound methods are commonly used to solve non-convex MINLPs (1.1) by
exploiting analytical problem structures within a global solver, such as BARON, see
Sahinidis [92]. NLP-based branch-and-bound methods do not rely on any analytical
knowledge of the problem and are often applied to solve the convex MINLP (1.6).

2.3 Review on Solution Techniques for Convex MINLPs 25

Although we concentrate on the development of competitive solution approaches we
briefly review the basic concepts of general branch-and-bound algorithms and NLP-
based branch-and-bound in Section 2.4. Furthermore, a basic implementation is used
as benchmark for our numerical tests in Chapter 6.

Another class of algorithms relies on the successive solution of mixed-integer linear
programming (MILP) relaxations of the convex MINLP (1.6). Among these methods
there is the extended cutting plane method proposed by Westerlund and Petters-
son [108], see also Westerlund and Pörn [109] and Section 2.7 for details. Linear outer
approximation and the generalized Benders’ decomposition proposed by Geoffrion [57]
are other frequently used algorithms. The basic concept of linear outer approximation
methods is introduced by Duran and Grossmann [43] and is extended by Fletcher and
Leyffer [50]. We present the basic theory of the linear outer approximation approach
of Fletcher and Leyffer [50] in Section 2.5. Generalized Benders’ decomposition is a
similar approach, that is briefly described in Section 2.6.

The last class of solvers for convex MINLPs contains advanced, state-of-the-art so-
lution methods. Originally, continuous nonlinear and mixed-integer optimization is
decoupled, since efficient black-box solvers for both problems are available. The ad-
vanced methods improve the performance by integrating both techniques. This class
is constituted by LP/NLP-based branch-and-bound proposed by Quesada and Gross-
man [90], see Section 2.8 and nonlinear branch-and-bound with early branching ac-
cording to Leyffer [76], which is reviewed in Section 2.9.

Convex MINLP problems are hard to solve and each available algorithm, such as NLP-
based branch-and-bound, linear outer approximation, generalized Benders’ decompo-
sition, LP/NLP-based branch-and-bound and the extended cutting plane method, is
based on the successive solution of complex subproblems. Since the problem class of
mixed-integer nonlinear optimization problems is the combination of mixed-integer
linear programming and continuous nonlinear programming, these subproblems are
either traditionally MILPs or NLPs.

Based on Grossmann [62] we are going to review the interrelation of these solution
methods by analyzing their subproblems. To ease the readability we omit linear equal-
ity constraints, i.e., J= = ∅ and J = J>.

Essentially, three different continuous nonlinear subproblems might arise during the
solution of the convex MINLP problem (1.6). One subproblem, which is associated
with NLP-based branch-and-bound methods, is the continuous relaxation denoted by
NLPr

x ∈ X, y ∈ YR :

min f(x, y)

s.t. gj(x, y) ≥ 0, j ∈ J,

(2.47)

where YR is defined by (1.8). The optimal objective value of the continuous relax-
ation provides a lower bound on the optimal solution of MINLP (1.6). NLP-based
branch-and-bound methods successively solve problem (2.47). In each iteration the

26 2 Available Nonlinear Solution Techniques

box-constraints of the integer variables are refined, i.e., replaced by more stringent
lower or upper ones, which are given by

yi ≥ (ykl)i > (yl)i, i ∈ IkL (2.48)

or
yi ≤ (yku)i < (yu)i, i ∈ IkU. (2.49)

IkL, I
k
U denote the corresponding index subsets of the integer variables yi, i ∈ I, with

(yl)i < (ykl)i or (yku)i < (yu)i respectively, in iteration k, i.e.,

IkL := {i ∈ I : ∃(ykl)i : yi ≥ (ykl)i > (yl)i in iteration k}, (2.50)

or
IkU := {i ∈ I : ∃(yku)i : yi ≤ (yku)i < (yu)i in iteration k}. (2.51)

The remaining two continuous nonlinear subproblems arise in linear outer approxi-
mation, generalized Benders’ decomposition and LP/NLP-based branch-and-bound.
They are both derived from the original mixed-integer nonlinear program (1.6) by fix-
ing the integer variables to a certain integer value yk ∈ Y. k denotes the k-th integer
value, that is considered. Fixing the integer variables y ≡ yk yields the continuous
problem NLP(yk) given by

x ∈ X :

min f(x, yk)

s.t. gj(x, y
k) ≥ 0, j ∈ J.

(2.52)

Its solution x̄yk ∈ X provides an upper bound for the mixed-integer nonlinear pro-
gram (1.6). If problem NLP(yk) does not possess a feasible solution, i.e.,

@ x ∈ X : gj(x, y
k) ≥ 0, ∀j ∈ J, (2.53)

for some integer value yk ∈ Y, subproblem (2.52) has to be replaced by the so-called
feasibility subproblem. The goal is to find a value of x ∈ X, such that the constraints
are least violated in some norm for fixed yk ∈ Y. Choosing the∞-norm, the nonlinear
feasibility problem F(yk) is given by

x ∈ X, ηF ∈ R+ :

min ηF

s.t. gj(x, y
k) ≥ −ηF, j ∈ J.

(2.54)

and we denote its solution by (x̄yk , η̄F) ∈ X×R+. ηF ∈ R+ is an additional variable mea-
suring the maximal constraint violation for gj(x, y), j ∈ J. Note; that problem (2.54)
minimizes the maximal constraint violation, i.e., the ‖.‖∞-norm of the constraint vi-
olation. There exist many variants of feasibility problem (2.54), e.g., using different

2.3 Review on Solution Techniques for Convex MINLPs 27

norms measuring the constraint violation. In the sequel, all variants are denoted by
F(yk), since a distinction is not necessary.

Some algorithms for solving convex MINLPs rely on the successive solution of mixed-
integer linear programming problems, which are obtained by relaxing the nonlinear
functions of the convex MINLP (1.6). These relaxations are denoted by MILPkr and
often called master problem. The master problem is successively refined by additional
linearizations obtained in previous iterations i ≤ k at some points (xi, yi) ∈ X × YR.
In iteration k, the master problem is given by

x ∈ X, y ∈ Y, η ∈ R : (2.55)

min η

s.t. f(xi, yi) +∇x,yf(xi, yi)T
(
x− xi

y− yi

)
≤ η, ∀(xi, yi) ∈ Lk,

gj(x
i, yi) +∇x,ygj(xi, yi)T

(
x− xi

y− yi

)
≥ 0, ∀(xi, yi) ∈ Lk, j ∈ Ji,

with Ji ⊆ J, ∀ i = 1, . . . , k, and Lk :=
{
(xi, yi) ∈ X× YR, i = 1, . . . , k

}
. The set Ji in

iteration i is a subset of J, which can vary in each iteration i = 1, . . . , k. Furthermore,
its definition depends on the corresponding algorithm. (xi, yi) ∈ X× YR, i = 1, . . . , k
are linearization points obtained in iteration i ≤ k. For a convex MINLP (1.6) the
corresponding MILPr (2.55) is defined such that the constraints

f(xi, yi) +∇x,yf(xi, yi)T
(
x− xi

y− yi

)
≤ η, ∀(xi, yi) ∈ Lk (2.56)

underestimate the objective function f(x, y). Figure 2.1 illustrates the situation, the
objective function f is underestimated by two linearizations (2.56) denoted by lin1(f)
and lin2(f). Since the constraints

gj(x
i, yi) +∇x,ygj(xi, yi)T

(
x− xi

y− yi

)
≥ 0, j ∈ Jk>, ∀(xi, yi) ∈ Lk (2.57)

overestimate the feasible region, the master problem (2.55) is a relaxation of the
convex MINLP (1.6), for any linearization point (xi, yi) ∈ Lk. Figure 2.2 shows, that
the feasible region of a convex MINLP described by g1(x, y), g2(x, y) and g3(x, y)
is overestimated by any linearizations lin1, lin2 of any of the constraints g1(x, y),
g2(x, y), g3(x, y) obtained from (2.57).

28 2 Available Nonlinear Solution Techniques

-5

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

f(x)
lin1(f)
lin2(f)

Fig. 2.1: Underestimating the Objective Function

-4

-2

0

2

4

6

8

10

-1 0 1 2 3 4 5 6 7

g1(x, y)
g2(x, y)
g3(x, y)
lin1(g1)
lin1(g2)
lin1(g3)
lin2(g1)
lin2(g2)
lin2(g3)

Fig. 2.2: Overestimating the Feasible Region

As a consequence, the value of η∗, which is part of the optimal solution of MILP (2.55),
provides a lower bound on the global solution of MINLP (1.6). The linearization points

2.4 NLP-based Branch-and-Bound 29

(xi, yi) ∈ Lk often correspond to a solution of one of the continuous nonlinear sub-
problems NLP(yi) or F(yi). More details concerning the subproblems NLP(yk), F(yk)
and MILPkr in the context of linear outer approximation and generalized Benders’ de-
composition are given in Section 2.5 and Section 2.6, respectively.

2.4 NLP-based Branch-and-Bound

Originally, branch-and-bound methods were developed for solving mixed-integer linear
optimization problems, see Dakin [42]. Since branch-and-bound is a general concept,
it can easily be applied to solve convex mixed-integer nonlinear programs as shown,
e.g., by Gupta and Ravindran [64] or Borchers and Mitchell [29]. An efficient state-
of-the-art implementation is provided by Bonami et al. [27].

First, we describe the general concept of branch-and-bound methods, according to
Floudas [52]. Moreover, we discuss NLP-based branch-and-bound methods, that are
often used to solve the convex MINLP problem (1.6). The concept of branch-and-
bound is generally valid and can be applied for any optimization problem P. Usually
P is a mixed-integer linear program. But also global optimization methods for non-
convex, continuous, nonlinear programs are based on the branch-and-bound concept
in combination with convex under- and over-estimators, see Sahinidis [92] for a state-
of-the-art implementation.

Branch-and-bound is generally based on partitioning, relaxation and fathoming. Dur-
ing the partition step of a branch-and-bound method, the original problem is iter-
atively subdivided into a finite number of disjoint subproblems. Furthermore, the
solution process is based on a series of relaxations of the original problem, that are
easier to solve. The concept of fathoming is very important for the efficiency of a
branch-and-bound method. Fathoming denotes the fact, that certain subproblems
need not be considered, if they cannot contain an optimal solution. The main goal
of a branch-and-bound method is to perform an enumeration of the solutions of an
optimization problem P, without explicitly examining all possible alternatives, e.g.,
all possible values for every integral variable included in P.

After the brief introduction, we present the general branch-and-bound concept in
detail. First we define a partition of P.

Definition 2.13. A partition of an optimization problem P is a set of υ subproblems
P1, . . . , Pυ, such that the following conditions hold:

1. A feasible solution of any of the subproblems P1, . . . , Pυ is a feasible solution of
P.

2. Every feasible solution of P is a feasible solution of exactly one of the subproblems
P1, . . . , Pυ.

30 2 Available Nonlinear Solution Techniques

Definition 2.13 ensures that the feasible solutions of the subproblems P1, . . . , Pυ form a
partition of the feasible solutions of the original problem P. Different possibilities exist
for generating a partition of problem P into subproblems P1, . . . , Pυ. For mixed-integer
optimization problems, the most common partitioning technique is branching on an
integer variable yi ∈ Y obtaining the additional constraint yi ≤ ψ in subproblem P1
and yi ≥ ψ + 1 in subproblem P2 with ψ ∈ N, respectively. Moreover, we define a
relaxation of Problem P by Definition 2.14.

Definition 2.14. Let problem RP and problem P have the same objective function.
Then problem RP is a relaxation of problem P, if the set of feasible solutions of P is a
subset of the set of feasible solutions of RP.

Note, that usually more than one relaxation exists for problem P. The following prop-
erties are valid for any optimization problem P and any corresponding relaxation RP,
see Floudas [52].

Corollary 2.1. Let P be an optimization problem and let RP be any relaxation of P.
Then the following properties hold.

1. If RP does not possess a feasible solution, no feasible solution of P exists.

2. The optimal solution of the relaxation RP provides a lower bound on the optimal
solution of P.

3. If the optimal solution of the relaxation RP is feasible for P, then it is an optimal
solution of the original problem P.

There are several possibilities to obtain relaxations RP for problem P. They might be
generated by omitting some constraints or by relaxing some/all constraints. An exam-
ple is problem (2.55), where a selection of the nonlinear constraints of MINLP (1.6)
is replaced by linear ones, such that the feasible region is overestimated. For mixed-
integer optimization problems the most common way to obtain a relaxation, is to relax
integer variables, i.e., replacing integer variables by continuous ones. The relaxation
should be chosen such that the relaxed problem RP is significantly easier to solve than
the original problem P. Furthermore, the relaxation is stronger, i.e., more favorable,
if the quality of the corresponding lower bound on the optimal solution of P is high.
The quality of a lower bound is given by the so-called gap, which is the difference
between the optimal objective value of the relaxation RP and the optimal objective
value of P. Relaxations that are easy to solve usually provide lower bounds of poor
quality.

By iteratively applying the principles of partitioning and relaxation, all possible solu-
tions of optimization problem P are enumerated. This enumeration can be graphically
represented by a tree, which is also called branch-and-bound tree, see Figure 2.3. Each
node of the tree corresponds to a relaxation of one so-called candidate subproblems
(CS).

2.4 NLP-based Branch-and-Bound 31

Definition 2.15. An unexplored problem Pi, i ∈ {1, . . . , υ}, that is obtained from
problem P by partitioning according to Definition 2.13, is called candidate subproblem
(CS).

During the enumeration by branch-and-bound, nodes can be fathomed according to
Lemma 2.4, i.e., the corresponding subtrees are cut off without further exploration.
A node can always be fathomed, if the corresponding candidate subproblem (CS)
possesses no optimal solution for the original problem P, see e.g., Floudas [52].

Lemma 2.4. A candidate subproblem CS can be fathomed, if one of the following
conditions hold:

1. CS does not contain a feasible solution of P possessing a lower objective function
value, than the best feasible solution found so far.

2. An optimal solution of CS is determined.

Proof. See Floudas [52].

There are three general fathoming criteria based on the relaxation of CS, denoted by
RCS, see again e.g., Floudas [52].

Corollary 2.2. A candidate subproblem can be fathomed, if one of the following
conditions holds.

1. The relaxation RCS of CS possesses no feasible solution, i.e., CS has no feasible
solution.

2. The optimal solution of RCS is greater or equal than the best known feasible
solution of P.

Note, that this fathoming criterion can be applied more often if the relaxation is
tight, i.e., the gap between RCS and CS is small. Obtaining a feasible solution
of P possessing an objective value as close as possible to the one of the optimal
solution of P is also of major importance for this fathoming rule.

3. The optimal solution of RCS is feasible for the candidate problem CS, i.e., it is
the optimal solution of CS.

Note, that any feasible solution of CS is feasible for the original problem P and
hence possibly the incumbent, i.e., the best feasible solution for P known so far,
can be updated.

Most often the relaxations RCS are solved to optimality before appropriate fathoming
rules are applied. Nevertheless, one could carry out fathoming before the optimal
solution of RCS is obtained by deriving sufficient conditions for the fathoming criteria,
e.g., using good suboptimal solutions of the dual problem of P. In addition, post

32 2 Available Nonlinear Solution Techniques

optimality tests can be applied to improve the quality of the lower bounds obtained
by the relaxation RCS.

Figure 2.3 illustrates the concept of the general branch-and-bound method by repre-
senting the candidate subproblems CS via a binary search tree. At the root node of
the binary search tree we solve a relaxation of the original problem. If the solution
of the relaxation is not feasible for the original problem P we partition the root node
into two or more candidate subproblems. The candidate subproblems are inserted into
a list, containing all existing candidate subproblems. Then one of these problems is
selected and the corresponding relaxation is solved. If the relaxation solves the can-
didate subproblem, the next problem of the candidate list is selected. Otherwise, this
subproblem is partitioned and the corresponding problems are included in the candi-
date list. This process is continued until the candidate list is exhausted. The optimal
solution is then given by the current incumbent.

If a branch-and-bound approach generates a finite number of nodes, i.e., the number of
candidate subproblems CS is finite, the method guarantees to determine the optimal
solution of the original problem P. The fathoming rules allow the elimination of nodes
and even whole subtrees, such that the enumeration of all possible nodes is avoided.
The effort of solving problem P by a branch-and-bound method is determined by the
percentage of eliminated nodes and the effort for solving the candidate subproblems.

In practice, lots of different criteria how to select the next candidate subproblem exist.
Every criterion leads to a different enumeration of the search tree. The selection of
an appropriate partition rule, e.g., the selection of a variable to branch on, heavily
influences the computation time of a branch-and-bound method.

0

2

4

6

1

3

5

yi
≤ bȳ

ic y
i ≥ dȳ

ie
1 infeasible node

3 incumbent

5 dominated by incumbent

Fig. 2.3: Illustration of Branch-and-Bound Search Tree

After the general introduction of the branch-and-bound approach, we focus on NLP-
based branch-and-bound methods for solving convex MINLP problems. Note, that
these techniques can also be applied to solve strictly convex MIQP problems, see
Section 2.11, since strictly convex MIQPs are a subclass of convex mixed-integer non-
linear optimization problems. NLP-based branch-and-bound methods rely on contin-
uous nonlinear relaxations derived from the original mixed-integer nonlinear program
by dropping the integrality condition on the integer variables, see problem (2.47).

2.4 NLP-based Branch-and-Bound 33

The root of the search tree corresponds to the continuous relaxation of the original
MINLP problem (1.6), i.e., NLP (2.47). Its solution is denoted by (x̄, ȳ). If all inte-
ger variables possess integral values at (x̄, ȳ) the whole process can be stopped, since
the optimal solution for MINLP (1.6) is found. Otherwise, we perform a partition by
branching on a fractional integer variable yi with ȳi /∈ N and splitting the relaxation
into two disjoint problems of form (2.47). The upper bound on yi ∈ YR is set to bȳic
for one problem, while the lower bound on yi ∈ YR for the other problem is set to
dȳie. Repeating this so-called branching process, yields a binary search tree where all
nodes correspond to continuous nonlinear programs (2.47) possessing different box-
constraints for integer variables defined by IkL and IkU, see (2.50) and (2.51). In each
iteration k a convex continuous nonlinear optimization problem NLPkr (2.47) is solved
yielding a solution (x̄k, ȳk) ∈ X× YkR. The set YkR is given by

YkR := {y ∈ YR : yi ≥ (ykl)i, i ∈ IkL and yi ≤ (yku)i, i ∈ IkU}. (2.58)

A node of the branch-and-bound search tree can be fathomed according to Lemma 2.4
and Corollary 2.2.

An integer feasible optimal solution (x̄k, ȳk) ∈ X × Y of a subproblem, is an upper
bound for the optimal objective function value of MINLP (1.6), see Criterion 3 in
Corollary 2.2. The minimal objective function value over all nodes that are not ex-
plored, is a lower bound on the optimal objective function value of MINLP (1.6).
Thus, whenever a feasible integer solution is found, an upper and a lower bound on
the optimal solution of problem (1.6) is known.

The more often the fathoming rules stated in Corollary 2.2 can be applied, the smaller
is the number of subproblems, that has to be enumerated. The enumeration process
stops, if all nodes of the tree are fathomed. The optimal solution of MINLP (1.6) is the
integer feasible solution with the lowest objective value. If no subproblem possesses
an integer feasible solution, problem (1.6) is infeasible.

The general concept of branch-and-bound can only be applied, if valid lower bounds
can be derived. Usually the relaxations are solved to global optimality and the global
solution provides the corresponding lower bound. As a consequence, applying local
continuous NLP solution techniques for solving non-convex relaxations of non-convex
MINLP problems (1.1) can neither guarantee valid lower bounds nor global optimal
solutions. In practice, local NLP techniques are often applied, since on the one hand
the optimal solution of MINLP (1.1) is often found, see Chapter 6. On the other hand
no efficient methods for solving non-convex NLP problems to global optimality or
even for deriving lower bounds of sufficient quality are known up to now.

In Section 2.10 we review the theoretical concept of an algorithm developed by Exler
and Schittkowski [45] for mixed-integer nonlinear optimization problems, whose im-
plementation is called MISQP. As shown in Chapter 6, it is an efficient solution
method for MINLP problems, i.e., it obtains feasible solutions with an objective value
close to the global optimum within very few iteration, i.e., with very few function
and gradient evaluations. To improve the robustness with respect to binary variables,

34 2 Available Nonlinear Solution Techniques

a special branching strategy was developed and implemented within a NLP-based
branch-and-bound solver. Since binary variables are handled separately and the ap-
proach is designed to solve non-convex MINLP problems (1.1), we proceed from

x ∈ X, y ∈ Y, b ∈ B :

min f(x, y, b)

s.t. gj(x, y, b) = 0, j = 1, . . . ,me,

gj(x, y, b) ≥ 0, j = me + 1, . . . ,m.

(2.59)

The number of binary variables b ∈ B with

B := Bnb = {0, 1}nb . (2.60)

is denoted by nb. The sets X and Y represent box constraints for the nc continuous
and ni integer variables respectively, see (1.2).

The idea is to implement a NLP-based branch-and-bound method, where branching
can be performed either subject to integer and binary variables or subject to the
binary variables only. By relaxing binary variables we replace the set B by

BR := {b ∈ Rnb : 0 ≤ bi ≤ 1, i = 1, . . . , nb}. (2.61)

In iteration k we can choose between solving continuous branch-and-bound subprob-
lems derived from the continuous relaxation of MINLP (2.59), which are given by

x ∈ X, y ∈ YR, b ∈ BR :

min f(x, y, b)

s.t. gj(x, y, b) = 0, j = 1, . . . ,me,

gj(x, y, b) ≥ 0, j = me + 1, . . . ,m,

yi ≥ (ykl)i, i ∈ IkL,

yi ≤ (yku)i, i ∈ IkU,

bi = 1, i ∈ IkL,

bi = 0, i ∈ IkU,

(2.62)

where IkL and IkU are defined by (2.50) and (2.51). In this case the algorithm performs
like a well-known NLP-based branch-and-bound method.

If branching is performed subject to the binary variables only, we solve in iteration k

2.4 NLP-based Branch-and-Bound 35

a partly relaxed mixed-integer nonlinear program

x ∈ X, y ∈ Y, b ∈ BR :

min f(x, y, b)

s.t. gj(x, y, b) = 0, j = 1, . . . ,me,

gj(x, y, b) ≥ 0, j = me + 1, . . . ,m,

bi = 1, i ∈ IkL,

bi = 0, i ∈ IkU,

(2.63)

with IkL ∩ B and IkU ∩ B defined by (2.50) and (2.51), instead. Therefore, we replace
NLP subproblem (2.62) by MINLP subproblem (2.63). The application of a NLP-
based branch-and-bound method requires, that the mixed-integer program (2.59) is
relaxable subject to those variables that should be branch on. In our case, the problem
has to be relaxable subject to either binary variables only or subject to all binary and
integer variables. In both cases, the functions f(x, y, b) and gj(x, y, b), j = 1, . . . ,m,
must be continuously differentiable subject to the continuous and the relaxed variables
in order to apply gradient-based solution methods.

Since NLP-based branch-and-bound methods require the solution of one continuous
nonlinear program for each node of the branch-and-bound search tree, they can be
inefficient in practice, see also Chapter 6. Furthermore, the solutions of a large number
of nodes do not have a physical meaning, since the integer variables take fractional
values, e.g., 2.5 machines are operated.

NLPkr

Solution (x̄k, ȳk)

Branching
e.g. on fractional ȳki

f(x̄k, ȳk), if ȳk ∈ Nni

min{f(x̄j, ȳj) : j ≤ k}

Node-Selection

Lower Bound

Upper Bound

Fig. 2.4: NLP-based Branch-and-Bound

Figure 2.4 illustrates the algorithmic layout of a branch-and-bound iteration. The
iterations starts by solving the relaxation RCS of the chosen candidate subproblem
CS. If the corresponding solution is feasible for the original problem P an upper bound

36 2 Available Nonlinear Solution Techniques

is obtained. Otherwise we need to perform further partitioning, e.g., by branching on
a fractional integer variable. Finally the next branch-and-bound node is selected, i.e.,
the next CS is chosen. The lower bound is given by the lowest objective value of all
unexplored nodes.

2.5 Linear Outer Approximation

Linear outer approximation algorithms are often applied for solving the convex mixed-
integer nonlinear program (1.6). We adopt the notation of the previous sections and
assume that no linear equality constraints are contained in the convex MINLP (1.6),
i.e., me = 0 and J = J>.

Duran and Grossmann [43] as well as Fletcher and Leyffer [50] suggested linear outer
approximation algorithms. The one proposed by Fletcher and Leyffer in [50] guaran-
tees global optimality, if the following assumptions are satisfied.

Assumption 2.2. 1. f(x, y) is convex and gj(x, y), j = 1, . . . ,m are concave on
X× YR and the set X defined by (1.2) is nonempty and compact.

2. f(x, y) and gj(x, y), j = 1, . . . ,m are continuously differentiable on X× YR.

3. The linear independent constraint qualification, stated in Definition 2.6, holds
at each optimal solution of problem NLP(y) and the corresponding nonlinear
feasibility problem F(y) for all y ∈ Y, see (2.52) and (2.54).

Note, that gradients need to be provided for all integer variables y ∈ Y, which might
not be possible for some applications, e.g., if problem (1.6) is not relaxable and gra-
dient information has to be approximated numerically at neighbored grid-points, see
Exler, Lehmann and Schittkowski [47].

Part 1 and part 2 of Assumption 2.2 are also required for NLP-based branch-and-
bound algorithms, see Section 2.4, to ensure that the subproblems can be solved
efficiently to global optimality by a local NLP solver, e.g., the trust region method of
Yuan, see Section 2.2. Part 3 of Assumption 2.2 might be violated in practice, but it is
necessary to derive the algorithmic concept of linear outer approximation algorithms.

Linear outer approximation methods solve the convex MINLP problem (1.6) itera-
tively. In each iteration k a continuous NLP subproblem is formulated by fixing the
integer variables y ≡ yk in MINLP (1.6). Based on the corresponding solution x̄yk a
mixed-integer linear master program similar to MILPkr (2.55) is set up by linearizing
the constraints and the objective function at (x̄yk , y

k). Its solution provides a lower
bound on the optimal objective value of MINLP (1.6) and the new integer value yk+1.
Therefore, each iteration k corresponds to exactly one integer value yk ∈ Y.

Linear outer approximation algorithms possess two essential properties. On the one
hand, they terminate finitely, as long as Y is of finite dimension, since previously

2.5 Linear Outer Approximation 37

considered integer values are not explored twice and their number is finite. On the
other hand, global optimality is ensured, as the master problem is a continuously
improving linear relaxation of the original convex MINLP (1.6), see Fletcher and
Leyffer [50].

Both properties are guaranteed by the integration of additional linearizations of the
original constraints and possibly of the objective function in the master problem. In
iteration k these linearizations are constructed, such that they are violated by yk for
any value of x ∈ X. The same holds for any previous integer iterate yi with i ≤ k,
where yi denotes the integer value in iteration i. To derive these linearizations, we
distinguish between feasible and infeasible integer values yk ∈ Y. If yk is a feasible
integer value, i.e.,

{x ∈ X : gj(x, y
k) ≥ 0, ∀ j ∈ J } 6= ∅, (2.64)

it is part of the set V defined by

V := {y ∈ Y : ∃ x ∈ X with gj(x, y) ≥ 0, ∀ j ∈ J} . (2.65)

The set V contains all feasible integer values, i.e., for each y ∈ V there exists at least
one x ∈ X that satisfies the constraints of (1.6).

If yk is an infeasible integer value, the constraints of MINLP (1.6) are violated inde-
pendent of the value of the continuous variables x ∈ X, i.e.,{

x ∈ X : gj(x, y
k) ≥ 0, ∀ j ∈ J

}
= ∅. (2.66)

The linearizations, that should be included in the master problem, are derived from
the solution of the continuous nonlinear program, which is solved in each iteration.
For some integer iterate yk ∈ Y we proceed with the continuous nonlinear program
NLP(yk), given by

x ∈ Rnc :

min f(x, yk)

s.t. gj(x, y
k) ≥ 0, j ∈ J,

(2.67)

in the corresponding iteration k. This problem is equivalent to NLP (2.52), introduced
in Section 2.3. If yk ∈ V holds, then the existence of the optimal solution of NLP(yk)
denoted by x̄yk is guaranteed by Assumption 2.2, see Fletcher and Leyffer [50].

If NLP(yk) is infeasible, i.e., yk ∈ Y\V , we search for a value of x ∈ X minimizing the
constraint violation by solving a feasibility problem. The corresponding continuous
NLP is denoted by F(yk) and we consider the subsequent formulation. See Fletcher
and Leyffer [50] for a more general formulation.

x ∈ Rnc , η ∈ R+ :

min η

s.t. gj(x, y
k) + η ≥ 0, ∀j ∈ J.

(2.68)

38 2 Available Nonlinear Solution Techniques

We denote the solution of F(yk) by (x̄yk , η̄).

We define the set T containing all feasible integer values y ∈ V and the corresponding
solution x̄y of the nonlinear subproblem NLP(y), i.e.,

T := {(x̄y, y) ∈ X× V : x̄y is an optimal solution of NLP(y)} . (2.69)

Analogue to T , the set S associated with infeasible integer values y and the corre-
sponding optimal value x̄y of F(y) is introduced, i.e.,

S := {(x̄y, y) ∈ X× Y\V : x̄y is part of the optimal solution of F(y)} . (2.70)

Every integer value yk ∈ Y is either contained in T or in S.

Since the sets T and S are not known a priori, they are approximated dynamically. In
iteration k the sets T and S are replaced by

Tk :=
{
(x̄yi , y

i) ∈ X× {y1, . . . , yk} ∩ V : x̄yi solves NLP(yi)
}

(2.71)

Sk :=
{
(x̄yj , y

j) ∈ X× {y1, . . . , yk} ∩ Y\V : x̄yj solves F(yj)
}
, (2.72)

containing the solutions of NLP(yi) with i ≤ k and F(yj) with j ≤ k of all previous
iterations. The sets Tk and Sk are subsets of the sets T and S.

Now we derive the mixed-integer linear master problem, which contains linearizations
of the objective function at the solutions (x̄yi , y

i) of NLP(yi), i.e., yi ∈ V , of all
previous iterates i ≤ k. In iteration k the linearization at (x̄yk , y

k) with yk ∈ V is
given by

f(x̄yk , y
k) +∇x,y f(x̄yk , yk)T

(
x− x̄yk
y− yk

)
, (2.73)

for some (x, y) ∈ X × Y. ∇x,yf(x, y) denotes the gradient of the objective function
f(x, y).

In addition to (2.73) the master problem also contains linearizations of those con-
straints, that are strongly active, see Definition 2.5, at the solution (x̄yk , y

k) of NLP(yk)
or F(yk). They are given by

g(x̄yk , y
k) + [∇x,y g(x̄yk , yk)]T

(
x− x̄yk
y− yk

)
≥ 0, (2.74)

for some (x, y) ∈ X× Y. [∇x,y g(x, y)] denotes the Jacobian matrix of the constraints
gj(x, y), j ∈ J. The mixed-integer linear master problems are denoted by MILPkr ,
since they provide a linear relaxation of problem (1.6). The quality of the relaxation is
improved in each iteration by an increasing number of constraints obtained from (2.73)
and (2.74). The aim of the master problem is to find a promising unexplored integer
value or to detect that there is none. If the master problem is infeasible, either the
global optimal solution of MINLP (1.6) is obtained subject to a certain termination

2.5 Linear Outer Approximation 39

accuracy or it is detected that the feasible region is empty. According to Fletcher and
Leyffer [50] the master problem in iteration k defined by

x ∈ Rnc , y ∈ Nni , η ∈ R : (2.75)

min η

s.t. f(x̄yi , y
i) +∇x,y f(x̄yi , yi)T

(
x− x̄yi
y− yi

)
≤ η, ∀(x̄yi , yi) ∈ Tk,

g(x̄yi , y
i) + [∇x,y g(x̄yi , yi)]T

(
x− x̄yi
y− yi

)
≥ 0, ∀(x̄yi , yi) ∈ Tk,

g(x̄yj , y
j) + [∇x,y g(x̄yj , yj)]T

(
x− x̄yj
y− yj

)
≥ 0, ∀(x̄yj , yj) ∈ Sk,

η ≤ η̂k − ε.

We denote it MILP(Tk, Sk, η̂k, ε), since it depends on the sets Tk and Sk, an appropriate
upper bound η̂k and a termination accuracy ε. (x̄yi , y

i) ∈ Tk with i ≤ k and yi ∈ V
denote the solution of NLP(yi) in the previous iterations, while (x̄yj , y

j) ∈ Sk with
j ≤ k and yj ∈ Y\V denote the solutions of F(yj) in the previous iterations. η̂k defines
an appropriate upper bound on η and the condition

η ≤ η̂k − ε, with

η̂k := min{f(x̄yi , y
i) : (x̄yi , y

i) ∈ Tk},
(2.76)

ensures that feasible solutions (x̄yi , y
i) ∈ Tk of previous iterations are infeasible in

(2.75).

Now we review the theoretical background of the linear outer approximation algorithm
according to Fletcher and Leyffer [50]. The optimal solution (x∗, y∗) ∈ X × Y of the
convex MINLP (1.6) is equivalent to the solution of NLP(y∗) with y∗ ∈ V given by
(2.65). As a consequence, MINLP (1.6) is equivalent to problem

min
y∈V

{ NLP(y)} . (2.77)

According to Fletcher and Leyffer [50] Assumption 2.2 ensures, that problem (2.77)
possesses the same objective value as

min
y∈V

min
x∈X

f(x̄y, y) +∇x,yf(x̄y, y)T
(
x− x̄y
0

)
s.t. g(x̄y, y) + [∇x,yg(x̄y, y)]T

(
x− x̄y
0

)
≥ 0.

(2.78)

Note, that the inner optimization problem of (2.78) is always bounded, due to the
compactness of the set X and the equivalence to problem (2.77), see Fletcher and
Leyffer [50]. The number of constraints of problem (2.78) can be reduced, such that

40 2 Available Nonlinear Solution Techniques

only strongly active constraints at the optimal solution (x̄y, y) of NLP(y), see Defi-
nition 2.5, are included, see Fletcher and Leyffer [50]. After introducing an artificial
variable η ∈ R, that minimizes the linearizations of the objective function, prob-
lem (2.78) becomes

x ∈ Rnc , y ∈ Nni , η ∈ R : (2.79)

min η

s.t. f(x̄yi , y
i) +∇x,y f(x̄yi , yi)T

(
x− x̄yi
y− yi

)
≤ η, ∀(x̄yi , yi) ∈ T,

g(x̄yi , y
i) + [∇x,y g(x̄yi , yi)]T

(
x− x̄yi
y− yi

)
≥ 0, ∀(x̄yi , yi) ∈ T,

g(x̄yj , y
j) + [∇x,y g(x̄yj , yj)]T

(
x− x̄yj
y− yj

)
≥ 0, ∀(x̄yj , yj) ∈ S.

Due to previous considerations MILP (2.79) has the same objective value as the convex
MINLP (1.6), see Bonami et. al. [27]. Due to the definition of the sets T and S in (2.69)
and (2.70), one has to solve problem NLP(y), or F(y) respectively, for all y ∈ Y to
be able to set up problem (2.79). Note, that both sets T and S are finite due to the
finiteness of Y, see (1.2).

The subsequent algorithm reviews the linear outer approximation algorithm according
to Fletcher and Leyffer [50].

Algorithm 2.2. 1. Let x0 ∈ X and y0 ∈ Y be starting values. Define the sets
T−1 = S−1 = ∅. Define the optimality tolerance εOA > 0 and set k := 0.

Initialize best known solution by (x∗, y∗) := (x0, y0) and define f∗ :=∞.

Evaluate the functions f(x0, y0) and g(x0, y0) and determine gradients
∇x,yf(x0, y0) and ∇x,yg(x0, y0).

2. If yk ∈ V given by (2.65),
then solve NLP(yk) defined by (2.67). Denote the solution by (x̄yk , y

k).

If f(x̄yk , y
k) < f∗,

then update f∗ := f(x̄yk , y
k) and (x∗, y∗) := (x̄yk , y

k).

Else solve F(yk) defined by (2.68) and denote the solution by (x̄yk , y
k).

3. If yk ∈ V,
then update set Tk−1 defined by (2.71):

Tk := Tk−1 ∪ {(x̄yk , y
k)}, (2.80)

Sk := Sk−1. (2.81)

2.5 Linear Outer Approximation 41

Else update set Sk−1 defined by (2.72):

Tk := Tk−1, (2.82)

Sk := Sk−1 ∪ {(x̄yk , y
k)}. (2.83)

Solve linear outer approximation master problem MILP(Tk, Sk, f∗, εOA) given by
(2.75).

If the master problem (2.75) is feasible,
then denote the solution by (xk+1, yk+1).
Set k := k+ 1 and GOTO Step 2.

Else Stop .

The work of Fletcher and Leyffer [50] yields the following theorem.

Theorem 2.4. If Assumption 2.2 holds, then Algorithm 2.2 terminates after a finite
number of iterations yielding an optimal solution of the convex MINLP (1.6) or it
detects, that MINLP (1.6) is infeasible.

Proof. See Fletcher and Leyffer [50] and note, that the set Y given by (1.2) is finite
by definition.

Theorem 2.4 is based on the observation that no integer value is generated twice by
Algorithm 2.2. This property is established by the subsequent lemma for infeasible
integer values y 6∈ V , where V is defined by (2.65).

Lemma 2.5. Consider yk ∈ Y\V with V given by (2.65) and let (x̄yk , η̄) be the optimal
solution of F(yk) given by (2.68) with η̄ > 0.

Then yk does not satisfy the subsequent constraints for any value x ∈ X.

g(x̄yk , y
k) + [∇x,yg(x̄yk , yk)]T

(
x− x̄yk
y− yk

)
≥ 0, ∀j ∈ J. (2.84)

Proof. See Fletcher and Leyffer [50].

The same holds for feasible integer values y ∈ V .

Lemma 2.6. Let Assumptions 2.2 hold and let NLP(yk) be feasible, where x̄yk is its
optimal solution. Then yk does not satisfy the subsequent constraints for any value of
x ∈ X.

η < f(x̄yk , y
k), (2.85)

f(x̄yk , y
k) +∇x,yf(x̄yk , yk)T

(
x− x̄yk
y− yk

)
≤ η, (2.86)

gj(x̄yk , y
k) +∇x,ygj(x̄yk , yk)T

(
x− x̄yk
y− yk

)
≥ 0, ∀j ∈ J. (2.87)

42 2 Available Nonlinear Solution Techniques

Proof. Note, that the subsequent proof is extracted from Fletcher and Leyffer [50].

Assume, that there exists a point (η̂, x̂, yk) satisfying (2.85), (2.86) and (2.87). Since
x̄yk is the optimal solution of NLP(yk) and a constraint qualification holds due to
Assumptions 2.2, no feasible descent direction x̂− x̄yk exits, i.e.,

0 ≤ g(x̄yk , y
k) + [∇x,yg(x̄yk , yk)]T

(
x̂− x̄yk
0

)
⇒ 0 ≤ ∇x,yf(x̄yk , yk)T

(
x̂− x̄yk
0

)
,

(2.88)

holds for all x̂ ∈ X. Substitution of (2.88) into (2.86) yields

η̂ ≥ f(x̄yk , y
k), (2.89)

which contradicts (2.85).

Now, we will motivate the use of the trust region method of Yuan, i.e., Algorithm 2.1,
within a linear outer approximation method such as Algorithm 2.2. As a consequence
we introduce an additional iteration counter l associated with the trust region method
of Yuan, while the iteration index k corresponds to the linear outer approximation
method. Therefore, we propose to apply Algorithm 2.1 for solving NLP(yk) for some
fixed yk ∈ Y.

As stated in Lemma 2.2, the trust region Algorithm 2.1 might converge towards an
infeasible stationary point of NLP(yk) with yk ∈ Y, see Definition 2.10. The sub-
sequent corollaries show, that this property can be exploited within a linear outer
approximation method as we need not distinguish between solving NLP(yk) given by
(2.67) and the feasibility problem F(yk) for some fixed yk ∈ Y. First, we review the
relation of an infeasible stationary point specified in Definition 2.10 and the solution
of feasibility problem (2.68).

Corollary 2.3. Let x̄yk be an infeasible stationary point specified in Definition 2.10.
Then x̄yk is the optimal solution of feasibility problem F(yk) given by (2.68) for any
fixed yk ∈ Y\V.

Proof. See Yuan [112] or Jarre and Stoer [66].

Now we are going to show, that the trust region Algorithm 2.1 converges towards the
solution of NLP(yk), if yk ∈ V . Otherwise, i.e., yk ∈ Y\V , Algorithm 2.1 converges
towards the optimal solution of feasibility problem F(yk) (2.68). This implies, that
we need not distinguish between solving problem NLP(yk) given by (2.67) and F(yk)
given by (2.68) for fixed yk ∈ Y. As we establish in the subsequent corollary, the
infeasibility of NLP(yk) with yk ∈ Y\V is recognized by obtaining the optimal solution
of (2.68), where V is defined by (2.65).

2.5 Linear Outer Approximation 43

For this task we introduce the subsequent linear program, which is set up at some
fixed (xl, yk) ∈ X× Y and therefore denoted by LPF(xl, yk)

(dF)x ∈ Rnc , η ∈ R+ :

min η

s.t. gj(x
l, yk) +∇xgj(xl, yk)T(dF)x + η ≥ 0, ∀j ∈ J.

(2.90)

The solution of LPF(xl, yk) given by (2.90) is denoted by ((dlF)x, η
l).

Corollary 2.4. Let ((dlF)x, η
l) be the optimal solution of LPF(xl, yk) given by (2.90).

Then the KKT-conditions of LPF(xl, yk) given by (2.90) coincide with those of feasi-
bility problem F(yk) given by (2.68) for any fixed yk ∈ Y , if (dlF)x = 0 holds.

Proof. A KKT point (η̄, x̄y, (λ̄F, λ̄η)) of problem (2.68), with

λ̄F :=

 λ̄1
...
λ̄m

 ,
where λ̄F ∈ Rm denotes the Lagrangian multiplier associated with the constraints
gj, j ∈ J, and λ̄η denotes the Lagrangian multiplier of the non-negativity condition
on η, satisfies the subsequent KKT-conditions:

(
0

1

)
−
∑
j∈J

(λ̄F)j

(
∇xgj(x̄y, y)

1

)
−

(
0

λ̄η

)
= 0, (2.91)

(gj(x̄y, y) + η̄) (λ̄F)j = 0, ∀j ∈ J, (2.92)

η̄λ̄η = 0, (2.93)

gj(x̄y, y) + η̄ ≥ 0, ∀j ∈ J, (2.94)

η̄ ≥ 0, (2.95)

(λ̄F)j ≥ 0, ∀j ∈ J, (2.96)

λ̄η ≥ 0. (2.97)

For LPF(xl, yk) given by (2.90) the KKT-conditions for a KKT-point (ηl, (dlF)x, (λ
l
F, λ

l
η))

44 2 Available Nonlinear Solution Techniques

yield (
0

1

)
−
∑
j∈J

(λlF)j

(
∇xgj(xl, yk)

1

)
−

(
0

λlη

)
= 0, (2.98)

(
gj(x

l, yk) +∇xgj(xl, yk)T(dlF)x + ηl
)
(λlF)j = 0, ∀j ∈ J, (2.99)

ηlλlη = 0, (2.100)

gj(x
l, yk) +∇xgj(xl, yk)T(dlF)x + ηl ≥ 0, ∀j ∈ J, (2.101)

ηl ≥ 0, (2.102)

(λlF)j ≥ 0, ∀j ∈ J, (2.103)

λlη ≥ 0, (2.104)

where λlη denotes the Lagrangian multiplier associated with the non-negativity con-
dition on η, while λlF ∈ Rm denotes the Lagrangian multipliers of the linearizations of
the constraints gj, j ∈ J. For (dlF)x = 0 the KKT-conditions of F(yk) (2.91) - (2.97)
and LPF(xl, yk) (2.98) - (2.104) are equivalent with x̄y := xl, λ̄F := λlF, λ̄η := λlη and
η̄ := ηl.

As a consequence, solving LPF(xl, yk) given by (2.90) allows to identify infeasible
stationary points, specified in Definition 2.10. Specifically, x̄y is an infeasible station-
ary point of NLP(yk), which is the solution of problem F(yk) (2.68), if the solution
((dlF)x, η

l) of LPF(xl, yk) with xl = x̄y satisfies (dlF)x = 0 and ηl > 0.

Corollary 2.5. Let Assumptions 2.1 and Assumptions 2.2 hold. Furthermore, apply
Yuan’s trust region Algorithm 2.1 for solving NLP(yk) given by (2.67) with yk ∈ Y,
e.g., arising in Step 2 of the linear outer approximation Algorithm 2.2.

If yk ∈ V, where V is given by (2.65), then the iteration sequence created by Algo-
rithm 2.1 converges towards a stationary point of NLP(yk).

If yk ∈ Y\V, then the iteration sequence converges towards an infeasible stationary
point of NLP(yk) introduced in Definition 2.10, which is the optimal solution of fea-
sibility problem F(yk) (2.68) due to Corollary 2.3.

Proof. Due to Assumptions 2.2, there exists no singular stationary point introduced
in Definition 2.11 for any continuous nonlinear program derived from MINLP (1.6)
by fixing the integer variables yk ∈ Y, see Yuan [112] or Jarre and Stoer [66]. If
yk ∈ Y\V , then no stationary point according to Definition 2.12 of NLP(yk) exists.
Since Assumption 2.1 holds, Algorithm 2.1 converges towards an infeasible stationary
point introduced in Definition 2.10 due to Lemma 2.2.

2.5 Linear Outer Approximation 45

If yk ∈ V , then no infeasible stationary point exists due to the subsequent computa-
tions: Since MINLP (1.6) is convex, the constraints gj, j ∈ J are concave, i.e.,

gj((x
l, yk) + dx) ≤ gj(x

l, yk) +∇xgj(xl, yk)Tdx, ∀j ∈ J (2.105)

holds for each dx ∈ Rnc and (xl, yk) ∈ X× V . Since yk ∈ V , there exists x̃ ∈ X with

gj(x̃, y
k) ≥ 0, ∀j ∈ J. (2.106)

We prove by contradiction, that no infeasible stationary point exists. Assume there-
fore, that (x̂y, y

k) is an infeasible stationary point of NLP(yk) specified in Defini-
tion 2.10 and therefore an optimal solution of problem (2.68). As a consequence,
the optimal solution ((dlF)x, η

l) of LPF(xk, yk) with xl = x̂y given by (2.90) satisfies
(dlF)x = 0 and ηl > 0 according to Corollary 2.4 and Definition 2.10. Consider now
the search direction (d̄F)x ∈ Rnc given by

(d̄F)x := x̃− x̂y 6= 0. (2.107)

The constraints of LPF(xl, yk) with xl = x̂y given by (2.90) are satisfied for (dF)x :=
(d̄F)x and η̄ ∈ R+ with η̄ := 0, since

gj(x̂y, y
k) +∇xgj(x̂y, yk)T(d̄F)x + η̄ ≥ gj((x̂y + (d̄F)x), y

k) + η̄,

= gj(x̃, y
k) + η̄,

≥ 0,

(2.108)

holds ∀j ∈ J, due to conditions (2.105) and (2.106). This contradicts the assump-
tion, since ((d̄F)x, η̄) with η̄ = 0 improves the optimal solution (0, ηl) with ηl =
‖g(x̂y, yk)−‖∞ > 0 of LPF(xl, yk) with xl = x̂y given by (2.90).

As no infeasible stationary point exists for yk ∈ V and Assumption 2.1 holds, Algo-
rithm 2.1 has to generate a bounded sequence of penalty parameters and therefore
it converges towards a stationary point of NLP(yk), since Theorem 2.3 holds. This
proves the Corollary.

The linear outer approximation approach is a well-known solution method for convex
MINLP problems. The mixed-integer linear master problem (2.75) is a linear relax-
ation of the original convex MINLP (1.6). Since all linear relaxations remain valid
during the whole solution process, they provide a global approximation. As a conse-
quence, the performance for non-convex problems is rather poor. The reason is that
parts of the feasible region, that often contain the global solution of a non-convex
MINLP (1.1), are cut off. As shown by Fletcher and Leyffer [50], the efficiency of
linear outer approximation algorithms in terms of the number of function evaluations
is rather low since second order information is not included for integer variables.

Applying the linear outer approximation algorithm for a non-convex MINLP (1.1)
causes some difficulties. On the one hand, it is very likely, that the optimal solution

46 2 Available Nonlinear Solution Techniques

of the non-convex MINLP is cut off by invalid linearizations of some non-convex
functions. On the other hand, the continuous nonlinear programs NLP(y) and F(y)
can not be solved to global optimality by efficient local NLP solvers.

For solving non-convex MINLP problems one can apply global optimization tech-
niques, e.g., based on convex envelopes, see McCormick [80]. These techniques rely
on knowledge of the problem structure, i.e., it is required that the problem functions
are explicitly given. Furthermore, the computational effort is usually very high. If we
nevertheless apply linear outer approximation instead of a global solver, e.g., BARON
developed by Sahinidis [92], there is no guarantee to find the optimal solution, i.e.,
linear outer approximation becomes a heuristic approach.

For non-convex problems (1.1) Viswanathan and Grossmann [104] introduce a modi-
fied master problem. The original master problem (2.75) is extended by slack variables
relaxing the linearizations of the constraints and the objective function. These addi-
tional variables are penalized in the objective function, in order to obtain a solution,
where the slack values are as small as possible. Moreover, the nonlinear equality con-
straints are relaxed and linearized as inequalities. The corresponding orientation is
determined by the sign of the Lagrangian multiplier at the solution of either NLP(yk)
or F(yk) in iteration k. Therefore, the modified master problem is given by

x ∈ X, y ∈ Y, η ∈ R,
(sil)> ∈ R+, (s

i
l)= ∈ R+, ∀i ∈ T̂k, ∀l ∈ J,

(sjl)> ∈ R+, (s
j
l)= ∈ R+, ∀j ∈ Ŝk, ∀l ∈ J : (2.109)

min η+
∑

i∈T̂k, l∈J>
wil(s

i
l)> +

∑
i∈T̂k, l∈J=

wil(s
i
l)=

+
∑

j∈Ŝk, l∈J>
wjl(s

j
l)> +

∑
jŜk, l∈J=

wjl(s
j
l)=

s.t. f(x̄yi , y
i) +∇x,y f(x̄yi , yi)T

(
x− x̄yi
y− yi

)
≤ η, ∀(x̄yi , yi) ∈ Tk,

gl(x̄yi , y
i) +∇x,y gl(x̄yi , yi)T

(
x− x̄yi
y− yi

)
≥ −(sil)>, ∀(x̄yi , yi) ∈ Tk,

∀i ∈ T̂k, ∀l ∈ J>,

Til∇x,y gl(x̄yi , yi)T
(
x− x̄yi
y− yi

)
≥ −(sil)=, ∀(x̄yi , yi) ∈ Tk,

∀i ∈ T̂k, ∀l ∈ J=,

gl(x̄yj , y
j) +∇x,y gl(x̄yj , yj)T

(
x− x̄yj
y− yj

)
≥ −(sjl)>, ∀(x̄yj , yj) ∈ Sk,

∀j ∈ Ŝk, ∀l ∈ J>,

Tjl∇x,y gl(x̄yj , yj)T
(
x− x̄yj
y− yj

)
≥ −(sjl)=, ∀(x̄yj , yj) ∈ Sk,

∀j ∈ Ŝk, ∀l ∈ J=.

The sets T̂k and Ŝk contain the iteration indices up to the current iteration k, where the
integer value yj, j ≤ k was either feasible or infeasible. wil, w

j
l with i ∈ Ŝk, j ∈ T̂k, l ∈

2.5 Linear Outer Approximation 47

J are positive weights, chosen to be a sufficiently large multiple of the value of the
Lagrangian multipliers to penalize the slack variables. Til, T

j
l with l ∈ J=, i ∈ T̂k, j ∈

Ŝk are determined by the value of the Lagrangian multiplier of the equality constraints
gl(x̄

i, yi) with (x̄yi , y
i) ∈ Tk, l ∈ J= and gl(x̄

j, yj) with (x̄yj , y
j) ∈ Sk, l ∈ J=:

Tjl =


1, if λ̄jl < 0

−1, if λ̄jl > 0

0, if λ̄jl = 0

∀j ∈ Ŝk and l ∈ J= (2.110)

Til =


1, if λ̄il < 0
−1, if λ̄il > 0
0, if λ̄il = 0

∀i ∈ T̂k and l ∈ J= (2.111)

λ̄il denotes the Lagrangian multiplier associated with constraint l ∈ J and the so-
lution (x̄yi , y

i) see Viswanathan and Grossmann [104] for further details. If prob-
lem (2.109) is solved instead of master problem (2.75), no termination criterion is
available. Floudas [52] suggests to stop, if in iteration k the optimal solution of
NLP(yk) is worse than the best previously found solution. This stopping criterion
may lead to a premature termination of the algorithm.

Integer value yk

NLP(yk)F(yk)

Solution x̄ykSolution x̄yk

MILPkr ηk+1

f(x̄yk , y
k)

Linearization
f(x̄yk , yk), g(x̄yk , yk)

Solution
(xk+1, yk+1, ηk+1)

Linearization
g(x̄yk , yk)

Lower Bound

Upper Bound

Fig. 2.5: Linear Outer Approximation

Figure 2.5 illustrates one iteration of a linear outer approximation algorithm, as e.g.,
proposed by Fletcher and Leyffer [50]. The iteration is started by fixing the integer

48 2 Available Nonlinear Solution Techniques

values yk of the current iterate (xk, yk) and solving either NLP(yk) or F(yk). The
solution (x̄yk , y

k) yields additional linearizations of the constraints and possibly the
objective function. The additional linearizations are included in the master problems,
which is solved to obtain the next iterate and a lower bound of MINLP (1.6). If
(x̄yk , y

k) is the solution of NLP(yk) it provides an upper bound.

2.6 Generalized Benders’ Decomposition

The Generalized Benders’ Decomposition (GBD) method was introduced by Geof-
frion [57] for solving convex MINLP problems (1.6). It is a generalization of Benders’
Decomposition, see Benders [22], which is applied in linear programming to solve large-
scale problems. GBD is similar to linear outer approximation, described in Section 2.5.
It only differs in the master problem (2.55), which is extended in each iteration by
one single constraint instead of including at least the linearization of each strongly
active constraint. The corresponding single inequality is called GBD cut.

If the iterate yk in iteration k is feasible, i.e., yk ∈ V , where V is given by (2.65),
the continuous nonlinear programs NLP(yk) is solved and the corresponding solution
is denoted by x̄yk , see Section 2.5. Furthermore, let λ̄k ∈ Rm be the Lagrangian
multipliers of NLP(yk) associated with x̄yk . Then the following inequality is valid for
MINLP (1.6), i.e., it does not cut off the optimal solution of MINLP (1.6), see Bonami
et al. [28]

f(x̄yk , y
k) +

(
∇yf(x̄yk , yk) + (λ̄k)T [∇yg(x̄yk , yk)]

)T
(y− yk) ≤ f(x, y).(2.112)

If an integer iterate yk is infeasible, i.e., yk /∈ V , then one has to solve feasibility
problem F(yk), see (2.68). The corresponding solution is denoted by x̄yk and yields
the so-called feasibility cut, which is derived instead of the GBD cut (2.112) and given
by

(λ̄k)T
(
g(x̄yk , y

k) + [∇yg(x̄yk , yk)]T(y− yk)
)
≥ 0. (2.113)

The GBD master problem contains constraints (2.112) and (2.113) and is given by

x ∈ X, y ∈ Y, η ∈ R : (2.114)

min η,

s.t.

f(x̄yi , y
i) +

(
∇yf(x̄yi , yi) + (λ̄i)T [∇yg(x̄yi , yi)]

)T
(y− yi) ≤ η, ∀(x̄yi , yi) ∈ Tk,

(λ̄j)T
(
g(x̄yj , y

j) + [∇yg(x̄yj , yj)]T(y− yj)
)
≥ 0, ∀(x̄yj , yj) ∈ Sk.

MILP (2.114) is a relaxation of MINLP (1.6) and its solution provides a lower bound
on the optimal solution of MINLP (1.6), see Bonami et al. [28]. The sets Tk and Sk

are defined by (2.71) and (2.72), respectively.

2.7 Extended Cutting Plane Method 49

Since the relaxation provided by the master problem is refined in each iteration,
the sequence of lower bounds is non-decreasing. The inequalities (2.112) and (2.113)
are aggregations of the inequalities (2.73) and (2.74), see Abhishek, Leyffer and Lin-
deroth [1]. As a consequence, relaxation (2.114) is weaker than the relaxation provided
by the linear outer approximation master problem (2.75).

2.7 Extended Cutting Plane Method

The extended cutting plane (ECP) method, developed by Westerlund and Petters-
son [108], extends Kelley’s cutting plane method for solving convex NLPs, see Kel-
ley [67], such that convex MINLPs can be solved. It can be considered as the nonlinear
version of the well-known mixed-integer linear cutting plane method proposed by Go-
mory [59]. Moreover, there exists an extension of the ECP method for pseudo-convex
functions, see Westerlund and Pörn [109].

The ECP method does not rely on the solution of any continuous nonlinear program.
Instead, the convex MINLP (1.6) is solved iteratively by a series of mixed-integer
linear relaxations

x ∈ X, y ∈ Y, η ∈ R : (2.115)

min η,

s.t. f(xi, yi) +∇x,y f(xi, yi)T
(
x− xi

y− yi

)
≤ η, ∀(xi, yi) ∈ Kk,

gj(x
i, yi) +∇x,y gj(xi, yi)T

(
x− xi

y− yi

)
≥ 0, ∀(xi, yi) ∈ Kk, j ∈ J(Kk).

The set Kk contains the solutions (xi, yi) of MILP (2.115) of all previous iterations
i ≤ k as well as the starting point (x0, y0). J(Kk) is the index set of the most violated
constraints for each solution (xi, yi) ∈ Kk, i.e.,

J(Kk) :=
{
j ∈ J : arg min

j∈J
gj(x

i, yi) and (xi, yi) ∈ Kk and gj(x
i, yi) < −ε

}
, (2.116)

where ε ∈ R+ is an appropriate feasibility tolerance. In iteration k, the solution
of (2.115) yields the next iterate (xk+1, yk+1). Furthermore, the mixed-integer linear
relaxation (2.115) is successively improved by adding the linearization of the most
violated nonlinear constraint with respect to (xk, yk).

Instead of adding only the linearization of the most violated constraint, it is also
possible to include linearizations of all violated constraints, i.e.,

J̃(Kk) :=
{
j ∈ J : gj(x

i, yi) < −ε with (xi, yi) ∈ Kk
}
. (2.117)

The series of solutions of problem (2.115) yields a non-decreasing sequence of lower
bounds. The solution of the mixed-integer linear relaxation (2.115) corresponds to the

50 2 Available Nonlinear Solution Techniques

MILPkr

Solution (xk, yk, ηk)

Linearization
g(xk, yk)

ηk

Lower Bound

Fig. 2.6: Extended Cutting Plane Method

optimal solution of MINLP (1.6), if the maximal constraint violation is smaller than
a given tolerance ε ∈ R+. Figure 2.6 illustrates an iteration of the extended cutting
plane method. After solving the mixed-integer linear relaxation (2.115) in iteration
k the objective value ηk provides a lower bound on the solution of MINLP (1.6).
Furthermore, the relaxation is improved by adding linearizations of a selection of the
constraints at (xk, yk).

2.8 LP/NLP-based Branch-and-Bound

LP/NLP-based branch-and-bound was developed by Quesada and Grossmann [90].
The main difference to linear outer approximation and generalized Benders’ decom-
position is that only one mixed-integer linear master problem (2.55) is solved. Instead
of solving one MILP per iteration, the master problem is dynamically refined during
the solution process by including additional linearizations of the objective function
(2.73) and a selection of the constraints (2.74). The linearization can be interpreted
as cutting planes and therefore the LP/NLP-based branch-and-bound method can
be considered as a branch-and-cut approach for convex MINLP problems. LP/NLP-
based branch-and-bound is an advanced solution method for convex MINLPs, since
the solution of continuous nonlinear programs is embedded in the solution process of
the MILP master problem.

The master problem is initialized by the linearizations of the objective function and
the constraints at the optimal solution (x̄, ȳ) of the continuous relaxation (2.47) of
MINLP (1.6). MILP (2.55) is solved by a branch-and-bound method, see Section 2.4,
based on its continuous linear relaxation. Whenever an integral solution with integer
values yk ∈ Y is found during the branch-and-bound enumeration, a continuous non-
linear program is solved. Note, that k denotes the k-th integral solution found during
the enumeration. If yk is a feasible integer value, i.e., yk ∈ V , then NLP(yk) is solved.
Otherwise, we consider F(yk). The optimal solution of the continuous nonlinear pro-
gram is denoted by (x̄yk , y

k), with x̄yk ∈ X. If yk is a feasible iterate, we linearize the
objective function and the constraints at (x̄yk , y

k) to obtain the linearizations (2.73)
and (2.74). If yk is an infeasible integer value, i.e., y ∈ Y\V , we generate only the

2.9 Integration of Branch-and-Bound and SQP 51

MILPr

NLP(yk)F(yk)

Solution x̄ykSolution x̄yk

min{ηj} : j ≤ k

f(x̄yk , y
k)

Linearization
f(x̄yk , yk), g(x̄yk , yk)

Integral solution
(xk, yk, ηk), yk ∈

Nni

Linearization
g(x̄yk , yk)

Lower Bound

Upper Bound

Fig. 2.7: LP/NLP-based Branch-and-Bound

linearizations (2.74) of the constraints.

The generated linearizations are included in the branch-and-bound process improving
the quality of the linear relaxations of the master problem. The optimal solution of
the master problem after including the additional linearizations for all feasible y ∈ Y
is the optimal solution of MINLP (1.6), see Bonami et al. [28].

Note, that the iterative improvement of the linear relaxations during branch-and-
bound can be applied for linear outer approximation, generalized Benders’ decompo-
sition and the extended cutting plane method as well.

Figure 2.7 shows one iteration k of the LP/NLP-based branch-and-bound method,
where an integer feasible solution (xk, yk, ηk) is found during the enumeration process
of MILPr. In this case a continuous nonlinear program, either NLP(yk) or F(yk), is
solved and the linear relaxation defining MILPr (2.55) is refined by including the lin-
earizations (2.74) and possibly (2.73). The lower bound on the solution of MINLP (1.6)
is given by the lowest objective value of all unexplored branch-and-bound nodes of
MILPr. Every solution of NLP(yk) provides an upper bound.

2.9 Integration of Branch-and-Bound and SQP

Apart from the LP/NLP-based branch-and-bound algorithm, all solution methods
for convex MINLP problems presented in the previous sections decouple the solution
process by considering continuous nonlinear optimization and integer optimization
separately. Applying a decomposition enables the solution of problem (1.6), since
efficient software for both mixed-integer linear and continuous nonlinear programming
is available.

52 2 Available Nonlinear Solution Techniques

Recently, some algorithms have been proposed, reducing the computational effort for
solving MINLPs by integrating mixed-integer and continuous nonlinear programming
techniques. Leyffer [76] presents such a solution approach for convex MINLP prob-
lems (1.6) extending NLP-based branch-and-bound methods. The motivation is to
improve the performance of the NLP-based branch-and-bound approach presented
in Section 2.4 by integrating the solution process of the NLP subproblems into the
branch-and-bound enumeration. This reduces the effort for solving the continuous
nonlinear programs significantly, since early termination, also called early branching,
is possible. Early branching was first introduced by Borchers and Mitchell [29], but
Leyffer [76] improves their algorithmic ideas essentially.

As seen in Section 2.4, valid lower bounds on the optimal solution of the original
problem are required at each node of the branch-and-bound tree, if bounding should
be applied, i.e., the second fathoming rule stated in Corollary 2.2. If bounding cannot
be applied, the efficiency of the branch-and-bound method is very poor, since a huge
number of possible integer values has to be enumerated.

The goal is to reduce the computational effort for solving the continuous relaxations,
see also Section 2.4, given by the following NLP in branch-and-bound iteration l.

x ∈ X, y ∈ YR :

min f(x, y)

s.t. gj(x, y) ≥ 0, j = 1, . . . ,m,

yi ≥ (yll)i, i ∈ IlL,

yi ≤ (ylu)i, i ∈ IlU.

(2.118)

Note, that IlL and IlU, defined by (2.50) and (2.51) denote the index sets correspond-
ing to more stringent lower and upper bounds on some integer variables, which are
determined by the branch-and-bound enumeration. The idea of early branching is,
to improve the performance by terminating before an optimal solution (x̄l, ȳl) for
NLP (2.118) is obtained. If we terminate before the optimal solution (x̄l, ȳl) is deter-
mined, no valid lower bounds underestimating f̄l := f(x̄l, ȳl) are available. This means,
that the corresponding subtrees cannot be cut off, even if f̄l ≥ η̂ holds, where η̂ denotes
the current incumbent, i.e., the best feasible solution found so far. Note, that cutting
off these subtrees is equivalent to fathoming the corresponding nodes according to the
second fathoming rules stated in Corollary 2.2. One alternative way to obtain lower
bounds in case of early branching is proposed by Borchers and Mitchell [29]. They
suggest to evaluate the Lagrangian dual of the NLP (2.47) in iteration l for a given
set of Lagrangian multipliers λ ∈ Rm, i.e.,

x ∈ X, y ∈ YlR : (2.119)

min f(x, y) − λTg(x, y),

2.9 Integration of Branch-and-Bound and SQP 53

where YlR is defined by (2.58). The solution (x̂l, ŷl) of (2.119) with objective value

L̂l := f(x̂l, ŷl) − λTg(x̂l, ŷl) (2.120)

provides a lower bound on the optimal solution (x̄l, ȳl) of NLP (2.118), i.e., L̂l ≤
f(x̄l, ȳl) holds, see Leyffer [76].

Leyffer [76] presents an improved approach, where the solution of the Lagrangian
dual (2.119) is unnecessary. Instead of obtaining lower bounds by solving (2.119), one
can interpret the constraints of a continuous quadratic program arising during the
solution process of the NLP (2.118) via a SQP method, see Section 2.2, as supporting
hyperplanes. If a convex MINLP is considered, a linearization is equivalent to an outer
approximation, see also Section 2.5.

If we apply a SQP method to solve NLP (2.118), a sequence of quadratic programs

d ∈ Rn :

min ∇x,y f(xk, yk)Td+
1

2
dTBkd

s.t. g(xk, yk) + [∇x,y g(xk, yk)]Td ≥ 0

xk + dx ∈ X

yk + dy ∈ YlR

(2.121)

is solved with d =

(
dx
dy

)
. Bk ∈ Rn×n denotes an approximation of the Hessian of the

Lagrangian function and YlR is defined by (2.58), see also Section 2.2. Note, that the
iteration index k denotes the k-th QP subproblem while solving the l-th NLP during
the branch-and-bound enumeration process. In general, the optimal objective value
of QP (2.121) does not underestimate the optimal solution f(x̄l, ȳl) of NLP (2.118),
i.e., QP (2.121) yields no lower bound.

To obtain a lower bound of the optimal solution f(x̄l, ȳl) of NLP (2.118) by the
solution of the QP-subproblem, Leyffer [76] suggests to include a so-called objective
cut, analogue to (2.73) and (2.76) for linear outer approximation, given by

f(xk, yk) +∇x,yf(xk, yk)Td ≤ η̂− ε. (2.122)

η̂ ∈ R ∪ {∞} denotes the current incumbent. Note, that we consider the solution
process of a single NLP during a branch-and-bound enumeration, which implies that

54 2 Available Nonlinear Solution Techniques

η̂ does not vary. Including this objective cut in QP (2.121) yields

d ∈ Rn :

min ∇x,yf(xk, yk)Td+
1

2
dTBkd

s.t. g(xk, yk) + [∇x,yg(xk, yk)]Td ≥ 0

f(xk, yk) +∇x,yf(xk, yk)Td ≤ η̂− ε

xk + dx ∈ X

yk + dy ∈ YlR.

(2.123)

QP (2.123) can also be interpreted as a SQP subproblem corresponding to the NLP
given by

x ∈ X, y ∈ YlR :

min f(x, y)

s.t. g(x, y) ≥ 0

f(x, y) ≤ η̂− ε.

(2.124)

Due to the introduction of the objective cut, bounding corresponds to the infeasibility
of NLP (2.124). The following lemma stated by Leyffer [76] shows the importance of
QP (2.123).

Lemma 2.7. Let f(x, y) and g(x, y) be continuously differentiable functions and let
f(x, y) be convex, while g(x, y) is concave. A sufficient condition for bounding, i.e.,
the second fathoming rule given by Corollary 2.2, is that QP (2.123) generated by a
SQP method solving problem (2.124) is infeasible in any iteration k.

Proof. See Leyffer [76].

By now we neglected the presence of a trust region ensuring global convergence. A
trust region truncates the feasible region of QP (2.123). As a consequence, we have to
distinguish whether infeasibility is caused by the trust region or not. If infeasibility is
encountered independently of the trust region, the current subtree can be fathomed
according to Lemma 2.7. If on the other hand QP (2.123) is infeasible due to the trust
region constraint, a feasibility problem, similar to (2.54), has to be solved to check
whether the current node can be fathomed or not, see Leyffer [76] for details.

2.10 An Extension of Yuan’s Trust Region Method for Mixed-Integer Optimization55

2.10 An Extension of Yuan’s Trust Region

Method for Mixed-Integer Optimization

The efficient mixed-integer nonlinear SQP trust region algorithm of Exler and Schit-
tkowski [45], whose implementation is called MISQP, is an extension of the well-known
SQP methods. It is based on the trust region method proposed by Yuan [112], see
Section 2.2. Analogue to continuous sequential quadratic programming methods the
mixed-integer nonlinear optimization problem is solved by a sequence of mixed-integer
quadratic approximations.

If we apply Yuan’s trust region Algorithm 2.1 to solve the continuous relaxation of
MINLP (1.1), the corresponding quadratic model is represented by

dx ∈ Rnc , dy ∈ Rni , η ∈ R+ : (2.125)

min ∇x,yf(xk, yk)Td+ 1
2
dTBkd+ σkη

s.t. η+ gj(x
k, yk) +∇x,ygj(xk, yk)Td ≥ 0, j = 1, . . . ,me,

η− gj(x
k, yk) −∇x,ygj(xk, yk)Td ≥ 0, j = 1, . . . ,me,

η+ gj(x
k, yk) +∇x,ygj(xk, yk)Td ≥ 0, j = me + 1, . . . ,m,

‖dx‖∞ ≤ ∆kx,

‖dy‖∞ ≤ ∆ky,

xk + dx ∈ X,

yk + dy ∈ YR,

with d :=

(
dx
dy

)
. Since problem (2.125) is equivalent to (2.31), see Yuan [112], its

solution provides a search direction in iteration k. Note, that ∆kx and ∆ky denote the
continuous and integer trust region radius, see also Section 2.2.

Restricting the domain of dy to Nni turns the continuous quadratic program into a

56 2 Available Nonlinear Solution Techniques

mixed-integer quadratic model of MINLP (1.1) given by problem

dx ∈ Rnc , dy ∈ Nni , η ∈ R+ : (2.126)

min ∇x,yf(xk, yk)Td+ 1
2
dTBkd+ σkη

s.t. η+ gj(x
k, yk) +∇x,ygj(xk, yk)Td ≥ 0, j = 1, . . . ,me,

η− gj(x
k, yk) −∇x,ygj(xk, yk)Td ≥ 0, j = 1, . . . ,me,

η+ gj(x
k, yk) +∇x,ygj(xk, yk)Td ≥ 0, j = me + 1, . . . ,m,

‖dx‖∞ ≤ ∆kx,

‖dy‖∞ ≤ ∆ky,

xk + dx ∈ X,

yk + dy ∈ Y.

Applying Yuan’s trust region method, were QP subproblems are replaced by MIQP (2.126)
ensures, that each iterate (xk, yk) satisfies the integrality condition, i.e., yk ∈ Nni .
Problem (2.126) can be solved by any mixed-integer quadratic solver, such as MIQL
of Lehmann and Schittkowski [71]. Extensive tests on academic and real-world prob-
lems show, that the algorithm is very efficient in terms of the number of function
evaluations. Furthermore, the algorithm is only based on local approximations, i.e.,
the number of linearizations is not successively increasing and linearizations only de-
pend on the current iteration point (xk, yk). As a consequence, it performs very well
for non-convex problems.

Despite of the encouraging results, no convergence proof for this mixed-integer non-
linear SQP trust region algorithm was found yet. Furthermore, extensive test with
the current implementation called MISQP showed, that in some rare cases the global
optimal solution of a convex test-case was not found. In future work, we will focus on a
convergence proof for an algorithm, that is based on the ideas implemented in MISQP
but where slight modifications are incorporated due to the existence of convex prob-
lems, where MISQP fails. Since only local approximations are contained MIQP (2.126)
provides no valid lower bounds. Furthermore, the adjustment of some important pa-
rameters such as the trust region radius ∆ky in (2.126) is critical, especially for binary
variables.

2.11 Convex Mixed-Integer Quadratic

Programming

One main focus of this thesis is the development of efficient solution techniques and
appropriate theory for strictly convex mixed-integer quadratic optimization problems.

2.11 Convex Mixed-Integer Quadratic Programming 57

Efficient solvers for convex MIQP problems are needed in order to solve larger MINLP
problems based on the successive solution of convex MIQP subproblems. Some cor-
responding MINLP solvers are MISQP, introduced in Section 2.10, and MIQPSOA,
proposed in Chapter 3.

To obtain a fast and robust solver for convex MIQP problems, we want to focus
on branch-and-cut methods, since the concept of combining the branch-and-bound
enumeration with the generation of cutting planes led to powerful state-of-the-art
mixed-integer linear solution methods. Despite the huge progress of MILP solvers
within the last twenty years, the solution of MIQPs by the QP-based branch-and-
bound approach does not profit from these developments. The main difference between
NLP-based branch-and-bound methods for solving MINLPs and QP-based branch-
and-bound algorithms for solving MIQPs, is the reduced effort needed to solve a QP
instead of a NLP. Recent developments for MIQP- and mixed-integer quadratically
constrained programming (MIQCP)-solvers concentrate on competitive approaches
relying on linear relaxations, see Section 2.7 and Section 2.8 for related nonlinear
methods and Berthold, Heinz and Vigerske [24] for a comparative study.

In addition to cutting planes, state-of-the-art MILP solvers contain lots of additional
components improving the performance of the branch-and-bound enumeration. The
integration of these techniques turned mixed-integer linear solvers into very powerful
algorithms. Their tremendous improvement is based on three major components, as
presented by Bixby for the solver CPLEX of IBM/ILOG [41], see Table 1.1.

Apart from a large variety of cut generators, powerful continuous linear solvers possess
excellent warmstart features. They are a key component of an efficient branch-and-cut
solver. A warmstart allows the reduction of the computational effort for solving an
optimization problem by exploiting information of previous runs for similar problems.
Furthermore, advanced presolve techniques reduce the problem complexity prior to the
solution process. Apart from these techniques other components helped to increase the
power of state-of-the-art mixed-integer linear solvers, e.g., heuristics, see Berthold [23].

Since the feasible region of both MIQP and MILP is a polyhedron, all mixed-integer
linear techniques, that do not rely on the objective function, might be applicable.
Therefore, all presolving procedures, that do not take the objective function into ac-
count can be directly integrated in a MIQP solver. As cutting planes only depend on
the feasible region, they can in principle be applied for quadratic programs as well.
Their application for MIQPs involves some difficulties, which will be explained in de-
tail in Chapter 4 and Chapter 5. In this section we describe a continuous quadratic
solver focusing on warmstarts, which are also beneficial for continuous quadratic pro-
grams, see Chapter 6.

We consider the following strictly convex mixed-integer quadratic optimization prob-
lem, possessing a strictly convex quadratic objective function as well as linear equality

58 2 Available Nonlinear Solution Techniques

and inequality constraints.

x ∈ X, y ∈ Y :

min
1

2

(
xT , yT

)
B

(
x

y

)
+ cT

(
x

y

)
s.t. AE

(
x

y

)
= bE,

AI

(
x

y

)
≥ bI.

(2.127)

x and y denote the vectors of the continuous and integer variables, respectively, while
B ∈ Rn×n is a positive definite matrix and c ∈ Rn holds. X and Y are defined by the
upper and lower bounds on both the continuous and the integer variables, see (1.2). nc
denotes the number of continuous variables and ni is the number of integer variables.
The total number of variables is denoted by n, i.e., n := ni+nc. Equality constraints
are denoted by AE ∈ Rme×n and bE ∈ Rme , while inequality constraints are given by
AI ∈ Rmi×n and bI ∈ Rmi . Therefore me denotes the number of equality constraints,
while mi is the number of inequality constraints.

To be consistent with the notation used in the subsequent chapters, a variable trans-
formation is carried out, such that (

xl
yl

)
= 0 (2.128)

holds, where xl und yl are lower bounds on the continuous and integral variables, see
(1.2). Furthermore, problem (2.127) is reformulated yielding

x ∈ Rnc , y ∈ Rni :

min
1

2

(
xT , yT

)
B

(
x

y

)
+ cT

(
x

y

)
s.t. Â

(
x

y

)
≥ b̂.

(2.129)

The number of constraints in (2.129) is denoted by m̂, with m̂ := mi + 2me + 2n.
The matrix Â ∈ Rm̂×n and the vector b̂ ∈ Rm̂ are therefore given by

Â :=


AI
AE

−AE
−I
I

 , b̂ :=


bI
bE

−bE(
xu
yu

)
0

 , (2.130)

where xu and yu are modified due to the variable transformation ensuring (2.128).
In this formulation m̂ ≥ n holds, due to the existence of upper and lower bounds

2.11 Convex Mixed-Integer Quadratic Programming 59

for every variable. We denote by Ĵ the index set of all constraints of MIQP (2.129),
while J := J= ∪ J> is the index set of the constraint of MIQP formulation (2.127)
without box-constraints, where equality constraints are indexed by J= and inequality
constraints are indexed by J>.

The objective function of (2.129) is abbreviated by

fqp(x, y) :=
1

2
(xT , yT)B

(
x

y

)
+ cT

(
x

y

)
. (2.131)

Furthermore, the integer variables y ∈ Nni are indexed by the set I ⊂ {1, . . . , n} and
the indices of the continuous variables are given by the set J = {1, . . . , n}\I.

First, we briefly review a solution method for strictly convex, continuous, quadratic
optimization problems, that was proposed by Goldfarb and Idnani [58]. The algorithm
is a dual approach for solving problem QPl given by

x ∈ Rnc , y ∈ Rni :

min
1

2

(
xT , yT

)
B

(
x

y

)
+ cT

(
x

y

)
s.t. Âl

(
x

y

)
≥ b̂l,

(2.132)

where l denotes the iteration index of a branch-and-bound method applied to solve
MIQP (2.129). As a consequence, the constraints given by (Âl, b̂l) include additional
box-constraints tightening the domain of the relaxed integer variables y, i.e., y ∈ YlR
given by (2.50) and (2.51). The corresponding index set of the constraints is denoted
by Ĵl

For l = 0, QPl (2.132) is the continuous relaxation of MIQP (2.129), where the
integrality condition for the integer variables y ∈ Nni is relaxed, i.e., y ∈ Rni .
Usually the method of Goldfarb and Idnani [58] is applied for solving subproblems
arising during the solution of nonlinear programs using a SQP method, see Section 2.2.
In this case, the matrix B can be associated with a Quasi-Newton approximation
introduced in Definition 2.7 and the vector c ∈ Rn corresponds to the gradient of
the nonlinear objective function f(x, y). Moreover, the constraints are linearizations
of the nonlinear constraints g(x, y), see NLP (2.1).

We consider a fixed branch-and-bound iteration first, e.g., the continuous relaxation
of MIQP (2.127) for l = 0 and therefore remove the corresponding index to ease
the readability. For the remainder of this section k denotes the iteration index of the
method of Goldfarb and Idnani.

The dual method of Goldfarb and Idnani [58] is an iterative active set method. In each
iteration k the active set consists of a linear independent subset of the constraints of
QP (2.132). All constraints belonging to the current active set are satisfied as equal-
ities in the corresponding iteration. The active set of linear independent constraints
satisfied with as equalities in iteration k is denoted by Ak ⊂ Ĵ.

60 2 Available Nonlinear Solution Techniques

The remaining constraints not contained in the active set Ak are either satisfied or
violated. Removing all constraints j, with j 6∈ Ak, we obtain a relaxation of QP (2.132).
This continuous quadratic program is denoted by QP(Ak) and is given by

x ∈ Rnc , y ∈ Rni :

min
1

2

(
xT , yT

)
B

(
x

y

)
+ cT

(
x

y

)
s.t. âTj

(
x

y

)
≥ b̂j, j ∈ Ak,

(2.133)

where âj ∈ Rn is a row of Â and b̂j is an entry in b̂.

Since the method is a dual approach, violated constraints always exist as long as the
optimal solution is not obtained. For each constraint not contained in the current ac-
tive set Ak the slack value introduced below at some iterate (xk, yk) ∈ Rn determines,
whether or not the constraint is violated:

skj := âTj

(
xk

yk

)
− b̂j, j ∈ Ĵ. (2.134)

The algorithm is based on so-called solution pairs, defined as follows.

Definition 2.16. ((xk, yk),Ak) with (xk, yk) ∈ Rn and Ak ⊂ Ĵ is a solution pair of
QP(Ak) (2.133), abbreviated by S-pair, if (xk, yk) is the optimal solution of QP(Ak)
and the constraints contained in Ak are linear independent and satisfied as equalities,
i.e. active.

Note, that (xk, yk) is the optimal solution of QP({j ∈ Ĵ : skj ≥ 0}), where skJ is defined
in (2.134), if ((xk, yk),Ak) is an S-pair.

The algorithm of Goldfarb and Idnani can be briefly described by the following iter-
ation sequence.

Algorithm 2.3. 1. Let ((xk, yk),Ak) be a S-pair of QP(Ak).

2. Iterate until all constraints of QP (2.132) are satisfied:

(a) Choose a constraint of QP (2.132), which is violated by the solution (xk, yk)
of QP(Ak) and denote the corresponding index by j∗.

(b) Determine next S-pair of QP(Ak+1), if possible:

If QP
(
Ak ∪ {j∗}

)
is infeasible, then stop, since QP (2.132) is infea-

sible.
Else determine new S-pair ((xk+1, yk+1),Ak+1) of QP(Ak+1) with Ak+1 :=

Âk ∪ {j∗}, where Âk is as suitable subset of Ak, i.e. Âk ⊂
Ak, and fqp(x

k+1, yk+1) > fqp(x
k, yk) holds. Set (xk, yk,Ak) :=

((xk+1, yk+1),Ak+1).

2.11 Convex Mixed-Integer Quadratic Programming 61

The initial S-pair of QP(A0) is ((x0, y0), ∅), where (x0, y0) denotes the unrestricted
minimum of QP (2.132), given by

∇x,yfqp(x, y) = 0, (2.135)

i.e., (x0, y0) is obtained by

(x0, y0) = −B−1c. (2.136)

Subsuming the basic Algorithm 2.3, we know that in each iteration, the current iterate
(xk, yk) solves QP(Ak), i.e., ((xk, yk),Ak) is a solution pair. If (xk, yk) satisfies all con-
straints of QP (2.132), then (xk, yk) is the optimal solution of QP (2.132). Otherwise
a new solution pair is obtained after a finite number of internal steps, see Goldfarb
and Idnani [58], Werner [107] or Lehmann [70] for algorithmic details. If QP (2.132)
is not detected to be infeasible, we know that the sequence of solution pairs cannot
cycle, since

fk+1qp (xk+1, yk+1) > fkqp(x
k, yk) (2.137)

holds. Furthermore, the number of solution pairs is finite and therefore the optimal
solution of QP (2.132) is obtained or infeasibility is detected.

The briefly introduced method of Goldfarb and Idnani [58] can serve as one of the core
components of an efficient branch-and-cut method for MIQPs, since it is a reliable and
fast algorithm for solving dense, continuous QP problems up to medium size. These
continuous QP problems naturally arise in a branch-and-bound algorithm, which is
based on quadratic relaxations. Since we want to develop a MIQP solver inspired by
state-of-the-art MILP solution techniques, we extend the original algorithm based on
an efficient implementation of Schittkowski [94]. One major feature of the extended
method is the ability to perform warmstarts.

We refer to warmstarts, whenever we can reduce the computational effort, e.g., calcu-
lation time, for solving an optimization problem by exploiting information obtained
from the solution process of a related problem. During the branch-and-bound enu-
meration a large number of similar subproblems arises. We want to exploit the corre-
sponding close relationship by performing warmstarts. There are two specific kinds of
relationships, where warmstarts naturally reduce the effort for solving related QPs.

Note, that we consider in the remainder of this section different continuous QPs
arising during a branch-and-bound enumeration applied to MIQP (2.127). The optimal
solution of the l − th QP is denoted by (x̄l, ȳl, λ̄l) ∈ X × YlR × Rm̂l . The domain of
the relaxed integer variables YlR, defined by (2.58), contains bound changes given
by IlL and IlU, which are performed by the branch-and-bound method, see (2.50) and
(2.51). These box-constraints tightening the original feasible domain YR of the relaxed
integer variables are contained in the constraints (Âl, b̂l). m̂l denotes the number of
constraints indexed by Ĵl and Āl is the set of linear independent and active constraints
at (x̄l, ȳl). Furthermore, Fl denotes the feasible region of QP l.

In the subsequent definition we introduce a dual warmstart.

62 2 Available Nonlinear Solution Techniques

Definition 2.17. Let ((x̄l, ȳl), Āl) be the solution pair solving QP l (2.132), with
(x̄l, ȳl) ∈ X× YlR.

Then ((x̄l, ȳl), Āl) allows a dual warmstart for QPl+1, if ((x̄l, ȳl), Āl) is a solution pair
of some relaxation of QPl+1 according to Definition 2.16.

A warmstart can be performed, if the solution of the previous subproblem is optimal
for a subset of the constraints defining the successive, continuous, quadratic subprob-
lem. If we assume that the the solution (x̄l, ȳl, λ̄l) of QP l is not optimal for QP l+1,
some constraints of QP l+1 are still violated at (x̄l, ȳl). If many of the constraints of
the successive QP are already satisfied, the solution process can be speeded up by
exploiting this knowledge.

The following relationship between two successive quadratic programs QPl and QPl+1

always allows a dual warmstart.

Corollary 2.6. Let (x̄l, ȳl, λ̄l) be the solution of QP l (2.132), with (x̄l, ȳl) ∈ X× YlR
and λ̄l ∈ Rm̂l. Consider QP l+1 with Ĵl ⊂ Ĵl+1, then Fl+1 ⊂ Fl holds. As a consequence,
(x̄l, ȳl, λ̄l) is optimal for a subset of the constraints of QP l+1 and a dual warmstart
can be performed.

We define a primal warmstart in the following way.

Definition 2.18. Let (x̄l, ȳl, λ̄l) be the solution of QP l (2.132), with (x̄l, ȳl) ∈ X×YlR
and λ̄l ∈ Rm̂l. (x̄l, ȳl, λ̄l) allows a primal warmstart for QP l+1, if (x̄l, ȳl) is primal
feasible for QP l+1, i.e., (x̄l, ȳl) ∈ Fl+1.

A primal feasible solution of a previous subproblem QPl allows an efficient warm-
start for solving QPl+1. In this situation, a feasible point is known and one has to
regain optimality. Since finding a feasible point for a quadratic program determines a
significant amount of the total solution effort of a primal method, see Goldfarb and
Idnani [58], a warmstart is beneficial.

In the following case a primal feasible solution is always available.

Corollary 2.7. Let (x̄l, ȳl, λ̄l) be the solution of QP l (2.132), with (x̄l, ȳl) ∈ X× YlR
and λ̄l ∈ Rm̂l. Consider QP l+1 with Ĵl+1 ⊂ Ĵl, then Fl ⊂ Fl+1 holds. In this situation,
(x̄l, ȳl) is primal feasible for QP l+1 and a primal warmstart can be performed.

Since the algorithm of Goldfarb and Idnani [58], presented in the previous section, is a
dual method, it is very well suited to perform dual warmstarts. Storing the information
obtained during the solution of the previous subproblem, a dual warmstart can be
performed with very little effort. If the solution of QPl is a solution pair of some
relaxation of QPl+1 according to Definition 2.16, the solution process can simply
be continued, due to Definition 2.17. The aim is to satisfy all additional, violated
constraints. Especially, if only very few additional constraints are to be satisfied, a
dual warmstart is very efficient, see Chapter 6.

2.11 Convex Mixed-Integer Quadratic Programming 63

A primal warmstart cannot be performed by the method of Goldfarb and Idnani [58]
in a straightforward way. Nevertheless, one can exploit the factored QR decomposition
of the previous run, to regain optimality with a primal approach.

Within a branch-and-cut solver, there are many situations, where dual or primal
warmstarts can be performed. During the branch-and-bound enumeration, the node
selection strategy determining the subsequent node in the tree to continue, heavily
influences the ability to perform warmstarts. Using depth-first-search, i.e., selecting a
child node whenever possible, allows almost always warmstarts. In contrast, the node
selection rule best-first-search yields only few situations, in which a warmstart can be
performed, since subsequent nodes usually lie in different parts of the search-tree.

Furthermore, the potential reduction of the computational effort by a dual warmstart
is also significant, if cutting planes are found and need to be incorporated into the
current problem formulation.

Warmstarts lead to a significant reduction of the computation time, if the successive
subproblems are closely related, see Chapter 6. The following situations are often
encountered in a branch-and-cut solver. We restrict our considerations concerning
the branch-and-bound enumeration on the standard case of binary branching on an
integer variable yi ∈ YlR with fractional value ȳli ∈ R\N at the optimal solution (x̄l, ȳl)
of the current node corresponding to QPl.

1. The new node is a child of the current one.

Considering iteration l of the branch-and-bound enumeration process, then
(x̄l, ȳl, λ̄l) is the solution of QPl (2.132), with (x̄l, ȳl) ∈ X × YlR and λ̄l ∈ Rm̂l .
Furthermore, let the subsequent node l+ 1, corresponding to QPl+1, be a child
of node l where branching is performed on variable yi ∈ YlR. Then Jl+1 = Jl and
with Yl+1R ⊂ YlR, since either Il+1L = IlL and Il+1U = IlU ∪ {i} holds, if node l+ 1 has
to satisfy branching condition yi ≥ dȳlie or Il+1L = IlL ∪ {i} and Il+1U = IlU holds, if
node l+ 1 has to satisfy branching condition yi ≤ bȳlic respectively. Therefore,
Fl+1 ⊂ Fl holds and (x̄l, ȳl, λ̄l) is optimal for a relaxation of QPl+1 and we can
perform a dual warmstart according to Corollary 2.6.

Since node l + 1 is a child of node l and we perform a binary branching on
variable yi ∈ YlR, the new quadratic program and the previous one are identical
apart from one additional box constraint subject to yi. Since the dual method
of Goldfarb and Idnani [58] successively adds constraints to the active set, we
need in most cases only few additional iterations to get a new optimal solution
of QPl+1. Therefore, a significant amount of calculation time is saved compared
to solving the complete quadratic program QPl+1 from scratch.

2. The new node has the same parent node as the current one.

Considering iteration l of the branch-and-bound enumeration process, then
(x̄l, ȳl, λ̄l) is the solution of QPl (2.132), with (x̄l, ȳl) ∈ X × YlR and λ̄l ∈ Rm̂l .
Furthermore, let the subsequent node l + 1, corresponding to QPl+1, possess

64 2 Available Nonlinear Solution Techniques

the same parent node with index l̂ < l as the current node l and assume,
that branching was performed on variable yi ∈ Y l̂R. Then Jl+1 = Jl and with
Yl+1R 6⊂ YlR, since either Il+1L = IlL\{i} and Il+1U = IlU∪ {i} holds, if node l+1 has to

satisfy branching condition yi ≥ dȳl̂ie or Il+1L = IlL ∪ {i} and Il+1U = IlU\{i} holds,

if node l+ 1 has to satisfy branching condition yi ≤ bȳl̂ic respectively.

As a consequence, Fl+1 6⊂ Fl holds and (x̄l, ȳl, λ̄l) is not optimal for a relaxation
of QPl+1 and we can neither perform a dual nor a primal warmstart. Never-
theless, computational effort can be significantly reduced, since both problems
differ in only one box constraint for an integer variable. QPl+1 can be solved
by combining a dual and a primal warmstart, first regaining optimality for QPl̂

by a primal warmstart and then satisfying the violated constraint induced by
branching via a dual warmstart.

3. The new node is the child of a node, which has the same parent node as the
current one (nephew).

Considering iteration l of the branch-and-bound enumeration process, then
(x̄l, ȳl, λ̄l) is the solution of QPl (2.132), with (x̄l, ȳl) ∈ X × YlR and λ̄l ∈ Rm̂l .
Furthermore, let the subsequent node l + 1, corresponding to QPl+1, be the
nephew of the current node l, i.e., node l+ 1 is a grandchild of the parent node,
with index l̂ < l, of the current node l. Furthermore, let the parent node of node
l+ 1, i.e., the sibling of the current node l, be indexed by l̄ with l̂ < l̄ < l. As-
sume, that at node l̂ branching was performed on variable yi ∈ Y l̂R and at node
l̄ branching was performed on variable yj ∈ Y l̄R. Then Jl+1 = Jl and Yl+1R 6⊂ YlR,
since branching is executed such that one of the subsequent four possibilities
hold.

(a) Il+1L = IlL\{i} ∪ {j} and Il+1U = IlU ∪ {i} holds, if node l + 1 has to satisfy

branching conditions yi ≥ dȳl̂ie and yj ≤ bȳl̄jc.

(b) Il+1L = IlL\{i} and Il+1U = IlU ∪ {i} ∪ {j} holds, if node l + 1 has to satisfy

branching conditions yi ≥ dȳl̂ie and yj ≥ dȳl̄je.

(c) Il+1L = IlL ∪ {i} ∪ {j} and Il+1U = IlU\{i} holds, if node l + 1 has to satisfy

branching conditions yi ≤ bȳl̂ic and yj ≤ bȳl̄jc.

(d) Il+1L = IlL ∪ {i} and Il+1U = IlU\{i} ∪ {j} holds, if node l + 1 has to satisfy

branching conditions yi ≥ bȳl̂ic and yj ≥ dȳl̄je.

As a consequence, Fl+1 6⊂ Fl holds and (xl, yl, λl) is not optimal for a relaxation
of QPl+1 and we can neither perform a dual nor a primal warmstart. Nevertheless
computational effort can be significantly reduced, since both problems differ only
slightly. QPl+1 can be solved by combining a dual and a primal warmstart, first
regaining optimality for QPl̂ by the primal warmstart and then satisfying the
violated constraint induced by branching on yi ∈ Y l̂R and on yj ∈ Y l̄ via a dual
warmstart.

2.11 Convex Mixed-Integer Quadratic Programming 65

4. Integration of cutting planes.

Considering cut generation round r, see Chapter 4 for details, then (x̄0,r, ȳ0,r, λ̄0,r)
is the solution of QP0,r. In cut generation round 0, QP0,0 corresponds to the
continuous relaxation QP0 (2.132), i.e., (x̄0,r, ȳ0,r) ∈ X×Y0R with I0L = I

0
U = ∅. In

each round r the number of linear constraints m̂0,r is increased by the number
m̂r ∈ N of generated cutting planes. Therefore, λ̄0,r ∈ Rm̂0,r holds and the
subsequent subproblem QP0,r+1 is obtained from QP0,r by integrating m̂r > 0

linear cutting planes. As a consequence, the number of linear constraints is
increased from m̂0,r to m̂0,r+1 := m̂0,r + m̂r. Due to Ĵ0,r ⊂ Ĵ0,r+1, F0,r+1 ⊂ F0,r
holds and (x̄0,r, ȳ0,r, λ̄0,r) is optimal for a relaxation of QP0,r+1 and we can perform
a dual warmstart according to Corollary 2.6.

If a primal warmstart is only needed to regain optimality for closely related problems,
i.e., the next node is a sibling or a nephew, see above, one can avoid a primal warm-
start. Since we know in advance, that we might want to perform a primal warmstart
to regain optimality for the parent node l̂ of the current node l, we can store the
optimal solution (x̄l̂, ȳl̂, λ̄l̂) and the active set Āl̂ of QPl̂. Note, that ((x̄l̂, ȳl̂), Āl̂) is a
solution pair of some relaxation of problem QPl+1. Now we can compare the active
sets Āl̂ and Āl and update the QR decomposition by adding missing constraints and
removing surplus constraints, by exploiting the updating schemes of the method of
Goldfarb and Idnani. Afterwards the QR decomposition corresponds to Āl̂, but the
values of primal and dual variables differ, such that (x̃, ỹ, λ̃) obtained by this oper-

ation, is not the optimal solution of QPl̂. Replacing the current non-optimal values
(x̃, ỹ, λ̃) by (x̄l̂, ȳl̂, λ̄l̂), which were stored, optimality of QPl̂ is regained.

It is possible, that warmstarts lead to numerical instabilities based on round-off errors.
To avoid this situation the number of successive warmstarts should be limited. In case
of numerical errors, the problem can be automatically resolved.

66 2 Available Nonlinear Solution Techniques

3. A NEW MIQP-BASED MINLP
SOLUTION METHOD

In this chapter we propose a new algorithm for solving convex MINLPs. It is inspired
by both the linear outer approximation approach and MISQP, see Section 2.5 and
Section 2.10. The aim is to combine the advantages of both methods. First of all the
reliability of linear outer approximation for non-convex problems is to be improved.
In addition, the number of function evaluations, that are required during the solution
process, should be decreased significantly, as they are an important performance crite-
rion for industrial applications based on expensive simulations. Furthermore, we want
to guarantee convergence properties for convex MINLPs. In Section 3.1, we propose an
extension of a linear outer approximation method incorporating integer search steps
obtained by the solution of strictly convex MIQP problems. In Section 3.2, we prove
convergence of the new outer approximation algorithm for convex MINLPs. Finally,
we motivate future research, yielding an algorithm, which is only based on the succes-
sive solution of MIQP problems and which ensures convergence properties for convex
MINLP problems. Furthermore, we address some implementation aspects.

3.1 MIQP-Supported Linear Outer

Approximation

In this section we propose a new outer approximation algorithm, which incorporates
mixed-integer search steps obtained from the solution of strictly convex MIQP prob-
lems. The algorithm is designed such that convergence properties can be established
under realistic conditions for the convex MINLP problem given by

x ∈ Rnc , y ∈ Nni :

min f(x, y)

s.t. gj(x, y) ≥ 0, j ∈ J.

(3.1)

Within this chapter the box-constraints are included in the constraints gj, j ∈ J.
Therefore we denote the number of the original nonlinear constraints by m̃ for the
moment and extend these constraints by nc upper and nc lower bounds on the con-

68 3 A new MIQP-based MINLP Solution Method

tinuous variables and ni upper and ni lower bounds on the integer variables, i.e.,

gm̃+i(x, y) := −xi + e
T
i xu ≥ 0, ∀i ∈ {1, . . . , nc},

gm̃+nc+i(x, y) := xi − e
T
i xl ≥ 0, ∀i ∈ {1, . . . , nc},

gm̃+2nc+i(x, y) := −yi + e
T
i yu ≥ 0, ∀i ∈ {1, . . . , ni},

gm̃+2nc+ni+i(x, y) := yi − e
T
i yl ≥ 0, ∀i ∈ {1, . . . , ni}.

(3.2)

Nevertheless, we still denote the feasible domains induced by the bounds on the con-
tinuous and integer variables by X and Y, i.e.,

X := {x ∈ Rnc : gm̃+i(x, y) ≥ 0, i ∈ {1, . . . , 2nc}}, (3.3)

Y := {y ∈ Nni : gm̃+2nc+i(x, y) ≥ 0, i ∈ {1, . . . , 2ni}}. (3.4)

To be consistent with the notation of the previous chapters, we define the number of
constraints to be m := m̃ + 2nc + 2ni and extend the index set J accordingly. Note,
that the relaxation of the set Y is denoted by YR.

The requirements for proving convergence are subsumed in Assumption 3.1 later on
in this chapter. The main restriction is, that the objective function f(x, y) is required
to be convex and the constraints gj(x, y) need to be concave for all j ∈ J on the
relaxation of the feasible domain described by X× YR.

Furthermore, we denote by Mx an upper bound on the distance between two values
x̂, x̃ ∈ X, i.e., ‖x̂ − x̃‖2 ≤Mx holds for all x̂, x̃ ∈ X. From a practical point of view,
Mx corresponds to the maximal distance between two bounds, i.e.,

Mx :=
√
nc max

i∈{1,...,nc}
{(xu)i − (xl)i}. (3.5)

As presented in Section 2.5, linear outer approximation algorithms guarantee global
optimality by the successive solution of MILP master problems. The master problem
is a linear relaxation of the original convex MINLP, which is refined in each iteration
yielding a monotone increasing sequence of lower bounds on the optimal objective
value of MINLP (3.1). The new algorithm to be proposed in this section guarantees
convergence properties for convex MINLPs by the master problem in a similar way.

As a consequence, we have to gain the desired increase in efficiency and robustness by
modifying the remaining part of the linear outer approximation algorithm. The basic
idea is to look for improving integer values instead of fixing the integer variables. This
implies that the integer variables are allowed to vary not only during the solution
of the master problem. Therefore, within this chapter both the continuous and the
integer variables depend on the iteration index k.

As motivated in Section 2.5, it is profitable to apply the trust region method of Yuan,
i.e., Algorithm 2.1, within a linear outer approximation method such as Algorithm 2.2

3.1 MIQP-Supported Linear Outer Approximation 69

for solving NLP(yk) for a given iterate yk ∈ Y. In the reminder of this chapter NLP(yk)
is given by

x ∈ Rnc :

min f(x, yk)

s.t. gj(x, y
k) ≥ 0, ∀ j ∈ J.

(3.6)

As established by Corollary 2.3 and 2.5 in Section 2.5, applying Yuan’s trust region
method has the advantage, that we need not distinguish between solving NLP(yk)
given by (3.6) and the feasibility problem F(yk) for some fixed yk ∈ Y, if F(yk) is
given by

x ∈ Rnc , η ∈ R+ :

min η

s.t. gj(x, y
k) + η ≥ 0, ∀j ∈ J.

(3.7)

Note, that otherwise, F(yk) needs to be solved in addition, whenever an infeasible
integer value y /∈ V is encountered, where the set V is given by

V = {y ∈ Y : ∃ x ∈ X with gj(x, y) ≥ 0, ∀ j ∈ J} . (3.8)

See Fletcher and Leyffer [50] for a more general formulation of F(yk).

In order to identify solutions of F(yk), the subsequent linear program, denoted by
LPF(xk, yk), is considered, see Corollary 2.4 relating the KKT-conditions of F(yk)
and LPF(xk, yk). It was already introduced in (2.90).

(dF)x ∈ Rnc , η ∈ R+ :

min η

s.t. gj(x
k, yk) +∇xgj(xk, yk)T(dF)x + η ≥ 0, ∀j ∈ J.

(3.9)

The solution of LPF(xk, yk) given by (3.9) is denoted by ((dkF)x, η
k). In addition,

we introduce dF :=

(
(dF)x
0

)
, and extend the solution ((dkF)x, η

k) to (dkF, η
k), with

dkF ∈ Rn given by dkF :=

(
(dkF)x
0

)
.

Solutions of NLP(yk) also need to be identified. This task is directly established by
Yuan’s trust-region algorithm, see the subsequent Corollary 3.1:

Applying trust region Algorithm 2.1 for solving NLP(yk) given by (3.6) yields the
following continuous subproblem at the current iterate (xk, yk). It approximates the
L∞-penalty function of the continuous nonlinear program NLP(yk), see Section 2.2.

(dc)x ∈ Rnc :

min Φk
c((dc)x)

s.t. ‖(dc)x‖∞ ≤ ∆kc ,

(3.10)

70 3 A new MIQP-based MINLP Solution Method

where the objective function is given by

Φk
c((dc)x) := ∇xf(xk, yk)T(dc)x +

1

2
(dc)

T
xB

k
c(dc)x

+ σk‖(g(xk, yk) + [∇xg(xk, yk)]T(dc)x)−‖∞.
(3.11)

Bkc ∈ Rnc×nc is the upper left sub-matrix of the n× n-matrix Bk, which is symmetric
and positive definite. Bk is possibly a Quasi-Newton approximation of the Hessian
matrix of the Lagrangian function, see Definition 2.4 and 2.7. σk ∈ R+ is the penalty
parameter of the L∞ penalty function. (.)− is defined analogue to Definition 2.9 and
∆kc ∈ R+ is the trust region radius, i.e., it is equivalent to ∆k in Algorithm 2.1.

Furthermore, we define dc :=

(
(dc)x
0

)
∈ Rnc+ni , where 0 is the vector of all zeros

of dimension ni. According to Section 2.2 the solution of (3.10) is denoted by (dkc)x

and therefore dkc is defined by dkc :=

(
(dkc)x
0

)
∈ Rnc+ni , where 0 is the vector of all

zeros of dimension ni.

Problem (3.10) is equivalent to the quadratic program

(dc)x ∈ Rnc , ηc ∈ R+ : (3.12)

min ∇xf(xk, yk)T(dc)x + 1
2
(dc)

T
xB

k
c(dc)x + σ

kηc

s.t. ηc + gj(x
k, yk) +∇xgj(xk, yk)T(dc)x ≥ 0, j = 1, . . . ,m,

‖(dc)x‖∞ ≤ ∆kc ,

see Yuan [112]. QP (3.12) is denoted by QP(xk, yk), since it depends on the model-
ing point (xk, yk) determining function and gradient values. Furthermore, (3.12) is a
strictly convex quadratic program and therefore can be solved efficiently.

The subsequent corollary relates the KKT-conditions of a KKT-point (ηkc , (d
k
c)x, (λ

k
c , λ

k
ηc
))

of QP(xk, yk) given by (3.12) to those of NLP(yk) given by (3.6).

Corollary 3.1. For some yk ∈ Y and a sufficiently large value of the penalty param-
eter σk, (x̄yk , λ̄) is a KKT-point of NLP(yk) given by (3.6), if and only if
(ηkc , (d

k
c)x, (λ

k
c , λ

k
ηc
)) is a KKT-point of QP(x̄yk , y

k) given by (3.12) with (dkc)x = 0,
ηkc = 0.

Proof. The KKT-conditions of QP(x̄yk , y
k) given by (3.12) for the KKT-point

(ηkc , (d
k
c)x, (λ

k
c , λ

k
ηc
)) are determined by the subsequent formulas, where the trust region

constraint

‖(dc)x‖∞ ≤ ∆kc (3.13)

is neglected, since it is not active for (dkc)x = 0 and ∆kc > 0. Note, that λkc contains
the Lagrangian multipliers (λkc)j, j ∈ J associated with the constraints

ηc + gj(x
k, yk) +∇xgj(xk, yk)T(dc)x ≥ 0, j ∈ J. (3.14)

3.1 MIQP-Supported Linear Outer Approximation 71

The Lagrangian multiplier λkηc is associated with the non-negativity condition for ηc.
We get the following KKT-conditions:

∇xf(x̄yk , yk) + Bkc(dkc)x −
m∑
j=1

(λkc)j∇xgj(x̄yk , yk) = 0,

σk =

m∑
j=1

(λkc)j + λ
k
ηc

ηkc + gj(x̄yk , y
k) +∇xgj(x̄yk , yk)T(dkc)x ≥ 0, ∀j ∈ J, (3.15)

ηkc ≥ 0,

(λkc)j ≥ 0, ∀j ∈ J,

λkηc ≥ 0,

(λkc)j(η
k
c + gj(x̄yk , y

k) +∇xgj(x̄yk , yk)T(dkc)x) = 0, ∀j ∈ J,

ηkcληc = 0.

Case 1 ’⇒’: (x̄yk , λ̄) is a KKT-point of NLP(yk) given by (3.6):⇒ (ηkc , (d
k
c)x, (λ

k
c , λ

k
ηc
)) with ηkc := 0, (dkc)x := 0 and (λkc)j := λ̄j, j ∈ J and

λkηc := σk −
∑
j∈J
λ̄j satisfies (3.15), since (x̄yk , λ̄) satisfies the subsequent KKT-

condition of NLP(yk):

∇xf(x̄yk , yk) −
∑
j∈J
λ̄j∇xgj(x̄yk , yk) = 0,

gj(x̄yk , y
k) ≥ 0, j ∈ J,

λ̄jgj(x̄yk , y
k) = 0, j ∈ J,

λ̄j ≥ 0, j ∈ J.

(3.16)

Case 2 ’⇐’: (ηkc , (d
k
c)x, (λ

k
c , λ

k
ηc
)) is a KKT-point of QP(x̄yk , y

k) with ηkc := 0, (d
k
c)x :=

0 satisfying (3.15):⇒ (x̄yk , λ̄) with λ̄j := (λkc)j, j ∈ J satisfies the KKT-conditions of NLP(yk)
stated in (3.16) due to (3.15).

A property of the linear outer approximation Algorithm 2.2 is, that it terminates after
a finite number of iterations due to the finiteness of the set Y. In principle, this can
only be assured, if the solution process of NLP(yk) given by (3.6) or F(yk) given by

72 3 A new MIQP-based MINLP Solution Method

(3.7) respectively, also terminates after a finite number of iterations in each iteration
of a linear outer approximation method. This topic is usually neglected in existing
literature. To be able to prove finite termination of the algorithm to be proposed in
this section, we introduce a ε-stationary-point of NLP(yk) and F(yk) for fixed yk ∈ Y
in the subsequent definition.

Definition 3.1. A point (xk, λk) with yk ∈ V is a ε-stationary point of NLP(yk)
subject to a tolerance ε > 0, if the following approximations of the KKT-conditions of
NLP(yk) are satisfied:

‖∇xf(xk, yk) −
∑
j∈J
λkj∇xgj(xk, yk)‖2 ≤ ε,

gj(x
k, yk) ≥ −ε, ∀j ∈ J

|λkj
(
gj(x

k, yk)
)
| ≤ ε, ∀j ∈ J,

λkj ≥ −ε, ∀j ∈ J.

(3.17)

Moreover, a point (xk, ηk, (λkF, λ
k
η)) with yk ∈ Y\V is a ε-stationary point of F(yk)

subject to a tolerance ε > 0, if the following approximations of the KKT-conditions of
F(yk) are satisfied:∥∥∥∥∥

(
0

1

)
−
∑
j∈J

(λkF)j

(
∇xgj(xk, yk)

1

)
−

(
0

λkη

)∥∥∥∥∥
2

≤ ε,

|
(
gj(x

k, yk) + ηk
)
(λkF)j| ≤ ε, ∀j ∈ J,

|ηkλkη| ≤ ε,

gj(x
k, yk) + ηk ≥ −ε, ∀j ∈ J,

ηk ≥ −ε,

(λkF)j ≥ −ε, ∀j ∈ J,

λkη ≥ −ε.

(3.18)

The subsequent corollary establishes the relationship of a ε-KKT point of NLP(yk)
introduced in Definition 3.1 and the solution of subproblem QP(xk, yk).

Corollary 3.2. Let ((dkc)x, η
k
c , (λ

k
c , λ

k
ηc
)) be a KKT-point of QP(xk, yk) with

‖(dkc)x‖2 ≤ ε̃, (3.19)

ηkc ≤ ε̃ (3.20)

and ε̃ > 0. Furthermore let

‖(dkc)x‖∞ < ∆kc (3.21)

3.1 MIQP-Supported Linear Outer Approximation 73

hold, i.e., the trust region constraint of QP(xk, yk) can be neglected. Then (xk, λkc) is
a ε-stationary point of NLP(yk) according to Definition 3.1 subject to an accuracy ε
satisfying

ε ≥ max{MBε̃, (1+M∇g)ε̃, (1+M∇g)Mλε̃} (3.22)

with ‖Bkc‖2 ≤MB, ‖∇xgj(xk, yk)‖2 ≤M∇g, ∀j ∈ J and |(λkc)j| ≤Mλ, ∀j ∈ J.

Proof. Optimality: Since ((dkc)x, η
k
c , (λ

k
c , λ

k
ηc
)) is a KKT-point of QP(xk, yk)

∇xf(xk, yk) + Bkc(dkc)x −
∑
j∈J

(λkc)j∇xgj(xk, yk) = 0. (3.23)

holds. As a consequence we obtain

‖∇xf(xk, yk) −
∑
j∈J

(λkc)j∇xgj(xk, yk)‖2 = ‖− Bkc(dkc)x‖2

≤ ‖Bkc‖2‖(dkc)x‖2

≤ MBε̃.

(3.24)

Primal Feasibility: Since ((dkc)x, η
k
c , (λ

k
c , λ

k
ηc
)) is a KKT-point of QP(xk, yk)

ηkc + gj(x
k, yk) +∇xgj(xk, yk)T(dkc)x ≥ 0, ∀j ∈ J (3.25)

holds. As a consequence we obtain ∀j ∈ J

gj(x
k, yk) ≥ −ηkc −∇xgj(xk, yk)T(dkc)x

≥ −ηkc − |∇xgj(xk, yk)T(dkc)x|

≥ −ηkc − ‖∇xgj(xk, yk)T‖2‖(dkc)x‖2

≥ −ε̃−M∇gε̃

≥ −(1+M∇g)ε̃.

(3.26)

Dual Feasibility: Since ((dkc)x, η
k
c , (λ

k
c , λ

k
ηc
)) is a KKT-point of QP(xk, yk)

(λkc)j ≥ 0, ∀j ∈ J (3.27)

holds.

Complementarity: Since ((dkc)x, η
k
c , (λ

k
c , λ

k
ηc
)) is a KKT-point of QP(xk, yk)

(λkc)j
(
ηkc + gj(x

k, yk) +∇xgj(xk, yk)T(dkc)x
)

= 0, ∀j ∈ J (3.28)

74 3 A new MIQP-based MINLP Solution Method

holds. We obtain ∀j ∈ J

|(λkc)jgj(x
k, yk)| = |(λkc)j

(
−ηkc −∇xgj(xk, yk)T(dkc)x

)
|

≤ |(λkc)j||− η
k
c −∇xgj(xk, yk)T(dkc)x|

≤ |(λkc)j||η
k
c +∇xgj(xk, yk)T(dkc)x|

≤ |(λkc)j|
(
|ηkc |+ |∇xgj(xk, yk)T(dkc)x|

)
≤ |(λkc)j|

(
|ηkc |+ ‖∇xgj(xk, yk)T‖2‖(dkc)x‖2

)
≤ Mλ (ε̃+M∇gε̃)

≤ (1+M∇g)Mλε̃.

(3.29)

As a consequence (xk, λkc) is a ε-stationary point of NLP(yk) according to Definition 3.1
subject to an accuracy ε satisfying

ε ≥ max{MBε̃, (1+M∇g)ε̃, (1+M∇g)Mλε̃}. (3.30)

The subsequent corollary establishes the relationship of a ε-KKT point of F(yk) in-
troduced in Definition 3.1 and the solution of subproblem LPF(xk, yk).

Corollary 3.3. Let ((dkF)x, η
k, (λkF, λ

k
η)) be a KKT-point of LPF(xk, yk) with

‖(dkF)x‖2 ≤ ε̃, (3.31)

ηk > ε̃ (3.32)

and ε̃ > 0. Then (xk, ηk, (λkF, λ
k
η)) is a ε-stationary point of F(yk) according to Defi-

nition 3.1 subject to an accuracy ε satisfying

ε ≥ max{M∇gε̃,M∇gMλε̃} (3.33)

with ‖∇xgj(xk, yk)‖2 ≤M∇g, ∀j ∈ J and |(λkF)j| ≤Mλ, ∀j ∈ J.

Proof. Optimality: Since ((dkF)x, η
k, (λkF, λ

k
η)) is a KKT-point of LPF(xk, yk)(

0

1

)
−
∑
j∈J

(λkF)j

(
∇xgj(xk, yk)

1

)
−

(
0

λkη

)
= 0 (3.34)

holds.

Primal Feasibility: Since ((dkF)x, η
k, (λkF, λ

k
η)) is a KKT-point of LPF(xk, yk)

gj(x
k, yk) +∇xgj(xk, yk)T(dkF)x + ηk ≥ 0, ∀j ∈ J, (3.35)

3.1 MIQP-Supported Linear Outer Approximation 75

holds. As a consequence we obtain

gj(x
k, yk) + ηk ≥ −∇xgj(xk, yk)T(dkF)x

≥ −|∇xgj(xk, yk)T(dkF)x|

≥ −‖∇xgj(xk, yk)‖2‖(dkF)x‖2

≥ −M∇gε̃, ∀j ∈ J.

(3.36)

In addition

ηk ≥ 0 (3.37)

is satisfied due to (3.32).

Dual Feasibility: Since ((dkF)x, η
k, (λkF, λ

k
η)) is a KKT-point of LPF(xk, yk)

(λkF)j ≥ 0, ∀j ∈ J,

λkη ≥ 0
(3.38)

holds.

Complementarity: Since ((dkF)x, η
k, (λkF, λ

k
η)) is a KKT-point of LPF(xk, yk)(

gj(x
k, y) +∇xgj(xk, y)T(dkF)x + ηk

)
(λkF)j = 0, ∀j ∈ J,

ηkλkη = 0
(3.39)

holds. We obtain

|
(
gj(x

k, y) + ηk
)
(λkF)j| = |−

(
∇xgj(xk, y)T(dkF)x

)
(λkF)j|

≤ ‖∇xgj(xk, y)‖2‖(dkF)x‖2|(λkF)j|

≤ M∇gε̃Mλ, ∀j ∈ J.

(3.40)

As a consequence (xk, ηk, (λkF, λ
k
η)) is a ε-stationary point of F(yk) according to Defi-

nition 3.1 subject to an accuracy ε satisfying

ε ≥ max{M∇gε̃,M∇gMλε̃} (3.41)

To ease the readability, the definition of the master problem of the linear outer approx-
imation method introduced in Chapter 2 is repeated. To point out the dependencies,

76 3 A new MIQP-based MINLP Solution Method

it is denoted by MILP(Tkε , S
k
ε , η̂

k, εOA), where Tkε , Skε , and η̂k are specified below.

x ∈ Rnc , y ∈ Nni , η ∈ R : (3.42)

min η

s.t. f(xi, yi) +∇x,y f(xi, yi)T
(
x− xi

y− yi

)
≤ η, ∀(xi, yi) ∈ Tkε ,

g(xi, yi) + [∇x,y g(xi, yi)]T
(
x− xi

y− yi

)
≥ 0, ∀(xi, yi) ∈ Tkε ,

g(xj, yj) + [∇x,y g(xj, yj)]T
(
x− xj

y− yj

)
≥ 0, ∀(xj, yj) ∈ Skε ,

η ≤ η̂k − εOA.

The sets Tk and Sk introduced in (2.71) and (2.72) need to be adapted based on
Definition 3.1 yielding

Tkε ⊂
{

(xi, yi) ∈ Rnc × {y1, . . . , yk} :
(xi, λi) is ε− stationary point of NLP(yi)

}
(3.43)

Skε ⊂
{

(xj, yj) ∈ Rnc × {y1, . . . , yk} :

(xj, ηj, (λjF, λ
j
η)) is ε− stationary point of F(yj)

}
. (3.44)

Similar to well-known linear outer approximation methods, such as Algorithm 2.2,
the sets Tkε and Skε are updated, such that they contain one out of the infinitely many
ε-stationary points of each NLP(yi) given by (3.6) with i ≤ k or F(yj) given by (3.7)
with j ≤ k, that was obtained in previous iterations.

η̂k defines an upper bound on η given by

η̂k := min{f(xi, yi) : (xi, yi) ∈ Tkε }, (3.45)

where Tkε is defined by (3.43).

Note, that the bounds xl, xu, yl and yu on continuous and integer variables, which are a
subset of the constraints gj, j ∈ J, are satisfied at the solution of MILP(Tkε , S

k
ε , η̂

k, εOA),
since

gm̃+i(x
j, yj) +∇x,ygm̃+i

(
x− xj

y− yj

)
= −xji + e

T
i xu − xi + x

j
i,

= eTi xu − xi,

≥ 0

(3.46)

holds for each upper bound on any continuous variable xi, i ∈ {1, . . . , nc} for each
(xj, yj) ∈ Skε , or Tkε respectively. The same is valid for all lower bounds on continuous
variables and for upper and lower bounds on integer variables as well.

Up to now we motivated the part of the new algorithm, that is derived from linear
outer approximation methods, such as Algorithm 2.2. As mentioned at the beginning

3.1 MIQP-Supported Linear Outer Approximation 77

of this chapter, we want to combine the linear outer approximation approach with
ideas implemented in MISQP, which is reviewed in Section 2.10. Since the algorith-
mic concept of MISQP is based on sequence of mixed-integer quadratic approxima-
tions, we focus now on the integration of a MIQP approximation into a linear outer
approximation approach.

The L∞-penalty function corresponding to NLP(y) given by (3.6) can also be associ-
ated with the continuous relaxation of MINLP (3.1), which is given by

x ∈ Rnc , y ∈ Rni :

min f(x, y)

s.t. gj(x, y) ≥ 0, ∀ j ∈ J.

(3.47)

Inspired by MISQP, we apply the algorithm of Yuan, see Yuan [112], to solve the
continuous relaxation of MINLP (3.1) and replace the corresponding continuous sub-
problems by a mixed-integer formulation. This mixed-integer problem depends on the
current iteration point (xk, yk) and is given by

di ∈ Rnc × Nni :

min Φk
i (di)

s.t. ‖di‖∞ ≤ ∆ki ,

(3.48)

where the objective function is given by

Φk
i (di) := ∇x,yf(xk, yk)Tdi + 1

2
dTi B

kdi

+ σk‖(g(xk, yk) + [∇x,yg(xk, yk)]Tdi)−‖∞, (3.49)

with di =

(
(di)x
(di)y

)
and (di)x ∈ Rnc and (di)y ∈ Nni . Bk ∈ Rn×n is a symmetric

and positive definite matrix, possibly a Quasi-Newton approximation of the Hessian
matrix of the Lagrangian function, see Definition 2.4 and 2.7. σk ∈ R+ is the penalty
parameter of the L∞-penalty function. (.)− is defined analogue to Definition 2.9 and
∆ki ∈ R+ is the trust region radius.

Analogue to QP(xk, yk), problem (3.48) is equivalent to the mixed-integer quadratic
program denoted by MIQP(xk, yk)

di ∈ Rnc × Nni , ηi ∈ R+ : (3.50)

min ∇x,yf(xk, yk)Tdi + 1
2
dTi B

kdi + σ
kηi

s.t. ηi + gj(x
k, yk) +∇x,ygj(xk, yk)Tdi ≥ 0, j = 1, . . . ,m,

‖di‖∞ ≤ ∆ki .

78 3 A new MIQP-based MINLP Solution Method

The solution of (3.50) is denoted by (dki , η
k
i). The search direction with respect to

the integral variables yk ∈ Y is restricted to integral values, i.e., (di)y ∈ Nni . As a
consequence, integrality is satisfied for yk + (dki)y, i.e., yk + (dki)y ∈ Nni .
The main idea of the new algorithm is to compare the search step determined by
MIQP(xk, yk) with that determined by QP(xk, yk) with respect to the value of the L∞-
penalty function and to choose the better one, i.e., the one with a lower merit function
value. As a consequence, we define an improving mixed-integer search direction as
follows.

Definition 3.2. The solution dki ∈ Rnc × Nni of MIQP(xk, yk) given by (3.50) is an
improving mixed-integer search direction, if it satisfies the following conditions:

1.
Pσk(x

k, yk) − Pσk(x
k + (dki)x, y

k + (dki)y)

Φk
c(0) −Φ

k
c((d

k
c)x)

≥ 0.1, (3.51)

2.

Pσk(x
k + (dki)x, y

k + (dki)y) < Pσk(x
k + (dkc)x, y

k). (3.52)

(dkc)x ∈ Rnc is part of the solution (ηkc , (d
k
c)x) of QP(xk, yk) given by (3.12). Pσk(x, y)

denotes the L∞-penalty function with respect to the penalty parameter σk, see Defini-
tion 2.9. Furthermore, Φk

c is defined by (3.11).

Definition 3.2 motivates an extension of Step 2 of the linear outer approximation
method described by Algorithm 2.2, that is based on two models. The first model
corresponds to the continuous quadratic problem (3.12) and is called the continuous
model. It is equivalent to the subproblem, that arises during the solution of NLP(yk)
by the trust region method given by Algorithm 2.1 in some iteration of a linear
outer approximation method such as Algorithm 2.2. The second model represented by
MIQP (3.50) is called the mixed-integer model. Analogue to MISQP, see Section 2.10,
it is a mixed-integer quadratic approximation derived from MINLP (3.1).

We introduce and motivate the parameters of the algorithm. The notation of the
parameters is chosen according to Yuan’s trust region method given by Algorithm 2.1.
In the sequel of this section, the parameters that correspond to the continuous model
associated with problem (3.12) are indexed by c, while parameters of the mixed-integer
model corresponding to problem (3.50) are indexed by i. Therefore, ∆kc denotes the
trust region radius for the continuous model, while ∆ki is the trust region radius for
the mixed-integer model. σk denotes the penalty parameter associated with the L∞-
penalty function. As soon as the penalty parameter is larger than an upper bound
σ̄ ∈ R+, the determination of mixed-integer quadratic search steps is omitted. Note,
that only one penalty parameter is necessary, since the same L∞-penalty function is
associated with the continuous model represented by problem (3.12) and the mixed-
integer model associated with problem (3.50).

3.1 MIQP-Supported Linear Outer Approximation 79

The reduction of the merit function predicted by the corresponding model, which is
either QP(xk, yk) given by (3.12) or MIQP(xk, yk) given by (3.50), is given by

Φk
c(0) −Φ

k
c((d

k
c)x) or Φk

i (0) −Φ
k
i (d

k
i),

respectively, where Φk
c is defined in (3.11) and Φk

i is specified in (3.49). The reduction
obtained by the solution ((dkc)x, η

k
c) of QP(xk, yk) and (dki , η

k
i) of MIQP(xk, yk), see

(3.12) and (3.50), with respect to the penalty function Pσk , see Definition 2.9, can be
evaluated by

Pσk(x
k, yk) − Pσk(x

k + (dkc)x, y
k)

or

Pσk(x
k, yk) − Pσk(x

k + (dki)x, y
k + (dki)y).

By comparing both quantities introducing rkc and rki

rkc :=
Pσk(x

k, yk) − Pσk(x
k + (dkc)x, y

k)

Φk
c(0) −Φ

k
c((d

k
c)x)

, (3.53)

rki :=
Pσk(x

k, yk) − Pσk(x
k + (dki)x, y

k + (dki)y)

Φk
i (0) −Φ

k
i (d

k
i)

, (3.54)

the precision of the predicted reduction of the merit function of the continuous and
the integer model can be measured.

Based on these ideas, we propose an extension of a linear outer approximation method.
Since the algorithm relies on the successive solution of mixed-integer quadratic pro-
gramming problems (3.50), it is called MIQP-supported linear outer approximation
(MIQPSOA).

Before we describe MIQPSOA in detail, we provide a brief overview to ease the read-
ability and understanding. The brief outline is aligned with Figure 3.1, which provides
a graphical representation of MIQPSOA and its components. As already described,
MIQPSOA is based on the trust region method of Yuan, see Algorithm 2.1. The cor-
responding components are represented in green in Figure 3.1. Combining the green
and blue components, MIQPSOA yields a linear outer approximation method, such
as Algorithm 2.2. The red-colored components represent the new components, that
are motivated by MISQP, see Section 2.10. In addition the algorithm possesses some
coordination and decision steps.

Step 1: Within the Initialization the algorithmic parameters including the toler-
ance εOA and the sets T−1ε , S

−1
ε as well as the best known solution and the

corresponding objective value f∗ are initialized. Furthermore, a starting point
(x0, y0) ∈ X × Y together with the corresponding function and gradient values
is provided.

Step 2: After the initialization is finished, the internal iteration loop starts by solving
QP(xk, yk), where k denotes the current iteration.

80 3 A new MIQP-based MINLP Solution Method

Step 3: Depending on the value of the penalty parameter the linear subproblem
LPF(xk, yk) derived from F(yk), see (3.7) is solved. Alternatively the mixed-

integer quadratic program MIQP(xk, yk) is solved, if the flag onkMIQP possesses
the value 1.

Step 4: The subsequent coordination step executes the Search Step Selection. 4
different possibilities for selecting the search step arise:

If an improving mixed-integer search direction according to Definition 3.2
was obtained by MIQP(xk, yk), then it is chosen to be the search step.

Else if the current iterate is a ε-stationary-point of NLP(yk) or F(yk) accord-
ing to Definition 3.1, then the search step is determined by the outer
approximation master problem MILP(Tkε , S

k
ε , f
∗, εOA), see below.

Else if the solution dkc of QP(xk, yk) provides improvement with respect to
the L∞-penalty function, measured by rkc (3.53), then the subsequent
iterate is obtained by adding dkc .

Else no step is performed and the trust region radius is decreased.

Step 5: If the search step is determined by the solution of either QP(xk, yk) or
MIQP(xk, yk) a Parameter Update is performed. This affects among others
the continuous trust region radius and the penalty parameter.

Step 6: If the search step is to be determined by the solution of the outer approxi-
mation master problem, MILP(Tkε , S

k
ε , f
∗, εOA) is solved after an update of the

sets Tkε , S
k
ε . If MILP(Tkε , S

k
ε , f
∗, εOA) is infeasible, then MINLP (3.1) is solved.

Step 7: If a search step was performed Gradients are evaluated and the next iter-
ation loop is started.

Note, that whenever the problem-functions f and g are evaluated at some point
(xk, yk), the subsequent test checks, if the current incumbent can be updated:

Update current best solution

(x∗, y∗) := (xk, yk) (3.55)

f∗ := f(xk, yk), (3.56)

if

‖g(xk, yk)−‖∞ ≤ ε (3.57)

f(xk, yk) < f∗ (3.58)

holds. In the initial step, the best known solution (x∗, y∗) is initialized as follows:

3.1 MIQP-Supported Linear Outer Approximation 81

(x∗, y∗) := (x0, y0) and

f∗ :=

{ ∞, if ‖g(x0, y0)−‖∞ > ε

f(x0, y0), if ‖g(x0, y0)−‖∞ ≤ ε
. (3.59)

Algorithm 3.1. MIQPSOA

1. Initialization:
Let x0 ∈ X, y0 ∈ Y be starting values and define the parameters ∆0c > 0, ∆

0
i ≥ 1,

B0 ∈ Rn×n symmetric and positive definite, T−1ε = S−1ε := ∅, δ0 > 0, σ0 > 0,
εOA > 0, ε > 0, σ̄ ≥ 0, on0MIQP := 1, noa := 0, k := 0.

Evaluate the functions f(x0, y0) and g(x0, y0) and determine gradients
∇x,yf(x0, y0) and ∇x,yg(x0, y0) and initialize best known solution (x∗, y∗).

2. QP(xk, yk):
Determine a KKT-point ((dkc)x, η

k
c , (λ

k
c , λ

k
ηc
)) of QP(xk, yk) given by (3.12).

Evaluate f(xk+(dkc)x, y
k), g(xk+(dkc)x, y

k) and Pσk(x
k+(dkc)x, y

k), where Pσk
is specified in Definition 2.9.

Evaluate rkc by (3.53).

3. MIQP(xk, yk) or LPF(xk, yk):

If onkMIQP = 1,
then solve the mixed-integer program MIQP(xk, yk) given by (3.50)
determining (dki , η

k
i).

Evaluate f(xk+(dki)x, y
k+(dki)y), g(x

k+(dki)x, y
k+(dki)y) and Pσk(x

k+
(dki)x, y

k + (dki)y).
Calculate rki given by (3.54).
Adapt integer trust region radius:

∆k+1i :=


max{∆ki , 4‖dki ‖∞}, if rki > 0.9,

∆ki , if 0.9 ≥ rki ≥ 0.1,

min{ 1
4
∆ki ,

1
2
‖dki ‖∞}, if rki < 0.1.

(3.60)

Else if σk > σ̄,
then solve the linear program LPF(xk, yk) given by (3.9) and denote
the solution by ((dkF)x, η

k) and the corresponding Lagrangian multipliers
by (λkF, λ

k
η).

4. Search Step Selection:

82 3 A new MIQP-based MINLP Solution Method

If onkMIQP = 1 and dki is an improving search direction according to Def-
inition 3.2,
then set (xk+1, yk+1) := (xk + (dki)x, y

k + (dki)y).
GOTO Step 5.

Else if (xk, λkc) is a ε-stationary point of NLP(yk), i.e.,

‖(dkc)x‖2 ≤ ε, ηkc ≤ ε, ‖(dkc)x‖∞ < ∆kc (3.61)

holds and if in addition

εOA > ‖∇xf(xk, yk)‖2‖(dkc)x‖2 +Mx‖(dkc)TxBkc‖2

+‖(dkc)TxBkc‖2‖(dkc)x‖2,
(3.62)

is satisfied with Mx defined by (3.5),
or if σk > σ̄ and (xk, ηk, (λkF, λ

k
η)) is a ε-stationary point of F(yk),

i.e.,
‖(dF)x‖2 ≤ ε, ηk > ε (3.63)

holds and if in addition

‖∇xgj(xk, yk)‖2‖(dkF)x‖2 < ε, ∀j ∈ J, (3.64)

holds,
then GOTO Step 6.

Else if rkc > 0 defined in (3.53),
then set (xk+1, yk+1) := (xk + (dkc)x, y

k) and ∆k+1i := ∆ki .

Else set

(xk+1, yk+1) := (xk, yk), Bk+1 := Bk, σk+1 := σk,

δk+1 := δk, Tkε := Tk−1ε , Skε := Sk−1ε ,

∆k+1c := 1
4
‖(dkc)x‖∞, onk+1MIQP := onkMIQP, ∆

k+1
i := ∆ki ,

k := k+ 1.

GOTO Step 2.

5. Parameter Update:

∆k+1c :=


max{∆kc , 4‖(dkc)x‖∞}, if rkc > 0.9,

∆kc , if 0.9 ≥ rkc ≥ 0.1,

min{ 1
4
∆kc ,

1
2
‖(dkc)x‖∞}, if rkc < 0.1.

(3.65)

Choose Bk+1, such that Bk+1 is any symmetric, positive definite matrix.

Set Tkε := Tk−1ε , Skε := S
k−1
ε .

3.1 MIQP-Supported Linear Outer Approximation 83

Penalty Update with respect to Φk
c defined in (3.11):

If

Φk
c(0) −Φ

k
c((d

k
c)x) ≤ σkδk min

{
∆kc , ‖g(xk, yk)−‖∞} , (3.66)

then set σk+1 := 2σk and δk+1 := 1
4
δk.

Else set σk+1 := σk and δk+1 := δk.

If σk > σ̄,
then set onkMIQP := 0.

Else set onk+1MIQP := on
k
MIQP

GOTO Step 7.

6. MILP(Tkε , S
k
ε , f
∗, εOA), i.e., outer approximation master problem:

If (xk, λkc) is a ε-stationary-point of NLP(yk) given by (3.6),
then update set Tk−1ε given by (3.43):

Tkε := Tk−1ε ∪ {(xk, yk)}, Skε := Sk−1ε .

Else i.e., (xk, ηk, (λkF, λ
k
η)) is a ε-stationary-point of F(yk) given by (3.7),

then update set Sk−1ε given by (3.44):

Skε := Sk−1ε ∪ {(xk, yk)}, T kε := Tk−1ε .

Solve the linear outer approximation master problem MILP(Tkε , S
k
ε , f
∗, εOA).

If linear outer approximation master problem (3.42) is infeasible,
then STOP.

Else denote the solution by (xk+1, yk+1).
Evaluate f(xk+1, yk+1) and g(xk+1, yk+1).
Set noa := noa + 1, y

noa
oa := yk+1 and

∆k+1i := max
{
∆0i , ∆

k
i

}
, ∆k+1c := max

{
∆0c, ∆

k
c

}
,

δk+1 := δ0, σk+1 := σ0,

Bk+1 := Bk.

(3.67)

If ∃ i ∈ {1, . . . , noa − 1} with yk+1 = yioa,
then set onkMIQP := 0, i.e., solve NLP(yk+1) or F(yk+1)
respectively.

Else set onkMIQP := 1.

7. Gradients:
Evaluate ∇x,y f(xk+1, yk+1) and [∇x,y g(xk+1, yk+1)], set k := k+1 and GOTO
Step 2.

84 3 A new MIQP-based MINLP Solution Method

QP(xk, yk)

(xk+1, yk+1)
:=

(xk, yk)

(xk+1, yk+1)
:=

(xk, yk) + dkc

Parameter Update

Gradients

LPF(xk, yk)

MILP(Tkε , S
k
ε , f
∗, εOA)⇒ (xk+1, yk+1)

STOP

MIQP(xk, yk)

Search Step Selection

(xk+1, yk+1)
:=

(xk, yk) + dki

Problem

Initialization ⇒ (x0, y0)

Search Step Selection

σ
k
≤
σ̄

a
n

d
o
n
k M
I
Q
P
=
0

o
n
k M
I
Q
P
=
1 σ k

>
σ̄

rkc ≤ 0

rk c
>
0

d k
i im

proving

search
direction

(xk, λkc) or (xk, ηk, (λkF , λ
k
η))

ε-stationary point
of NLP(yk) or F(yk)

feasible

in
fe

as
ib

le

SQP-TR Component

OA Component

MIQP Extension

Coordination

Decision

Description

Fig. 3.1: MIQP-supported Outer Approximation

Figure 3.1 illustrates the solution process of Algorithm 3.1. The previously defined al-

3.1 MIQP-Supported Linear Outer Approximation 85

gorithm is based on four different subproblems, which are QP(xk, yk), MIQP(xk, yk),
LPF(xk, yk) and MILP(Tkε , S

k
ε , f
∗, εOA). In every iteration the continuous quadratic

program QP(xk, yk) is solved yielding a continuous search direction. This search di-
rection is equivalent to the search direction obtained at iterate (xk, yk) by the trust
region algorithm of Yuan stated by Algorithm 2.1, while solving NLP(yk) given by
(3.6).

The parameter onkMIQP is a flag for turning on or off the calculation of the mixed-
integer search direction provided by the solution of MIQP(xk, yk) in iteration k. As
shown in the remainder of this chapter, onkMIQP needs to be set to 0, i.e., MIQP(xk, yk)
is not solved, in certain situations to ensure convergence.

As will be proved below, Lemma 2.2 applies, if the penalty parameter σk tends towards
infinity and exceeds the threshold σ̄, i.e., the iteration sequence converges towards an
infeasible stationary point specified in Definition 2.10. To identify these infeasible
stationary points LPF(xk, yk) is solved as soon as σk exceeds the threshold σ̄. As a
consequence, a suitable value for the parameter σ̄ is σ̄ := 1010.

The parameter εOA is the optimality tolerance needed by the outer approximation
master problem MILP(Tkε , S

k
ε , f
∗, εOA), in order to ensure finite termination of Algo-

rithm 3.1. The same holds for any other linear outer approximation algorithm, such
as Algorithm 2.2.

If (3.61) and (3.62) hold in Step 4, then (xk, λkc) is a ε-stationary-point of NLP(yk)
given by (3.6) specified in Definition 3.1 due to Corollary 3.2. In addition (xk, yk)
satisfies

εOA > ‖∇xf(xk, yk)‖2‖(dkc)x‖2 +Mx‖(dkc)TxBkc‖2 + ‖(dkc)TxBkc‖2‖(dkc)x‖2, (3.68)

where Mx is determined by the maximal range of the continuous variables and
((dkc)x, η

k
c , (λ

k
c , λ

k
ηc
)) is a KKT-point of QP(xk, yk).

If σk > σ̄ as well as (3.63) and (3.64) hold in Step 4 instead, then (xk, ηk, (λkF, λ
k
η)) is a ε-

stationary-point of F(yk) given by (3.7) specified in Definition 3.1 due to Corollary 3.3.
In addition (xk, yk) satisfies

‖∇xgj(xk, yk)‖2‖(dkF)x‖2 < ε, ∀j ∈ J,

ηk > ε,
(3.69)

where ((dkF)x, η
k) is the optimal solution of LPF(xk, y) given by (3.9) and (λkF, λ

k
η) are

the corresponding Lagrangian multipliers.

Note, that the values of the constants used within parameter updates, e.g. the update
of the trust region radii, are taken from Yuan [112].

The convergence analysis is based on Assumptions 2.1 and 2.2, which are unified and
restated here.

Assumption 3.1. 1. f(x, y) and gj(x, y), j = 1, . . . ,m are continuously differen-
tiable on X× YR.

86 3 A new MIQP-based MINLP Solution Method

2. f(x, y) is convex and gj(x, y), j = 1, . . . ,m are concave on X × YR and the set
X defined by (3.3) is nonempty and compact.

3. The linear independent constraint qualification, stated in Definition 2.6, holds
at each optimal solution of problem NLP(y) and F(y) for all y ∈ Y.

4. The sequences {(xk, yk)} and {Bk} generated by the proposed algorithm are bounded
∀ k.

Note, that the set X defined in (3.3) is compact, due to existence of upper and lower
bounds on all continuous variables.

The algorithm is designed to yield the same iteration sequence as the linear outer
approximation Algorithm 2.2 under certain circumstances, where the nonlinear pro-
grams, which arise as subproblems are solved by Algorithm 2.1. This is established
by the subsequent corollaries in the reminder of this section. Since the mixed-integer
search steps obtained in Step 3 distinguish Algorithm 3.1 from the linear outer ap-
proximation method described by Algorithm 2.2, we skip their calculation for the
moment by assuming onkMIQP = 0, ∀k.

Corollary 3.4 states the equivalence of the Steps 2, 5 and 7 as well as parts of Step 4,
i.e., the last Else if- and the Else-statement of Algorithm 3.1 and the trust region
method of Yuan described by Algorithm 2.1.

Corollary 3.4. Let onkMIQP = 0, ∀k in Algorithm 3.1 and choose the same initial-
ization parameters ∆0c = ∆

0, B0, δ0, σ0, then Algorithm 3.1 yields the same iteration
sequence as the trust region method of Yuan described by Algorithm 2.1 until either
Step 6 of Algorithm 3.1 is reached or stopping criterion (2.35) is satisfied for Algo-
rithm 2.1 for the same values of the initial point (xk, yk).

Proof. Apart from the parameters specifying conditions (3.61) and (3.62) or condi-
tions (3.63) and (3.64) and the parameters which are associated with Step 6, the
initialization in Step 1 of Algorithm 3.1 is equivalent to the one performed in Step 1
of Algorithm 2.1.

Step 2 of Algorithm 3.1 is equivalent to Step 2 of Algorithm 2.1 as long as the stopping
criterion (2.35) of Algorithm 2.1 is not satisfied.

Steps 3 and 4 have no influence on the iteration sequence of Algorithm 3.1 as long as
Step 6 is not reached, i.e., the conditions (3.61) and (3.62) or (3.63) and (3.64) are
not satisfied:

The mixed-integer problem (3.50) is not solved in Step 3 of Algorithm 3.1, since
onkMIQP = 0, ∀k holds. Furthermore, the solution of LPF(xk, yk) given by (3.9) in
Step 3 has no influence on the iteration sequence.

As the mixed-integer problem (3.50) is not solved and the conditions (3.61) and (3.62)
or (3.63) and (3.64) are not satisfied, Step 4 is equivalent to Step 3 of Algorithm 2.1.

Step 5 of Algorithm 3.1 is equivalent to Step 4 of Algorithm 2.1.

3.1 MIQP-Supported Linear Outer Approximation 87

Step 6 is not carried out by assumption.

Finally functions and gradients are evaluated in Step 7 of Algorithm 3.1, which cor-
responds to Step 5 of Algorithm 2.1.

This proves the corollary

Based on Corollary 3.4 we can formulate the subsequent corollary establishing the
relation between Algorithm 3.1 and the linear outer approximation method described
by Algorithm 2.2. To point out the relationship we assume, that dkc = 0 and ηkc = 0 or
dkF = 0 and ηk > 0 holds, whenever conditions (3.61) and (3.62) or conditions (3.63)
and (3.64) in Step 4 are satisfied. This means, that the optimal solution of the sub-
problems NLP(yk) or F(yk) for some yk ∈ Y is obtained after a finite number of
iterations, which is a serious restriction in practice, that will not be required later on.

Corollary 3.5. Let onkMIQP = 0, ∀k, let Assumption 3.1 hold. Furthermore assume,
that either dkc = 0 and ηkc = 0 or dkF = 0 and ηk > 0 holds, whenever conditions (3.61)
and (3.62) or conditions (3.63) and (3.64) in Step 4 are satisfied. Then the subsequence
given by all iterates of Algorithm 3.1, which satisfy either conditions (3.61) and (3.62)
or conditions (3.63) and (3.64) in Step 4, is equivalent to the iteration sequence of
the linear outer approximation Algorithm 2.2.

Proof. If conditions (3.61) and (3.62) in Step 4 are satisfied with dkc = 0 and ηkc = 0
for some iterate (xk, yk), then xk is the optimal solution of NLP(yk) given by (3.6), see
Corollary 3.1. If conditions (3.63) and (3.64) in Step 4 of Algorithm 3.1 are satisfied
with dkF = 0 and ηk > 0 for some iterate (xk, yk), then xk is the optimal solution
of F(yk) given by (3.7) due to Corollary 2.3 and an infeasible stationary point of
NLP(yk) according to Definition 2.10.

Furthermore, the set Tkε introduced in (3.43) is equivalent to the corresponding set
specified by (2.71) for dkc = 0 and ηkc = 0 in Step 4. The same holds for set Skε defined
in (3.44), which is equivalent to its counterpart introduced in (2.72), if dkF = 0 and
ηk > 0 holds in Step 4.

Therefore Step 6 of Algorithm 3.1 is equivalent to Step 3 of Algorithm 2.2 apart from
the reinitialization of some parameters in (3.67).

The reinitialization executed in (3.67) has no influence on the convergence of Yuan’s
trust region algorithm due to Lemma 2.2 and Theorem 2.3. The corresponding con-
vergence properties also hold for Algorithm 3.1 due to Corollary 3.4.

Furthermore, since the sets Tkε and Skε are equivalent to the ones defined by Fletcher
and Leyffer [50] and onkMIQP = 0 holds ∀k, each integer value yk within the considered
subsequence needs to be different, see Lemma 2.5 and Lemma 2.6 or Fletcher and
Leyffer [50]. Therefore the ”if condition” in Step 6 is never satisfied.

As a consequence, the subsequence of iterates determined by Algorithm 3.1 satisfying
either conditions (3.61) and (3.62) or conditions (3.63) and (3.64) in Step 4 is the

88 3 A new MIQP-based MINLP Solution Method

same as the iteration sequence generated by the linear outer approximation method
described by Algorithm 2.2.

Due to Corollary 3.5 we can establish convergence of Algorithm 3.1, if no mixed-
integer search steps are performed and if a KKT-point of either NLP(yk) given by
(3.6) or F(yk) given by (3.7) is obtained whenever either conditions (3.61) and (3.62)
or conditions (3.63) and (3.64) are satisfied in Step 4.

Corollary 3.6. Let onkMIQP = 0, ∀k hold and assume, that either dkc = 0 and
ηkc = 0 or dkF = 0 and ηk > 0 holds, whenever conditions (3.61) and (3.62) or
conditions (3.63) and (3.64) in Step 4 are satisfied. Furthermore, let Assumption 3.1
hold. Then Algorithm 3.1 solves the convex MINLP (3.1) or detects infeasibility.

Proof. Due to Corollary 3.4 and Corollary 3.5 Theorem 2.4 holds in this case for
Algorithm 3.1.

3.2 Convergence Analysis

In this section we prove convergence properties of Algorithm 3.1 for the convex
MINLP (3.1) subject to an optimality tolerance εOA and a feasibility tolerance ε
in a finite number of iterations. An important issue, also concerning the linear outer
approximation method described by Algorithm 2.2, is the finite termination of the
solution process for NLP(yk) given by (3.6) or F(yk) given by (3.7) respectively for
some yk ∈ Y in each iteration of Algorithm 2.2. This topic is usually neglected in
existing literature but needs to be addressed, in order to show finite termination of
Algorithm 3.1. To establish this task, we introduced a ε-stationary-point of NLP(yk)
and F(yk) for fixed yk ∈ Y in Definition 3.1.

The subsequent lemma shows, that an integer value yk ∈ Y is infeasible in the master
problem (3.42) for all values of x ∈ X, if conditions (3.61) and (3.62) are satisfied for
some iterate (xk, yk). Note, that this also includes the optimal solution x̄yk of NLP(yk),
i.e., (x̄yk , y

k) does not satisfy the constraints of the master problem (3.42) if the set
Tkε contains an iterate (xk, yk) satisfying conditions (3.61) and (3.62). Furthermore,
(xk, λkc) is a ε-stationary-point of NLP(yk) given by (3.6), see Definition 3.1, due to
Corollary 3.2.

Lemma 3.1. Let Assumption 3.1 hold and let (xk, yk) satisfy conditions (3.61) and
(3.62). Furthermore, let (xk, yk) be included in the set Tkε introduced in (3.43).

Then there exists no x̂ ∈ X, such that (x̂, yk) satisfies the constraints of the outer
approximation master problem (3.42).

Proof. We will prove by contradiction, that there exists no point (x̂, yk, η̂), that sat-
isfies the constraints of the outer approximation master problem (3.42), if the set Tkε
introduced in (3.43) contains (xk, yk) satisfying conditions (3.61) and (3.62).

3.2 Convergence Analysis 89

Note, that for a KKT-point (ηkc , d
k
c , (λ

k
c , λ

k
ηc
)) the KKT-conditions of QP(xk, yk) are

stated in (3.15). Farkas Lemma, see e.g., Jarre and Stoer [66], states that exactly one
of the following two possibilities holds:

1.

∇xf(xk, yk) + Bkc(dkc)x − [∇xg(xk, yk)]Tλkc = 0 (3.70)

and λkj ≥ 0, ∀j ∈ J.

2.

∇xgj(xk, yk)Ts ≥ 0, ∀j ∈ J (3.71)

and

(∇xf(xk, yk) + Bkc(dkc)x)Ts < 0, ∀ s ∈ Rnc . (3.72)

Since (xk, yk) is a member of Tkε the subsequent conditions are required for (x̂, yk, η̂),
since the corresponding constraints are contained in the outer approximation master
problem (3.42)

η̂ ≤ f(xk, yk) − εOA, (3.73)

η̂ ≥ f(xk, yk) +∇x,yf(xk, yk)T
(
x̂− xk

0

)
, (3.74)

0 ≤ gj(x
k, yk) +∇x,ygj(xk, yk)T

(
x̂− xk

0

)
, ∀ j ∈ J, (3.75)

where (3.73) is an upper bound on variable η introduced in (3.45).

For any constraint of QP(xk, yk), that is active at ((dkc)x, η
k
c), we get from (3.15)

gj(x
k, yk) = −ηkc −∇x,ygj(xk, yk)Tdkc . (3.76)

Together with (3.76), (3.75) yields

0 ≤ −ηkc −∇x,ygj(xk, yk)Tdkc +∇x,ygj(xk, yk)T
(
x̂− xk

0

)
(3.77)

= −ηkc +∇x,ygj(xk, yk)T
(
x̂− xk − (dkc)x

0

)
. (3.78)

As a consequence, we obtain

0
(3.15)

≤ ηkc ≤ ∇xgj(xk, yk)T
(
x̂− xk − (dkc)x

)
. (3.79)

Since the KKT conditions of QP(xk, yk) are satisfied, (3.70) holds with (λkc)j ≥ 0, ∀j ∈
J. As (3.71) is also satisfied as shown in (3.79), Farkas lemma (3.72) yields

(∇xf(xk, yk) + Bkc(dkc)x)Ts ≥ 0. (3.80)

90 3 A new MIQP-based MINLP Solution Method

Let s be given by

s := x̂− xk − (dkc)x. (3.81)

then

(∇xf(xk, yk) + Bkc(dkc)x)T
(
x̂− xk − (dkc)x

)
≥ 0, (3.82)

holds, which gives

∇xf(xk, yk)T
(
x̂− xk

)
≥ ∇xf(xk, yk)T(dkc)x − (dkc)

T
xB

k
cs. (3.83)

Exploiting conditions (3.61) and (3.62), which hold by assumption together with
(3.83), condition (3.74) yields

η̂ ≥ f(xk, yk) +∇x,yf(xk, yk)T
(
x̂− xk

0

)
(3.83)

≥ f(xk, yk) +∇xf(xk, yk)T(dkc)x − (dkc)
T
xB

k
c

(
x̂− xk − (dkc)x

)
(3.84)

≥ f(xk, yk) +∇xf(xk, yk)T(dkc)x + (dkc)
T
xB

k
c(d

k
c)x − (dkc)

T
xB

k
c

(
x̂− xk

)
≥ f(xk, yk) − |∇xf(xk, yk)T(dkc)x|− |(dkc)

T
xB

k
c(d

k
c)x|− |(dkc)

T
xB

k
c

(
x̂− xk

)
|

≥ f(xk, yk) − ‖∇xf(xk, yk)‖2‖(dkc)x‖2 − ‖(dkc)TxBkc‖2‖(dkc)x‖2

−‖(dkc)TxBkc‖2‖
(
x̂− xk

)
‖2

(3.5)

≥ f(xk, yk) − ‖∇xf(xk, yk)‖2‖(dkc)x‖2 − ‖(dkc)TxBkc‖2‖(dkc)x‖2 − ‖(dkc)TxBkc‖2Mx

(3.62)
> f(xk, yk) − εOA.

This contradicts condition (3.73) and shows, that no (x̂, yk, η̂) exists, that satisfies
the constraints of the outer approximation master problem (3.42), if a ε-stationary
point of NLP(yk) is included in Tk.

Note, that Lemma 3.1 applies to Algorithm 3.1 in Step 4, if conditions (3.61) and
(3.62) are satisfied for an iterate (xk, yk).

To be able to show finite termination of Algorithm 3.1, the same has to be true,
if conditions (3.63) and (3.64) are satisfied for the current iterate (xk, yk). This is
ensured by the subsequent lemma. Note, that, (xk, ηk, (λkF, λ

k
η)) is a ε-stationary point

of F(yk), due to Corollary 3.3.

Lemma 3.2. Let Assumption 3.1 hold and let (xk, yk) satisfy conditions (3.63) and
(3.64). Furthermore, let (xk, yk) be included in the set Skε introduced in (3.44).

Then there exists no x̂ ∈ X, such that (x̂, yk) satisfies the constraints of the outer
approximation master problem (3.42).

3.2 Convergence Analysis 91

Proof. We will prove by contradiction, that there exists no point (x̂, yk, η̂), that sat-
isfies the constraints of the outer approximation master problem (3.42), if the set Skε
introduced in (3.44) contains (xk, yk) satisfying conditions (3.63) and (3.64).

Since (xk, yk) is included in the set Skε , the subsequent conditions are required for
(x̂, yk, η̂) ∈ X × Y × R that is feasible for the outer approximation master prob-
lem (3.42), since it contains the corresponding constraints:

gj(x
k, yk) +∇x,ygj(xk, yk)T

(
x̂− xk

0

)
≥ 0, ∀j ∈ J. (3.85)

The constraints gj, j ∈ J can be divided into two sets according to the value of the
constraint violation of LPF(xk, yk) at the solution ((dkF)x, η

k). We define

W :=
{
j ∈ J : gj(x

k, yk) +∇xgj(xk, yk)T(dkF)x = −ηk
}

(3.86)

and

W⊥ := J\W. (3.87)

For each j ∈W⊥ the corresponding Lagrangian multiplier (λkF)j ∈ R+ associated with
the solution ((dkF)x, η

k) is zero, i.e.,

(λkF)j = 0, ∀j ∈W⊥ (3.88)

holds. Furthermore λkη = 0 holds due to (3.64). The KKT-conditions of LPF(xk, yk)
stated in (2.98) yield

1 =
∑
j∈W

(λkF)j, (3.89)

0 =
∑
j∈W

(λkF)j∇xgj(xk, yk). (3.90)

After multiplying all inequalities (3.85) with (λkF)j, j ∈ J and summing up, we get

∑
j∈W

(λkF)jgj(x
k, yk) +

(∑
j∈W

(λkF)j∇x,ygj(xk, yk)

)T (
x̂− xk

0

)
≥ 0, (3.91)

since (λkF)j = 0, ∀j /∈W. Exploiting equation (3.90) yields∑
j∈W

(λkF)jgj(x
k, yk) ≥ 0. (3.92)

92 3 A new MIQP-based MINLP Solution Method

Since j ∈W holds, we get a contradiction due to

0 ≤
∑
j∈W

(λkF)jgj(x
k, yk)

(2.101)
=

∑
j∈W

(λkF)j(−∇xgj(xk, yk)T(dkF)x − ηk)

≤
∑
j∈W

(λkF)j(|∇xgj(xk, yk)T(dkF)x|− ηk)

≤
∑
j∈W

(λkF)j(‖∇xgj(xk, yk)‖2‖(dkF)x‖2 − ηk)
(3.63),(3.64)

<
∑
j∈W

(λkF)j(ε− ε)

= 0.

(3.93)

As a consequence, there exists no (x̂, yk, η̂) ∈ X × Y × R, that satisfies the condi-
tions (3.85) posed by the outer approximation master problem (3.42), if Skε contains
an iterate (xk, yk) satisfying (3.63) and (3.64).

Note, that Lemma 3.2 applies to Algorithm 3.1 in Step 4, if the current iterate (xk, yk)
satisfies (3.63) and (3.64).

Lemmata 3.1 and 3.2 ensure, that the condition requiring either dkc = 0 and ηkc = 0

or dkF = 0 and ηk > 0 whenever conditions (3.61) and (3.62) or conditions (3.63) and
(3.64) are satisfied in Step 4, is not needed anymore in Corollary 3.6. Furthermore, we
can establish below, that Algorithm 3.1 terminates after a finite number of iterations.
If f∗ <∞ holds at termination, then the algorithm found a ε-solution (x∗, y∗) defined
as follows.

Definition 3.3. A point (x∗, y∗) ∈ X× Y is a ε-solution of the convex MINLP (3.1),
if conditions

‖g(x∗, y∗)−‖∞ ≤ ε (3.94)

and

f(x∗, y∗) ≤ min
ŷ∈V

max
x̂

{f(x̂, ŷ) : (x̂, λ̂c) is ε-stationary-point of NLP(ŷ)}+ εOA (3.95)

are satisfied, where εOA is the chosen optimality tolerance and ε is the chosen feasibility
tolerance and λ̂c is the Lagrangian multiplier obtained by solving QP(x̂, ŷ).

Note, that the maximum in (3.95) can be removed, if optimal solutions instead of ε-
stationary-points of NLP(yk), or F(yk) respectively, are obtained. Then the ε-solution
defined above corresponds to the global solution of a convex MINLP (3.1) subject to
the optimality tolerance εOA.

Note, that there exist infinitely many ε-solutions of the convex MINLP (3.1) for any
values of εOA and ε, as long as V 6= ∅. There reason is, that there exist infinitely many
ε-stationary points for any NLP(yk) with yk ∈ V for any value of ε > 0.

3.2 Convergence Analysis 93

To carry out the convergence analysis, we have to introduce an additional assump-
tion. It is necessary to exclude infeasible stationary points, that possess a constraint
violation smaller than the feasibility tolerance ε. By choosing the feasibility tolerance
sufficiently small, this additional assumption is no severe limitation.

Assumption 3.2. Without loss of generality, we assume, that the solution x̄yk of
F(yk) possesses a maximal constraint violation larger than the feasibility tolerance ε
for each yk ∈ Y\V, i.e.,

‖g(x̄yk , yk)−‖∞ > ε (3.96)

holds for each yk ∈ Y\V.

As a consequence, Corollary 3.6 can be replaced by the subsequent corollary.

Corollary 3.7. Let onkMIQP = 0 hold ∀k. Furthermore, let Assumption 3.1 and As-
sumption 3.2 hold. Then Algorithm 3.1 terminates after a finite number of iterations
either at a ε-solution of the convex MINLP (3.1) according to Definition 3.3 or detects,
that no feasible point exists, i.e., V = ∅, where V is introduced by (3.8).

Proof. Consider some fixed integer value yk̄. Let yk̄ be in V , then (x̂, yk̄) ∈ X× V is
infeasible for all values of x̂ ∈ X in the master problem (3.42), if the set Tkε contains a
ε-stationary point of NLP(yk̄), see Lemma 3.1. Alternatively let yk̄ be in Y\V instead,
then (x̂, yk̄) ∈ X×Y\V is infeasible for all values of x̂ ∈ X in the master problem (3.42),
if the set Skε contains a ε-stationary point of F(yk̄), see Lemma 3.2

As a consequence yk̄ ∈ Y can not be considered twice, if a ε-stationary point of
NLP(yk̄) is contained in the set Tkε or respectively a ε-stationary point of F(yk̄) is
contained in the set Skε . In combination with the finiteness of Y this ensures, that
Algorithm 3.1 terminates after a finite number of iterations, if a ε-stationary point of
either NLP(yk̄) or F(yk̄) is obtained after a finite number of iterations for all yk̄ ∈ Y.

Therefore, we prove, that the execution of the Steps 2, 4, 5 and 7 of Algorithm 3.1
yields a ε-stationary point of either NLP(yk̄) or F(yk̄) after a finite number of itera-
tions starting at an arbitrary iterate (xk̄, yk̄).

As long as neither a ε-stationary point of NLP(yk̄) nor F(yk̄) is obtained, yk = yk̄ holds
for the iteration sequence (xk, yk) with k ≥ k̄. Due to Corollary 2.5, and Corollary 3.4
the iteration sequence (xk, yk) with k ≥ k̄ obtained by executing Steps 2, 4, 5 and
7 of Algorithm 3.1 converges towards a stationary point x̄yk̄ of NLP(yk̄), if yk̄ ∈ V
or alternatively F(yk̄), if yk̄ ∈ Y\V . Since the KKT-conditions of either NLP(yk̄) or
F(yk̄) are satisfied for the accumulation point (x̄yk̄ , y

k̄), the conditions (3.17) or (3.18)

defining a ε-stationary point of NLP(yk̄) or alternatively F(yk̄) are satisfied after a
finite number of iterations for an arbitrary small fixed value of ε > 0. Therefore, we
proved the finite termination of Algorithm 3.1.

Now, we prove by contradiction, that no feasible point exists, i.e., @ (x̂, ŷ) ∈ X × Y
with gj(x̂, ŷ) ≥ 0, ∀j ∈ J, if Algorithm 3.1 terminates with f∗ =∞.

94 3 A new MIQP-based MINLP Solution Method

Assume, that ∃ (x̂, ŷ) ∈ X× Y with gj(x̂, ŷ) ≥ 0, ∀j ∈ J. Since gj(x, y) is concave for
all j ∈ J, (x̂, ŷ) cannot be cut off in the master problem (3.42) by any linearization
of some gj(x, y), j ∈ J. Since f∗ =∞ holds, no linearization of f(x, y) is contained in
the master problem. As a consequence, (x̂, ŷ) is still feasible for the master problem,
which contradicts to the termination of Algorithm 3.1.

Moreover, we prove by contradiction, that (x∗, y∗) is a ε-solution according to Defi-
nition 3.3, if Algorithm 3.1 returns with f∗ < ∞. Note first, that (x∗, y∗) is feasible
subject to the feasibility tolerance ε, due to the update rule of the best known solution
in Algorithm 3.1.

Assume, that there exists a ŷ ∈ V with f̂ + εOA ≤ f∗ at termination, where f̂ is the
maximal function value of all ε-stationary-points of NLP(ŷ), i.e.,

f̂ := max
x̂

{f(x̂, ŷ) : (x̂, λ̂c) is ε-stationary point of NLP(ŷ)},

where λ̂c is the Lagrangian multiplier obtained by solving QP(x̂, ŷ). Since ŷ ∈ V ,
there exists a feasible ε-stationary point denoted by x̂F of NLP(ŷ), i.e.,

x̂F := arg max
x̂

{
f(x̂, ŷ) : (x̂, λ̂c) is ε-stationary point of NLP(ŷ) and
gj(x̂, ŷ) ≥ 0, ∀j ∈ J

}
.

Denote the final iterate by k∗. Since f̂+εOA < f
∗, Tk

∗
ε contains no ε-stationary-point of

NLP(ŷ), otherwise f∗ ≤ f̂ holds. Furthermore, f(x̂F, ŷ) ≤ f̂ and gj(x̂F, ŷ) ≥ 0, ∀j ∈ J
holds for (x̂F, ŷ) by construction.

For (x̂F, ŷ) the subsequent conditions are derived from the linearizations of the con-
straints gj(x, y), j ∈ J, which are contained in the master problem (3.42):

gj(x
i, yi) +∇x,ygj(xi, yi)T

(
x̂F − x

i

ŷ− yi

)
≥ 0, ∀j ∈ J (3.97)

with (xi, yi) ∈ Tk∗ε or (xi, yi) ∈ Sk∗ε . They are satisfied, since gj(x, y) is concave for all
j ∈ J and gj(x̂F, ŷ) ≥ 0, ∀j ∈ J holds.

Furthermore, for (x̂F, ŷ) also the subsequent conditions are derived from the lineariza-
tions of the objective function f(x, y), j ∈ J, which are contained in the master
problem (3.42):

f(xi, yi) +∇x,yf(xi, yi)T
(
x̂F − x

i

ŷ− yi

)
≤ η, (3.98)

η ≤ f∗ − εOA (3.99)

with (xi, yi) ∈ Tk∗ε . They are also satisfied even in combination with the upper bound
on η, since we obtain

f(xi, yi) +∇x,yf(xi, yi)T
(
x̂F − x

i

ŷ− yi

)
≤ f(x̂F, ŷ) < f∗ − εOA (3.100)

3.2 Convergence Analysis 95

by exploiting the convexity of the objective function and f(x̂F, ŷ) < f∗ − εOA. As a
consequence (x̂F, ŷ) is feasible in the master problem MILP(Tk

∗
ε , S

k∗
ε , f

∗, εOA), which
contradicts to the termination of the algorithm and proves the corollary.

Up to now, we proved, that Algorithm 3.1 terminates after a finite number of iter-
ations at a ε-solution according to Definition 3.3 or it detects that no feasible point
exists, if no mixed-integer search steps determined by the solution of mixed-integer
problem (3.48) are performed, i.e., onkMIQP = 0, ∀k. To show, that the convergence
properties of Algorithm 3.1 are maintained, if mixed-integer search steps are carried
out, we consider two cases separately.

First we assume, that the execution of the Steps 2, 3, 4, 5 and 7 of Algorithm 3.1
always determines an iterate (xk̄, yk̄) after a finite number of iterations, which satisfies
either conditions (3.61) and (3.62) or conditions (3.63) and (3.64) in Step 4.

Lemma 3.3. Let Assumption 3.1 and Assumption 3.2 hold. Furthermore, let the
execution of the Steps 2, 3, 4, 5 and 7 of Algorithm 3.1 always determine an iterate
(xk̄, yk̄) after a finite number of iterations, that satisfies either conditions (3.61) and
(3.62) or conditions (3.63) and (3.64) in Step 4 of Algorithm 3.1 for an arbitrary
yk̄ ∈ Y.

Then Algorithm 3.1 terminates after a finite number of iterations at a ε-solution
according to Definition 3.3 or it detects that no feasible point exists.

Proof. It is sufficient to prove the finite termination of Algorithm 3.1. The proofs
given in Corollary 3.7, which ensure that a ε-solution is obtained, if f∗ <∞ holds and
that no feasible point exists, if f∗ =∞ holds at termination, remain valid.

By assumption, the execution of the Steps 2, 3, 4, 5 and 7 of Algorithm 3.1 always
determine an iterate (xk̄, yk̄) after a finite number of iterations, that satisfies condi-
tions (3.61) and (3.62) or conditions (3.63) and (3.64) for some yk̄ ∈ Y. Since the set
Y is finite, an infinite number of iterations must be caused by infinite repetition of
Step 6 of Algorithm 3.1. We show by contradiction, that this is not possible:

Assume, that Step 6 of Algorithm 3.1 is repeated an infinite number of times. Due to
the finiteness of the set Y, there exists a subset Ŷ ⊂ Y of integer values, that are feasible
for the master problem at each execution of Step 6. Now we run Algorithm 3.1 until
the solution of the master problem (3.42) possesses the integer values of some ŷ ∈ Ŷ
for the second time. Then the integer values are fixed to ŷ by setting onkMIQP = 0 in

Step 6 of Algorithm 3.1. In this case an iterate (xk̄, ŷ) satisfying conditions (3.61) and
(3.62) or conditions (3.63) and (3.64) is determined by executing Steps 2, 3, 4, 5 and 7
by assumption, see also Corollary 3.4, Lemma 2.2 and Theorem 2.3. As a consequence
of Lemma 3.1 or Lemma 3.2, (x, ŷ) is then infeasible in the master problem for all
x ∈ X whenever Step 6 is executed. This contradicts the assumption, that ŷ is in the
set Ŷ and proves the lemma.

96 3 A new MIQP-based MINLP Solution Method

We still have to prove that the execution of the Steps 2, 3, 4, 5 and 7 of Algorithm 3.1
converges towards a stationary point according to Definition 2.12 or an infeasible
stationary point according to Definition 2.10 of problem NLP(yk̄) given by (3.6) for
some yk̄ ∈ Y. This is established by the following lemma. The convergence ensures
that either conditions (3.61) and (3.62) or conditions (3.63) and (3.64) in Step 4 of
Algorithm 3.1 are satisfied after a finite number of iterations, see Corollary 3.7.

Lemma 3.4. If Assumption 3.1 and Assumption 3.2 hold, then the successive execu-
tion of the Steps 2, 3, 4, 5 and 7 of Algorithm 3.1 yields an iterate (xk̄, yk̄) satisfying
conditions (3.61) and (3.62) or conditions (3.63) and (3.64) after a finite number of
iterations for some integer value yk̄ ∈ Y. I.e., Algorithm 3.1 reaches Step 6.

Proof. First we prove convergence, for some special cases, where the number of itera-
tions, in which an improving mixed-integer search direction according to Definition 3.2
exists, is finite. The open case, where the number of iterations, in which an improv-
ing mixed-integer search direction exists, is infinite, is proved by adapting the proof
of Yuan [112] of Theorem 2.3 based on an appropriate redefinition of the iteration
sequence of Algorithm 3.1.

Note, that the successive execution of the Steps 2, 3, 4, 5 and 7 yields the same iteration
sequence {(xk, yk̄)} as the trust region Algorithm 2.1 of Yuan applied to solve NLP(yk̄)
given by (3.6), if no mixed-integer steps are performed, see Corollary 3.4 and yk = yk̄

holds for all k > k̄ until the conditions (3.61) and (3.62) or conditions (3.63) and
(3.64) are satisfied. This is the case, if no improving mixed-integer search direction
according to Definition 3.2 exists or if onkMIQP = 0 holds in iteration k.

The successive execution of the Steps 2, 3, 4, 5 and 7 can either be associated with
a bounded or an unbounded sequence of penalty parameters {σk}. If the sequence
of penalty parameters

{
σk
}

is unbounded, then there exists an iteration k̂, where

the value of the penalty parameter σk̂ is larger than the threshold σ̄, specified in
Algorithm 3.1. As a consequence, we skip the solution of MIQP(xk, yk) given by
(3.50) for all k ≥ k̂ until either the conditions (3.61) and (3.62) or conditions (3.63)
and (3.64) hold. In this case no improving mixed-integer search directions according
to Definition 3.2 can be obtained. Convergence is then proved by Corollary 3.4, since
the sequence of penalty parameter is monotone increasing until Step 6 is reached.

It remains to prove convergence, if the sequence of penalty parameters {σk} is bounded
by σ̄. Without loss of generality, we consider iteration k̄ with σk̄ = σ̄, i.e., the penalty
parameter remains constant for all successive iterations until either conditions (3.61)
and (3.62) or conditions (3.63) and (3.64) are satisfied in Step 4.

In principle, the successive execution of the Steps 2, 3, 4, 5 and 7 can either con-
tain a finite or an infinite number of iterations, where an improving mixed-integer
search direction according to Definition 3.2 exists. First we assume, that the number
of iterations, in which an improving mixed-integer search direction according to Defi-
nition 3.2 exists, is finite. Then we know that the iteration sequence {(xk, yk)}, k ≥ k̃
converges towards a stationary point of NLP(yk̃) specified in Definition 2.12 due to

3.2 Convergence Analysis 97

Theorem 2.3, see also Corollary 3.4, where k̃ ≥ k̄ denotes the last iteration, in which
an improving mixed-integer search direction according to Definition 3.2 exists.

Now we assume, that there are infinitely many iterations, in which an improving
mixed-integer search direction according to Definition 3.2 exists. Since the set Y is
finite, there exists a subset Ŷ ⊂ Y of integer values, such that every ŷ ∈ Ŷ occurs
infinitely many times in the iteration sequence {(xk, yk)} determined by the Steps 2,
3, 4, 5 and 7 of Algorithm 3.1.

We consider an arbitrary ŷ ∈ Ŷ. We will prove by contradiction in the same way as
Yuan [112] or Jarre and Stoer [66], that the iteration sequence {(xk, yk)} determined
by the Steps 2, 3, 4, 5 and 7 of Algorithm 3.1 converges towards a stationary point x̄ŷ
of NLP(ŷ), see Definition 2.12. Therefore we assume, that such stationary point x̄ŷ is
not an accumulation point of the iteration sequence {(xk, yk)}.

Furthermore, we assume without loss of generality, that an improving mixed-integer
search direction dk̄i according to Definition 3.2 exists in iteration k̄ with yk̄ = ŷ. Since
ŷ ∈ Ŷ holds, we know, that the integer value ŷ, reoccurs in some iteration denoted
by k̂, i.e., ŷ = yk̄ = yk̂. As a consequence, we can define the continuous search step
d̃k, which subsumes all search steps inbetween two successive iterations with integer
values ŷ, e.g., d̃k̄ given by

d̃k̄ :=

(
xk̂ − xk̄

0

)
. (3.101)

In the remainder, we consider the corresponding iteration sequence {(x̂k, ŷ)}, k ≥ k̄,
with

x̂k+1 :=


x̂k + dkc , if no improving mixed-integer search direction exists in iteration k

and rkc > 0 holds,

x̂k, if no improving mixed-integer search direction exists in iteration k

and rkc ≤ 0 holds,

x̂k + d̃k, if an improving mixed-integer search direction exists in iteration k.

Since the sequence of penalty parameters is bounded, we know that

Φ̂k
c(0) − Φ̂

k
c(d

k
c) > δkσ̄min{∆kc , ‖g(x̂k, ŷ)−‖∞} (3.102)

is satisfied for all k ≥ k̄, where δk ∈ R+ is the parameter of the penalty parameter
update of Algorithm 3.1 and Φ̂k

c is defined by

Φ̂k
c((dc)x) := ∇xf(x̂k, yk)T(dc)x +

1

2
(dc)

T
xB

k
c(dc)x

+ σk‖(g(x̂k, yk) + [∇xg(x̂k, yk)]T(dc)x)−‖∞,
(3.103)

see also (3.11) and note, that Bkc ∈ Rnc×nc is the upper left sub-matrix of the n× n-
matrix Bk, which is symmetric and positive definite. Otherwise the penalty parameter
σk does not remain constant due to the penalty parameter update.

98 3 A new MIQP-based MINLP Solution Method

For fixed ŷ ∈ Y let Ω be defined as the closure of the set of feasible iterates given by

Ω := {(x̃, ŷ) ∈ {(x̂k, ŷ)|k > k̄} : ‖g(x̃, ŷ)−‖∞ = 0}. (3.104)

For (x̃, ŷ) ∈ Ω we define

Φ̄(dx) := ∇xf(x̃, ŷ)Tdx +
1

2
MB‖dx‖22 + σ̄‖(g(x̃, ŷ) + [∇xg(x̃, ŷ)]Tdx)−‖∞, (3.105)

for dx ∈ Rnc with d :=

(
dx
0

)
, d ∈ Rn. MB is a positive constant satisfying

‖Bkc‖2 ≤ MB, ∀k, (3.106)

which exists due to Assumption 3.1.

Since we assume, that no stationary point of NLP(ŷ) is contained in the set Ω, there
exists a constant ρ̄ > 0, such that

min
‖dx‖∞≤1(Φ̄(dx) − Φ̄(0)) = −ρ̄. (3.107)

As Ω is a compact set, ρ̄ is independent of (x̃, ŷ) ∈ Ω. For (x̂k, ŷ) we define

Ψk(dx) := ∇xf(x̂k, ŷ)Tdx +
1

2
MB‖dx‖22 + σ̄‖(g(x̂k, ŷ) + [∇xg(x̂k, ŷ)]Tdx)−‖∞. (3.108)

Since Φ̂k
c(dx) ≤ Ψk(dx) holds, we obtain

min
‖dx‖∞≤∆kc(Φ̂

k
c(dx) − Φ̂

k
c(0)) ≤ min

‖dx‖∞≤∆kc(Ψ
k(dx) − Ψ

k(0))

≤ min
‖dx‖∞≤1(Ψ

k(dx) − Ψ
k(0)) ·min{∆kc , 1}

(3.109)

by exploiting Φ̂k
c(0) = Ψ

k(0) and the convexity of Ψ(λdx) with respect to λ, see Jarre
and Stoer [66] for further details.

Due to the compactness of Ω and the continuity of ∇x,yf(x, y) and ∇x,yg(x, y), there
exists a ρ̃ > 0 and a (x̃, ŷ) ∈ Ω, such that for all (x̂k, ŷ) with dist((x̂k, ŷ),Ω) ≤ ρ̃,

|Ψk(dx) − Φ̄(dx)| ≤
ρ̄

2
, ∀ dx ∈ Rnc , with ‖dx‖∞ ≤ 1, (3.110)

with
dist(x, Z) := min

z∈Z
{‖x− z‖2} (3.111)

holds.

If dist((x̂k, ŷ),Ω) ≤ ρ̃ holds, (3.110) yields

min
‖dx‖∞≤∆kc(Φ̂

k
c(dx) − Φ̂

k
c(0)) ≤ min

‖dx‖∞≤1(Ψ
k(dx) − Ψ

k(0)) ·min{∆kc , 1}

≤ min
‖dx‖∞≤1(Φ̄(dx) − Φ̄(0) + ρ̄

2
) ·min{∆kc , 1}

≤ − ρ̄
2
·min{∆kc , 1}.

(3.112)

3.2 Convergence Analysis 99

Due to the boundedness of {∆kc}, we obtain

min
‖dx‖∞≤∆kc(Φ̂

k
c(dx) − Φ̂

k
c(0)) ≤ −δ̄∆kc , (3.113)

for some small δ̄ > 0.

For dist((x̂k, ŷ),Ω) > ρ̃, the definition of Ω ensures, that ‖g(x̂k, ŷ)−‖∞ ≥ ρ̂ holds for
some ρ̂ > 0. Furthermore, we obtain from (3.102)

Φ̂k
c(dx) − Φ̂

k
c(0) ≤ −δσ̄min{∆kc , ‖g(x̂k, ŷ)−‖∞}

≤ −δ̃∆kc ,
(3.114)

with δ̃ > 0.

As a consequence of (3.113) and (3.114)

Φ̂k
c(0) − Φ̂

k
c(dx) ≥ δ̂∆kc , (3.115)

holds for all k for some δ̂ > 0.

Let the set of iterations with (x̂k+1, ŷ) = (x̂k, ŷ) + d̃k be denoted by K1. Furthermore
denote the set of iterations with (x̂k+1, ŷ) = (x̂k, ŷ) + dkc with rkc ≥ 0.1 in (3.53) by
K2. The set K := K1 ∪K2 is considered to be the set of successful iterations yielding a
reduction with rkc ≥ 0.1 in the merit function. Due to the boundedness of Pσ̄ introduced
in Definition 2.9, we obtain

∞ >
∞∑
k=1

(
Pσ̄(x̂

k, ŷ) − Pσ̄(x̂
k+1, ŷ)

)
≥
∑
k∈K1

(
Pσ̄(x̂

k, ŷ) − Pσ̄(x̂
k+1, ŷ)

)
+
∑
k∈K2

(
Pσ̄(x̂

k, ŷ) − Pσ̄(x̂
k+1, ŷ)

)
≥ 0.1

∑
k∈K1

(
Φ̂k
c(0) − Φ̂

k
c((d

k
c)x)
)
+ 0.1

∑
k∈K2

(
Φ̂k
c(0) − Φ̂

k
c((d

k
c)x)
)

≥ 0.1
∑
k∈K

(
Φ̂k
c(0) − Φ̂

k
c((d

k
c)x)
)

≥ 0.1δ̂
∑
k∈K
∆kc

(3.116)

by exploiting (3.115), Definition 3.2 and

Pσ̄(x̂
k+1, ŷ) ≤ Pσ̄((x̂

k, ŷ) + dki), ∀k ∈ K1,

where dki is the improving mixed-integer search direction specified in Definition 3.2.

Therefore
∑
k∈K
∆kc < ∞ holds, which implies

∞∑
k=1

∆kc < ∞ yielding {∆kc} → 0. The

continuity assumption gives

Pσ̄(x̂
k, ŷ) − Pσ̄((x̂

k, ŷ) + dkc) = Φ̂k
c(0) − Φ̂

k
c((d

k
c)x) + o(∆

k
c). (3.117)

(3.115) and (3.117) imply rkc = 1 +
o(∆kc)

δ̂∆kc
→ 1. This shows that ∆k+1c ≥ ∆kc for

all k sufficiently large, since the ∆kc is not decreased for rkc ≥ 0.1. This contradicts

100 3 A new MIQP-based MINLP Solution Method

∞∑
k=1

∆kc ≤ ∞. As a consequence, the iteration sequence (x̂k, ŷ) is not bounded away

from a stationary point of NLP(ŷ) specified in Definition 2.12, if ŷ ∈ Ŷ holds and
therefore, a ε-stationary point according to Definition 3.1 of NLP(ŷ) given by (3.6)
is obtained after a finite number of iterations for ŷ ∈ Ŷ for an arbitrary small ε > 0.
This implies, that conditions (3.61) and (3.62) are satisfied after a finite number of
iterations.

Subsuming all previous results, yields the final convergence theorem.

Theorem 3.1. If Assumption 3.1 and Assumption 3.2 hold, then Algorithm 3.1 ter-
minates after a finite number of iterations at an ε-solution of the convex MINLP (3.1)
according to Definition 3.3 or it detects that no feasible point exists.

Proof. Together with Corollary 3.7, Lemma 3.3 and Lemma 3.4 prove Theorem 3.1.

3.3 Aspects of Implementation and Future

Research

The implementation aspects, that are to be considered in this section deal with the
update of the matrix Bk in Step 5 of Algorithm 3.1. Furthermore, SOC-steps can
be included in Algorithm 3.1 to ensure superlinear convergence for solving NLP(yk̂)

given by (3.6) for some yk̂ ∈ Y, if no mixed-integer search steps are carried out.

Algorithm 3.1 requires a symmetric, positive definite n×n matrix Bk in each iteration
k. A suitable possibility to define the matrix is to apply a quasi-Newton update
formula in each iteration. Typical update formulas, such as formula (2.21), require
Lagrangian multipliers, whenever an update of the matrix is performed. In case of a
continuous search step, i.e., if dki determined in Step 3 is not an improving mixed-
integer search direction according to Definition 3.2, the multipliers can be obtained
directly from the solution of QP(xk, yk) given by (3.12) providing the continuous
search direction dkc in Step 2.

However, we also need to determine Lagrangian multipliers, if a mixed-integer search
step is performed, i.e., if dki determined in Step 3 is an improving mixed-integer
search direction according to Definition 3.2. Without additional computational effort,
multipliers could be taken from the continuous branch-and-bound subproblem, that
provided the optimal solution of MIQP(xk, yk) given by (3.50). The drawback in this
case is, that the values of the multipliers depend on the execution mode of the MIQP
solver, that is applied to solve problem (3.50). This means, that the dual part of
the solution depends, e.g., on the node-selection strategy or on cut generators, see
Section 2.11 and Chapter 4. To avoid such dependency, multipliers can be determined
by solving the subsequent constrained least squares problem, which is derived from

3.3 Aspects of Implementation and Future Research 101

the KKT conditions of the continuous relaxation of problem (3.50), where the trust
region constraint and the non-negativity constraint for η are neglected.

λ ∈ Rm :

min
∥∥∇x,yf(xk + (dki)x, y

k + (dki)y) − [∇x,yg(xk + (dki)x, y
k + (dki)y)]

Tλ
∥∥2
2

s.t. λj ≥ 0, ∀j ∈ Aki ,

λj = 0, ∀j ∈ J\Aki ,

(3.118)

where Aki ⊂ J denotes the set of active constraints at the solution dki of problem (3.50)
in iteration k. [∇x,yg(xk+ (dki)x, y

k+ (dki)y)] ∈ Rm×Rn denotes the Jacobian matrix
of the constraints.

To ensure superlinear local convergence properties for solving NLP(yk) given by (3.6)
for some fixed yk ∈ Y, well-known SOC-steps can be incorporated in Algorithm 3.1
as proposed by Yuan [112], if the quality of the model is not sufficient, e.g., rkc < 0.75
in Step 4. In this case it is necessary to solve an additional subproblem given by

(d̂c)x ∈ Rnc :

min Φ̄k((d̂c)x)

s.t. ‖(d̄c)x‖∞ ≤ ∆kc ,

(3.119)

with

Φ̄k((d̂c)x) := ∇x f(xk, yk)T(d̄c)x +
1

2
(d̄c)

T
xB

k
c(d̄c)x

+ σk‖(g((xk, yk) + (dkc)x) + [∇x,y g(xk, yk)]T(d̂c)x)−‖∞,
(3.120)

(d̄c)x := (dkc)x + (d̂c)x (3.121)

and

d̂c :=

(
(d̂c)x
0

)
, (3.122)

where (dkc)x is part of the optimal solution ((dkc)x, η
k
c) of QP(xk, yk) given by (3.12)

and (d̂c)x ∈ Rnc .
Future research aims at developing an algorithm, that on the one hand solely solves
MIQP subproblems, while on the other hand convergence properties at least for convex
MINLPs can be established. In the remainder of this section, we want to point out,
how such an algorithm could be designed.

In Section 2.10 we reviewed an extension of the trust region method of Yuan, see
Algorithm 2.1 for mixed-integer optimization problems, where the continuous prob-
lems (2.31) are replaced by mixed-integer quadratic programs, such as (3.50). The
resulting implementation is called MISQP, see Exler and Schittkowski [45]. On a large

102 3 A new MIQP-based MINLP Solution Method

test set of MINLP problems, it obtains solutions of high quality, i.e., feasible solutions
with an objective value close to the best-known one, even for non-convex problems.
Moreover, it is very efficient in terms of the number of function evaluations, see Chap-
ter 6. Unfortunately, it was not possible to prove convergence properties for convex
MINLP problems, yet.

In Section 3.1 we presented an extension of linear outer approximation, that ap-
plies mixed-integer search steps, motivated by MISQP. Convergence of the proposed
method is ensured by incorporating linear outer approximations.

Of course, we would like to prove convergence for a MISQP-type method directly
without relying on linear outer approximation. Now we want to present a concept to
design a convergent method based on the successive solution of MIQP problems (3.50).

Recalling early branching according to Leyffer [76], see Section 2.9, we can derive a
stopping criterion for such a method. We consider the convex MINLP (3.1). If we
apply early branching, then an extended MINLP given by

x ∈ Rnc , y ∈ Nni :

min f(x, y)

s.t. g(x, y) ≥ 0

f(x, y) ≤ η̂− ε.

(3.123)

is solved. η̂ ∈ R∪ {∞} denotes the incumbent, i.e., the feasible solution possessing the
lowest objective function value among all feasible solutions found so far. A quadratic
approximation of MINLP (3.123) is given by the subsequent MIQP problem, where
bounds on x and y are implicitly included:

dx ∈ Rnc , dy ∈ Nni :

min ∇x,yf(xk, yk)T
(
dx
dy

)
+
1

2
(dTx , d

T
y)B

k

(
dx
dy

)
s.t. g(xk, yk) +

[
∇x,yg(xk, yk)

]T (dx
dy

)
≥ 0

f(xk, yk) +∇x,yf(xk, yk)T
(
dx
dy

)
≤ η̂− ε

(3.124)

Corollary 3.8. Let Assumption 3.1 hold. Then η̂ is the optimal solution of the con-
vex MINLP (3.1) with respect to termination tolerance ε > 0, if MIQP (3.124) is
infeasible.

Proof. Applying (
dx
dy

)
=

(
x

y

)
−

(
xk

yk

)
, (3.125)

proves the corollary, since the feasible region of MIQP (3.124) is a relaxation the
feasible region of MINLP (3.123), derived from a convex MINLP (3.1).

3.3 Aspects of Implementation and Future Research 103

The subsequent corollary is a first step towards a convergent sequential mixed-integer
quadratic algorithm. Convergence could rely on branch-and-bound enumeration on
MIQP subproblem level.

Corollary 3.9. Let Assumption 3.1 hold. Then any integer value included in an
infeasible subtree of a branch-and-bound enumeration of MIQP (3.124) is non-optimal
for the convex MINLP (3.1).

Proof. Applying Lemma 2.7, see Section 2.9.

Further research is needed to obtain a complete algorithm based on the previous
corollaries, for which convergence properties for convex MINLPs can be established.

104 3 A new MIQP-based MINLP Solution Method

4. REVIEW ON DISJUNCTIVE
CUTTING PLANES FOR MILPS

Cutting planes, which were introduced in a famous paper of Gomory [59] in 1958,
possess two properties. On the one hand they cut off the solution (x̄, ȳ) of a relaxation
of the original problem, which leads to a truncation of the feasible region of the
corresponding relaxation. On the other hand, cutting planes do not alter the solution
of the original problem. If an inequality possesses these properties, it is called a valid
cutting plane. In the context of mixed-integer linear and quadratic programming a
cutting plane is linear. As a cutting plane cuts off the solution of a relaxation of the
original problem, this relaxation leads to an improved lower bound, if the cutting
plane is added to the set of constraints of the relaxation. Considering general mixed-
integer nonlinear programming, cutting planes can be used to solve convex MINLP
problems, see Section 2.7.

The combination of a branch-and-bound enumeration procedure, see Section 2.4, and
cutting plane generation is called branch-and-cut. Branch-and-cut is the state-of-the-
art solution method for mixed-integer linear optimization problems. Cutting planes
lead to a tremendous speed-up of MILP solvers according to Bixby [26], see Table 1.1.
Table 1.1 evaluates the additional techniques, that improved the performance of a
pure branch-and-bound method. It shows that the generation of cutting planes lead
to a speed-up factor of over 50.

Although cutting planes have been applied successfully within branch-and-cut solvers
for mixed-integer linear programming, there are almost no results on the generation
of cutting planes for mixed-integer quadratic programming. As a consequence, the
application of cutting planes within a MIQP branch-and-cut solver is analyzed in
Chapter 5. In this chapter we introduce well-known theory on cutting planes for
mixed-integer linear programs focusing on disjunctive cutting planes.

In general, there are two different kinds of cutting planes. The first class consists of
general cutting planes, while the second one exploits specific problem structure yield-
ing so-called structural cutting planes. Structural cutting planes can be constructed
for MIQPs without further adjustments, if the corresponding problem structure is
identified. In contrast, general cutting planes do not rely on any structure of the
feasible region.

106 4 Review on Disjunctive Cutting Planes for MILPs

In this thesis we focus on MIQP problems of form

x ∈ X, y ∈ Y :

min
1

2

(
xT , yT

)
B

(
x

y

)
+ cT

(
x

y

)
s.t. AE

(
x

y

)
= bE,

AI

(
x

y

)
≥ bI.

(4.1)

x and y denote the vectors of the continuous and integer variables, respectively, while
B ∈ Rn×n is a positive definite matrix and c ∈ Rn holds. X and Y are defined by
the upper and lower bounds on both the continuous and the integer variables, see
(1.2). nc denotes the number of continuous variables and ni is the number of integer
variables. The total number of variables is denoted by n, i.e., n := ni + nc. Equality
constraints are denoted by AE ∈ Rme×n and bE ∈ Rme , while inequality constraints
are given by AI ∈ Rmi×n and bI ∈ Rmi . Therefore me denotes the number of equality
constraints, while mi is the number of inequality constraints.

MIQP (4.1) arises as subproblem of general unstructured MINLP problems generated
by MISQP, see Section 2.10, or MIQPSOA, see Chapter 3. In this case the feasible
region of MIQP (4.1) is determined by linearizations of arbitrary nonlinear constraints,
and therefore we cannot assume, that the constraints of the MIQP possess any specific
structure. As a consequence, we focus on general cutting planes.

Most techniques for constructing general cutting planes rely on the property, that
the solution of the relaxation to be cut off is a basic solution, i.e., a corner of the
feasible polyhedral set described by the constraints of problem (4.1). In general, the
solutions of most continuous quadratic programs, obtained by a branch-and-bound
enumeration during the solution of MIQP (4.1) are non-basic solutions. This may be
the main reason, why there exist only very few results on applying cutting planes for
solving mixed-integer quadratic programming problems of form (4.1) by QP-based
branch-and-bound. The only result we are aware of, is Bienstock [25], who suggests
a branch-and-cut method based on disjunctive cutting planes for special MIQP prob-
lems, arising in portfolio optimization. Although disjunctive cutting planes belong to
the class of general cutting planes, [25] focuses on structural cutting planes, by ex-
ploiting the structure of one single constraint for cut generation. See also Section 4.2
for a general introduction on disjunctive cutting planes.

Currently some research deals with the construction of disjunctive cutting planes for
the convex MINLP problem (1.6), see e.g., Grossmann and Lee [63] or Kilinc, Lin-
deroth and Luedtke [68]. The corresponding results differ from the research presented
in this thesis. Present research reformulates (4.1), such that the objective function
becomes linear, while here the property, that the feasible region is a polyhedron, is
exploited to efficiently construct cutting planes, see Chapter 5.

In mixed-integer linear programming, the construction of the convex hull of all fea-

107

sible integer points is of special interest. If it is known, the solution of the mixed-
integer linear program is equivalent to the solution of its continuous relaxation, see
e.g. Krumke [69]. This is not the case for mixed-integer quadratic programs of form
(4.1). In general, the solution of the continuous relaxation is non-integral, even if the
feasible region is the convex hull of all integral points. The difference is, that in lin-
ear programming one of the optimal solutions is always basic, i.e., a basic solution.
If the feasible region is given by the convex hull of all integer feasible points, every
optimal basic solution of the linear relaxation is integral and therefore optimal for the
corresponding mixed-integer linear program. In contrast, the optimal solution of the
continuous relaxation of MIQP (4.1), is the feasible point with minimal distance to
the minimizer of the quadratic objective function measured in the ‖.‖B-Norm. This
can be any point on the boundary or even inside the convex hull of the integer fea-
sible points. As a consequence, it needs not be integral. Note, that the norm ‖.‖B is
determined by the matrix B of the objective function of MIQP (4.1).

Nevertheless, cutting planes can be beneficial for mixed-integer quadratic program-
ming, since they lead to a tighter relaxation. This gives rise to better lower bounds
during the branch-and-bound enumeration process, and therefore they may lead to
a smaller branch-and-bound tree. Since the convex hull of the integer feasible points
cannot be constructed in polynomial time, see e.g. Cornuejols [40], the same is true
for general MILPs from a practical point of view.

If cutting planes are only generated at the root node of the branch-and-bound search
tree, they are valid for each subproblem within the enumeration process. In principle,
the cut generation routines can be applied at any node of the branch-and-bound tree,
but an efficient cut management and cut selection procedure is required, since the
constructed cutting planes are only locally valid.

At the root node of the branch-and-bound tree cutting planes are usually generated
iteratively in rounds. First, a relaxation of the original problem is solved and then
cutting planes are constructed. Afterwards, they are added to the set of constraints
and the tightened relaxation is solved again. One cycle consisting of the solution of
the relaxation and the generation of cutting planes is called round. This process is
continued until no more cuts are found or the maximal number of rounds is reached.

In the remainder of the chapter we focus on disjunctive cutting planes. First we review
briefly some basic definitions from linear programming. Then disjunctive programming
and disjunctive cutting planes are introduced, which were both founded by Balas [10].
Furthermore, we review simple disjunctive cutting planes and their connection to
disjunctive cutting planes, which was established by Balas and Perregaard [17]. Finally
we present an efficient cut generation procedure for disjunctive cutting planes, which
goes back to Perregaard [86] and which is to be extended for MIQPs in Chapter 5.

108 4 Review on Disjunctive Cutting Planes for MILPs

4.1 Linear Programming Basics

In this section, we provide some basic definitions of linear programming, that are
needed to describe and derive the theory on disjunctive cutting planes, see e.g., Jarre
and Stoer [66] for more details. We consider the continuous linear program obtained
from the continuous relaxation of MIQP (4.1) by neglecting the quadratic term in the
objective function

x ∈ X, y ∈ YR :

min cT
(
x

y

)
s.t. AE

(
x

y

)
= bE,

AI

(
x

y

)
≥ bI.

(4.2)

I.e., c ∈ Rn, AE ∈ Rme×n, bE ∈ Rme , AI ∈ Rmi×n, and bI ∈ Rmi , where n :=
nc+ni denotes the total number of variables and me denotes the number of equality
constraints, while mi is the number of inequality constraints.

LP (4.2) can be transformed to the so-called standard form given by

x ∈ Rñc , y ∈ Rni :

min c̃T
(
x̃

y

)
s.t. Ã

(
x̃

y

)
= b̃(

x̃

y

)
≥ 0,

(4.3)

with Ã ∈ Rm̃×ñ, c̃ ∈ Rñ and b̃ ∈ Rm̃, where ñ denotes the total number of variables
and m̃ denotes the number of equality constraints. The index set of the continuous
variables x̃ is denoted by J ⊂ {1, . . . , ñ}. The index set of the integer variables y
within {1, . . . , ñ} is represented by I. LP (4.3) is obtained from LP (4.2) by a variable
transformation, such that xl = 0 and yl = 0 holds. Furthermore, one slack variable
is introduced for each inequality constraint, where the slack variables are part of
the continuous variables x̃. Upper box-constraints are contained in the constraints of
LP (4.3) yielding m̃ > mE +mI equality constraints after the introduction of further
slack variables. Unrestricted variables are split into a positive and a negative variable.
Due to these additional variables and due to the introduction of slack variables, the
total number of variables ñ is larger than the number of variables n of LP (4.2).

The following definition of a basis and a basic solution is very important in linear
programming, e.g., in the context of general cutting planes but also for the simplex
method, one of the main solution techniques for linear programs.

4.1 Linear Programming Basics 109

Definition 4.1. Let Ã ∈ Rm̃×ñ be the matrix corresponding to a system of m̃ linear
equations in ñ variables. The index set B of columns of Ã is a basis of Ã, if |B| = m̃
and if the corresponding sub-matrix ÃB := [ãj]j∈B is invertible. ãj denotes the j-th
column of Ã. The complementary index set B⊥ with B ∩ B⊥ = ∅ and B ∪ B⊥ = I ∪ J
contains the so-called non-basic variables.

If the system of linear equations

Ã

(
x̃

y

)
= b̃ (4.4)

is feasible, then Ã possesses at least one basis B and the corresponding non-basic
index-set B⊥. Furthermore, the solution of system (4.4), which is often denoted by ā0
can be expressed in terms of B and B⊥, since

ā0 =

(
x̃B
yB

)
+ ĀB⊥

(
x̃B⊥

yB⊥

)
(4.5)

holds due to

b̃ = Ã

(
x̃

y

)
= ÃB

(
x̃B
yB

)
+ ÃB⊥

(
x̃B⊥

yB⊥

)
(4.6)

with

ā0 := Ã−1
B b̃ (4.7)

ĀB⊥ := Ã−1
B ÃB⊥ . (4.8)

Definition 4.2. The solution of system (4.4) with(
x̃B⊥

yB⊥

)
= 0 (4.9)

and (
x̃B
yB

)
= ā0 (4.10)

is called basic solution of the basis B. If system (4.4) belongs to LP (4.3) and(
x̃B
yB

)
≥ 0 (4.11)

holds, then B is called feasible basis of LP (4.3) and

((
x̃B
yB

)
,

(
x̃B⊥

yB⊥

))
is called a

feasible, basic solution.

110 4 Review on Disjunctive Cutting Planes for MILPs

For reviewing and extending the theory on disjunctive programming, we use a slightly
different formulation for a linear program, which also leads to a different but equivalent
definition of a basis. We introduce subsequent notation, since on the one hand it
is consistent with the notation used by Balas, Perregaard and others working on
disjunctive programming. On the other hand, it is more compatible with the notation
used in mixed-integer nonlinear programming, where, e.g., bounds on the variables
play an important role.

We consider the following linear program

x ∈ Rnc , y ∈ Rni :

min cT
(
x

y

)
s.t. A

(
x

y

)
≥ b,(

x

y

)
≥

(
0

0

)
,

(4.12)

with A ∈ Rm×n, c ∈ Rn and b ∈ Rm, where n := nc+ni denotes the total number of
variables and m denotes the number of constraints. Note, that LP (4.12) is equivalent
to LP (4.2) after a variable transformation yielding

(
xl
yl

)
= 0 (4.13)

and after including the upper bounds on the variables in the constraints where equality
constraints are formulated as inequality constraints, i.e.,

A :=


AI
AE

−AE
−I

 , b :=


bI
bE

−bE

−

(
xu
yu

)
 . (4.14)

After also including the lower bounds within the constraints, LP (4.12) has the sub-
sequent form

x ∈ Rnc , y ∈ Rni :

min cT
(
x

y

)
s.t. Â

(
x

y

)
≥ b̂,

(4.15)

4.1 Linear Programming Basics 111

where Â ∈ Rm̂×n and b̂ ∈ Rm̂ are therefore given by

Â :=

[
A

I

]
, (4.16)

b̂ :=

 b(
0

0

)  , (4.17)

with m̂ := m+n. In this formulation m̂ ≥ n holds, due to the existence of upper and
lower bounds for every variable. LP formulation (4.15) motivates a different definition
of a basis and a basic solution.

Definition 4.3. Let Â ∈ Rm̂×n be the matrix corresponding to a system of m̂ linear
inequalities in n variables with m̂ ≥ n. The index set B of rows of Â is a basis of
Â, if |B| = n and if the corresponding sub-matrix ÂB := [âj]j∈B is invertible, where âj
denotes the j-th row of Â.

A solution (x̄, ȳ) of the system

Â

(
x

y

)
≥ b̂ (4.18)

is called a basic solution, if n linear independent constraints are satisfied as equalities
at (x̄, ȳ), i.e., the corresponding rows of Â form a basis. If all constraints of the
system (4.18) are satisfied by the basic solution (x̄, ȳ), (x̄, ȳ) is called a feasible, basic
solution.

The subsequent corollary shows the relation of Definition 4.1 and 4.3.

Corollary 4.1. Let (x̄, ȳ) be a basic solution according to Definition 4.3. Then (x̄, ȳ)
can be extended yielding a basic solution according to Definition 4.2.

Proof. Let (x̄, ȳ) be a basic solution according to Definition 4.3. Then n linear in-
dependent constraints of the linear system (4.18) are active at (x̄, ȳ). We denote the
corresponding submatrix by ÂB, where B is the index set of the active constraints.

Now we transform the linear system (4.18) into standard form by introducing slack
variables s ∈ Rm̂. The system becomes

Â

(
x

y

)
− s = b̂, (4.19)

 x

y

s

 ≥ 0, (4.20)

doubling the constraints (
x

y

)
≥ 0. (4.21)

112 4 Review on Disjunctive Cutting Planes for MILPs

Each slack variable can be classified according to whether or not the corresponding
constraint is active at (x̄, ȳ). Since the active constraints are indexed by B, we denote
the corresponding slack variables by sB. The remaining slack variables are denoted by
sB⊥ . Considering the basic constraints, which are active at (x̄, ȳ), we define s̄B := 0,
while we set

s̄B⊥ := ÂB⊥

(
x̄

ȳ

)
− b̂B⊥. (4.22)

for non-basic constraints.

Note, that some constraints from the set B⊥ might also be active in addition to the
basic constraints indexed by B.

The linear system (4.19) possesses m̂ equations in total and contains n original vari-
ables (x, y) and m̂ slack variables s, with n < m̂. The solution (x̄, ȳ, s̄B⊥, s̄B) of (4.19)
is a basic solution for the basis B̃, with basic variables (x̄, ȳ, s̄B⊥) and non-basic vari-
ables sB satisfying s̄B = 0. The matrix representing the linear system (4.19) for all
variables (x, y, sB⊥, sB) is given by

Ã :=
[
Â −I

]
=

[
ÂB 0 −I

ÂB⊥ −I 0

]
. (4.23)

Therefore the basis matrix for the basis B̃ according to Definition 4.1 is given by

ÃB̃ =

[
ÂB 0

ÂB⊥ −I

]
, (4.24)

which is invertible, since ÂB is invertible.

For simplification of subsequent calculations in this chapter as well as in Chapter 5,
we introduce the standard notation

ākj := −(eTkÂ
−1
B)j,

āij := −(âTi Â
−1
B)j,

āk0 := (eTkÂ
−1
B b̂B),

āi0 := (âTi Â
−1
B b̂B − b̂i).

(4.25)

4.2 Introduction on Disjunctive Cutting Planes

In this section we introduce some theory for disjunctive cutting planes and the closely
related disjunctive programs. It was developed since the early seventies by Balas [10]
and others. Latest results by Perregaard [86] and Balas and Bonami [18], turn these
cutting planes into very powerful cut generators for mixed-integer linear solvers. Our

4.2 Introduction on Disjunctive Cutting Planes 113

aim is to extend the results, such that disjunctive cutting planes can be applied
efficiently for mixed-integer quadratic programs, see Chapter 5.

Reviewing the results of Perregaard [86], we consider a mixed-integer linear program

x ∈ Rnc , y ∈ Nni :

min cT
(
x

y

)
s.t. A

(
x

y

)
≥ b,(

x

y

)
≥ 0,

(4.26)

with A ∈ Rm×n, c ∈ Rn and b ∈ Rm, where n := nc+ni denotes the total number of
variables and m denotes the number of constraints. Note, that the constraints contain
lower and upper bounds for each variable, see also Section 4.1. The optimal solution
of (4.26) is given by (x∗, y∗) ∈ Rnc ×Nni . The corresponding continuous relaxation of
MILP (4.26) is given by LP (4.12).

Let (x̄, ȳ) ∈ Rnc+ni be the solution of the continuous relaxation (4.12). Moreover, let
the k-th component of ȳ be fractional, i.e., ȳk /∈ N. As a consequence, either y∗k ≥ dȳke
or y∗k ≤ bȳkc holds, since (x∗, y∗) ∈ Rnc×Nni is the optimal solution of problem (4.26)
with y∗k integral. This property can be expressed via a logical condition, which is called
a disjunction ∨, i.e.,

y∗k ≥ dȳke ∨ y∗k ≤ bȳkc. (4.27)

The feasible region of the continuous relaxation (4.12) is truncated by integrating
the disjunctive condition (4.27). The resulting relaxation of MILP (4.26) is called
disjunctive relaxation and is given by

x ∈ Rnc , y ∈ Rni :

min cT
(
x

y

)
s.t. A

(
x

y

)
≥ b(

x

y

)
≥ 0

yk ≥ dȳke∨ yk ≤ bȳkc .

(4.28)

The additional constraint

yk ≥ dȳke ∨ yk ≤ bȳkc (4.29)

is called disjunctive condition. The solution of the disjunctive relaxation (4.28) is
denoted by (x̄DJ, ȳDJ) ∈ Rnc+ni . Since (x̄, ȳ) is not feasible for the disjunctive relax-
ation (4.28) and LP (4.12) is a relaxation of (4.28),

cT
(
x̄

ȳ

)
≤ cT

(
x̄DJ
ȳDJ

)
≤ cT

(
x∗

y∗

)
(4.30)

114 4 Review on Disjunctive Cutting Planes for MILPs

holds. The feasible region of the disjunctive relaxation (4.28) is the union of the two
polyhedra

Pklower :=

{
A

(
x

y

)
≥ b,

(
x

y

)
≥ 0, yk ≤ bȳkc

}
(4.31)

and

Pkupper :=

{
A

(
x

y

)
≥ b,

(
x

y

)
≥ 0, yk ≥ dȳke

}
. (4.32)

An optimization problem possessing a linear objective and a feasible region given by
the union of finitely many polyhedra, is called a disjunctive program. We denote the
finite index set of the corresponding polyhedra by Q, i.e., Ph, h ∈ Q is the correspond-
ing h-th polyhedron. For the disjunctive relaxation (4.28) on variable yk ∈ N, |Q| = 2
and Q = {1, 2} with P1 = Pklower and P2 = Pkupper holds.

The disjunctive relaxation (4.28) can be used to generate cutting planes for the mixed-
integer problem (4.26). For the construction of cutting planes, the existence of a com-
pact representation of the convex hull of the union of polyhedra in a higher dimension
is exploited. The associated convex hull can be projected on the original space yield-
ing so-called disjunctive cutting planes. We introduce some related definitions and
theorems.

Definition 4.4. An inequality

aTc

(
x

y

)
≥ bc, (4.33)

with ac ∈ Rn, bc ∈ R is said to be a consequence of the linear system

A

(
x

y

)
≥ b, (4.34)

if (4.33) is satisfied by every (x, y) ∈ Rnc × Rni, which satisfies the linear sys-
tem (4.34).

The following theorem of Balas [11] explains the correlation between disjunctive cut-
ting planes and the disjunctive relaxation (4.28).

Theorem 4.1. Let Q∗ 6= ∅ be a index set of non-empty polyhedra Ph, h ∈ Q, where
Q is the index set of all polyhedra, i.e., for Ph, h ∈ Q∗

Ph :=

{
(x, y) ∈ Rn : A

(
x

y

)
≥ b,

(
x

y

)
≥ 0, Dh

(
x

y

)
≥ dh0

}
6= ∅ (4.35)

holds, with Dh ∈ Rmh×n and dh0 ∈ Rmh. mh ∈ N with mh > 0 is the dimension of the
disjunctive conditions

Dh

(
x

y

)
≥ dh0 . (4.36)

4.2 Introduction on Disjunctive Cutting Planes 115

The inequality aTc

(
x

y

)
≥ bc with ac ∈ Rn and bc ∈ R is a consequence of the

constraints

A

(
x

y

)
≥ b

(
x

y

)
≥ 0 (4.37)

∨h∈Q

(
Dh

(
x

y

)
≥ dh0

)
,

if and only if there exists a set of vectors uh ∈ Rm, uh0 ∈ Rmh , uh, uh0 ≥ 0, h ∈ Q∗,
such that

ac ≥ ATuh + (Dh)Tuh0 , ∀h ∈ Q∗,

bc ≤ bTuh + (dh0)
Tuh0 , ∀h ∈ Q∗,

(4.38)

holds.

Proof. The proof is closely related to Farkas Lemma, see Balas [11].

The disjunctive relaxation (4.28) is called two-term disjunction, since |Q| = 2 holds.
It is obtained from the general disjunctive program (4.37) by setting

D1 = −eTk, (4.39)

D2 = eTk, (4.40)

d10 = −bȳkc, (4.41)

d20 = dȳke, (4.42)

where ek ∈ Rn denotes the k-th unit vector. Note, that Pklower is the polyhedron
described by inequalities

A

(
x

y

)
≥ b,

(
x

y

)
≥ 0, (4.43)

−yk = D
1

(
x

y

)
≥ d10 = −bȳkc,

116 4 Review on Disjunctive Cutting Planes for MILPs

while Pkupper is given by

A

(
x

y

)
≥ b,

(
x

y

)
≥ 0, (4.44)

yk = D
2

(
x

y

)
≥ d20 = dȳke.

Disjunctive cutting planes are derived from the disjunctive relaxation (4.28) or more

generally (4.37). Theorem 4.1 shows, that any cutting plane aTc

(
x

y

)
≥ bc induced

from a disjunctive relaxation has to satisfy conditions (4.38), in order to be valid for
the relaxation (4.37).

Therefore, a cutting plane is given by an inequality, which is violated by the solution
(x̄, ȳ) of the continuous relaxation (4.12) and which satisfies the conditions of Theo-
rem 4.1. As a consequence, a cutting plane can be obtained by solving the so-called
cut generating linear program (CGLPk) corresponding to disjunction (4.27), see e.g.,
Balas [11]. Note, that the subsequent formulation of the CGLPk, also contains the
lower bounds on the variables by using matrix Â and right hand side b̂ instead of A
and b, see LP formulations (4.12) and (4.15).

(ac, bc) ∈ Rn × R, (u, u0) ∈ Rm̂ × R, (v, v0) ∈ Rm̂ × R :

min aTc

(
x̄

ȳ

)
− bc

s.t. ac − Â
Tu+ u0ek ≥ 0

ac − Â
Tv− v0ek ≥ 0

−bc + b̂
Tu− u0bȳkc = 0

−bc + b̂
Tv+ v0dȳke = 0

m̂∑
i=1

ui + u0 +
m̂∑
i=1

vi + v0 = 1

u, u0, v, v0 ≥ 0.

(4.45)

The constraint
m̂∑
i=1

ui + u0 +

m̂∑
i=1

vi + v0 = 1 . (4.46)

is called normalization constraint. Note, that (u, u0) correspond to Pklower, while (v, v0)
are associated with Pkupper, i.e., (u1, u10) and (u2, u20) in Theorem 4.1, respectively.

4.3 Simple Disjunctive Cuts 117

The linear program (4.45) constructs the cutting plane aTc

(
x

y

)
≥ bc, that is most

violated at the solution (x̄, ȳ) of the continuous relaxation (4.12), i.e., it minimizes
the objective function of the CGLPk. The constraints of problem (4.45) restrict the
choice to those cutting planes that are valid for the union of the polyhedra Pklower and
Pkupper defined by (4.31) and (4.32), respectively. The optimization variables (ac, bc)
correspond to the coefficients of the resulting cutting plane, whereas the variables
(u, u0, v, v0) ensure the validity of the constructed cut according to Theorem 4.1.

The cut generating linear program (4.45) obviously depends on the disjunction that
is considered. In addition it depends on the point to be cut off and therefore forms
the objective function, here (x̄, ȳ). Furthermore, it depends on the constraints of
underlying disjunctive program, here determined by the matrix Â and the right hand
side b̂. In case we consider different cut generating linear programs, we use the notation
CGLPk(x̄, ȳ, Â, b̂) in order to allow a precise distinction.

CGLPk only considers the integrality condition for variable yk. Therefore, the gen-
erated cutting plane can be strengthened by a procedure of Balas and Jeroslow [14],
that takes the integrality conditions for additional integer variables yi ∈ I\{k} into
account. Solving CGLPk yields one cutting plane. There exists various suggestions
how to generate more than just one cutting plane from the disjunctive relaxation
corresponding to disjunction (4.27), see Perregaard [86] for details. Furthermore, it is
possible to neglect those variables xi, or yi respectively, that take the value of one of
the corresponding box-constraints in the solution (x̄, ȳ) of LP (4.12), i.e., x̄i = (xu)i
or x̄i = (xl)i or ȳi = (yu)i or ȳi = (yl)i respectively. As a consequence, the dis-
junctive relaxation (4.28) is restricted to a lower dimensional subspace, such that the
dimension of CGLPk is significantly reduced. The cutting plane determined by the
corresponding cut generating linear program can be lifted to be valid in the full space,
see Perregaard [86].

Further theory on disjunctive programming and related cutting planes can be found
in Balas [9, 10, 11, 12], Balas, Ceria, and Cornuejols [13], Balas and Perregaard [15,
16, 17], Ceria and Pataki [37], Ceria and Soares [38] and others.

4.3 Simple Disjunctive Cuts

Before we return to disjunctive cutting planes, we introduce simple disjunctive cut-
ting planes or intersection cuts, see Balas [9]. Simple disjunctive cutting planes are a
special case of disjunctive cutting planes. Furthermore, it turned out, that disjunctive
cutting planes can efficiently be constructed based on simple disjunctive cuts. Simple
disjunctive cuts can be constructed at any basic solution (x̄, ȳ) ∈ Rnc+ni with basis
B and the non-basic index set denoted by B⊥, see Definition 4.1 or 4.3. Note, that
a basic solution corresponds to a corner of the polyhedron representing the feasible
region of the continuous relaxation given by LP (4.15). Furthermore, each fractional
integer variable yk ∈ YR with ȳk /∈ N, yields one simple disjunctive cut. As a conse-

118 4 Review on Disjunctive Cutting Planes for MILPs

quence, simple disjunctive cuts exist for each optimal, non-integral, basic solution of
the continuous relaxation (4.15), since one of the optimal solutions of every LP is a
basic solution, see e.g., Jarre and Stoer [66]. Note, that simple disjunctive cuts are
equivalent to mixed-integer Gomory cutting planes, see Cornuejols [40]. The simple
disjunctive cut is defined in terms of the non-basic variables.

Let the corresponding basic matrix of the active constraints be denoted by ÂB ∈ Rn×n
with right hand side b̂B ∈ Rn. The non-basic variables are the slack variables for the
active constraints forming ÂB and are denoted by sB ∈ Rn. Since (x̄, ȳ) ∈ Rnc+ni is by
assumption a basic solution, s̄B = 0 holds, see Definition 4.2. Considering the active
constraints only, we obtain

ÂB

(
x̄

ȳ

)
− s̄B = b̂B(
x̄

ȳ

)
= Â−1

B b̂B + Â
−1
B s̄B.

(4.47)

For a single variable yk we get

ȳk = (Â−1
B)kb̂B + (Â−1

B)ks̄B

= āk0 +
∑
i∈B

(−āki)s̄i,
(4.48)

where (Â−1
B)k denotes the k-th row of Â−1

B and we apply notation (4.25).

Now we introduce a simple disjunctive cut, see e.g., Cornuejols [40].

Definition 4.5. Let (x̄, ȳ) be an optimal, basic solution of the continuous relax-
ation (4.15) with basis B. Let ȳk be fractional, i.e., ȳk /∈ N. Then the simple disjunctive
cut induced by (x̄, ȳ) is defined by

πT s̄B ≥ π0, (4.49)

with π ∈ Rn and π0 ∈ R satisfying

π0 := (ȳk − bȳkc)(dȳke− ȳk),

π1i := (ȳk − dȳke)(Â−1
B)ki, ∀i ∈ B

π2i := (ȳk − bȳkc)(Â−1
B)ki, ∀i ∈ B,

πi := max{π1i , π
2
i }, ∀i ∈ B

(4.50)

where (Â−1
B)ki denotes the i-th entry of the k-th row of Â−1

B , which is the inverse of
the basis matrix ÂB.

Note, that the simple disjunctive cut is associated with the disjunction yk ≥ dȳke ∨
yk ≤ bȳkc.

4.4 The Simple Disjunctive Cut and the CGLP 119

(x̄, ȳ)

F
y

x

c̄

â2

y = bȳc y = dȳe

â1

(x̄, ȳ)

Plower Pupper

Fig. 4.1: Simple Disjunctive Cutting Plane

Figure 4.1 shows the dashed simple disjunctive cut, denoted by c̄, that is determined
by the basic solution (x̄, ȳ) of the continuous relaxation (4.15) and the disjunction
on y. The active constraints determining the basic solution (x̄, ȳ) are here denoted
by â1 and â2 and the feasible region is denoted by F. As described in Section 4.2,
the disjunction (4.27) also determines the two polyhedra Plower and Pupper defined by
(4.31) and (4.32) respectively.

4.4 The Simple Disjunctive Cut and the CGLP

In this section we establish the connection between the simple disjunctive cut (4.49)
and the cut generating linear program (4.45). This correlation can be exploited to
obtain the efficient cut generation procedure proposed by Perregaard [86], which is
reviewed in the next section.

First we will review some results stated by Perregaard [86] and Balas [11].

Lemma 4.1. The values for both variables u0 and v0 in any feasible, basic solution of
the CGLPk given by (4.45), that yields a cutting plane, i.e., a valid linear inequality
violated by the optimal solution (x̄, ȳ) ∈ Rn of the continuous relaxation (4.15), are
strictly positive.

120 4 Review on Disjunctive Cutting Planes for MILPs

Proof. See Perregaard [86].

The following Lemma states some important properties of certain feasible, basic so-
lutions of the CGLPk, which will be exploited for deriving the efficient cut-generator
proposed by Perregaard [86].

Lemma 4.2. Let (āc, b̄c, ū, ū0, v̄, v̄0) be a feasible, basic solution of the CGLPk (4.45)
with ū0 > 0, v̄0 > 0 and (āc, b̄c) basic. Let the index sets of the basic components of
ū and v̄ be denoted by M1 and M2, respectively.

Then the following properties are satisfied:

M1 ∩M2 = ∅, (4.51)

|M1 ∪M2| = n. (4.52)

Furthermore, the n×n sub-matrix ÂM1∪M2 is nonsingular. Note, that ÂM1∪M2 is the
matrix consisting of those constraints that correspond to the basic components of ū
and v̄.

Proof. See Perregaard [86].

The subsequent theorem, which was established by Balas and Perregaard [17] relates
a certain feasible, basic solution of the CGLPk to the simple disjunctive cut πTsB ≥ π0
given by (4.49).

Theorem 4.2. Let (āc, b̄c, ū, ū0, v̄, v̄0) be a feasible, basic solution of the CGLPk (4.45)
with ū0, v̄0 > 0 and all components of (āc, b̄c) basic. Let the index sets of the basic
components of ū and v̄ be denoted by M1 and M2, respectively. Let (x̄, ȳ) be the op-
timal solution of the continuous relaxation given by (4.15). Let πTsB ≥ π0 be the
simple disjunctive cut corresponding to the disjunction yk ≤ bȳkc ∨ yk ≥ dȳke with
B :=M1 ∪M2, see (4.49).

Then πTsB ≥ π0 is equivalent to āTc

(
x

y

)
≥ b̄c.

Theorem 4.2 establishes equivalence between a simple disjunctive cut and the cut
given by a certain feasible, basic solution of the CGLPk. The proof as given by
Perregaard [86], is based on the subsequent assignment, where the cut coefficients
of the simple disjunctive cut, i.e., π0, π

1, π2 and π are assigned to the variables
(āc, b̄c, ū, ū0, v̄, v̄0) of CGLPk:

āc :=
(
ÂTBπ

)
θ,

ūB :=
(
π− π1

)
θ,

ū0 := (dȳke− ȳk) θ,
b̄c :=

(
π0 + b̂

T
Bπ
)
θ, (4.53)

v̄B :=
(
π− π2

)
θ,

v̄0 := (ȳk − bȳkc) θ.

4.4 The Simple Disjunctive Cut and the CGLP 121

Note, that due to the normalization constraint (4.46) a scaling factor θ 6= 0 needs to
be introduced.

Proof. See Perregaard [86].

Theorem 4.2 can be interpreted in the following way:

Consider any, not necessarily feasible, basis and the corresponding basic solution (x̂, ŷ)
of the continuous relaxation (4.15). Let (x̂, ŷ) be located in the disjunction determined
by the optimal, basic solution (x̄, ȳ) for variable yk, i.e., bȳkc ≤ ŷk ≤ dȳke holds. Then
this basis induces a feasible, basic solution of the CGLPk via the corresponding simple
disjunctive cut according to assignment (4.53).

The following definition intuitively eases the classification of feasible solutions of the
CGLPk.

Definition 4.6. A feasible, basic solution (āc, b̄c, ū, ū0, v̄, v̄0) of the CGLPk (4.45) is
called a cut-generating, feasible, basic solution, if ū0 and v̄0 are both strictly positive
and all components of (āc, b̄c) are basic, i.e., contained in the basis, and the objective
value of the CGLPk is strictly negative.

A feasible, basic solution (āc, b̄c, ū, ū0, v̄, v̄0) of the CGLPk (4.45) is called a non-
trivial, feasible, basic solution, if it is obtained from a basis B of LP (4.15) via the
induced simple disjunctive cut (4.49) and assignment (4.53).

A feasible solution (āc, b̄c, ū, ū0, v̄, v̄0) of CGLPk is called a trivial, feasible solution
of the CGLPk, if

ū0v̄0 = 0 (4.54)

holds.

Note, that due to Lemma 4.1 only a non-trivial, feasible, basic solution can be a
cut-generating, feasible, basic solution of the CGLPk. A trivial, feasible solution of
CGLPk yields no cut, since the coefficients (āc, b̄c) of the corresponding inequality are
determined by a non-negative linear combination of some of the original constraints
within the CGLPk, see Perregaard [86] for further details. This observation is stated
in the subsequent corollary.

Corollary 4.2. A cut-generating, feasible, basic solution of the CGLPk is always a
non-trivial, feasible, basic solution. A trivial, feasible solution of the CGLPk cannot
be a cut-generating, feasible, basic solution.

Proof. Apply Lemma 4.1 and Definition 4.6.

122 4 Review on Disjunctive Cutting Planes for MILPs

4.5 An Efficient Cut Generation Procedure for

Disjunctive Cutting Planes

Exploiting the previously reviewed theory related to disjunctive programming, Perre-
gaard proposed an efficient cut generation procedure for disjunctive cutting planes [86].
It is essentially based on the equivalence of the simple disjunctive cut (4.49) and a non-
trivial, feasible, basic solution of the CGLPk (4.45). Furthermore, this cut generation
procedure solves the cut generating linear program implicitly in the original problem
dimension. Therefore, it yields substantial advantages, since the computational effort
for constructing disjunctive cutting planes is significantly decreased compared to solv-
ing the high-dimensional, highly degenerate CGLPk. Apart from working within the
original problem dimensions, the computation time is also improved by the reduction
of degeneracy. The reason is that the partition of B into M1 and M2 is determined
automatically by the sign of the corresponding entry in the k-th row of (Â−1

B), see
Theorem 4.2.

(x̄, ȳ)

F
y

x

c̄

ĉ

c̃

â1

y = bȳc y = dȳe

â2â3â4

(x̄, ȳ)

(x̂, ŷ)

(x̃, ỹ)

Fig. 4.2: Disjunctive Cutting Plane

The proposed method starts with the simple disjunctive cut induced by the basic
solution (x̄, ȳ) of the continuous relaxation of MILP (4.26). Due to Theorem 4.2 this
simple disjunctive cut is equivalent to a cut-generating, feasible, basic solution of the
cut generating linear program. Analogue to the simplex algorithm, Perregaard sug-
gests to find an adjacent, cut-generating, feasible, basic solution possessing a lower

4.5 An Efficient Cut Generation Procedure for Disjunctive Cutting Planes 123

objective value for the CGLPk than the current cut-generating, feasible, basic solu-
tion. The new cut-generating, feasible, basic solution also corresponds to a simple
disjunctive cut. These two simple disjunctive cuts are closely related, since they only
differ in a single constraint, i.e., one basic constraint is exchanged in the corresponding
basis, see Definition 4.3. A reduction of the objective function value means, that the
adjacent cut has to be stronger than the current one, i.e., it is violated more by the
solution (x̄, ȳ) of the continuous relaxation of MILP (4.26).

Figure 4.2 illustrates the procedure. It starts at the solution (x̄, ȳ) of the continuous
relaxation (4.12) that is determined by the active constraints â1 and â2. Since ȳ is
fractional, (x̄, ȳ) implies the simple disjunctive cut c̄. Considering inactive constraints
we replace â2 by â3, which yields the basic solution (x̂, ŷ) and the corresponding simple
disjunctive cut ĉ. Note, that (x̂, ŷ) is infeasible, since constraint â2 is not satisfied.
Obviously, ĉ is stronger than c̄, since it is violated more by the solution (x̄, ȳ) of the
continuous relaxation. If the constraint â1 is replaced by constraint â4, the simple
disjunctive cut c̃ is induced by the corresponding basic solution (x̃, ỹ). It is equivalent
to the disjunctive cutting plane determined by the CGLPk, set up by the constraints
â1, â2, â3 and â4 defining the feasible region F.

To apply this procedure, Perregaard derives a criterion, that determines whether a
constraint (âi, b̂i) corresponding to variables ui and vi, that are not contained in the
current basis of the CGLPk, should be included in the basis of the original problem via
a basis exchange to obtain a stronger cutting plane, or not. The subsequent theorem
stated by Perregaard [86] gives formulas for calculating reduced costs for every non-
basic variable ui and vi, i.e., every constraint that is not included in the basis B
determining the current cut, which is derived by assignment (4.53) from the simple
disjunctive cut induced by B.

Theorem 4.3. Consider a non-trivial, feasible, basic solution of CGLPk (4.45) given
by (āc, b̄c, ū, ū0, v̄, v̄0), i.e., ū0, v̄0 > 0 and (āc, b̄c) basic. Assume, that the basic
components of ū and v̄ are indexed by M1 and M2, respectively, and denote the basis
formed by the constraints corresponding to M1 and M2 by B, i.e., B :=M1 ∪M2. Let

s̄ correspond to the slack variables (5.25) introduced in the system Â

(
x

y

)
≥ b̂ at

the optimal solution (x̄, ȳ) of the continuous relaxation of MILP (4.26). The reduced
costs for ūi and v̄i, i /∈ B ∪ {k} are

rūi := −σ− τ− āi0(ȳk − dȳke)

rv̄i := −σ+ τ+ āi0(ȳk − dȳke) + s̄i
(4.55)

with

σ :=

∑
j∈M2

ākjs̄j + (āk0 − bȳkc)(ȳk − dȳke)

1+
∑
j∈B

|ākj|
(4.56)

τ := σ
∑
j∈M1

āij − σ
∑
j∈M2

āij +
∑
j∈M2

āijs̄j. (4.57)

124 4 Review on Disjunctive Cutting Planes for MILPs

and āk0, āi0, ākj and āij defined in (4.25).

We review the most important parts of the proof and extend it for general integer
variables, since the understanding is important for the generalization for MIQPs in
Chapter 5. For details on some reformulations see Perregaard [86].

Proof. In the first part of the proof, we exploit, that (āc, b̄c, ū, ū0, v̄, v̄0) is a feasible,
basic solution of the CGLPk to derive formulas for the variables ūj with j ∈M1 and
v̄j with j ∈ M2 as well as ū0 and v̄0. Afterwards, these formulas are feed into the
objective function of the CGLPk together with one pair ūi and v̄i with i 6∈ B of non-
basic variables. This yields the desired expressions for the reduced costs of ūi and v̄i.

Since (āc, b̄c, ū, ū0, v̄, v̄0) is a feasible basic solution of the CGLPk (4.45), we obtain

ÂTM1ūM1 − ū0ek = ÂTM2 v̄M2 + v̄0ek (4.58)

from

āc − Â
T ū+ ū0ek = 0 (4.59)

āc − Â
T v̄− v̄0ek = 0 (4.60)

by eliminating āc. Note, that we denote the index sets of the basic variables ū and
v̄ by M1 and M2, respectively. Therefore, the index set of the basis B is partitioned
into M1 and M2. Furthermore, we derive

b̂TM1ūM1 − ū0bȳkc = b̂TM2 v̄M2 + v̄0dȳke (4.61)

from

−b̄c + b̂
T ū− ū0bȳkc = 0 (4.62)

−b̄c + b̂
T v̄+ v̄0dȳke = 0 (4.63)

by eliminating b̄c, see again (4.45). Moreover, the normalization constraint (4.46) is
satisfied, which gives ∑

j∈M1

ūj + ū0 +
∑
j∈M2

v̄j + v̄0 = 1, (4.64)

Note, that all non-basic variables ūi, v̄i can be eliminated, since ūi = 0, ∀i /∈ M1

and v̄i = 0, ∀i /∈ M2 holds. Furthermore, we introduce one arbitrary non-basic
variable ūi and one non-basic variable v̄i with i /∈ B, which are both zero. In order
to derive reduced costs for ūi and v̄i, we restate the equations (4.58) and (4.61) using

ÂB :=

[
ÂM1
ÂM2

]
ÂTB

(
ūM1
−v̄M2

)
+ (ūi − v̄i)âi = (ū0 + v̄0)ek (4.65)

b̂TB

(
ūM1
−v̄M2

)
+ (ūi − v̄i)b̂i = (ū0 + v̄0)bȳkc+ v̄0. (4.66)

4.5 An Efficient Cut Generation Procedure for Disjunctive Cutting Planes 125

Since ÂB is invertible due to Lemma 4.2, we obtain from (4.65)(
ūM1
−v̄M2

)
= Â−T

B (ū0 + v̄0)ek − Â
−T
B (ūi − v̄i)âi (4.67)

by multiplying with Â−T
B . By replacing

(
ūM1
−v̄M2

)
in (4.66) according to (4.67) we get

(ū0 + v̄0)(e
T
kÂ

−1
B b̂B)

T − (ūi − v̄i)((â
T
i Â

−1
B b̂B)

T − b̂i) = (ū0 + v̄0)bȳkc+ v̄0 (4.68)

after some reformulations. For simplification we apply notation (4.25). Therefore, we
obtain the following conditions for ūj, j ∈M1, v̄j, j ∈M2 and v̄0 from equations (4.67)
and (4.68)

ūj = −(ū0 + v̄0)ākj + (ūi − v̄i)āij, j ∈M1

v̄j = (ū0 + v̄0)ākj − (ūi − v̄i)āij, j ∈M2

v̄0 = (ū0 + v̄0)(āk0 − bȳkc) − (ūi − v̄i)āi0.

(4.69)

We can insert these expressions into the normalization constraint (4.64) extended by
ūi(= 0) and v̄i(= 0) to get

1 =
∑
j∈M1

ūj + ū0 +
∑
j∈M2

v̄j + v̄0 + ūi + v̄i

= (ū0 + v̄0)

(
−
∑
j∈M1

ākj +
∑
j∈M2

ākj + 1

)
(4.70)

+(ūi − v̄i)

(∑
j∈M1

āij −
∑
j∈M2

āij

)
+ ūi + v̄i.

Since (āc, b̄c) is equivalent to a simple disjunctive cut we know that all basic compo-
nents (ūM1 , v̄M2) are greater or equal to zero, see (4.53). Therefore equations (4.69)
yield

−
∑
j∈M1

ākj︸︷︷︸
≤0

+
∑
j∈M2

ākj︸︷︷︸
≥0

=
∑
j∈B

|ākj| (4.71)

since ūj, v̄j, v̄0 ≥ 0. Therefore, we obtain for ū0 + v̄0 from (4.70):

ū0 + v̄0 =

1− (ūi − v̄i)

(∑
j∈M1

āij −
∑
j∈M2

āij

)
− ūi − v̄i

1+
∑
j∈B

|ākj|
. (4.72)

126 4 Review on Disjunctive Cutting Planes for MILPs

The reduced costs for ūi and v̄i with i 6∈ B determine how the objective value changes,
if the corresponding variables ūi or v̄i is increased. As a consequence, we have to
express the objective function of the CGLPk given by

āTc

(
x̄

ȳ

)
− b̄c (4.73)

in terms of ūi and v̄i. Applying (4.60) and (4.63) yields

āTc

(
x̄

ȳ

)
− b̄c = ÂTM2 v̄M2

(
x̄

ȳ

)
+ âTi v̄i

(
x̄

ȳ

)
+ v̄0ek

(
x̄

ȳ

)
−b̂TM2 v̄M2 − b̂iv̄i − v̄0dȳke (4.74)

= s̄TM2 v̄M2 + s̄iv̄i + v̄0(ȳk − dȳke),

where

s̄M2 := ÂM2

(
x̄

ȳ

)
− b̂M2 , (4.75)

s̄i := âi

(
x̄

ȳ

)
− b̂i (4.76)

holds. We can now substitute v̄M2 and v̄0 by the expressions derived in (4.69). This
gives

āTc

(
x̄

ȳ

)
− b̄c = (ū0 + v̄0)

(∑
j∈M2

ākjs̄j

)
− (ūi − v̄i)

(∑
j∈M2

āijs̄j

)
+ v̄is̄i

+((ū0 + v̄0)(āk0 − bȳkc) − (ūi − v̄i)āi0) (ȳk − dȳke)

= (ū0 + v̄0)

(∑
j∈M2

ākjs̄j + (āk0 − bȳkc)(ȳk − dȳke)

)
(4.77)

+(ūi − v̄i)

(
−
∑
j∈M2

āijs̄j − āi0(ȳk − dȳke)

)
+ v̄is̄i.

After replacing ū0 + v̄0 according to (4.72) and introducing

σ :=

∑
j∈M2

ākjs̄j + (āk0 − bȳkc)(ȳk − dȳke)

1+
∑
j∈B

|ākj|
(4.78)

we obtain

āTc

(
x̄

ȳ

)
− b̄c = σ− σūi − σv̄i − (ūi − v̄i)σ

(∑
j∈M1

āij −
∑
j∈M2

āij

)

+ (ūi − v̄i)

(
−
∑
j∈M2

āijs̄j − āi0 (ȳk − dȳke)

)
+ v̄is̄i. (4.79)

4.5 An Efficient Cut Generation Procedure for Disjunctive Cutting Planes 127

Let
τ := σ

∑
j∈M1

āij − σ
∑
j∈M2

āij +
∑
j∈M2

āijs̄j, (4.80)

then we get for the objective function the following expression defining the reduced
costs for ūi and v̄i

āTc

(
x̄

ȳ

)
− b̄c = σ+ ūi(−σ− τ− āi0(ȳk − dȳke))

+ v̄i(−σ+ τ+ āi0(ȳk − dȳke) + s̄i).
(4.81)

This proves the theorem.

Theorem 4.3 can be used to identify non-basic constraints, that strengthen the current
cut, if they are included in the basis. To solve the CGLPk (4.45) implicitly, constraints,
that should be removed from the current basis, need to be identified as well, such that
a basis exchange can be executed. The following theorem stated by Perregaard [86]
can be applied for this task.

Theorem 4.4. Let (āc, b̄c, ū, ū0, v̄, v̄0) be a non-trivial, feasible, basic solution of the
CGLPk. Assume, that the basic components of ū and v̄ are indexed by M1 and M2

respectively, with B :=M1∪M2. Let ūi or v̄i, corresponding to constraint (âi, b̂i) with
i /∈ B, be a given non-basic variable. Then the cut (āc, b̄c) given by the current non-
trivial, feasible, basic solution of the CGLPk is improved most, if the basic variable
ūl∗ or v̄l∗, corresponding to constraint (âl∗ , b̂l∗), with l∗ ∈ B is removed. Index l∗ is
given by the basic variable, that minimizes f+(γl) for γl := − ākl

āil
> 0 and f−(γl) for

γl < 0. For some γ, f+(γ) and f−(γ) are given by

f+(γ) :=
πγ

+
s̄B − π

γ+

0

1+ |γ|+
∑
j∈B

|ākj + γāij|
(4.82)

f−(γ) :=
πγ

−
s̄B − π

γ−

0

1+ |γ|+
∑
j∈B

|ākj + γāij|
. (4.83)

with

πγ
+

s̄B − π
γ+

0 =
∑
j∈B

(max{0,−(ākj + γāij)}s̄j) (4.84)

+(dāk0 + γāi0e− āk0 − γāi0)(bāk0 + γāi0c− ȳk)
πγ

−

s̄B − π
γ−

0 =
∑
j∈B

(max{γāij,−ākj}s̄j) (4.85)

+(dāk0 + γāi0e− āk0 − γāi0)(dāk0 + γāi0e− ȳk)
+āk0 − dāk0 + γāi0e.

based on the notation specified in (4.25).

128 4 Review on Disjunctive Cutting Planes for MILPs

Again we review the most important parts of the proof and extend it for general integer
variables. For further details on some reformulations we refer to Perregaard [86].

Proof. (x̄, ȳ) is the optimal basic solution of the continuous relaxation of MILP (4.26)
with ȳk fractional. Then the simple disjunctive cut for the composite row of the
simplex tableau, obtained by adding the row corresponding to ȳk and the row cor-
responding to x̄i (or ȳi) multiplied by γ, is constructed first. It directly leads to the
expressions denoted by f+(γ) and f−(γ), which need to be minimized in order to
obtain the strongest simple disjunctive cut.

Assume, that for an constraint i not contained in the basis inducing the current simple
disjunctive cut, either ūi or v̄i with i /∈ B, possesses negative reduced costs (4.55) and
should therefore be included in the disjunctive cut derived for ȳk. Consider the simplex
tableau representation (4.47) corresponding to ȳk, i.e., row k

ȳk +
∑
j∈B

ākjs̄j = āk0 (4.86)

and x̄i (or ȳi), i.e., row i

x̄i +
∑
j∈B

āijs̄j = āi0, (4.87)

applying notation (4.25). The non-trivial, feasible, basic solution of CGLPk corre-
sponds to the simple disjunctive cut for row k. Since we want to include constraint
i with i /∈ B in the cut we add row i given by (4.87) multiplied by γ to row k and
calculate the simple disjunctive cut corresponding to the composite row:

ȳk + γx̄i +
∑
j∈B

(ākj + γāij)s̄j = āk0 + γāi0. (4.88)

When constructing the composite row (4.88), we can still choose the multiplier γ. γ
has to satisfy property

bāk0 + γāi0c = bȳkc. (4.89)

to ensure that the corresponding simple disjunctive cut is valid, i.e., the new basic

solution is located in the disjunction determined by ȳk. In general, choosing γ := −
ākl

āil
with āil 6= 0 has the effect, that the basic variable ūl or v̄l, corresponding to constraint
(âl, b̂l), becomes non-basic, i.e., ūl = v̄l = 0, while either ūi or v̄i becomes basic
instead.

Therefore, we have to determine the column l ∈ B with the corresponding γ :=

−
ākl

āil
such that the new cut πγsB̂ ≥ πγ0 with B̂ := B\{l} ∪ {i} determined by the

composite row (4.88) is as strong as possible. This is equivalent to minimizing πγsB̂−

4.5 An Efficient Cut Generation Procedure for Disjunctive Cutting Planes 129

πγ0 . Therefore we can apply the formulas (4.49) and (4.50) treating the term γx̄i similar
to s̄B to obtain the following coefficients for the new cut:

πγ0 := (dāk0 + γāi0e− āk0 − γāi0)(āk0 + γāi0 − bāk0 + γāi0c)

(π1i)
γ := (dāk0 + γāi0e− āk0 − γāi0)γ

(π2i)
γ := −(āk0 + γāi0 − bāk0 + γāi0c)γ

πγi := max{(π1i)
γ, (π2i)

γ}

(π1j)
γ := (dāk0 + γāi0e− āk0 − γāi0)(ākj + γāij), j ∈ B,

(π2j)
γ := −(āk0 + γāi0 − bāk0 + γāi0c)(ākj + γāij), j ∈ B,

πγj := max{(π1j)
γ, (π2j)

γ}, j ∈ B.

(4.90)

These coefficients correspond to the simple disjunctive cut πγi x̄i + π
γs̄B ≥ πγ0 . We can

eliminate x̄i by subtracting πγi times row i (4.87). Obviously, the result depends on
the sign of γ, since the coefficient πγi of x̄i depends on the sign of γ.

For γ > 0 we obtain for all j ∈ B by subtracting γxi, where xi is defined by (4.87),
the coefficients

πγ
+

j := πγj − (π1i)
γāij

= max{(dāk0 + γāi0e− āk0 − γāi0)(ākj + γāij),

−(āk0 + γāi0 − bāk0 + γāi0c)(ākj + γāij)}− (dāk0 + γāi0e− āk0 − γāi0)γāij

= (dāk0 + γāi0e− āk0 − γāi0)ākj + max{0,−(ākj + γāij)}.

Furthermore, the right hand side of the cut is given by

πγ
+

0 := πγ0 − (π1i)
γāi0

= (dāk0 + γāi0e− āk0 − γāi0)(āk0 − bāk0 + γāi0c).

For γ < 0 the coefficients are

πγ
−

j := πγj − (π2i)
γāij

= max{(dāk0 + γāi0e− āk0 − γāi0)(ākj + γāij),

−(āk0 + γāi0 − bāk0 + γāi0c)(ākj + γāij)}+ (āk0 + γāi0 − bāk0 + γāi0c)γāij

= (dāk0 + γāi0e− āk0 − γāi0)ākj + max{γāij,−ākj},

while the right hand side is given by

πγ
−

0 := πγ0 − (π2i)
γāi0

= (āk0 + γāi0 − bāk0 + γāi0c)(dāk0 + γāi0e− āk0).

130 4 Review on Disjunctive Cutting Planes for MILPs

See also Perregaard [86] for details. The simple disjunctive cut of the composite
row (4.88) is again equivalent to a non-trivial, feasible, basic solution (âc, b̂c, û, û0, v̂, v̂0)
of CGLPk with the following properties

ûi + v̂i = (πγi − (π1i)
γ) + (πγi − (π2i)

γ) (4.91)

= |(π1i)
γ − (π2i)

γ| = |γ|

ûj + v̂j = (πγj − (π1j)
γ) + (πγj − (π2j)

γ) (4.92)

= |(π1j)
γ − (π2j)

γ| = |ākj + γāij| ∀j ∈ B

û0 + v̂0 = (dāk0 + γāi0e− āk0 − γāi0) (4.93)

+ (āk0 + γāi0 − bāk0 + γāi0c) = 1,

satisfying all constraints of CGLPk except the normalization constraint (4.46), since∑
j∈B

ûj + ûi + û0 +
∑
j∈B

v̂j + v̂i + v̂0 = 1+ |γ|+
∑
j∈B

|ākj + γāij|. (4.94)

Scaling the cut with
1

1+ |γ|+
∑
j∈B

|ākj + γāij|
leads to a feasible, basic solution of

CGLPk satisfying also the normalization constraint (4.46). Furthermore,

ûl + v̂l = |ākl + γāil| = 0 (4.95)

holds, since γ = −
ākl

ail
, where l is the chosen basic variable to be eliminated. Therefore

the strongest cut is obtained by eliminating the basic variable ūl or v̄l with l ∈ B,
which minimizes the following functions

f+(γ) :=
πγ

+
s̄B − π

γ+

0

1+ |γ|+
∑
j∈B

|ākj + γāij|
(4.96)

f−(γ) :=
πγ

−
s̄B − π

γ−

0

1+ |γ|+
∑
j∈B

|ākj + γāij|
. (4.97)

We can perform some reformulations to obtain the following expressions applying
notation (4.25):

πγ
+

s̄B − π
γ+

0 =
∑
j∈B

(max{0,−(ākj + γāij)}s̄j) (4.98)

+(dāk0 + γāi0e− āk0 − γāi0)(bāk0 + γāi0c− ȳk)
πγ

−

s̄B − π
γ−

0 =
∑
j∈B

(max{γāij,−ākj}s̄j) (4.99)

+(dāk0 + γāi0e− āk0 − γāi0)(dāk0 + γāi0e− ȳk)
+āk0 − dāk0 + γāi0e.

4.5 An Efficient Cut Generation Procedure for Disjunctive Cutting Planes 131

This proves the theorem.

Now we can formulate the algorithm proposed by Perregaard [86] to solve CGLPk
implicitly.

Algorithm 4.1. 1. Solve the continuous relaxation (4.15) of MILP (4.26). Let
(x̄, ȳ) be an optimal, basic solution with bȳkc < ȳk < dȳke, i.e., ȳk is fractional.

2. Let B be the index set of the current basis. Compute the reduced costs given by
(4.55) for each constraint i /∈ B, i 6= k, i.e., for ui and vi. The sets M1 and M2

are given by

M1 := {j ∈ B : ākj < 0∨ (ākj = 0∧ āij > 0)}

and

M2 := B\M1

for rui. For determining rvi, M1 and M2 are given by

M1 := {j ∈ B : ākj < 0∨ (ākj = 0∧ āij < 0)}

and

M2 := B\M1

3. Let i∗ be a constraint with rui∗ < 0 or rvi∗ < 0.

If i∗ does not exist, then GOTO Step 7.

4. Identify the most improving pivot column j∗ in row i∗ by minimizing f+(γj) over
all j ∈ B with γ > 0 and f−(γj) over all j ∈ B with γj < 0, where γj is defined

by γj := −
ākj

āi∗j
. Choose the smaller of both values.

5. Pivot on āi∗j∗, i.e., replace basic constraint j∗ with non-basic constraint i∗.

6. GOTO Step 2.

7. Perturbation of row k (4.86):

If row k has no zero entries, then STOP.

Else perturb row k by replacing every zero entry by εt for some small ε > 0
and t = 1, 2 GOTO Step 2.

132 4 Review on Disjunctive Cutting Planes for MILPs

5. DISJUNCTIVE CUTTING PLANES
FOR NON-BASIC SOLUTIONS

In this chapter we propose efficient cut generation methods for disjunctive cutting
planes for non-basic solutions. This is one of the main results of this thesis. Based
on available theory presented in Chapter 4, we generalize the implicit construction
method for disjunctive cuts outlined in Algorithm 4.1. To the best of our knowledge,
this is the first procedure for generating general cutting planes for non-basic solutions.
The numerical results presented in Chapter 6 indicate the potential of the proposed
method, since the construction times are very low, while the generated cutting planes
often improve the performance significantly.

As already mentioned in the previous chapter, we focus on non-basic solutions instead
of basic solutions, since we want to solve the mixed-integer quadratic program

x ∈ X, y ∈ Y :

min
1

2

(
xT , yT

)
B

(
x

y

)
+ cT

(
x

y

)
s.t. AE

(
x

y

)
= bE,

AI

(
x

y

)
≥ bI.

(5.1)

x and y denote the vectors of the continuous and integer variables, respectively, while
B ∈ Rn×n is a positive definite matrix and c ∈ Rn holds. X and Y are defined by the
upper and lower bounds on both the continuous and the integer variables, see (1.2). nc
denotes the number of continuous variables and ni is the number of integer variables.
The total number of variables is denoted by n, i.e., n := ni+nc. Equality constraints
are denoted by AE ∈ Rme×n and bE ∈ Rme , while inequality constraints are given by
AI ∈ Rmi×n and bI ∈ Rmi . Therefore me denotes the number of equality constraints,
while mi is the number of inequality constraints.

To be consistent with the notation introduced in the previous chapter MIQP (5.1) is

134 5 Disjunctive Cutting Planes for non-basic Solutions

reformulated and we obtain

x ∈ Rnc , y ∈ Nni :

min
1

2

(
xT , yT

)
B

(
x

y

)
+ cT

(
x

y

)
s.t. Â

(
x

y

)
≥ b̂.

(5.2)

Note, that the constraints of MIQP (5.2) contain an upper and a lower bound for
each continuous and integer variable. The number of constraints is again denoted by
m̂, while the number of variables n remains unchanged. We denote by Ĵ the index set
of all constraints of MIQP (5.2), i.e., Ĵ also contains the upper and lower bounds on
all variables.

In general, the solution (x̄, ȳ) ∈ X× YR of the continuous relaxation of MIQP (5.2) is
non-basic, i.e., less than n constraints are active, see Definition 4.3. As a consequence
the generation of general cutting planes is challenging, since cuts need not exist for
non-basic solutions. Our task is therefore, to develop a cut generation method, that
on the one hand constructs cutting planes, if they exist, while it proves their non-
existence efficiently, in case no cuts exist.

We focus on disjunctive cutting planes, since these two tasks can be established also
for non-basic solutions by solving the cut generation linear program (4.45). As the
solution of CGLPk is computationally expensive, the generalization of Algorithm 4.1
for non-basic solutions is very attractive.

In this chapter we first briefly analyze the possibility of solving the cut generation
linear program (4.45) for non-basic solutions. Since this is computationally too ex-
pensive to speed up the solution of MIQP (5.2), we propose a first generalization of
the efficient cut generation procedure described by Algorithm 4.1 in Section 5.2. Since
there are some cases where this generalization fails to generate the disjunctive cut,
we develop an improved cut generation method in Section 5.3, that is guaranteed to
construct the disjunctive cut, if it exists. Furthermore this cut generation method
also efficiently proves the non-existence of disjunctive cuts. This is a very important
property, since often no disjunctive cut exists for a non-basic solution (x̄, ȳ) for the
majority of the two-term disjunctions.

5.1 Solving the full CGLP

The reason for focusing on disjunctive cutting planes in this thesis, is the observation,
that disjunctive cuts can also be constructed for non-basic solutions by solving the
cut generation linear program (4.45). As already mentioned in the previous chapter,
the construction of disjunctive cutting planes by solving CGLPk (4.45) is very expen-
sive. On the one hand the dimension of CGLPk is significantly larger compared to the
original MIQP (5.2). Especially, if the original mixed-integer program possesses many

5.1 Solving the full CGLP 135

constraints, a large number of variables ui and vi, i = 1, . . . , m̂ has to be introduced
in the CGLPk. On the other hand the cut generating linear program is mostly degen-
erated and cycling occurs, if no anti-cycling rules are applied. As a consequence linear
solvers, e.g., CLP of Forrest et al. [54], are expected to often fail to determine the
optimal solution, especially if CGLPk is set up for a non-basic solution. Furthermore,
only one single cutting plane is constructed by solving the CGLPk.

For mixed-integer quadratic programs no disjunctive cut exists for the majority of the
fractional integer variables, see Chapter 6. In this case the optimal solution of CGLPk
is already known in advance as shown in the subsequent corollary.

Corollary 5.1. Let (x̄, ȳ) be the solution of the continuous relaxation of MIQP (5.2).
Let ȳk be fractional and let at least one constraint (âi, b̂i) be active at (x̄, ȳ). Further-
more, assume, that no disjunctive cut exists for the disjunction

yk ≤ bȳkc ∨ yk ≥ dȳke. (5.3)

Then one optimal solution of CGLPk(x̄, ȳ, Â, b̂) is given by

ui := 0.5

vi := 0.5

ac := 0.5âi

bc := 0.5b̂i, (5.4)

uj := 0, ∀j ∈ Ĵ\{i},
vj := 0, ∀j ∈ Ĵ\{i},
u0 := 0,

v0 := 0,

where Ĵ denotes the index set of all constraints of MIQP (5.2).

Proof. Since by assumption no disjunctive cut exists for the disjunction (5.3), the
optimal objective value of CGLPk(x̄, ȳ, Â, b̂) is greater or equal to zero. Evaluating
the objective function at (5.4) yields

aTc

(
x̄

ȳ

)
− bc = 0.5âTi

(
x̄

ȳ

)
− 0.5b̂i

= 0.5

(
âTi

(
x̄

ȳ

)
− b̂i

)
= 0.

(5.5)

Now we show, that (5.4) satisfies all constraints of CGLPk(x̄, ȳ, Â, b̂):

Obviously the normalization constraint (4.46) is satisfied. Evaluating the remaining

136 5 Disjunctive Cutting Planes for non-basic Solutions

constraints at (5.4) yields:

ac − Â
Tu+ u0ek = 0.5âi − Â

T(0.5ei) = 0

ac − Â
Tv− v0ek = 0.5âi − Â

T(0.5ei) = 0

−bc + b̂
Tu− u0bȳkc = −0.5b̂i + b̂

T(0.5ei) = 0

−bc + b̂
Tv+ v0dȳke = −0.5b̂i + b̂

T(0.5ei) = 0

(5.6)

Since all constraints of CGLPk(x̄, ȳ, Â, b̂) are satisfied and the objective value is zero,
(5.4) is one of the optimal solutions of CGLPk(x̄, ȳ, Â, b̂), if no disjunctive cutting
plane for disjunction (5.3) exists.

Since (5.4) is the optimal solution for a vast majority of cut generating linear programs,
one would like to exploit this knowledge.

Indeed there exists a variant of the simplex method called the Basis-Deficiency-
Allowing Simplex developed by Pan [85], which is suited very well for this situation.
The advantage of this algorithm is, that it does not work exclusively with basic so-
lutions, in contrast to the well-known primal or dual simplex method. Instead, all
calculations are based on linear independent subsets of the variables of arbitrary size.
Therefore, we can directly start with the trivial, feasible solution (5.4), which is ob-
viously non-basic with respect to the CGLPk, and establish optimality within very
few iterations. If the optimal solution of CGLPk generates a disjunctive cutting plane,
then the algorithm is expected to perform rather similar compared to the well-known
primal or dual simplex method, see Pan [85].

Numerical experience shows, that the number of disjunction variables u and v, that
obtain nonzero values in the optimal solution of CGLPk is rather low, if disjunctive
cutting planes exist for the optimal non-basic solution (x̄, ȳ) of the continuous relax-
ation of MIQP (5.2). In most cases these variables corresponded to active or almost
active constraints. As proved by Balas and Perregaard [17] in Theorem 4.2 the number
of nonzero disjunction variables (u, v) cannot exceed n in the optimal solution of the
CGLPk, if a disjunctive cutting plane exists. Especially for non-basic solutions (x̄, ȳ)
the optimum of CGLPk is often degenerated, i.e., the number of nonzero variables
from (u, v) is smaller than n.

5.2 A First Efficient Cut Generation Method for

Disjunctive Cuts for Non-basic Solutions

The straightforward way to construct disjunctive cutting planes by solving the full
CGLPk for every fractional integer variable is inefficient, see Section 5.1. Therefore,
we want to generalize Algorithm 4.1 such that it is applicable for non-basic solutions
(x̄, ȳ) ∈ X× YR.

5.2 A First Efficient Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 137

First we subsume some important observations from Chapter 4:

• The basic principle of Algorithm 4.1 is the equivalence of the simple disjunctive
cut (4.49) and a non-trivial, feasible, basic solution of CGLPk (4.45) established
in Theorem 4.2 by Balas and Perregaard [17]. Since we cannot construct a simple
disjunctive cut for a non-basic solution, Algorithm 4.1 cannot be applied in a
straightforward way.

• Algorithm 4.1 can be applied without modifications also for non-basic solutions,
if a cut-generating, feasible, basic solution of the CGLPk according to Defini-
tion 4.6 is provided, since Theorem 4.3 and Theorem 4.4 do not require the
solution (x̄, ȳ) of the continuous relaxation to be a basic solution.

• Since the existence of disjunctive cutting planes for a non-basic solution (x̄, ȳ) is
not guaranteed, a cut-generating, feasible, basic solution of the CGLPk might not
exist in the general case. As a consequence, the generalization of Algorithm 4.1
needs to prove the non-existence of disjunctive cutting planes efficiently.

Now we provide an overview on the foundations of our extension of Algorithm 4.1 for
non-basic solutions:

The construction of a basic solution (x̂, ŷ), that is located in the disjunction induced
by ȳk, i.e.,

bȳkc ≤ ŷk ≤ dȳke (5.7)

holds, is necessary to exploit the basic principle of Algorithm 4.1. Note, that the
basic solution (x̂, ŷ) induces a simple disjunctive cut, which is equivalent to a non-
trivial, feasible, basic solution of CGLPk(x̄, ȳ, Â, b̂), if condition (5.7) holds. The work
of Perregaard and Balas relates a basis of the original problem, i.e., the continuous
relaxation of the mixed-integer problem, to a basis of the CGLPk via the simple
disjunctive cut associated with the basis and assignment (4.53), if condition (5.7)
holds.

In the remainder of this section, we analyze this fundamental observation by

1. constructing a basic solution (x̂, ŷ) by basis crushing.

2. constructing a basic solution (x̂, ŷ) by the introduction of an artificial constraint.

5.2.1 Construction of a basic solution by basis crushing

A natural candidate for a basic solution (x̂, ŷ) ∈ X×YR can be determined by so-called
basis crushing as follows:

Determine the largest subset of linearly independent constraints, that are active at
(x̄, ȳ) and denote the dimension of this subset by na. Then extend the subset by n−na

138 5 Disjunctive Cutting Planes for non-basic Solutions

additional linearly independent constraints and denote the corresponding index set of
these constrains by B. B forms a basis according to Definition 4.3.

Basis crushing generally deals with the question how to determine a basic solution
starting at a non-basic one. Originally basis crushing is based on a QR decomposition.
Beling and Megiddo [20] describe a method, that reduces the effort to O(m̂1.594n),
if fast matrix multiplications are used. Since many algorithms solving continuous
quadratic programs, e.g., QL see Schittkowski [94], are based on QR decompositions,
we rely on basis crushing via QR decomposition. Denoting the basic solution corre-
sponding to B by (x̂, ŷ), (x̂, ŷ) = Â−1

B b̂B holds after basis crushing.

If (x̂, ŷ) is constructed by basis crushing, two possibilities arise for a fractional integer
variable yk, i.e., ȳk 6∈ Z. Either bȳkc = bŷkc or bȳkc = bŷkc + l with l ∈ Z, l 6= 0

holds. The consequences are analyzed in the subsequent corollaries.

Corollary 5.2. Let (x̂, ŷ) be a basic solution with corresponding basis B. Let (x̄, ȳ)
be the solution of the continuous relaxation of MIQP (5.2). Let bȳkc = bŷkc hold.

Then the simple disjunctive cut (4.49) induced by (x̂, ŷ) for variable ŷk determines a
non-trivial, feasible, basic solution of CGLPk(x̄, ȳ, Â, b̂) via assignment (4.53).

Proof. Due to Theorem 4.2, the simple disjunctive cut (4.49) induced by (x̂, ŷ) for
variable ŷk is equivalent to a non-trivial, feasible, basic solution for CGLPk(x̂, ŷ, Â, b̂).

Since CGLPk(x̄, ȳ, Â, b̂) and CGLPk(x̂, ŷ, Â, b̂) only differ in the objective function, a
non-trivial, feasible, basic solution of CGLPk(x̂, ŷ, Â, b̂) is also a non-trivial, feasible,
basic solution of CGLPk(x̄, ȳ, Â, b̂).

This proves the corollary.

Corollary 5.3. Let (x̂, ŷ) be a basic solution with corresponding basis B. Let (x̄, ȳ)
be the solution of the continuous relaxation of MIQP (5.2). Let bȳkc = bŷkc+ l with
l ∈ Z, l 6= 0 hold.

Then (âc, b̂c, û, û0, v̂, v̂0) obtained from assignment (4.53) and the simple disjunctive
cut (4.49) induced by (x̂, ŷ) for variable ŷk is not feasible for CGLPk(x̄, ȳ, Â, b̂).

Proof. Due to Theorem 4.2, the simple disjunctive cut (4.49) induced by (x̂, ŷ) for
variable ŷk is equivalent to a non-trivial, feasible, basic solution (âc, b̂c, û, û0, v̂, v̂0) of
CGLPk(x̂, ŷ, Â, b̂) with û0 > 0 and v̂0 > 0.

Evaluation of the constraints of CGLPk(x̂, ŷ, Â, b̂) yields

−b̂c + b̂
T û− û0bŷkc = 0, (5.8)

which implies

−b̂c + b̂
T û− û0bȳkc = −b̂c + b̂

T û− û0(bŷkc+ l)

= −û0l 6= 0
(5.9)

5.2 A First Efficient Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 139

for û0 > 0. Analogue

−b̂c + b̂
T v̂+ v̂0dŷke = 0 (5.10)

holds and therefore

−b̂c + b̂
T v̂+ v̂0dȳke = −b̂c + b̂

T v̂+ v̂0(bȳkc+ 1)

= −b̂c + b̂
T v̂+ v̂0(bŷkc+ l+ 1)

= v̂0l 6= 0

(5.11)

for v̂0 > 0 shows, that assignment (4.53) obtained from the simple disjunctive cut
determined by (x̂, ŷ) is infeasible for CGLPk(x̄, ȳ, Â, b̂).

Note, that the remaining constraints of both CGLPk(x̂, ŷ, Â, b̂) and CGLPk(x̄, ȳ, Â, b̂)
determining the cut coefficients ac are satisfied with equality, since they do not depend
on bȳkc or bŷkc.

As a consequence the construction of a basic solution by basis crushing, does not lead
to a non-trivial, feasible, basic solution of CGLPk(x̄, ȳ, Â, b̂) in the general case.

5.2.2 Construction of a basic solution by the introduction of
an artificial constraint

Another way for constructing a basic solution (x̂, ŷ) in order to generalize Algo-
rithm 4.1, is the introduction of an artificial constraint, denoted by

âTa

(
x

y

)
≥ b̂a. (5.12)

As we will show in the remainder of this section, the introduction of an artificial
constraint has lots of advantages:

• By choosing the coefficients âa and the right hand side b̂a appropriately we
can ensure, that the constructed basic solution (x̂, ŷ) is located in the correct
disjunction, i.e., condition (5.7) holds.

• It turns out, that the introduction of an artificial constraint (5.12) can certificate
the non-existence of disjunctive cutting planes efficiently.

• The simple disjunctive cut (4.49) induced by the basic solution (x̂, ŷ) is not valid
for MIQP (5.2), if the corresponding basis contains an artificial constraint (5.12).
The validity of the simple disjunctive cut can be recovered by a basis exchange,
where the artificial constraint is replaced by one of the original constraints of
MIQP (5.2).

140 5 Disjunctive Cutting Planes for non-basic Solutions

First we show, that the introduction of an artificial constraint (5.12), yielding a basic
solution (x̂, ŷ) in the correct disjunction, can be used to prove the non-existence of dis-
junctive cutting planes for a non-basic solution (x̄, ȳ) and a two-term disjunction (5.3)
efficiently.

Lemma 5.1. Let (x̄, ȳ) be the solution of the continuous relaxation of MIQP (5.2).
Furthermore, let

Â1
(
x

y

)
≥ b̂1 (5.13)

with Â1 ∈ Rm̂1×n, b̂1 ∈ Rm̂1 and

Â2
(
x

y

)
≥ b̂2 (5.14)

with

Â2 :=

[
Â1

Ã2

]
, (5.15)

b̂2 :=

[
b̂1

b̃2

]
(5.16)

and Ã2 ∈ Rm̃2×n, b̃2 ∈ Rm̃2, Â2 ∈ Rm̂2×n, b̂2 ∈ Rm̂2 be the description of two polyhedra
P1 and P2, such that P1 is a relaxation of P2, i.e., P2 ⊂ P1. Let (x̂, ŷ) be a basic solution
of Â1 with index set B and

bȳkc ≤ ŷk ≤ dȳke. (5.17)

Let (âc, b̂c, û, û0, v̂, v̂0) be the non-trivial basic solution of CGLPk(x̄, ȳ, Â
1, b̂1) induced

by B. Assume, that (z∗CGLPk
)1 := âTc

(
x̄

ȳ

)
− b̂c is the optimal objective value of

CGLPk(x̄, ȳ, Â
1, b̂1).

Then the optimal value of the CGLPk(x̄, ȳ, Â
2, b̂2) is less or equal to (z∗CGLPk

)1.

Proof. By assumption, (z∗CGLPk
)1 := âTc

(
x̄

ȳ

)
− b̂c is the optimal objective value of

CGLPk(x̄, ȳ, Â
1, b̂1). This cut is equivalent to the simple disjunctive cut (4.49) induced

by B according to Theorem 4.2. Due to the construction of Â2 and b̂2, B is also a
basis of Â2. As a consequence of Theorem 4.2 the simple disjunctive cut induced by
B is also equivalent to a non-trivial, feasible, basic solution of CGLPk(x̄, ȳ, Â

2, b̂2).
Therefore, (z∗CGLPk

)1 ≥ (z∗CGLPk
)2 holds, which proves the Lemma.

The following corollary is a direct consequence of Lemma 5.1 and can be applied to
prove the non-existence of disjunctive cutting planes for non-basic solutions (x̄, ȳ), if
an artificial constraint (5.12) has been introduced.

5.2 A First Efficient Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 141

Corollary 5.4. Let (x̄, ȳ) be the solution of the continuous relaxation of MIQP (5.2).
Furthermore, let

Â1
(
x

y

)
≥ b̂1 (5.18)

with Â1 ∈ Rm̂1×n, b̂1 ∈ Rm̂1 and

Â2
(
x

y

)
≥ b̂2 (5.19)

with

Â2 :=

[
Â1

Ã2

]
, (5.20)

b̂2 :=

[
b̂1

b̃2

]
(5.21)

and Ã2 ∈ Rm̃2×n, b̃2 ∈ Rm̃2, Â2 ∈ Rm̂2×n, b̂2 ∈ Rm̂2 be the description of two polyhedra
P1 and P2, such that P1 is a relaxation of P2, i.e., P2 ⊂ P1. Let (x̂, ŷ) be a basic solution
of Â2 with index set B and

bȳkc ≤ ŷk ≤ dȳke. (5.22)

Let (âc, b̂c, û, û0, v̂, v̂0) be the non-trivial basic solution of CGLPk(x̄, ȳ, Â
2, b̂2) induced

by B. Assume, that (z∗CGLPk
)2 := âTc

(
x̄

ȳ

)
− b̂c ≥ 0 is the optimal objective value of

CGLPk(x̄, ȳ, Â
2, b̂2).

Then no disjunctive cutting planes for the disjunction (5.3) determined by ȳk exist
for polyhedron P1, i.e., the optimal objective value of CGLPk(x̄, ȳ, Â

1, b̂1) is greater
or equal zero.

Proof. Applying Lemma 5.1 yields (z∗CGLPk
)1 ≥ (z∗CGLPk

)2 ≥ 0. Note, that (z∗CGLPk
)1 ≥

0 proves the non-existence of disjunctive cutting planes for the corresponding disjunc-
tion (5.3).

In the remainder of this subsection, different artificial constraints are analyzed with
respect to their suitability for a generalization of Algorithm 4.1. As mentioned at
the beginning of this subsection any artificial constraint has to ensure, that the con-
structed basic solution (x̂, ŷ) is located in the considered disjunction, i.e., (5.7) holds.
Furthermore, Corollary 5.4, which might give a certificate for the non-existence of
disjunctive cutting planes for the disjunction (5.3), can be applied independently of
the choice of the artificial constraint.

142 5 Disjunctive Cutting Planes for non-basic Solutions

As a consequence, the artificial constraint has to be determined, such that it can be
removed from the basis easily to obtain a valid inequality after a basis exchange.

As a first attempt we choose the artificial constraint (5.12) to be either

yk = bȳkc (5.23)

or

yk = dȳke. (5.24)

Then the corresponding basic solution (x̂, ŷ) is located on the boundary of the dis-
junction determined by ȳk, where (x̄, ȳ) is the solution of the continuous relaxation
of MIQP (5.2) to be cut off, i.e., ŷk = bȳkc or ŷk = dȳke holds.

Note, that we can determine (x̂, ŷ) trivially by including one upper or lower bound
for each continuous and integer variable apart from variable yk in the corresponding
basis B and choosing the artificial constraint to be (5.23) or (5.24).

Instead of constructing the basis with upper or lower bounds on the variables, we
can also form the basis with (5.23) or (5.24) and those constraints that are linearly
independent and possess the lowest slack values s̄j at (x̄, ȳ), with

s̄j := âj

(
x̄

ȳ

)
− b̂j, j ∈ Ĵ. (5.25)

It turns out, that choosing the artificial constraint to be either (5.23) or (5.24) has a
disadvantage:

If either (5.23) or (5.24) are included in the basis forming (x̂, ŷ), the k-th row of the
inverse of the basis matrix is given by either ek or −ek, i.e.,

(Â−1
B)k = ek (5.26)

or

(Â−1
B)k = −ek (5.27)

holds.

Since the reduced costs in Algorithm 4.1 are determined by this row, see Theorem 4.3,
we have to perform perturbation Step 7 of Algorithm 4.1 in order to continue. From
a computational point of view, the perturbation step should be avoided, if possible,
see Perregaard [86].

5.2.3 A suitable artificial Constraint for an efficient
Cut-Generation Method for non-basic Solutions

We want to choose the artificial constraint (5.12) such that

5.2 A First Efficient Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 143

• the constructed basic solution (x̂, ŷ) is located in the correct disjunction,

• we can prove the non-existence of disjunctive cutting planes efficiently,

• we can remove the artificial constraint from the basis easily.

Corollary 5.4 is to be exploited, to prove the non-existence of disjunctive cutting
planes for a given disjunction. This means, that we want to construct a non-trivial,

feasible, basic solution of the extended CGLPk

(
x̄, ȳ,

[
ÂT , âa

]T
,
[
b̂T , b̂a

]T)
, such that

the corresponding simple disjunctive cutting plane does not cut off the relaxed solution
(x̄, ȳ) of MIQP (5.2).

Recalling Lemma 4.1 and Definition 4.6 we know that a trivial, feasible solution
(âc, b̂c, û, û0, v̂, v̂0) of any CGLPk yields no cutting plane, since (âc, b̂c) corresponds
to a non-negative linear combination of the constraints associated with the variables
ûi > 0 and v̂i > 0. This means that the corresponding linear inequality given by

(âc, b̂c) is not violated by any feasible point (x, y) satisfying Â

(
x

y

)
≥ b̂. As a

consequence, it fits to Corollary 5.4, but in order to extend Algorithm 4.1 we need to
work with non-trivial, feasible, basic solution, e.g., for calculating reduced costs (4.55).

The subsequent corollary shows how both requirements can be accomplished.

Corollary 5.5. Let (x̂, ŷ) be a basic solution satisfying

ŷk = dȳke− ε, (5.28)

where (x̄, ȳ) is the solution of the continuous relaxation of MIQP (5.2) and ε ∈ [0, 1]
is a constant. Denote the basis forming (x̂, ŷ) by B and let B contain an artificial
constraint (âa, b̂a(ε)), where the right hand side also depends on ε and is chosen such
that (5.28) holds.

For ε = 0 and ε = 1, the simple disjunctive cut (4.49) induced by (x̂, ŷ) determines

a non-trivial, feasible, basic solution of CGLPk

(
x̄, ȳ,

[
ÂT , âa

]T
,
[
b̂T , b̂a(ε)

]T)
via as-

signment (4.53), that does not cut off (x̄, ȳ).

Proof. The simple disjunctive cut induced by (x̂, ŷ) is given by

π0 = (ŷk − bȳkc)(dȳke− ŷk) = (1− ε)ε,

π1j = (dȳke− ŷk)

([
Â

âa

]−1
B

)
kj

= −ε

([
Â

âa

]−1
B

)
kj

,

π2j = (ŷk − bȳkc)

([
Â

âa

]−1
B

)
kj

= (1− ε)

([
Â

âa

]−1
B

)
kj

,

πj = max{π1j , π
2
j } ∀j ∈ B,

(5.29)

Since ŷk satisfies (5.28) with ε ∈ [0, 1], (x̂, ŷ) is located in the correct disjunction,
i.e., (5.7) holds. As a consequence we obtain a non-trivial, feasible, basic solution

144 5 Disjunctive Cutting Planes for non-basic Solutions

(âc, b̂c, û, û0, v̂, v̂0) for CGLPk

(
x̄, ȳ,

[
ÂT , âa

]T
,
[
b̂T , b̂a(ε)

]T)
by assignment (4.53) with

(5.29). For ε = 0 this non-trivial, feasible, basic solution satisfies û0 = 0, while v̂0 = 0
holds for ε = 1, see assignment (4.53) stating

û0 := (dȳke− ŷk) θ (5.30)

v̂0 := (ŷk − bȳkc) θ, (5.31)

with θ > 0.

Due to Lemma 4.1, the inequality defined by (âc, b̂c) does not cut off (x̄, ȳ), which
proves the corollary.

Figure 5.1 illustrates the previous corollary. The basic solution (x̂, ŷ) is determined by
the constraints âl and âj and the corresponding simple disjunctive cut is c. Moving
constraint âj by parallel translation yields constraint â ′j determining basic solution
(x̂ ′, ŷ ′) and the simple disjunctive cut c ′. The cut c ′ is weaker than c. If we repeat
this procedure we obtain basic solution (x̂ ′′, ŷ ′′) determined by constraint â ′′j and âl
with ŷ ′′ = dŷe. As a consequence the associated simple disjunctive cut is equivalent
to constraint âl, which implies, that the feasible region is not truncated.

Note, that it is possible to apply the steps of Algorithm 4.1 to the non-trivial, feasible,
basic solution of the CGLPk constructed by Corollary 5.5 with ε = 0 or ε = 1.
The reason is, that although (x̂, ŷ) is located on the boundary of the disjunction,
i.e., (5.23) or (5.24) hold, (x̂, ŷ) induces a non-trivial, feasible, basic solution of the
CGLPk. The reduced cost for ui and vi with i /∈ B can be evaluated for this non-
trivial, feasible, basic solution of the CGLPk, since all terms in formulas (4.55) depend

on the corresponding basis matrix

[
Â

âa

]
B

and its inverse. The sets M1 and M2 are

defined according to the corresponding simple disjunctive cut (4.49) by the sign of the

corresponding element of

[
Â

âa

]−1
B

, i.e.,

M1 := {j ∈ B : ākj < 0∨ (ākj = 0∧ āij > 0)}

and

M2 := B\M1

for determining rui and

M1 := {j ∈ B : ākj < 0∨ (ākj = 0∧ āij < 0)}

and

M2 := B\M1

5.2 A First Efficient Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 145

for determining rvi . Note, that we applied notation (4.25). Therefore it is possible to
run Algorithm 4.1 starting with this non-trivial, feasible, basic solution of the CGLPk.

y

x

âl = c
′′

âj

y = bȳc y = dȳe

â ′j

â ′′jc

c ′

(x̂, ŷ)

(x̂ ′, ŷ ′)
(x̂ ′′, ŷ ′′)

Fig. 5.1: Simple Disjunctive Cut in the Limit

As a consequence, the non-trivial, feasible, basic solution of the CGLPk obtained from
the simple disjunctive cut (5.29) due to assignment (4.53) ensures that the solution
(x̄, ȳ) of the continuous relaxation of MIQP (5.2) is not cut off. This allows the
application of Corollary 5.4, which might give a certificate for the non-existence of
disjunctive cutting planes for the current disjunction.

Nevertheless, we still have to deal with the situation, that Corollary 5.4 cannot be
applied, since some reduced costs (4.55) are negative. In this situation the artificial
constraint (5.12) needs to be removed, in order to construct a valid cutting plane or
at least a valid inequality.

In the sequel we propose an the construction method for an artificial constraint,
which ensures, that the artificial constraint can be removed from the basis by a basis
exchange under certain conditions. Furthermore, the constructed artificial constraint
ensures that the basic solution (x̂, ŷ) is located on the boundary of the disjunction, i.e.,
(5.23) or (5.24) hold. As a consequence the solution (x̄, ȳ) of the continuous relaxation
of MIQP (5.2) is not cut off by the induced simple disjunctive cut, see Corollary 5.5.

Algorithm 5.1. Let (x̄, ȳ) be the non-basic solution of the continuous relaxation of
MIQP (5.2). Let yk be an integer variable, that is fractional at (x̄, ȳ), i.e., ȳk 6∈ N.

146 5 Disjunctive Cutting Planes for non-basic Solutions

1. Determine a not necessarily feasible, basic solution (x̂, ŷ) with the corresponding
basis B̃ and basic matrix ÂB̃, such that B̃ contains either constraint

yk = bȳkc (5.32)

or

ŷk = dȳke, (5.33)

where we denote the corresponding index within basis B̃ by k̄. I.e., either ŷk =
bȳkc, or alternatively ŷk = dȳke holds.

2. Determine the artificial constraint (âa, b̂a) by

âTa := −eT ÂB̃,

b̂a := −eT ÂB̃

(
x̂

ŷ

)
,

(5.34)

where e ∈ Rn is the vector of all ones.

3. Replace constraint yk = bȳkc, or alternatively yk = dȳke, by the artificial con-
straint (âa, b̂a) and denote the index set by B, i.e.

B := B̃\{k̄} ∪ {a}, (5.35)

where a is the index of the artificial constraint (5.34).

4. RETURN artificial constraint (5.34) and basis B with the corresponding basic
solution (x̂, ŷ).

Note, that the basic solution (x̂, ŷ) generated in Step 1 can always be determined by
one bound on each variable apart from yk and the constraint

yk = bȳkc. (5.36)

or

yk = dȳke. (5.37)

Alternatively, basis crushing starting at (x̄, ȳ) and with the constraint (5.36) or (5.37)
can be applied to obtain (x̂, ŷ), such that the basis B̃ contains as a subset all linear
independent constraints, that are active at (x̄, ȳ).

The subsequent corollary motivates the construction of the artificial constraint by
assignment (5.34) in Algorithm 5.1.

5.2 A First Efficient Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 147

Corollary 5.6. Let the artificial constraint (âa, b̂a) and the basis B with correspond-
ing basic solution (x̂, ŷ) be constructed by Algorithm 5.1. Furthermore let B̃ be the
basis constructed in Step 1 of Algorithm 5.1.

Then (x̂, ŷ) is the unique optimal solution of the linear program

x ∈ Rnc , y ∈ Rni :

min ãTa

(
x

y

)
s.t. ÂB̃

(
x

y

)
= b̂B̃,

(5.38)

with ãa := −âa.

Proof. Note, that the negated coefficients of the artificial constraint determined by
Algorithm 5.1, correspond to the vector of the objective function in LP (5.38).

The reduced costs with respect to a general objective function cT
(
x

y

)
are given by

cT
B̃⊥

− cT
B̃
Â−1

B̃
ÂB̃⊥ , where B̃ denotes the indices of the basic variables, while B̃⊥ denotes

the indices of the non-basic variables, see e.g., Jarre and Stoer [66]. For the linear
program (5.38) ÂB̃⊥ = −I holds and we can set cB̃⊥ := 0. Therefore the optimality
conditions for (x̂, ŷ) and LP (5.38) are

−cT
B̃
Â−1

B̃
(−I) > 0, (5.39)

cT
B̃
Â−1

B̃
> 0. (5.40)

The negated coefficients ãa satisfy the optimality conditions due to assignment (5.34),
which proves the corollary.

Since (x̂, ŷ) is the optimal solution of LP (5.38), (x̂, ŷ) is the only point satisfying

all constraints ÂB̃

(
x

y

)
≥ b̂B̃ and ãTa

(
x

y

)
≥ b̃a, with b̃a := −b̂a. Therefore,

the artificial constraint (âa, b̂a) determined by Algorithm 5.1 with âa = −ãa and
b̂a = −b̃a is dominated by the constraints included in B̃, see also Figure 5.2, i.e.,
(x̂, ŷ) is the only point, where the artificial constraint obtained by (5.34) is active and
all constraints forming B̃ are satisfied.

Under certain conditions the proposed construction of the artificial constraint can be
exploited, in order to remove the artificial constraint determined by (5.34) to obtain
a valid inequality. This is proved in the subsequent lemma.

Lemma 5.2. Let the artificial constraint (âa, b̂a) and the basis B with correspond-
ing basic solution (x̂, ŷ) be constructed by Algorithm 5.1. Let the artificial constraint
be indexed by a, while all other constraints are indexed by 1, . . . , n − 1, i.e., B =

148 5 Disjunctive Cutting Planes for non-basic Solutions

{1, . . . , n − 1, a}. Denote the objective value of the induced non-trivial, feasible, basic
solution of the CGLPk by ẑCGLPk.

Let B1 := B\{l} ∪ {j} be a neighboring basis with l ∈ B and j 6∈ B, that induces a
non-trivial, feasible, basic solution of CGLPk, where the corresponding objective value
is denoted by (zCGLPk)

1, with (zCGLPk)
1 < ẑCGLPk.

Then the basis determined by the constraints

âTi

(
x

y

)
≥ b̂i, ∀i ∈ B\{a} (5.41)

and

âTj

(
x

y

)
≥ b̂j, (5.42)

induces a non-trivial, feasible, basic solution of the CGLPk, where the corresponding
objective value is denoted by zCGLPk, with zCGLPk < ẑCGLPk.

Proof. By assumption basis B1 induces a non-trivial, feasible, basic solution of CGLPk
with (zCGLPk)

1 < ẑCGLPk . By construction B1 is adjacent to B, which ensures, that the
subsequent conditions hold for the corresponding basic solution (x̂1, ŷ1).

bȳkc ≤ (ŷ1)k ≤ dȳke,

âTi

(
x̂1
ŷ1

)
= b̂i, ∀i ∈ B\{l, a},

âTj

(
x̂1
ŷ1

)
= b̂j,

âTa

(
x̂1
ŷ1

)
= b̂a.

(5.43)

(x̂1, ŷ1) is constructed by replacing some constraint l

âTl

(
x

y

)
≥ b̂l, l ∈ B (5.44)

with constraint j

âTj

(
x

y

)
≥ b̂j, j /∈ B. (5.45)

Without loss of generality, we consider the two-dimensional case with n = 2, since it
is sufficient to work in the null-space of the matrix formed by the constraints

âTi

(
x

y

)
= b̂i, ∀i ∈ B\{l, a}. (5.46)

5.2 A First Efficient Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 149

Then the basic solution (x̂, ŷ) determined by

âTa

(
x̂

ŷ

)
= b̂a,

âTl

(
x̂

ŷ

)
= b̂l.

(5.47)

induces a non-trivial, feasible, basic solution (âc, b̂c, û, û0, v̂, v̂0) of CGLPk with ob-
jective value ẑCGLPK.

By construction the intersection of the artificial constraint

âTa

(
x

y

)
= b̂a (5.48)

and the polyhedron P given by

P :=

{
(x, y) ∈ R2 : âTl

(
x

y

)
≥ b̂l, y ≥ bȳc, y ≤ dȳe

}
(5.49)

is the basic solution (x̂, ŷ) due to Corollary 5.6, i.e.,

P ∩
{
(x, y) ∈ R2 : âTa

(
x

y

)
= b̂a

}
= {(x̂, ŷ)} . (5.50)

As by construction (x̂, ŷ) is located on the boundary of the disjunction, i.e., (5.23) or
(5.24) hold, (âc, b̂c) is equivalent to the coefficients (âl, b̂l) of constraint

âTl

(
x

y

)
≥ b̂l, (5.51)

see also Lemma 4.1 and assignment (4.53).

By assumption the exchange of constraint l by constraint j yields the basis B1 which
induces a non-trivial, feasible, basic solution of the CGLPk with (zCGLPk)

1 < ẑCGLPk .
Therefore the intersection of the constraint

âTj

(
x

y

)
≥ b̂j, (5.52)

with the polyhedron P given by (5.50) needs to truncate the polyhedron P, i.e.,

P ∩
{
(x, y) ∈ R2 : âTj

(
x

y

)
≥ b̂j
}

(P. (5.53)

As a consequence there exists a basis determined by the intersection of constraint l
and j within P. This basis induces a non-trivial, feasible, basic solution of the CGLPk,
with objective value zCGLPk satisfying zCGLPk < ẑCGLPk due to the construction of the
artificial constraint, see Corollary 5.6.

This proves the lemma.

150 5 Disjunctive Cutting Planes for non-basic Solutions

Figure 5.2 illustrates the situation, where (x̂2, ŷ2) denotes the alternative basic solution
determined by the intersection of constraint l and j and c1 denotes the improving
simple disjunctive cut induced by both (x̂1, ŷ1) and (x̂2, ŷ2).

Note, that the cut induced by (x̂1, ŷ1) might differ from the one generated by (x̂2, ŷ2),
in case that constraint j intersects the hyperplane y = bȳc within the polyhedron P.

y

x

âl

âj

y = bȳc y = dȳe

âa

(x̂2, ŷ2)
(x̂, ŷ)

(x̂1, ŷ1)

P

âl

âj

y = bȳc y = dȳe

âa

c1

(x̂2, ŷ2)
(x̂, ŷ)

(x̂1, ŷ1)

Fig. 5.2: Alternative Simple Disjunctive Cut

Based on the previous considerations we propose the following extension of Algo-
rithm 4.1. It can efficiently generate disjunctive cutting planes and in some cases the
non-existence of disjunctive cutting planes for the current disjunction (4.27) can be
proved.

Algorithm 5.2. 1. Solve the continuous relaxation of MIQP (5.2). Let (x̄, ȳ) be
the optimal solution with bȳkc < ȳk < dȳke, i.e., ȳk is fractional.

2. Determine a basic solution, if necessary:

If (x̄, ȳ) is no basic solution, then determine an artificial constraint

âTa

(
x

y

)
≥ b̂a and a basis B with corresponding basic solution (x̂, ŷ)

by Algorithm 5.1.

Else denote the basis determining (x̄, ȳ) by B.

5.2 A First Efficient Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 151

Determine the non-trivial, feasible, basic solution (âc, b̂c, û, û0, v̂, v̂0) of the CGLPk
induced by basis B.

3. Compute the reduced costs (4.55) according to Step 2 of Algorithm 4.1.

4. Remove artificial constraint, if necessary:

If an artificial constraint with index a is included in B, then set the index
j∗ of the basic constraint to be removed from B to a, i.e., set j∗ = a.
Set the index i∗ of the non-basic constraint to be included in the basis
to the index i of that non-basic constraint (âi, b̂i), i 6∈ B that possesses
the lowest negative reduced costs for either ûi or v̂i and yields a basic
solution within the disjunction induced by ȳk after the basis exchange

i∗ for j∗, i.e., condition (4.89) is satisfied for γ := −
ākj∗
āi∗j∗

.

If i∗ exists, then GOTO Step 7.

Else ,i.e., there exists no neighboring basic solution within the
disjunction induced by ȳk, that improves the current cut
(āc, b̄c), STOP.

5. Determine constraint i∗ to be included in the basis according to Step 3 of Algo-
rithm 4.1.

6. Determine constraint j∗ to be removed from the basis according to Step 4 of
Algorithm 4.1.

7. Execute basis exchange according to Step 5 of Algorithm 4.1.

8. GOTO Step 3.

9. Execute perturbation according to Step 7 of Algorithm 4.1.

There is one situation, where Algorithm 5.2 is not able to construct a disjunctive cut:

As long as the current basis does not induce a cut-generating, feasible, basic solution
of the CGLPk, no neighboring basis inducing a non-trivial, feasible, basic solution
of the CGLPk with reduced objective value might exist, even if a disjunctive cut
exists for the current disjunction. Then, Lemma 5.2 is not applicable and the artificial
constraint cannot be removed.

This situation might occur, since a non-trivial, feasible, basic solution of the CGLPk,
which is not a cut-generating, feasible, basic solution of the CGLPk can be improved
by a trivial, feasible solution of the CGLPk, e.g., corresponding to an active constraint
(5.4). The identification of this situation is straightforward, since there exist non-basic
constraints (âi, b̂i) i 6∈ B possessing negative reduced costs for the corresponding ûi

or v̂i, but condition (4.89) with γ := −
ākj

āij
is not satisfied for j = a, where a is the

index of the artificial constraint in B.

152 5 Disjunctive Cutting Planes for non-basic Solutions

Nevertheless we can reduce the probability, that such a situation occurs, if we take the
slack value s̄j, ∀j ∈ Ĵ (5.25) during basis crushing into account, i.e., while determining
the basic solution (x̂, ŷ) in Step 1 of Algorithm 5.1. Starting with all linear independent
active constraints we can successively include the constraint (âj, b̂j), j /∈ B with the
lowest slack value s̄j in B, if it is linear independent subject to all constraints already
included in B.

If Algorithm 5.2 is not successful, i.e., it cannot construct a disjunctive cut, although
one exists, then either all adjacent basic solutions are located outside the current
disjunction, i.e., ỹk does not satisfy

bȳkc ≤ ỹk ≤ dȳke, (5.54)

for any adjacent basic solution (x̃, ỹ). The other possibility is that the non-trivial,
feasible, basic solution of the CGLPk induced by any basis, that is adjacent to the
current basis, possesses a higher objective value than the non-trivial, feasible, basic
solution of the CGLPk induced by the current basis, see also Lemma 5.2.

5.3 An Improved Cut Generation Method for

Disjunctive Cuts for Non-basic Solutions

In the previous section, we proposed an efficient cut generation procedure for dis-
junctive cutting planes, that can be applied for non-basic solutions. In principle it
provides most of the desired features, e.g., it detects the non-existence of disjunctive
cuts efficiently. But there might be situations, in which the proposed algorithm fails
to construct the disjunctive cut. To overcome this problem we propose an improved
cut generation method, which exploits some of the observations presented so far.

In the remainder of this chapter, we are only interested in constructing cutting planes,
that possess a minimum strength ε > 0, i.e.,

âTc

(
x̄

ȳ

)
− b̂c ≤ −ε. (5.55)

holds for the cutting plane determined by (âc, b̂c). Weaker cutting planes are ne-
glected, e.g., for numerical reasons.

The cut generation method proposed in this section again relies on the introduction of
an artificial constraint (5.12). In contrast to the previously described cut generation
method, the right hand side of the artificial constraint is adapted in each iteration until
it is removed by the basis exchange procedure of the original Algorithm 4.1. In each
iteration the current cut possesses strength ε > 0, i.e., (5.55) holds. This allows the
application of Lemma 5.4 to efficiently prove the non-existence of disjunctive cutting
planes stronger than ε.

We start by constructing a basic solution (x̂, ŷ) according to the subsequent Algo-
rithm 5.3.

5.3 An Improved Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 153

Algorithm 5.3. Let (x̄, ȳ) be the optimal non-basic solution of the continuous relax-
ation of MIQP (5.2). Let na < n linearly independent constraints be active at (x̄, ȳ)
and denote the corresponding index set by B. Let ek be linearly independent w.r.t. the
constraints contained in B.

1. Add constraint
yk = ȳk (5.56)

to the index set B. Denote the corresponding index by k̄.

2. Continue until |B| = n:

(a) Include constraint j∗ ∈ B⊥ with minimal slack given by

s̄j := âTj

(
x̄

ȳ

)
− b̂j, j ∈ B⊥, (5.57)

i.e.,
j∗ := arg min

j∈B⊥
{s̄j}, (5.58)

where B⊥ ⊂ J contains all constraints, that are linearly independent with
respect to the index set B.

(b) Update the index set B and the set B⊥ ⊂ J.

After executing Algorithm 5.3, which performs basis crushing, we denote the basic
solution corresponding to the basis B by (x̂, ŷ). By construction

ŷk = ȳk (5.59)

holds. Furthermore the k̄-th row of the basis matrix ÂB is equal to ek, i.e.,

(ÂB)k̄ = ek. (5.60)

After having constructed a basic solution (x̂, ŷ) by Algorithm 5.3, we determine a
suitable artificial constraint (5.12) by the subsequent algorithm. This artificial con-
straint is constructed in order to replace the artificial constraint (5.56) introduced in
Algorithm 5.3 in order to ensure, that (x̂, ŷ) is located in the correct disjunction, i.e.,
(5.7) holds.

Algorithm 5.4. Let (x̂, ŷ)0 be the basic solution with the corresponding basic set B0,
which is determined by Algorithm 5.3. Let ε > 0 be any tolerance for the minimal
depth of a cutting plane. Therefore, |B0| = n and

ŷ0k = ȳk (5.61)

hold, where (x̄, ȳ) is the optimal, non-basic solution of the continuous relaxation of
MIQP (5.2) and ȳk is fractional. Initialize artificial constraint (âa, b̂a)

0 := (â0a, b̂
0
a)

by
(âa, b̂a)

0 := (ek, ȳk). (5.62)

Initialize the iteration index l := 0.

154 5 Disjunctive Cutting Planes for non-basic Solutions

1. Set l := l+ 1 and define âla as

âla :=

(
ek̄ + e

⊥
k̄

(
1

2

)l−1)T
ÂB0 (5.63)

where e⊥
k̄
∈ Rn is given by

(e⊥
k̄
)i :=

{
1, i ∈ B0\{k̄},

0, i = k̄,
(5.64)

and k̄ corresponds to the position of the artificial constraint within B.

2. Define b̂la by

b̂la := (âla)
T

(
x̂

ŷ

)0
. (5.65)

3. Include constraint (âa, b̂a)
l in basis Bl at position k̄ by removing (âa, b̂a)

l−1.

4. Check current disjunction and depth of simple disjunctive cut for (x̂, ŷ)l:

If
bȳkc ≤ ŷlk ≤ dȳke, (5.66)

and

πl
(
x̄

ȳ

)
− πl0 ≤ −ε (5.67)

hold, where π and π0 define the simple disjunctive cut (4.49) induced by
(x̂, ŷ)l, see also (4.50), then RETURN.

Else GOTO Step 1.

The subsequent theorem proves, that Algorithm 5.4 terminates after a finite number
of iterations.

Theorem 5.1. Let yk be fractional at the solution (x̄, ȳ) of the continuous relaxation
of MIQP (5.2). Furthermore let the fractionality be greater than

√
ε > 0, i.e.,

bȳkc+
√
ε < ȳk < dȳke−

√
ε (5.68)

holds. Let

âa :=

(
ek̄ + e

⊥
k̄

(
1

2

)l−1)T
ÂB0 (5.69)

be linearly independent w.r.t. ÂB0\{ek}.

Then Algorithm 5.4 terminates after a finite number l̂ of iterations satisfying condi-
tions (5.66) and (5.67) for basis Bl̂ containing the artificial constraint (âa, b̂a)

l̂ and

the corresponding basic solution (x̂, ŷ)l̂.

5.3 An Improved Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 155

Proof. Conditions (5.66) and (5.67) are satisfied, whenever Algorithm 5.4 terminates.
As a consequence, we have to prove that updating rule (5.63) yields the desired arti-

ficial constraint (âa, b̂a)
l̂.

Consider the limit of the iteration sequence given by

lim
l→∞ âla = eT

k̄
ÂB0 = ek, (5.70)

which is denoted by iteration index l∗. This yields for âl
∗
a = ek and

b̂l
∗
a = (âl

∗
a)

T

(
x̂

ŷ

)0
= eTk

(
x̂

ŷ

)0
= ŷ0k = ȳk. (5.71)

Since
(Â−1

Bl
∗)k = ek̄ (5.72)

holds, we obtain

ŷl
∗

k =
∑

i∈Bl∗ , i6=k̄
(Â−1

Bl
∗)ki(b̂Bl∗)i + (Â−1

Bl
∗)kk̄b̂

l∗
a = b̂l

∗
a = ȳk. (5.73)

Therefore, condition (5.66) is satisfied for l∗ due to

bȳkc < ȳk < dȳke. (5.74)

Exploiting (5.73), condition (5.67) is also satisfied for (âl
∗
c , b̂

l∗
c) obtained by assign-

ment (4.53) from the simple disjunctive cut (4.49) corresponding to basis Bl
∗

given
by

π := max{π1, π2} = (ȳk − bȳkc)ek̄ (5.75)

and
π0 := (dȳke− ȳk)(ȳk − bȳkc). (5.76)

The reason is, that we obtain for the simple disjunctive cut given by

πTs ≥ π0 (5.77)

the following condition

πTs− π0 = (ȳk − bȳkc)eTk̄s− (dȳke− ȳk)(ȳk − bȳkc)

= (ŷk − bȳkc) eTk̄

(
ÂBl∗

(
x

y

)
− b̂Bl∗

)
− (dȳke− ȳk) (ȳk − bȳkc)

= (ȳk − bȳkc)(yk − ȳk) − (dȳke− ȳk)(ȳk − bȳkc).
(5.78)

For yk = ȳk we get

πTs− π0 = −(dȳke− ȳk)(ȳk − bȳkc) < −
√
ε
√
ε = −ε. (5.79)

As a consequence, there exists an iteration index l̂ < l∗, where conditions (5.66) and
(5.67) are satisfied, which proves the theorem.

156 5 Disjunctive Cutting Planes for non-basic Solutions

The requirement, that

(
ek̄ + e

⊥
k̄

(
1

2

)l−1)T
ÂB0 is linearly independent w.r.t. the coef-

ficient vectors of the constraints forming ÂB0\{ek}, is no serious restriction. The vector
e⊥
k̄

can simply be adapted, by setting some of its components in addition to zero, such

that linear independence w.r.t. ÂB0\{ek} can be ensured.

Note, that, in every iteration l, the coefficients âla are chosen by (5.63), such that
(x̂, ŷ)l is the unique optimal solution of the linear program (5.38) as shown in the
subsequent corollary.

Corollary 5.7. In every iteration l of Algorithm 5.4, the choice of the coefficients âla
determined by (5.63) ensure, that (x̂, ŷ)l is the unique optimal solution of the linear
program (5.38).

Proof. In each iteration l, the coefficients âla are determined by

âla :=

(
ek + e

⊥
k

(
1

2

)l−1)T
ÂB0 . (5.80)

As a consequence, the reduced costs generally given by

cTB⊥ − cTBÂ
−1
B ÂB⊥ (5.81)

are non-negative, since cT
B⊥ = 0, ÂB⊥ = −I and therefore

cT
B⊥ − cTBÂ

−1
B ÂB⊥ = 0− cTBÂ

−1
B (−I)

= (âla)
T Â−1

B0

=

(
ek + e

⊥
k

(
1

2

)l−1)T
ÂB0Â

−1
B0

> 0

(5.82)

holds. This proves the corollary.

The subsequent algorithm efficiently constructs disjunctive cutting planes with strength
at least ε for a non-basic solution (x̄, ȳ) or proves their non-existence.

Algorithm 5.5. Let ε > 0 be an arbitrary minimal strength of the cut to be con-
structed. Furthermore, let yk be fractional at the solution (x̄, ȳ) of the continuous
relaxation of MIQP (5.2), such that condition (5.68) holds.

1. Construct a basic solution (x̂, ŷ) by applying Algorithm 5.3 and Algorithm 5.4
and denote the corresponding basis by B.

5.3 An Improved Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 157

2. Modify the right hand side b̂a of the artificial constraint (âa, b̂a), such that the
simple disjunctive cut induced by B possesses depth ε:

If (Â−1
B)kk̄ < 0, then set b̂a such that

ρ− ρ<2 − ρ3ρ4 + ρ
2
4 = −

∑
j∈B, j 6=k̄

πj(b̂a)

(
âTj

(
x̄

ȳ

)
− b̂j

)
+(ρ4ākk̄ + dȳkeākk̄ − ρ3ākk̄) b̂a

(5.83)

holds.

Else i.e., (Â−1
B)kk̄ > 0, set b̂a such that

ρ− ρ>2 − ρ3ρ4 + ρ
2
4 = −

∑
j∈B, j 6=k̄

πj(b̂a)

(
âTj

(
x̄

ȳ

)
− b̂j

)
+(ρ4ākk̄ + bȳkcākk̄ − ρ3ākk̄) b̂a

(5.84)

is satisfied.

Note, that the subsequent notation is introduced to ease the readability:

ρ := ε+ dȳkebȳkc, (5.85)

ρ<2 := −aTa

(
x̄

ȳ

)
ākk̄dȳke, (5.86)

ρ>2 := −aTa

(
x̄

ȳ

)
ākk̄bȳkc, (5.87)

ρ3 := +aTa

(
x̄

ȳ

)
ākk̄ + dȳke+ bȳkc, (5.88)

ρ4 :=
∑

j∈B, j 6=k̄

(Â−1
B)kj(b̂B)j, (5.89)

and

πj(b̂a) := max
{
(ρ4 − ākk̄b̂a − dȳke)(Â−1

B)kj, (ρ4 − ākk̄b̂a − bȳkc)(Â−1
B)kj
}

applying notation (4.25).

3. Compute the reduced costs (4.55) according to Step 2 of Algorithm 4.1.

4. Determine constraint i∗ to be included in the basis according to Step 3 of Algo-
rithm 4.1.

5. Determine constraint j∗ to be removed from the basis according to Step 4 of
Algorithm 4.1.

158 5 Disjunctive Cutting Planes for non-basic Solutions

6. Execute basis exchange according to Step 5 of Algorithm 4.1.

7. Check if artificial constraint is still part of the simple disjunctive cut:

If artificial constraint (âa, b̂a) is still included in the current basis,
GOTO Step 2.

Else continue according to Algorithm 4.1, i.e., GOTO Step 3.

8. Perturbation of row k (4.86):

If row k has no zero entries, then STOP.

Else perturb row k by replacing every zero entry by εt for some small ε > 0
and t = 1, 2

If the artificial constraint is still included in the current basis,
then GOTO Step 2.

Else GOTO Step 3.

Note, that in the subsequent theorem we leave out the requirement needed in The-

orem 5.1, that

(
ek̄ + e

⊥
k̄

(
1

2

)l−1)T
ÂB0 is linearly independent w.r.t. the coefficient

vector of the constraints forming ÂB0\{ek}, since the vector e⊥
k̄

can easily be adapted
to ensure linear independency as explained above.

Theorem 5.2. Let (x̄, ȳ) be the optimal non-basic solution of the continuous relax-
ation of MIQP (5.2). Let na < n linearly independent constraints be active at (x̄, ȳ)
and denote the corresponding index set by B. Let ek be linearly independent w.r.t. the
constraints contained in B. Let ε > 0 be any tolerance for the minimal depth of a
cutting plane.

Then Algorithm 5.5 either proves that no disjunctive cut exists with strength greater
than ε for the current disjunction (4.27), or it constructs the disjunctive cut by solving
the cut generating linear program (4.45) implicitly.

Proof. To prove the theorem, we first show, that we obtain a simple disjunctive cut
that satisfies

πT
(
x̄

ȳ

)
− π0 = −ε, (5.90)

if we modify the right hand side b̂a of the artificial constraint (âa, b̂a) according to
(5.83) or (5.84), where the simple disjunctive cut is induced by basis B.

Then we show, that it is indeed possible in each iteration to choose the value of b̂a as
required. This is the case, if there is a value for b̂a, such that the simple disjunctive
cut induced by the corresponding basis B has strength greater than or equal to ε and
another value for b̂a, such that the simple disjunctive cut induced by B is weaker than
ε.

5.3 An Improved Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 159

Due to Corollary 5.4 the non-existence of disjunctive cutting planes stronger than ε
is proved, if all reduced costs (4.55) are non-negative and the artificial constraint is
still included in the current basis.

As soon as the artificial constraint (âa, b̂a) is removed in Step 3, Algorithm 5.5 is
equivalent to Algorithm 4.1 and therefore the disjunctive cut corresponding to the
solution of the CGLPk is constructed.

Since the artificial constraint (âa, b̂a) is modified in Step 3 in a monotone way, such
that the strength of the cut is successively reduced, the procedure cannot cycle. There-
fore the artificial constraint is either removed or the non-existence of disjunctive cuts
stronger than ε is proved.

Now we go into detail:

Consider the basic solution (x̂, ŷ), that was constructed by Algorithm 5.3 and Algo-
rithm 5.4. By construction

bŷkc = bȳkc (5.91)

holds.

First we show, that we obtain a cut that satisfies

âTc

(
x̄

ȳ

)
− b̂c = −ε, (5.92)

if we modify the right hand side b̂a of the artificial constraint (âa, b̂a) according to
(5.83) or (5.84).

Algorithm 5.4 yields a basis B and a corresponding basic solution (x̂, ŷ). By construc-
tion an artificial constraint (âa, b̂a) is included in B at position k̄. The corresponding
simple disjunctive cut (4.49) is given by

πTBs̄B ≥ π0,

πTB

(
ÂB

(
x̄

ȳ

)
− b̂B

)
≥ π0,

with πj, j ∈ B and π0 defined in (4.50). The aim is now to modify the simple disjunctive
cut such that its strength is ε, i.e., the following condition is required

πTB

(
ÂB

(
x̄

ȳ

)
− b̂B

)
− π0 = −ε

∑
j∈B, j6=k̄

πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
+ πk̄

(
âTa

(
x̄

ȳ

)
− b̂a

)
− π0 = −ε. (5.93)

Exploiting

π0 := (dȳke− ŷk) (ŷk − bȳkc) (5.94)

160 5 Disjunctive Cutting Planes for non-basic Solutions

and

πk̄ := max
{
π1
k̄
, π2

k̄

}
= max

{
(ŷk − dȳke)(Â−1

B)kk̄, (ŷk − bȳkc)(Â−1
B)kk̄

} (5.95)

and

ŷk = (Â−1
B b̂B)k

=
∑

j∈B, j6=k̄
(Â−1

B)kjb̂j + (Â−1
B)kk̄b̂a,

(5.96)

we obtain from (5.93)

∑
j∈B, j6=k̄

πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
= −ε+

(
−âTa

(
x̄

ȳ

)
+ b̂a

)
πk̄ + π0

= −ε+

(
−âTa

(
x̄

ȳ

)
+ b̂a

)
πk̄

+(dȳke− ŷk) (ŷk − bȳkc)

= −ε+

(
−âTa

(
x̄

ȳ

)
+ b̂a

)
πk̄ (5.97)

+dȳkeŷk − dȳkebȳkc− ŷ2k + bȳkcŷk.

Note, that the maximum in (5.95) is well-determined as (Â−1
B)kk̄ is known. By defining

ρ according to (5.85) and exploiting (5.96), we obtain

ρ = −
∑

j∈B, j6=k̄
πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
+

(
−âTa

(
x̄

ȳ

)
+ b̂a

)
πk̄

+(dȳke+ bȳkc) ŷk − ŷ2k.
(5.98)

First we assume, that πk̄ := π1
k̄
= (ŷk − dȳke)(Â−1

B)kk̄ holds, see (4.50), and apply

5.3 An Improved Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 161

definition ākk̄ =: −(Â−1
B)kk̄, see (4.25). Then equation (5.98) yields

ρ = −
∑

j∈B, j6=k̄

πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
+

(
−âTa

(
x̄

ȳ

)
+ b̂a

)
πk̄ + (dȳke+ bȳkc) ŷk − ŷ2k

= −
∑

j∈B, j6=k̄

πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
+

(
−âTa

(
x̄

ȳ

)
+ b̂a

)
(ŷk − dȳke)(−ākk̄)

+ (dȳke+ bȳkc) ŷk − ŷ2k

= −
∑

j∈B, j6=k̄

πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
+

(
−âTa

(
x̄

ȳ

)
+ b̂a

)
(−ākk̄)ŷk

+

(
−âTa

(
x̄

ȳ

)
+ b̂a

)
dȳkeākk̄ + (dȳke+ bȳkc) ŷk − ŷ2k

= −
∑

j∈B, j6=k̄

πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
+ âTa

(
x̄

ȳ

)
ākk̄ŷk − b̂aākk̄ŷk

−âTa

(
x̄

ȳ

)
ākk̄dȳke+ b̂aākk̄dȳke+ (dȳke+ bȳkc) ŷk − ŷ2k.

By defining ρ<2 according to (5.86), we obtain

ρ = −
∑

j∈B, j6=k̄

πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
+ âTa

(
x̄

ȳ

)
ākk̄ŷk − b̂aākk̄ŷk + ρ

<
2 + b̂aākk̄dȳke

+(dȳke+ bȳkc) ŷk − ŷ2k

= −
∑

j∈B, j6=k̄

πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
− b̂aākk̄ŷk + ρ

<
2 + b̂aākk̄dȳke

+

(
âTa

(
x̄

ȳ

)
ākk̄ + dȳke+ bȳkc

)
ŷk − ŷ

2
k.

Simplification by defining ρ3 according to (5.88) yields

ρ = −
∑

j∈B, j6=k̄
πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
− b̂aākk̄ŷk + ρ

<
2

+b̂aākk̄dȳke+ ρ3ŷk − ŷ2k.
(5.99)

By introducing ρ4 according to (5.89), we obtain from (5.96) the condition

ŷk = ρ4 − ākk̄b̂a. (5.100)

162 5 Disjunctive Cutting Planes for non-basic Solutions

Together with the definition of πj with j ∈ B\{k̄} according to (4.50), we obtain

πj(b̂a) := max
{
(ŷk − dȳke)(Â−1

B)kj, (ŷk − bȳkc)(Â−1
B)kj
}

(5.101)

= max
{
(ρ4 − ākk̄b̂a − dȳke)(Â−1

B)kj, (ρ4 − ākk̄b̂a − bȳkc)(Â−1
B)kj
}

Therefore we get

ρ = −
∑

j∈B, j6=k̄

πj

(
âTj

(
x̄

ȳ

)
− b̂j

)
− b̂aākk̄ŷk + ρ

<
2 + b̂aākk̄dȳke+ ρ3ŷk − ŷ2k

= −
∑

j∈B, j6=k̄

πj(b̂a)

(
âTj

(
x̄

ȳ

)
− b̂j

)

−b̂aākk̄(ρ4 − ākk̄b̂a) + ρ
<
2 + b̂aākk̄dȳke+ ρ3(ρ4 − ākk̄b̂a) − (ρ4 − ākk̄b̂a)

2

= −
∑

j∈B, j6=k̄

πj(b̂a)

(
âTj

(
x̄

ȳ

)
− b̂j

)

−b̂aākk̄ρ4 + ā
2
kk̄b̂

2
a + ρ

<
2 + b̂aākk̄dȳke+ ρ3ρ4 − ρ3ākk̄b̂a −

(
ρ24 − 2ρ4ākk̄b̂a + ā

2
kk̄b̂

2
a

)
= −

∑
j∈B, j6=k̄

πj(b̂a)

(
âTj

(
x̄

ȳ

)
− b̂j

)

+ρ<2 + ρ3ρ4 − ρ
2
4 + (ρ4ākk̄ + dȳkeākk̄ − ρ3ākk̄) b̂a.

For πk̄ := π
2
k̄
= (ŷk − bȳkc)(Â−1

B)kk̄, see (4.50), we obtain analogously

ρ = −
∑

j∈B, j6=k̄

πj(b̂a)

(
âTj

(
x̄

ȳ

)
− b̂j

)

+ρ>2 + ρ3ρ4 − ρ
2
4 + (ρ4ākk̄ + bȳkcākk̄ − ρ3ākk̄) b̂a

with ρ>2 defined by (5.87). Note, that the maximum defining πj(b̂a) in (5.101) is
determined by the sign of (A−1

B)kj for j ∈ B\{k̄}, such that the evaluation of b̂a is
straightforward.

Now we show, that it is indeed possible in each iteration to choose the value of b̂a,
such that equation (5.92) is satisfied. Note, that the cut given by (âc, b̂c) in (5.92)
is determined by the corresponding non-trivial, feasible, basic solution of the CGLPk
induced by basis B containing the artificial constraint (5.12). As we showed above
b̂a can in principle be chosen, such that (5.92) holds. We can ensure, that b̂a can be
chosen appropriately, if the current cut is at least as strong as ε, i.e., condition (5.55)
holds and if there is a value for b̂a, such that the induced simple disjunctive cut has
strength greater than or equal to ε and another value for b̂a, such that the induced
simple disjunctive cut is weaker than ε.

5.3 An Improved Cut Generation Method for Disjunctive Cuts for Non-basic
Solutions 163

Due to the construction according to Algorithm 5.4, the initial cut possesses at least
depth ε in Step 1. In every other iteration the strength is at least ε, since Step 3
improves the current cut, which already has strength ε. As a consequence, we can
carry out Step 2, if there is always a weaker cut with strength less than ε. The
subsequent calculations show, that this holds, if b̂a is set to either b̂1a or b̂2a specified
below.

Consider the following two values for b̂a

b̂1a :=
1

(Â−1
B)kk̄

(
dȳke−

∑
i∈B, i6=k̄

(Â−1
B)ki(b̂B)i

)
,

b̂2a :=
1

(Â−1
B)kk̄

(
bȳkc−

∑
i∈B, i6=k̄

(Â−1
B)ki(b̂B)i

)
.

(5.102)

Now define b̂a according to b̂1a, if

âTa

(
x̄

ȳ

)
− b̂1a > âTa

(
x̄

ȳ

)
− b̂2a (5.103)

holds. Due to (5.96) ŷk = dȳke holds, if b̂a is given by b̂1a, which yields the simple
disjunctive cut induced by B

π0 = (ŷk − bȳkc)(dȳke− ŷk) = (dȳke− bȳkc)(dȳke− dȳke),

πi = max{π1i , π
2
i }, ∀i ∈ B,

π1i = (dȳke− ŷk)(Â−1
B)ki = (dȳke− dȳke)(Â−1

B)ki,

π2i = (ŷk − bȳkc)(Â−1
B)ki = (dȳke− bȳkc)(Â−1

B)ki.

(5.104)

Due to Lemma 4.1 the simple disjunctive cut given by (5.104) is not violated by (x̄, ȳ),
i.e., it possesses at most strength zero:

πT
(
x̄

ȳ

)
− π0 ≥ 0. (5.105)

Furthermore, we define b̂a according to b̂2a, if condition

âTa

(
x̄

ȳ

)
− b̂2a > âTa

(
x̄

ȳ

)
− b̂1a (5.106)

is satisfied. Then the same consideration shows, that the simple disjunctive cut in-
duced by B is not violated by (x̄, ȳ), since ŷk = bȳkc holds.

Due to Corollary 5.4 the non-existence of disjunctive cutting planes stronger than ε is
proved, if all reduced costs (4.55) are non-negative and the artificial constraint is still
included in the current basis. If there are non-basic variables ui or vi with negative

164 5 Disjunctive Cutting Planes for non-basic Solutions

reduced costs, Algorithm 5.5 yields an improving cut, which might still contain the
modified, artificial constraint (âa, b̂a).

As soon as the artificial constraint (âa, b̂a) is removed in Step 3, Algorithm 5.5 is
equivalent to Algorithm 4.1 and therefore the disjunctive cut solving CGLPk is con-
structed.

Since the artificial constraint (âa, b̂a) is modified in Step 3 in a monotone way, such
that the strength of the cut is successively reduced, the procedure cannot cycle. There-
fore the artificial constraint is either removed or the non-existence of disjunctive cuts
stronger than ε is proved.

6. NUMERICAL RESULTS

In this chapter the theoretical concepts and algorithms proposed in the previous chap-
ters are evaluated. This chapter is divided into two sections. In the first part the
performance of different MINLP solvers is compared. The algorithms are all part of a
toolbox implemented at the University of Bayreuth. The second part of this chapter
evaluates the performance of the MIQP solver MIQL executed with different set-
tings. Furthermore MIQL is compared to the constraint programming solver SCIP,
see Achterberg [2].

6.1 Comparative Study of MINLP Solution

Methods

The MINLP solvers, which are analyzed in this section, are implementations of differ-
ent algorithms for solving mixed-integer nonlinear optimization problems. The codes
are part of a modular toolbox. Each is implemented in thread-safe Fortran as close to
F77 as possible.

We evaluate the numerical performance of five solvers, some of them executed with
alternative parameter settings, on a set of 100 academic mixed-integer test problems,
collected by Schittkowski [95] and a set of 55 mixed binary test problems provided
by our industrial cooperation partner Shell SIEP Rijswijk. Both test sets contain
problems possessing a nonlinear and often also non-convex objective function. Fur-
thermore, the feasible domains are non-convex in most test cases, and often nonlinear
equality constraints are part of the problem description.

The following codes, based on the algorithms outlined in the previous chapters, are
tested with different parameter settings:

MISQP [48] - Mixed-integer SQP-based trust region method, see Sec-
tion 2.10.

MISQP/base [48] - Equivalent to MISQP, but quasi-Newton updates are
not scaled and no restarts are performed, see Exler,
Lehmann and Schittkowski [47] for further details.

MISQPOA [73] - Explicit combination of MISQP and a linear outer ap-
proximation method, i.e., additional stabilization by
outer approximations, where successive mixed-integer
nonlinear problems are solved by MISQP.

166 6 Numerical Results

MIQPSOA [46] - Implementation of Algorithm 3.1, i.e., a MIQP-
supported linear outer approximation method based on
the successive solution of mixed-integer quadratic pro-
grams and linear outer approximation master problems.

MIQPSOA/OA [46] - Equivalent to MIQPSOA, but without mixed-integer
search steps, i.e., equivalent to a linear outer approxi-
mation algorithm, see Section 2.5.

MINLPB4 [72] - NLP-based branch-and-bound method, where the con-
tinuous nonlinear programs are solved by MISQP, see
Section 2.4.

For solving continuous quadratic programming problems, we use an extension of the
code QL of Schittkowski [94], which is based on an implementation of Powell [87].
The underlying primal-dual method of Goldfarb and Idnani [58] was described in
Section 2.11 and is extended in order to perform warmstarts. All convex mixed-integer
quadratic programs are solved by the code MIQL, see Lehmann and Schittkowski [71],
which is a cut-and-branch solver based on continuous quadratic relaxations.

All continuous nonlinear programs, e.g., arising in the NLP-based branch-and-bound
approach are solved by MISQP setting the number of integer variables to zero. In this
case the algorithm behaves like an SQP algorithm with trust region stabilization and
quasi-Newton updates, see Exler et al. [48] for details. Note, that the same holds for
MIQPSOA, see Section 3.1.

The mixed-integer quadratic programming code MIQL and the NLP-based branch-
and-bound method MINLPB4 use the branch-and-bound framework BFOUR, see
Lehmann et al. [74], where several branching and node-selection strategies are imple-
mented, see also Section 6.2.

For executing the above mentioned optimization codes, we apply default parameter
settings and tolerances, see the corresponding user guides for details, with a termina-
tion tolerance 10−6. The maximal number of iterations is 2,000, and the number of
branch-and-bound nodes is bounded by 10,000. All test examples are provided with
the best-known objective function value f?, which is either obtained from analytical
solutions, literature, or extensive numerical testing.

To be as close as possible to complex practical engineering applications, derivatives
with respect to continuous variables are always approximated by forward differences
subject to a small tolerance of 10−6. Gradients for integral variables are approximated
at neighbored grid points, in order to deal with non-relaxable problems, i.e., problems
where the model functions cannot be evaluated at a point where some integer variables
possess fractional values. For binary variables or for integer variables at a bound, a
forward or backward difference formula is applied, respectively, see Exler, Lehmann
and Schittkowski [47] for details. These descent directions might be considered as a
very crude numerical approximation of partial derivatives by finite differences.

The Fortran codes are compiled by the GFORTRAN Compiler under SUSE Linux
and the test runs are executed on an Intel Core(TM)2 Duo P8700 64 bit processor

6.1 Comparative Study of MINLP Solution Methods 167

with 2.53 GHz and 4 GB RAM.

The subsequent criterion defines a successful test run. Let εt > 0 be a tolerance for
defining the relative accuracy, and (xk, yk) the final iterate of a test run. To be able
to evaluate test cases with f? = 0 with respect to (6.1), as in some of the academic
test instances, we add the value one to the objective function. We call (xk, yk) a
successful solution, if the relative error in the objective function is less than εt and if
the maximum constraint violation is less than ε2t , i.e., if

f(xk, yk) − f? < εt|f
?| (6.1)

and

‖g(xk, yk)−‖∞ < ε2t , (6.2)

where g(xk, yk)− represents the vector of constraint violations defined by (2.29). The
tolerance for measuring the constraint violation is chosen to be smaller than the
tolerance for the error in the objective function. In the latter case we apply a relative
measure, whereas the constraint functions of our test problems are often badly scaled.

Moreover, we would like to distinguish three kinds of test results. Successful test runs
satisfying (6.1) and (6.2), termination with an acceptable solution, which is feasible,
but non-optimal, and false terminations. A test run ends with a false termination, if a
error message is returned or if no feasible solution could be found. A solution (xk, yk)
is called acceptable, if (6.2) holds and if the internal termination conditions subject
to a reasonably small tolerance of ε = 10−6 are satisfied. Furthermore we require

f(xk, yk) − f? ≥ εt|f?| (6.3)

instead of (6.1). For our numerical tests, we use εt = 0.01.

We use the subsequent criteria to compare the robustness and efficiency of our codes:

nsucc - number of successful test runs
nacc - number of acceptable, i.e., of non-optimal feasible solutions
nerr - number of test runs terminated by an error message or without a feasible

solution
∆err - average relative deviation of computed solution from the best known one,

i.e., (f(xk, yk) − f?)/|f?|
nfunc - average number of equivalent function calls including function calls used

for computing a descent direction or gradient approximations, evaluated
over all successful test runs, where one function call consists of one eval-
uation of the objective function and all constraint functions

time - average execution times in seconds, evaluated over all successful test runs

Table (6.1) provides details on all parameters used for executing the implementation
of MIQPSOA, which is proposed in Chapter 3:

168 6 Numerical Results

∆0c - initial trust-region radius for continuous variables 101

∆0i - initial integer trust-region radius for integer variables 101

σ0 - initial penalty parameter 101

δ0 - initial parameter for penalty parameter update 10−2

εOA - tolerance for linear outer approximation master problem 10−4

ε - tolerance for ε-stationary points 10−5

σ̄ - upper bound on penalty parameter 1010

Tab. 6.1: Initial Parameter-Setting for MIQPSOA

6.1.1 Academic Test Problems

First, the performance of the presented solvers is evaluated on a test set of 100 aca-
demic test examples published by Schittkowski [95]. For each test problem the best-
known objective function value is provided. It has either been found in the literature
or it has been obtained by extensive testing over several years.

The maximal number of variables within the test set is 23 for continuous, 100 for
integer, and 24 for binary variables. Moreover, there are up to 17 equality constraints
and the total number of constraints is at most 75. 65 test problems are taken from
the GAMS MINLPLib, see Bussieck, Drud, and Meeraus [34]. Table 6.2 shows nu-
merical results obtained for the mixed-integer nonlinear solvers MISQP, MINLPB4,
MISQPOA and MIQPSOA, see the previous subsection for more details.

In a few cases, the codes cannot find an acceptable solution or an error message is
generated. In a couple of other situations, the codes are unable to improve a current
iterate and report that an acceptable solution is obtained, which is not the global
optimum.

code nsucc nacc nerr ∆err nfunc time

MISQP 90 10 0 0.375 897 2.1566
MISQP/base 51 48 1 19.940 612 0.5267
MISQPOA 89 9 2 1.769 1,000 0.6894
MIQPSOA 74 24 2 0.837 1,274 2.7077
MIQPSOA/OA 62 27 11 2.143 1,264 2.9699
MINLPB4 86 8 6 0.907 9,480 0.0768

Tab. 6.2: Performance Results for a Set of 100 Academic Test Problems

Table 6.2 shows that MISQP using default settings is the most reliable solver, since
it finds the best-known solution in 90 per cent of all test cases. Furthermore, we
observe that fine-tuning is very crucial, since the reliability decreases significantly,
if the quasi-Newton matrix is not scaled and no restarts are performed. This basic

6.1 Comparative Study of MINLP Solution Methods 169

version can only find the best-known solution in about half of the test cases. MISQP
is very efficient in terms of the number of function evaluations, which is the most
important performance criterion for simulation-based optimization problems. Only
the basic version need slightly less function calls, which is cased by early termination
at non-optimal iterates.

MISQPOA calls MISQP within an outer approximation framework. Thus, the ob-
tained solution is at least as good as the one found by MISQP, but the number of
function evaluations is higher due to the extra efforts to validate global optimality.
Global optimality can be guaranteed, if the problem is convex and exact gradients are
provided to formulate the outer approximation master problem (2.75).

The outer approximation algorithm called MIQPSOA is less reliable than MISQP
using default settings, but the reliability is much higher than that of MISQP without
fine-tuning, i.e., scaling of the quasi-Newton matrix and restarts, see MISQP/base.
These successful features can in principle be included in MIQPSOA, such that its
reliability can be further improved. As shown in Chapter 3, global optimal solutions
are obtained, if the MINLP is convex and exact gradients can be provided for the
outer approximation master problem (2.75), see Theorem 3.1. The average number
of function calls of MIQPSOA is significantly higher compared to MISQP, since the
algorithm terminates only if the master problem (2.75) is infeasible.

The difference between well-known linear outer approximation algorithms, e.g., DI-
COPT [43], and MIQPSOA are the mixed-integer search steps in order to obtain im-
proving mixed-integer search directions according to Definition 3.2. Table 6.2 shows,
that the reliability is significantly increased by performing mixed-integer search steps,
while the efficiency in terms of the number of function evaluations is comparable.

As expected, the NLP-based branch-and-bound solver MINLPB4 is much less efficient
in terms of the number of function evaluations, since a large number of continuous
nonlinear optimization problems must be solved. Nevertheless, it is very reliable, even
if it is applied to non-convex problems.

6.1.2 Test Problems from Petroleum Engineering

A large variety of applications of mixed-integer nonlinear programming is found in
the petroleum industry. We select two classes of problems known as well relinking
and gas lift problems for our numerical tests. The test cases differ in their dimensions
and data and are collected in a test set containing 55 MINLPs. These applications
are based on complex simulators, but simplified algebraic description are provided by
Shell SIEP Rijswijk reproducing typical problem characteristics. For each test case
the value of the best-known solution was also reported, which was either found by
extensive numerical tests or by global optimization solvers.

To give an example, we introduce a simple well relinking model, where the total flow
in a given network is to be maximized. The network consists of a certain number of

170 6 Numerical Results

source nodes and some sink nodes, see Figure 1.1 for a typical example. The flow from
each source node is to be directed to exactly one sink node, and the total capacity
at the sinks is limited in terms of pressure and flow. A source node has a special
pressure-flow characteristic and the total flow within the network is bounded. The
pressure flow interactions are modeled by nonlinear functions, whereas the network is
represented by binary variables.

Let us assume that there are ms sinks and ns sources, and that we want to maximize
the total flow

ns∑
i=1

xi

under so-called split-factor constraints, i.e., a set of switching conditions for each
source i, i = 1, . . ., ns, of the form

ms∑
j=1

yij = 1 .

Moreover, we have pressure constraints at source i, i = 1, . . . , ns,

ms∑
j=1

cijy
i
j ≤ ai − bixi ,

and upper bounds Qj for mass rates at the sinks, j = 1, . . ., ms,

ns∑
i=1

xiy
i
j ≤ Qj ,

with appropriate positive constants cij, Qj, j = 1, . . ., j = ms, and ai, bi, i = 1,
. . ., ns. The well relinking test examples are defined by their dimensions ms = 3 and
ns = 3, ns = 6, or ns = 9, the constants mentioned above, modified topologies, and
the existence of simulated compressors and related technical systems or not.

In a very similar way, some gas lift test problems are created, see Ray and Sarker [91]
or Ayatollahi et al. [8] for related models. We finally get a set of 55 test problems,
where the number of continuous variables varies between 3 and 10, the number of
binary variables between 9 and 27, the number of linear equality constraints between
0 and 9, and the number of inequality constraints between 1 and 21. Table 6.3 contains
performance results for the solvers under consideration.

The results differ not too much from those presented in the last subsection for the
academic test set. The code MISQP without fine-tuning is by far the most efficient one
in terms of number of function evaluations. Since the fine-tuning features are missing
its reliability is much lower than that of MISQP using default settings. The optimal
solution is only found in less than 60 percent of the test cases, while the best-known
solution is obtained for 51 out of 55 problems, if fine-tuning is turned on. Although the

6.2 Solving Convex MIQP Problems 171

code nsucc nacc nerr ∆err nfunc time

MISQP 51 3 1 0.0451 2,097 1.0377
MISQP/base 32 22 1 0.1114 545 0.1331
MISQPOA 52 3 0 0.0245 17,827 11.3544
MIQPSOA 39 16 0 0.0887 9,680 3.6311
MIQPSOA/OA 39 15 1 0.1801 29,028 19.4237
MINLPB4 55 0 0 0.0 157,340 0.5834

Tab. 6.3: Performance Results for a Set of 55 Test Problems from Petroleum Industry

average number of function evaluations increases by a factor of almost four, MISQP
is still much more efficient than the other solvers. Even if an optimal solution is not
reached, MISQP stops at least at an acceptable solution.

The additional stabilizations of MISQPOA by linear outer approximations require a
significant amount of additional iterations and, consequently, a much larger number
of function calls. The reliability is only slightly improved yielding the best-known
solution in almost 95% of the test cases. For non-optimal solutions the average error
between the best-known solution and the acceptable solution is reduced by a factor
of almost 2.

The new outer approximation code MIQPSOA is less reliable than MISQP using fine-
tuning, but again the number of successful test runs is significantly higher than that of
MISQP/base. MIQPSOA need about 5 times as many function calls as MISQP. Com-
pared to well-known outer approximation methods, i.e., MIQPSOA/OA, the number
of function calls is reduced by a factor of 3, while the reliability is comparable.

The branch-and-bound code MINLPB4 solves all test problems, but requires more
than 75 times as many function calls as MISQP. Nevertheless the average computation
time is very low.

6.2 Solving Convex MIQP Problems

Our main motivation for developing a MIQP solver is to solve the subproblems, aris-
ing in MIQP-based MINLP solvers, efficiently. These problems possess a dense objec-
tive function, since the quadratic objective is derived by a quasi-Newton update, see
Definition 2.7. The constraints are linearizations of general, unstructured, nonlinear
constrains. Due to the algorithmic set up of the MIQP-based solution methods, the
problems are feasible and an integer feasible solution is always available by construc-
tion.

To be able to evaluate the performance of the MIQP solver for those problems, we
developed a test-framework and a library of test-cases. These problems are subprob-
lems, which arise during the solution of the MINLP problems described in Section 6.1.
We do not consider problems that are solved within half a second, since all available

172 6 Numerical Results

solution strategies perform sufficiently well and differences are hard to measure.

6.2.1 Survey of Algorithmic Settings for MIQP Solvers

There are plenty of different settings available in state-of-the-art MILP solvers, see e.g.,
Achterberg [4] for the main parameters of the MILP solver SCIP. In principle the same
settings are associated with MIQP solvers as well. In this section we provide a very
brief review on some of these settings, that are available in our MIQP solver MIQL.
In addition we mention some well-known alternatives, which are not yet implemented.
The main decision of branch-and-bound solvers for MILP and MIQP problems is the
selection of the branching and the node-selection rule. Furthermore the cut generation
management and the integration of heuristics plays a crucial role.

For all test runs we apply the same branching strategy, which is called maximum
fractional branching. Extensive research was carried out on branching strategies for
MILP problems, see e.g., Achterberg, Koch and Martin [3]. As a result, many differ-
ent branching rules were proposed such as strong branching, inference branching or
reliability branching. Strong branching results in a small search tree, but the compu-
tational effort is high, since a trial branching is carried out for each fractional integer
variable at each node. Inference branching turned out to be especially helpful for solv-
ing feasibility problems, as it does not rely on information of the objective function.
It is based on information retrieved from domain propagation instead. If no further
problem specific information can be exploited, reliability branching is a very success-
ful branching rule. It is an enhancement of pseudo-cost-branching, which measures
the improvement caused by branching on a certain variable with respect to the ob-
jective function in dependence of the fractionality of the variable. This information
is either collected from previous branchings or obtained by strong branching, if his-
torical data is not reliable, see Achterberg [4] for more details. For our MIQP solver
those branching rules are not available yet and therefore we have to apply maximum
fractional branching. As a consequence, computation times might be further reducible
by implementing more advanced branching strategies.

Compared to the research related to branching rules, node-selection is a less elaborated
topic, but recently new research was initiated, see e.g., Wojtaszek [110]. There are
two common strategies for selecting the node to proceed in the next iteration of the
branch-and-bound enumeration. The first one is best-first-search, where the next node
is always the one with the lowest dual bound. As a consequence, the dual bound
is improved quickly but successive subproblems are usually unrelated and therefore
warmstarts can hardly be performed. In addition, primal solutions are found very
late such that bounding cannot be applied. This leads to large number of open nodes
in the search tree. This effect is strengthened since infeasible subproblems are rarely
encountered. Therefore, a large amount of storage is required.

The second class of node-selection strategies is depth-first-search. In pure depth-first-
search one of the successive nodes is chosen whenever possible. If the current node is

6.2 Solving Convex MIQP Problems 173

a leaf, i.e., it is integral, infeasible or dominated by the current upper bound the sub-
sequent node is chosen via backtracking in the neighborhood of the current node. The
advantages are, that all subproblems are closely related and therefore warmstarting
techniques can be successfully applied to reduce the computational effort. Moreover,
the number of unexplored nodes is low, which reduces the storage requirements dras-
tically. Furthermore, primal solutions are usually found fast, such that bounding can
be applied early. Compared to best-first-search more subproblems need to be solved,
since the dual bound is not taken into account. A modification of this node-selection
rule is called depth-first-search with restarts. Whenever a leaf is encountered the sub-
sequent node is chosen to be the open node in the search tree possessing the lowest
dual bound. As a consequence, the dual bound is also improved successively but the
advantages of depth-first-search are maintained. There are node-selection strategies,
that try to find good nodes by considering the fractionality of the integer variables
and the dual bound, see Achterberg [4] for further details.

Warmstarts for continuous quadratic programs were described in detail in Section 2.11.
The efficiency of warmstarts is closely related to the chosen node-selection strategy, as
pointed out above. The speed-up caused by warmstarts is evaluated in the subsequent
section.

Basic theory of cutting planes was reviewed in Chapter 4. Furthermore, a method for
efficiently generating cutting planes for non-basic solutions was developed in Chap-
ter 5. Corresponding results verifying the efficiency of the cut generator and show,
that a significant speed-up can be obtained by constructing cutting planes for some
instances, see Section 6.2.2.

The possibility of fathoming a node is determined by the quality of the current upper
bound and the dual bound at the node. If the dual bound can be strengthened, the
corresponding node might be cut off earlier. If the continuous quadratic subproblems
are solved by a dual method, e.g., the one proposed by Goldfarb and Idnani [58],
see Section 2.11, each iteration increases the dual bound. As a consequence, one can
carry out the branching subject to the selected branching rule and perform a small
number of additional iterations for both created child nodes. Afterwards, the value
of the objective function is a valid dual bound, which might be much more stringent
than the objective value at the parent node. The strengthening of the dual bound by
additional iterations of a dual QP solver was proposed by Leyffer and Fletcher [75].

Due to the efficiency of warmstarts depth-first-search is one preferable node-selection
strategy. The drawback is, that diving with a random choice of the successive node,
results in a drastic increase of the branch-and-bound nodes. A possible alternative is
the node-selection rule best-of-two, which performs a depth-first-search but solves both
child problems and chooses the better. Best-of-two reduces the number of branch-
and-bound nodes significantly compared to pure depth-first-search and warmstarts
can be exploited. A further alternative is depth-first-search with restarts guided by the
Lagrangian function, where both child nodes of the current node are inspected by
evaluating the Lagrangian function L(x, y, λ, µ), see Definition 2.4, at bȳki c and dȳki e.

174 6 Numerical Results

(x̄k, ȳk, λ̄k, µ̄k) is the solution of the k-th branch-and-bound subproblem and yi is the
chosen branching variable. If

L(x̄k, ỹk, λ̄k, µ̄k) < L(x̄k, ŷk, λ̄k, µ̄k) (6.4)

with

ỹk :=

{
ȳkj , ∀j ∈ {1, . . . , ni}\{i}

bȳki c, otherwise
(6.5)

and

ŷk :=

{
ȳkj , ∀j ∈ {1, . . . , ni}\{i}

dȳki e, otherwise
(6.6)

holds, the node with yi ≤ bȳki c is chosen. Otherwise, we proceed with the node
containing the branching condition yi ≥ dȳki e. Among all inspected node-selection
strategies depth-first-search with restarts guided by the Lagrangian function is the
most efficient enumeration scheme. It was proposed by Nowak [83].

6.2.2 Numerical Results for MIQP Solver MIQL

We analyze the performance of the solver MIQL, see Lehmann et al. [71], with different
settings varying the node-selection strategy, the number of maximal successive warm-
starts and the construction mode for cutting planes. Furthermore, dual information
can be used to improve the dual bound of unexplored nodes and the node-selection
during depth-first-search can be guided by the value of the Lagrangian function.

The solver MIQL is implemented in thread-safe Fortran as close to F77 as possible.
The framework BFOUR is applied to perform the branch-and-bound enumeration, see
Lehmann et al. [74]. The continuous quadratic subproblems are solved by an extension
of the quadratic solver QL [94], see also Section 2.11.

We evaluate the performance in terms of total calculation time and number of branch-
and-bound nodes. The solution provided by MIQL is the global optimum of the convex
MIQP (2.127). In case of numerical errors caused by the quadratic solver QL, we
continue with the valid lower bound given the last iteration point of the method of
Goldfarb and Idnani [58], see Section 2.4 and Section 2.11 for further details. MIQL
is executed with default settings apart from the options that are to be evaluated, see
the corresponding user’s guide [71].

The test set consists of 46 MIQP problems. They arise as subproblems during the
solution of 8 from the 100 academic test cases collected by Schittkowski [95] by the
solver MISQP, see Section 2.10. The number of variables is in the range of 21 to 51,
while the number of integral variables varies from 20 to 50. The test cases possess
up to 55 constraints. The 46 MIQP problems are exactly those subproblems, which
cannot be solved to optimality within 1 second.

6.2 Solving Convex MIQP Problems 175

Setting Node Sel. Impr. Bnds Lagr. Dir. Warmstarts DJ-Cuts
MIQL1 Depth-First — yes yes no
MIQL2 Depth-First — yes yes standard
MIQL3 Depth-First — yes yes efficient
MIQL4 Depth-First — yes no no
MIQL5 Best-First yes — yes no
MIQL6 Best-First yes — yes efficient
MIQL7 Best-First no — yes no
MIQL8 Depth-First — no yes no

Tab. 6.4: MIQL Settings

Table 6.4 shows the different settings that are inspected.

The main performance criterion is the calculation time needed to find the global so-
lution of the convex MIQP (2.127). Another interesting characteristic is the number
of branch-and-bound nodes. In principle, these two criteria are closely related but the
ability to perform warmstarts leads to a variation. Table 6.5 shows the performance of
the different MIQL settings for the 46 test problems. The calculation time in seconds
and the number of branch-and-bound nodes are compared by considering the geomet-
ric mean for all test cases. Furthermore, we report the average gap in percent, that is
closed, if the construction of cutting planes yields at least one cut. The closed gap is
defined to be the difference between the objective value of the continuous relaxation
with and without cutting planes relative to the optimal objective value.

Finally we report the average number of quadratic subproblems, which could not be
solved to optimality due to internal numerical errors, e.g., division by a very small
number. Note, that a valid lower bound is still available, if a numerical error occurs
during the solution of a continuous quadratic subproblem by the method of Goldfarb
and Idnani [58]. Therefore, the optimality of the solution can nevertheless be guar-
anteed. Since the number of branch-and-bound nodes might be increased due to the
weaker lower bound at those nodes, numerical errors occurring during the solution of
the continuous quadratic subproblems can increase the computation time. We obtain
disjunctive cutting planes in 25 out of 46 test cases at the root node.

Table 6.5 shows that combining depth-first-search with restarts guided by the value
of the Lagrangian function at bȳki c or dȳki e respectively, is beneficial. Here ȳki is the
branching variable at the solution (x̄k, ȳk) of the k-th quadratic subproblem. Com-
paring setting MIQL1 and MIQL8 we see, that the computation time with respect to
the geometric mean is reduced by more than 25 percent. The main reason for this
improvement is the reduction of the number of branch-and-bound nodes, which is
reduced by more than 33 % with respect to the geometric mean.

The computation of improved bounds as proposed by Leyffer and Fletcher [75] turns
out to be beneficial as well. Considering settings MIQL5 and MIQL7 the number of
branch-and-bound nodes is reduced by 18 %, which yields a reduction of the compu-

176 6 Numerical Results

Setting Time No. Nodes Closed Gap QP failures
MIQL1 13.18 42033.17 — 42.00
MIQL2 15.91 37979.85 6 69.22
MIQL3 13.53 37637.26 7 92.13
MIQL4 18.18 40971.50 — 77.98
MIQL5 18.22 28881.80 — 58.87
MIQL6 16.94 26250.76 7 99.13
MIQL7 23.80 35232.33 — 76.09
MIQL8 17.74 63167.55 — 68.59

Tab. 6.5: MIQL Results

tation times of 23 percent, due to shaper lower bounds.

Applying warmstarts turns out to be efficient in combination with the node-selection
strategy depth-first. Comparing MIQL1 and MIQL4 shows, that the computation time
is reduce by more than 27 %. The number of QPs, where numerical errors arise is even
reduced by almost 47%. As expected warmstarts do not have a significant influence
on the number of branch-and-bound nodes.

Although disjunctive cutting planes only exist in about 54 % of the test cases, the
efficient construction method proposed in Chapter 4 reduces the computation time
by more than 7 percent in combination with best-first-search, comparing MIQL5 and
MIQL6. Combining the efficient construction of cutting planes with depth-first-search
guided by the value of the Lagrangian function yields a slight increase of the compu-
tation time of about 2 percent, as we can conclude by considering MIQL1 and MIQL3.
The construction of cutting planes leads to a significant increase of subproblems, where
numerical problems arise. Furthermore, the number of branch-and-bound nodes is re-
duced by more than 10 %. Comparing the cut generation modes, i.e., MIQL2 and
MIQL3, shows that the efficient construction method for disjunctive cutting planes
reduces the total calculation time by almost 15 %. Since the effort for constructing
the cutting planes is reduced significantly, it does not matter, that disjunctive cutting
planes do not exist at the root node in almost 46% of the test cases.

Analyzing the results in more detail, see Table B.2 in Appendix B, we see that the
generation of cutting planes has a significant influence on the calculation time. As
expected the calculation time is related to the number of branch-and-bound nodes.
The generation of disjunctive cutting planes leads to a reduction of the number of
nodes in two thirds of all test cases, where disjunctive cutting planes were found at
the root node. Considering the geometric mean, the number of branch-and-bound
nodes is reduced by almost 30 %, which corresponds to a reduction of the calculation
time of 20 percent in these test cases. The maximal reduction of nodes is 95 percent,
which reduces the calculation time by more than 80 %.

In one third of the test cases, where disjunctive cuts were found at the root node, the
number of branch-and-bound nodes is increased by almost 50 %. As a consequence

6.2 Solving Convex MIQP Problems 177

the calculation times double. Considering the maximal increase, three times as many
branch-and-bound nodes are needed and the calculation time is increased by a factor
of almost 3.

As a consequence, further research on the construction of cutting planes for MIQPs
is necessary, figuring out under which conditions they are beneficial. Their generation
might be more advantageous, if the reliability of the QP solver is improved, since
a significant increase of numerically difficult subproblems is detected. Therefore, an
active cut management during the solution process is needed, in order to improve the
numerical stability of the quadratic problem by removing instable cutting planes at
least temporarily. A cut management could further enhance the performance, since
cutting planes could be constructed at nodes, that are located deeper in the search
tree. The probability, that disjunctive cuts exit, increases on lower levels of the branch-
and-bound tree, since more constraints are part of the corresponding QP, see the proof
of Lemma 5.4.

In addition, we also compare the performance of MIQL with the constraint program-
ming framework SCIP, see Achterberg [2]. SCIP applies various presolving techniques
and cut generators, see Wolters [111]. Furthermore, a large number of primal heuris-
tics is implemented for finding primal solutions quickly, see Berthold [23]. SCIP is
applied in many research projects, e.g., for topology planning in gas transportation
networks, see Fügenschuh et al. [55]. SCIP is able to solve a large variety of problem
types from MILPs to non-convex MIQCPs and special non-convex MINLP problems.
A comparative study on solving MIQCP problems is available, see Berthold, Heinz
and Vigerske [24].

SCIP is executed on the 46 test instances with standard settings using the latest
version 2.0.2 with all available nonlinear features. SCIP is able to solve 31 out of
46 problems with a time-limit of 1000 seconds. The average optimality gap, i.e., the
relative difference between the best dual and the best primal bound is 39 % for those
test cases, that could not be solved to optimality. The geometric mean of the solution
time for all problems is 32.33 seconds.

Neglecting all instances, that were not solved within the time limit, yields a different
result. For the remaining test cases the geometric mean of SCIP is 6.08 seconds,
while the fastest MIQL setting, i.e., MIQL3, has a geometric mean of 13.33 seconds.
Furthermore, the differences in the solution times are huge. There are instances, that
SCIP can solve in less than one second, while MIQL needs more than 935 seconds.
For other test cases MIQL can determine the optimal solution in less than 16 seconds,
while SCIP reaches the time-limit of 1000 seconds and the optimality gap, i.e., the
relative difference of the primal and dual bound, is still larger than 60 %.

Analyzing the solver information of SCIP shows, that presolving is not very successful,
since only few bounds can be tightened. It is not possible to remove variables in any
instance and only sometimes a single constraint is redundant. Furthermore, only few
cutting planes can be found, mostly complemented mixed-integer rounding cuts and
sometimes flowcover cuts.

178 6 Numerical Results

A careful inspection shows, that the solutions of SCIP is worse than those of MIQL
in 7 out of 31 test cases. In 5 of these problems the derivation is less than 4 percent.
In the remaining two problems the solution of SCIP is 30 % and 59% worse than that
of MIQL. All solutions satisfy the constraints with respect to the feasibility tolerance,
which is 1.0E-6 for SCIP and 1.0E-10 for MIQL.

The detailed results of all 46 MIQP test cases are presented in the Appendix B.

7. CONCLUSION

This dissertation deals with mixed-integer nonlinear optimization problems. The main
focus was the development of new solution methods that are very efficient in terms
of the number of function evaluations, that are needed to solve MINLP problems. If
the number of function evaluations is sufficiently low, the corresponding algorithm
can be applied to solve simulation-based optimization problems, that rely on com-
plex simulation tools, which frequently arise in industrial applications. Since available
methods, especially NLP-based branch-and-bound methods, need a large number of
function evaluations, they cannot be applied, if function evaluations are expensive.

After reviewing available solution techniques for convex MINLP problems, we pro-
pose a new outer approximation algorithm that employs additional mixed-integer
search steps, denoted by MIQPSOA. For this MINLP algorithm we prove conver-
gence for convex mixed-integer nonlinear programs using standard assumptions, e.g.,
exact derivatives with respect to the integer variables. Extensive numerical tests show,
that MIQPSOA significantly improves the reliability of well-known linear outer ap-
proximation methods on the one hand, while it also improves the efficiency in terms
of the number of function evaluations.

In the second part of this thesis, we review and develop theory for solving strictly
convex mixed-integer quadratic programming problems. Inspired by powerful state-
of-the-art MILP solvers, the main focus is the application of warmstarts and the
generation of cutting planes. The construction of cutting planes for MIQPs implicate
some major difficulties compared to the well-known case of MILP. It turns out, that
the proposed cut generation procedure for disjunctive cutting planes is very efficient.
However, if cutting planes exist, they can significantly reduce the computation time.

There are some closely related topics that need to be investigated in the future. First,
we want to propose a new solver for convex MINLP problems that purely relies on
MIQP subproblems. It seems to be possible to prove convergence of such a sequential
mixed-integer quadratic programming algorithm by exploiting the results of Leyffer
[76] as pointed out in Section 3.3. Moreover, we need to prove, that MINLP algorithms
can guarantee global optimality for convex MINLP problems, if exact gradients are
not available, e.g., for setting up the linear outer approximation master problem.
Exploiting the theory of disjunctive programming, one might be able to show, that
descent directions approximated at neighbored grid-points, i.e., numerical forward or
backward differences with step-size one, are sufficient.

The numerical results of the MIQP test cases library show, that a significant speed-up
is still required in order to handle larger MINLP instances by MIQP-based solution

180 7 Conclusion

techniques. Therefore, one main task for future research is to further improve the
performance of MIQL. There are plenty of ways to continue the development of the
mixed-integer quadratic programming solver. Since presolving techniques seem to have
little success, we propose to concentrate on advanced branching rules and an improved
cut generation management. The cut generation process needs to be extended, such
that cut generation is not only applied at the root node but also on lower levels of the
branch-and-bound tree. Such strategy seems to be profitable, since the implemented
cut generator is sufficiently fast and the probability of the existence of cutting planes
is increased, if the number of constraints grows.

APPENDIX

A. DETAILED MINLP RESULTS

In the sequel we present the detailed results of all MINLP solvers for both the 100
academic test cases and the test set of 55 instances from petroleum industry provided
by our cooperation partner Shell. For all solvers and all test cases we consider the
following criteria.

Criterion Description

TP Index of the test problem
NAME Name of the test problem, see also Table A.3
IFAIL Termination flag indicating successful or

false termination
Nf Total number of function evaluations includ-

ing calls to approximate derivatives
F Objective value at the solution

OBJ ERR Deviation from the best-known solution
VIOL Maximal constraint violation at solution
TIME Running time in seconds.

Tab. A.1: Criteria for detailed MINLP Results

A.1 Academic Test Set

We considered a test set containing 100 academic test cases, which is published by
Schittkowski [95]. First we describe the characteristics of the test cases. The described
parameter are explained in Table A.2.

184 A Detailed MINLP Results

Criterion Description

TP Index of the test problem
NAME Name of the test problem, see also Table A.3
REF Reference of the test problem
nc Number of continuous variables
ni Number of integer variables
nb Number of binary variables
me Number of equality constraints
m Total number of constraints
f∗ Best-known objective value

Tab. A.2: Description of Academic Test Cases

The subsequent table presents the problems with a reference, the best-known objective
value and the characteristics of the problem.

TP NAME REF nc ni nb me m f∗

1 MITP1 2 3 0 0 1 -0.10010E+05
2 QIP1 0 4 0 0 4 -0.20000E+02
3 MITP2 2 0 3 0 7 0.35000E+01
4 ASAADI11 [5] 1 3 0 0 3 -0.40957E+02
5 ASAADI12 [5] 0 4 0 0 3 -0.38000E+02
6 ASAADI21 [5] 3 4 0 0 4 0.69490E+03
7 ASAADI22 [5] 0 7 0 0 4 0.70000E+03
8 ASAADI31 [5] 4 6 0 0 8 0.37220E+02
9 ASAADI32 [5] 0 10 0 0 8 0.43000E+02
10 DIRTY 12 13 0 0 10 -0.30472E+01
11 BRAAK1 [30] 4 3 0 0 2 0.10000E+01
12 BRAAK2 [30] 4 3 0 0 4 -0.27183E+01
13 BRAAK3 [30] 4 3 0 0 4 -0.19656E+00
14 DEX2 [36] 0 2 0 0 2 -0.56938E+02
15 TP83 [65] 3 2 0 0 6 -0.30666E+05
16 WP02 [109] 1 1 0 0 2 -0.24444E+01
17 NVS01 [34] 1 2 0 1 3 0.12470E+02
18 NVS02 [34] 3 5 0 3 3 0.59642E+01
19 NVS03 [34] 0 2 0 0 2 0.16000E+02
20 NVS04 [34] 0 2 0 0 0 0.72000E+00
21 NVS05 [34] 6 2 0 4 9 0.54709E+01
22 NVS06 [34] 0 2 0 0 0 0.17703E+01
23 NVS07 [34] 0 3 0 0 2 0.40000E+01
24 NVS08 [34] 1 2 0 0 3 0.23450E+02
25 NVS09 [34] 0 10 0 0 0 -0.43134E+02
26 NVS10 [34] 0 2 0 0 2 -0.31080E+03
27 NVS11 [34] 0 3 0 0 2 -0.43100E+03

A.1 Academic Test Set 185

TP NAME REF nc ni nb me m f∗

28 NVS12 [34] 0 4 0 0 4 -0.48120E+03
29 NVS13 [34] 0 5 0 0 5 -0.58520E+03
30 NVS14 [34] 3 5 0 3 3 -0.40358E+05
31 NVS15 [34] 0 3 0 0 1 0.10000E+01
32 NVS16 [34] 0 2 0 0 0 0.70312E+00
33 NVS17 [34] 0 7 0 0 7 -0.11004E+04
34 NVS18 [34] 0 6 0 0 6 -0.77840E+03
35 NVS19 [34] 0 8 0 0 8 -0.10984E+04
36 NVS20 [34] 11 5 0 0 8 0.23092E+03
37 NVS21 [34] 1 2 0 0 2 -0.56848E+01
38 NVS22 [34] 4 4 0 4 9 0.60582E+01
39 NVS23 [34] 0 9 0 0 9 -0.11252E+04
40 NVS24 [34] 0 10 0 0 10 -0.10332E+04
41 GEAR [34] 0 4 0 0 0 0.10000E+01
42 GEAR2 [34] 4 24 0 4 4 0.10000E+01
43 GEAR3 [34] 4 4 0 4 4 0.10000E+01
44 GEAR4 [34] 2 4 0 1 1 0.16434E+01
45 WINDFAC [34] 11 3 0 13 13 0.25449E+00
46 DG1 [43] 3 0 3 0 6 0.60097E+01
47 DG2 [43] 6 0 5 0 14 0.17214E+02
48 DG3 [43] 9 0 8 2 23 0.68010E+02
49 FLOUDAS1 [53] 2 0 3 2 5 0.76672E+01
50 FLOUDAS2 [53] 2 0 1 0 3 0.10765E+01
51 FLOUDAS3 [53] 3 0 4 0 9 0.45796E+01
52 FLOUDAS4 [53] 3 0 8 3 7 -0.94347E+00
53 FLOUDAS5 [53] 0 2 0 0 4 0.31000E+02
54 FLOUDAS6 [53] 1 1 0 0 3 -0.17000E+02
55 OAER [34] 6 0 3 3 7 -0.19231E+01
56 SPRING [34] 5 1 11 5 8 0.84625E+00
57 DAKOTA [44] 2 2 0 0 2 0.13634E+01
58 PROB02 [34] 0 6 0 0 8 0.11224E+06
59 PROB03 [34] 0 2 0 0 1 0.10000E+02
60 PROB10 [34] 1 1 0 0 2 0.34455E+01
61 BATCH [34] 23 0 24 12 73 0.28551E+00
62 BATCHDES [34] 10 0 9 6 19 0.16743E+06
63 DU OPT5 [34] 7 13 0 0 9 0.80737E+01
64 DU OPT [34] 7 13 0 0 9 0.35563E+01
65 ST E13 [34] 1 0 1 0 2 0.20000E+01
66 ST E32 [34] 16 19 0 17 18 -0.14304E+01
67 ST E36 [34] 1 1 0 1 2 -0.24600E+03
68 ST E38 [34] 2 2 0 0 3 0.71977E+04
69 ST MIQP1 [34] 0 0 5 0 1 0.28100E+03
70 ST MIQP2 [34] 0 4 0 0 3 0.20000E+01
71 ST MIQP3 [34] 0 2 0 0 1 -0.60000E+01
72 ST MIQP4 [34] 3 0 3 0 4 -0.45740E+04
73 ST MIQP5 [34] 5 2 0 0 13 -0.33389E+03
74 ST TEST1 [34] 0 5 0 0 1 0.10000E+01

186 A Detailed MINLP Results

TP NAME REF nc ni nb me m f∗

75 ST TEST2 [34] 0 6 0 0 2 -0.92500E+01
76 ST TEST3 [34] 0 13 0 0 10 -0.70000E+01
77 ST TEST4 [34] 0 6 0 0 5 -0.70000E+01
78 ST TEST5 [34] 0 10 0 0 11 -0.11000E+03
79 ST TEST6 [34] 0 0 10 0 5 0.47100E+03
80 ST TEST8 [34] 0 24 0 0 20 -0.29605E+05
81 ST TESTGR1 [34] 0 10 0 0 5 -0.12812E+02
82 ST TESTGR3 [34] 0 20 0 0 20 -0.20590E+02
83 ST TESTPH4 [34] 0 3 0 0 10 -0.80500E+02
84 TLN2 [34] 0 6 2 0 12 0.53000E+01
85 TLN4 [34] 0 20 4 0 24 0.83000E+01
86 TLN5 [34] 0 30 5 0 30 0.10300E+02
87 TLN6 [34] 0 42 6 0 36 0.15300E+02
88 PROCSEL [34] 7 0 3 4 7 -0.19231E+01
89 TLOSS [34] 0 42 6 0 53 0.16300E+02
90 TLTR [34] 0 36 12 0 54 0.48067E+02
91 ALAN [34] 4 0 4 2 7 0.28990E+01
92 MEANVARX [34] 21 0 14 8 44 0.14369E+02
93 HMITTELMANN [34] 0 0 16 0 7 0.13000E+02
94 MIP EX [61] 2 0 3 0 7 0.35000E+01
95 MGRID CYCLES1 [100] 0 5 0 0 1 0.80000E+01
96 MGRID CYCLES2 [100] 0 10 0 0 1 0.30000E+03
97 CROP5 [98] 0 5 0 0 3 0.10041E+00
98 CROP20 [98] 0 20 0 0 3 0.13178E+00
99 CROP50 [98] 0 50 0 0 3 0.37459E+00
100 CROP100 [98] 0 100 0 0 3 0.15684E+01

Tab. A.3: Characteristics of Academic Test Cases

In the remainder of this section we present the detailed numerical results for all
solver on the 100 academic test problems. The results of the mixed-integer sequential
quadratic programming method MISQP are reviewd in Table A.4.

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

1 MITP1 0 281 -0.100097E+05 0.00E+00 0.00E+00 0.00
2 QIP1 0 22 -0.200000E+02 0.00E+00 0.00E+00 0.00
3 MITP2 0 48 0.350000E+01 -0.95E-10 0.12E-09 0.00
4 ASAADI11 0 115 -0.409574E+02 -0.20E-04 0.47E-10 0.00
5 ASAADI12 0 144 -0.380000E+02 0.00E+00 0.00E+00 0.00
6 ASAADI21 0 338 0.694903E+03 0.48E-08 0.00E+00 0.00
7 ASAADI22 0 721 0.700000E+03 0.00E+00 0.00E+00 0.03
8 ASAADI31 0 332 0.372195E+02 -0.18E-05 0.63E-12 0.01
9 ASAADI32 0 202 0.430000E+02 0.00E+00 0.00E+00 0.02
10 DIRTY 0 5416 -0.304659E+01 0.21E-03 0.00E+00 0.39
11 BRAAK1 0 707 0.100424E+01 0.42E-02 0.00E+00 0.01
12 BRAAK2 0 1217 -0.271813E+01 0.55E-04 0.00E+00 0.02
13 BRAAK3 0 429 -0.196559E+00 0.66E-05 0.00E+00 0.01
14 DEX2 0 33 -0.569375E+02 0.00E+00 0.00E+00 0.00
15 TP83 0 126 -0.306655E+05 0.58E-07 0.25E-07 0.00

A.1 Academic Test Set 187

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

16 WP02 0 35 -0.244444E+01 -0.15E-05 0.00E+00 0.00
17 NVS01 0 108 0.124697E+02 -0.95E-07 0.59E-14 0.00
18 NVS02 0 363 0.596418E+01 -0.80E-07 0.27E-12 0.01
19 NVS03 0 37 0.160000E+02 0.00E+00 0.00E+00 0.00
20 NVS04 0 31 0.720000E+00 0.83E-14 0.00E+00 0.00
21 NVS05 0 635 0.547093E+01 -0.14E-06 0.24E-06 0.02
22 NVS06 0 64 0.177031E+01 0.28E-06 0.00E+00 0.00
23 NVS07 0 22 0.400000E+01 0.00E+00 0.00E+00 0.00
24 NVS08 0 235 0.234497E+02 -0.13E-06 0.12E-06 0.00
25 NVS09 0 32 -0.431343E+02 0.71E-07 0.00E+00 0.00
26 NVS10 0 37 -0.310800E+03 -0.18E-15 0.00E+00 0.00
27 NVS11 0 223 -0.431000E+03 0.00E+00 0.00E+00 0.00
28 NVS12 0 99 -0.481200E+03 0.00E+00 0.00E+00 0.00
29 NVS13 0 290 -0.585200E+03 0.00E+00 0.00E+00 0.01
30 NVS14 0 280 -0.403582E+05 -0.12E-06 0.43E-13 0.01
31 NVS15 0 33 0.100000E+01 0.00E+00 0.00E+00 0.00
32 NVS16 0 28 0.703125E+00 0.00E+00 0.00E+00 0.00
33 NVS17 0 247 -0.110040E+04 -0.21E-15 0.00E+00 0.01
34 NVS18 0 601 -0.778400E+03 0.00E+00 0.00E+00 0.02
35 NVS19 0 817 -0.109840E+04 0.00E+00 0.00E+00 0.04
36 NVS20 0 730 0.230973E+03 0.22E-03 0.15E-09 0.03
37 NVS21 0 164 -0.568478E+01 0.88E-07 0.77E-10 0.00
38 NVS22 0 209 0.605822E+01 0.00E+00 0.38E-12 0.01
39 NVS23 0 946 -0.112520E+04 0.00E+00 0.00E+00 0.06
40 NVS24 0 740 -0.102380E+04 0.91E-02 0.00E+00 0.04
41 GEAR 0 275 0.100000E+01 0.45E-07 0.00E+00 0.00
42 GEAR2 0 841 0.100000E+01 0.41E-06 0.26E-11 2.03
43 GEAR3 0 912 0.100000E+01 0.16E-07 0.75E-10 0.16
44 GEAR4 4 1374 0.000000E+00 -0.10E+01 0.13E-04 1.64
45 WINDFAC 0 964 0.254487E+00 0.21E-08 0.11E-08 0.06
46 DG1 0 205 0.600876E+01 -0.16E-03 0.92E-08 0.00
47 DG2 0 790 0.172142E+02 0.27E-05 0.00E+00 0.05
48 DG3 0 938 0.680097E+02 -0.38E-05 0.60E-12 0.07
49 FLOUDAS1 0 24 0.766718E+01 -0.33E-08 0.33E-08 0.00
50 FLOUDAS2 0 28 0.107654E+01 0.29E-05 0.55E-12 0.00
51 FLOUDAS3 0 253 0.457958E+01 -0.98E-07 0.23E-06 0.01
52 FLOUDAS4 0 445 -0.943471E+00 -0.17E-10 0.11E-09 0.04
53 FLOUDAS5 0 17 0.310000E+02 0.00E+00 0.00E+00 0.00
54 FLOUDAS6 0 17 -0.170000E+02 -0.66E-12 0.23E-11 0.00
55 OAER 0 160 -0.192310E+01 0.25E-06 0.47E-09 0.00
56 SPRING 0 1316 0.846246E+00 -0.40E-07 0.13E-09 0.14
57 DAKOTA 0 96 0.136340E+01 -0.28E-12 0.31E-13 0.00
58 PROB02 0 130 0.112235E+06 0.00E+00 0.00E+00 0.00
59 PROB03 0 15 0.100000E+02 0.00E+00 0.00E+00 0.00
60 PROB10 0 16 0.344550E+01 -0.17E-10 0.19E-10 0.00
61 BATCH 0 6303 0.285506E+00 0.16E-05 0.36E-07 8.93
62 BATCHDES 0 600 0.239960E+06 0.43E+00 0.10E-10 0.02

188 A Detailed MINLP Results

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

63 DU OPT5 0 2218 0.202563E+02 0.15E+01 0.00E+00 0.10
64 DU OPT 0 3196 0.684523E+01 0.92E+00 0.00E+00 0.15
65 ST E13 0 12 0.223607E+01 0.12E+00 0.00E+00 0.00
66 ST E32 0 631 -0.143041E+01 0.12E-07 0.35E-11 0.22
67 ST E36 0 245 -0.168310E+03 0.32E+00 0.52E-06 0.00
68 ST E38 0 389 0.719773E+04 0.61E-12 0.20E-12 0.01
69 ST MIQP1 0 36 0.281000E+03 0.00E+00 0.00E+00 0.00
70 ST MIQP2 0 65 0.200000E+01 0.00E+00 0.00E+00 0.00
71 ST MIQP3 0 13 -0.600000E+01 0.00E+00 0.00E+00 0.00
72 ST MIQP4 0 28 -0.457400E+04 -0.16E-09 0.30E-08 0.00
73 ST MIQP5 0 123 -0.333889E+03 0.33E-07 0.83E-10 0.00
74 ST TEST1 0 6 0.100000E+01 0.00E+00 0.00E+00 0.00
75 ST TEST2 0 42 -0.925000E+01 0.00E+00 0.00E+00 0.00
76 ST TEST3 0 59 -0.700000E+01 0.00E+00 0.00E+00 0.00
77 ST TEST4 0 45 -0.700000E+01 0.00E+00 0.00E+00 0.00
78 ST TEST5 0 44 -0.110000E+03 0.00E+00 0.00E+00 0.00
79 ST TEST6 0 77 0.471000E+03 0.00E+00 0.00E+00 0.01
80 ST TEST8 0 494 -0.296050E+05 0.00E+00 0.00E+00 0.10
81 ST TESTGR1 0 134 -0.127976E+02 0.11E-02 0.00E+00 0.01
82 ST TESTGR3 0 483 -0.205900E+02 0.00E+00 0.00E+00 0.28
83 ST TESTPH4 0 24 -0.805000E+02 0.00E+00 0.00E+00 0.00
84 TLN2 0 106 0.530000E+01 0.00E+00 0.00E+00 0.02
85 TLN4 0 1492 0.850000E+01 0.24E-01 0.00E+00 7.73
86 TLN5 0 1708 0.106000E+02 0.29E-01 0.00E+00 9.81
87 TLN6 0 2243 0.163000E+02 0.65E-01 0.00E+00 19.37
88 PROCSEL 0 353 -0.192310E+01 0.14E-06 0.76E-11 0.01
89 TLOSS 0 1260 0.163000E+02 0.00E+00 0.00E+00 11.57
90 TLTR 0 305 0.480667E+02 -0.74E-15 0.00E+00 0.72
91 ALAN 0 477 0.292500E+01 0.90E-02 0.10E-07 0.02
92 MEANVARX 0 2024 0.141897E+02 -0.12E-01 0.23E-11 0.61
93 HMITTELMANN 0 51 0.160000E+02 0.23E+00 0.00E+00 0.02
94 MIP EX 0 36 0.350000E+01 0.00E+00 0.00E+00 0.00
95 MGRID CYCLES1 0 79 0.800000E+01 0.00E+00 0.00E+00 0.00
96 MGRID CYCLES2 0 843 0.300000E+03 0.00E+00 0.00E+00 0.04
97 CROP5 0 66 0.100409E+00 -0.51E-05 0.00E+00 0.00
98 CROP20 0 5228 0.144696E+00 0.98E-01 0.00E+00 6.87
99 CROP50 0 1774 0.374595E+00 0.13E-04 0.00E+00 11.10
100 CROP100 0 38466 0.455721E-02 -0.10E+01 0.00E+00 155.45

Tab. A.4: Detailed Results of MISQP for the Academic Test Set

The results of the basic version of the mixed-integer sequential quadratic programming
method MISQP without fine-tuning are reviewed in Table A.5.

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

1 MITP1 0 197 -0.100097E+05 0.00E+00 0.00E+00 0.00
2 QIP1 0 28 -0.200000E+02 0.00E+00 0.00E+00 0.00
3 MITP2 0 52 0.500000E+01 0.43E+00 0.66E-11 0.00
4 ASAADI11 0 63 -0.256985E+02 0.37E+00 0.21E-08 0.00

A.1 Academic Test Set 189

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

5 ASAADI12 0 78 -0.380000E+02 0.00E+00 0.00E+00 0.00
6 ASAADI21 0 295 0.694904E+03 0.17E-05 0.00E+00 0.00
7 ASAADI22 0 97 0.714000E+03 0.20E-01 0.00E+00 0.00
8 ASAADI31 0 414 0.114042E+03 0.21E+01 0.28E-08 0.01
9 ASAADI32 0 376 0.520000E+02 0.21E+00 0.00E+00 0.01
10 DIRTY 0 1285 -0.304410E+01 0.10E-02 0.55E-11 0.05
11 BRAAK1 0 333 0.113487E+01 0.13E+00 0.00E+00 0.00
12 BRAAK2 0 113 -0.999739E+00 0.63E+00 0.00E+00 0.00
13 BRAAK3 0 294 -0.321242E-01 0.84E+00 0.00E+00 0.00
14 DEX2 0 36 -0.569375E+02 0.00E+00 0.00E+00 0.00
15 TP83 0 92 -0.302128E+05 0.15E-01 0.17E-11 0.00
16 WP02 0 27 -0.244444E+01 -0.14E-05 0.00E+00 0.00
17 NVS01 0 54 0.144199E+02 0.16E+00 0.47E-13 0.00
18 NVS02 0 84 0.725016E+01 0.22E+00 0.19E-12 0.00
19 NVS03 0 27 0.160000E+02 0.00E+00 0.00E+00 0.00
20 NVS04 0 15 0.720000E+00 0.83E-14 0.00E+00 0.00
21 NVS05 0 99 0.125909E+02 0.13E+01 0.90E-07 0.00
22 NVS06 0 8 0.177031E+01 0.28E-06 0.00E+00 0.00
23 NVS07 0 12 0.400000E+01 0.00E+00 0.00E+00 0.00
24 NVS08 0 69 0.260000E+02 0.11E+00 0.11E-10 0.00
25 NVS09 0 642 -0.431343E+02 0.71E-07 0.00E+00 0.01
26 NVS10 0 29 -0.310800E+03 -0.18E-15 0.00E+00 0.00
27 NVS11 0 54 -0.431000E+03 0.00E+00 0.00E+00 0.00
28 NVS12 0 60 -0.481200E+03 0.00E+00 0.00E+00 0.00
29 NVS13 0 135 -0.585200E+03 0.00E+00 0.00E+00 0.00
30 NVS14 0 42 -0.386352E+05 0.43E-01 0.40E-12 0.00
31 NVS15 0 39 0.100000E+01 0.00E+00 0.00E+00 0.00
32 NVS16 0 12 0.703125E+00 0.00E+00 0.00E+00 0.00
33 NVS17 0 79 -0.110040E+04 -0.21E-15 0.00E+00 0.00
34 NVS18 0 138 -0.776600E+03 0.23E-02 0.00E+00 0.00
35 NVS19 0 136 -0.108920E+04 0.84E-02 0.00E+00 0.00
36 NVS20 0 472 0.313343E+03 0.36E+00 0.30E-11 0.01
37 NVS21 0 69 -0.545739E+01 0.40E-01 0.55E-08 0.00
38 NVS22 0 120 0.822135E+01 0.36E+00 0.12E-11 0.00
39 NVS23 0 349 -0.112520E+04 0.00E+00 0.00E+00 0.02
40 NVS24 0 389 -0.102380E+04 0.91E-02 0.00E+00 0.02
41 GEAR 0 117 0.100000E+01 0.50E-06 0.00E+00 0.00
42 GEAR2 0 58 0.117491E+01 0.17E+00 0.25E-10 0.01
43 GEAR3 0 9 0.173226E+01 0.73E+00 0.00E+00 0.00
44 GEAR4 4 280 0.100000E+02 0.51E+01 0.18E-04 0.12
45 WINDFAC 0 239 0.750000E+00 0.19E+01 0.58E-12 0.01
46 DG1 0 106 0.600876E+01 -0.16E-03 0.92E-08 0.00
47 DG2 0 132 0.172142E+02 0.27E-05 0.15E-10 0.00
48 DG3 0 198 0.680097E+02 -0.38E-05 0.50E-11 0.01
49 FLOUDAS1 0 24 0.766718E+01 -0.33E-08 0.16E-08 0.00
50 FLOUDAS2 0 8 0.125000E+01 0.16E+00 0.24E-11 0.00
51 FLOUDAS3 0 16 0.580685E+01 0.27E+00 0.37E-10 0.00

190 A Detailed MINLP Results

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

52 FLOUDAS4 0 206 -0.601600E+00 0.36E+00 0.30E-10 0.01
53 FLOUDAS5 0 5 0.340000E+02 0.97E-01 0.00E+00 0.00
54 FLOUDAS6 0 17 -0.170000E+02 -0.66E-12 0.23E-11 0.00
55 OAER 0 70 -0.192310E+01 0.25E-06 0.68E-09 0.00
56 SPRING 0 307 0.128990E+01 0.52E+00 0.69E-07 0.01
57 DAKOTA 0 54 0.136340E+01 -0.25E-06 0.23E-07 0.00
58 PROB02 0 65 0.152255E+06 0.36E+00 0.00E+00 0.00
59 PROB03 0 5 0.100000E+02 0.00E+00 0.00E+00 0.00
60 PROB10 0 8 0.344550E+01 -0.47E-11 0.43E-11 0.00
61 BATCH 0 3416 0.470189E+00 0.65E+00 0.99E-06 1.01
62 BATCHDES 0 360 0.267226E+06 0.60E+00 0.64E-08 0.01
63 DU OPT5 0 2059 0.679541E+03 0.83E+02 0.00E+00 0.09
64 DU OPT 0 1320 0.304440E+04 0.86E+03 0.00E+00 0.05
65 ST E13 0 12 0.223607E+01 0.12E+00 0.00E+00 0.00
66 ST E32 0 445 -0.701910E+00 0.51E+00 0.30E-10 0.09
67 ST E36 0 213 -0.168310E+03 0.32E+00 0.52E-06 0.00
68 ST E38 0 145 0.744036E+04 0.34E-01 0.00E+00 0.00
69 ST MIQP1 0 12 0.281000E+03 0.00E+00 0.00E+00 0.00
70 ST MIQP2 0 24 0.500000E+01 0.15E+01 0.00E+00 0.00
71 ST MIQP3 0 3 0.000000E+00 0.10E+01 0.00E+00 0.00
72 ST MIQP4 0 14 -0.457400E+04 -0.16E-09 0.30E-08 0.00
73 ST MIQP5 0 81 -0.239889E+03 0.28E+00 0.79E-11 0.00
74 ST TEST1 0 6 0.100000E+01 0.00E+00 0.00E+00 0.00
75 ST TEST2 0 14 -0.925000E+01 0.00E+00 0.00E+00 0.00
76 ST TEST3 0 29 -0.600000E+01 0.14E+00 0.00E+00 0.00
77 ST TEST4 0 20 -0.600000E+01 0.14E+00 0.00E+00 0.00
78 ST TEST5 0 22 -0.110000E+03 0.00E+00 0.00E+00 0.00
79 ST TEST6 0 22 0.471000E+03 0.00E+00 0.00E+00 0.00
80 ST TEST8 0 425 -0.296050E+05 0.00E+00 0.00E+00 0.10
81 ST TESTGR1 0 360 -0.122298E+02 0.45E-01 0.00E+00 0.01
82 ST TESTGR3 0 1138 -0.178159E+02 0.13E+00 0.00E+00 0.23
83 ST TESTPH4 0 13 -0.805000E+02 0.00E+00 0.00E+00 0.00
84 TLN2 0 41 0.530000E+01 0.00E+00 0.00E+00 0.00
85 TLN4 0 168 0.111000E+02 0.34E+00 0.00E+00 0.19
86 TLN5 0 245 0.126000E+02 0.22E+00 0.00E+00 0.71
87 TLN6 0 830 0.206000E+02 0.35E+00 0.00E+00 2.98
88 PROCSEL 0 89 -0.141100E+01 0.27E+00 0.89E-06 0.00
89 TLOSS 0 259 0.181000E+02 0.11E+00 0.00E+00 0.55
90 TLTR 0 197 0.480667E+02 -0.74E-15 0.00E+00 0.61
91 ALAN 0 36 0.312353E+01 0.77E-01 0.81E-10 0.00
92 MEANVARX 0 324 0.141897E+02 -0.12E-01 0.23E-11 0.05
93 HMITTELMANN 0 34 0.160000E+02 0.23E+00 0.00E+00 0.01
94 MIP EX 0 12 0.350000E+01 0.00E+00 0.00E+00 0.00
95 MGRID CYCLES1 0 45 0.800000E+01 0.00E+00 0.00E+00 0.00
96 MGRID CYCLES2 0 700 0.300000E+03 0.00E+00 0.00E+00 0.03
97 CROP5 0 71 0.100409E+00 -0.51E-05 0.00E+00 0.00
98 CROP20 0 821 0.131785E+00 -0.17E-07 0.00E+00 0.05

A.1 Academic Test Set 191

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

99 CROP50 0 4802 0.374595E+00 0.13E-04 0.00E+00 1.22
100 CROP100 0 18913 0.196171E-01 -0.99E+00 0.00E+00 24.64

Tab. A.5: Detailed Results of MISQP without Fine-tuning for the Academic Test
Set

The detailed results of the code MISQPOA are presented in Table A.6.

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

1 MITP1 0 301 -0.100097E+05 0.00E+00 0.00E+00 0.00
2 QIP1 0 35 -0.200000E+02 0.00E+00 0.00E+00 0.00
3 MITP2 0 144 0.350000E+01 -0.95E-10 0.12E-09 0.00
4 ASAADI11 0 254 -0.409574E+02 -0.20E-04 0.47E-10 0.00
5 ASAADI12 0 159 -0.380000E+02 0.00E+00 0.00E+00 0.00
6 ASAADI21 0 648 0.694903E+03 0.48E-08 0.00E+00 0.01
7 ASAADI22 0 3978 0.700000E+03 0.00E+00 0.00E+00 0.27
8 ASAADI31 0 1321 0.372195E+02 -0.18E-05 0.63E-12 0.03
9 ASAADI32 0 2518 0.430000E+02 0.00E+00 0.00E+00 0.45
10 DIRTY 0 9351 -0.304695E+01 0.97E-04 0.21E-10 0.66
11 BRAAK1 0 2025 0.100424E+01 0.42E-02 0.00E+00 0.03
12 BRAAK2 0 1946 -0.271828E+01 -0.27E-06 0.00E+00 0.03
13 BRAAK3 0 452 -0.196559E+00 0.66E-05 0.00E+00 0.00
14 DEX2 0 42 -0.569375E+02 0.00E+00 0.00E+00 0.00
15 TP83 0 216 -0.306655E+05 0.58E-07 0.25E-07 0.00
16 WP02 0 155 -0.244444E+01 -0.18E-05 0.00E+00 0.00
17 NVS01 0 122 0.124697E+02 -0.95E-07 0.59E-14 0.00
18 NVS02 0 705 0.596418E+01 -0.80E-07 0.27E-12 0.02
19 NVS03 0 46 0.160000E+02 0.00E+00 0.00E+00 0.00
20 NVS04 0 183 0.720000E+00 0.83E-14 0.00E+00 0.00
21 NVS05 0 1754 0.547093E+01 -0.14E-06 0.24E-06 0.04
22 NVS06 0 73 0.177031E+01 0.28E-06 0.00E+00 0.00
23 NVS07 0 403 0.400000E+01 0.00E+00 0.00E+00 0.02
24 NVS08 0 446 0.234497E+02 -0.13E-06 0.12E-06 0.00
25 NVS09 0 63 -0.431343E+02 0.71E-07 0.00E+00 0.00
26 NVS10 0 46 -0.310800E+03 -0.18E-15 0.00E+00 0.00
27 NVS11 0 236 -0.431000E+03 0.00E+00 0.00E+00 0.00
28 NVS12 0 116 -0.481200E+03 0.00E+00 0.00E+00 0.00
29 NVS13 0 311 -0.585200E+03 0.00E+00 0.00E+00 0.01
30 NVS14 0 312 -0.403582E+05 -0.12E-06 0.43E-13 0.01
31 NVS15 0 247 0.100000E+01 0.00E+00 0.00E+00 0.00
32 NVS16 0 43 0.703125E+00 0.00E+00 0.00E+00 0.00
33 NVS17 0 276 -0.110040E+04 -0.21E-15 0.00E+00 0.01
34 NVS18 0 626 -0.778400E+03 0.00E+00 0.00E+00 0.02
35 NVS19 0 850 -0.109840E+04 0.00E+00 0.00E+00 0.04
36 NVS20 0 1801 0.230973E+03 0.22E-03 0.15E-09 0.04
37 NVS21 0 286 -0.568478E+01 0.88E-07 0.77E-10 0.00

192 A Detailed MINLP Results

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

38 NVS22 0 603 0.605822E+01 0.00E+00 0.38E-12 0.01
39 NVS23 0 983 -0.112520E+04 0.00E+00 0.00E+00 0.07
40 NVS24 0 778 -0.102380E+04 0.91E-02 0.00E+00 0.04
41 GEAR 0 832 0.100000E+01 0.18E-07 0.00E+00 0.01
42 GEAR2 0 3052 0.100000E+01 0.41E-06 0.26E-11 7.58
43 GEAR3 0 1919 0.100000E+01 0.24E-08 0.12E-09 0.17
44 GEAR4 4 3904 0.000000E+00 -0.10E+01 0.10E+01 2.88
45 WINDFAC 0 4757 0.254487E+00 -0.65E-08 0.50E-12 0.22
46 DG1 0 585 0.600876E+01 -0.16E-03 0.92E-08 0.01
47 DG2 0 1098 0.172142E+02 0.27E-05 0.15E-10 0.04
48 DG3 0 1633 0.680097E+02 -0.38E-05 0.50E-11 0.11
49 FLOUDAS1 0 139 0.766718E+01 -0.33E-08 0.16E-08 0.00
50 FLOUDAS2 0 65 0.107654E+01 0.29E-05 0.55E-12 0.00
51 FLOUDAS3 0 896 0.457958E+01 -0.98E-07 0.17E-06 0.03
52 FLOUDAS4 0 753 -0.943471E+00 -0.39E-10 0.46E-08 0.07
53 FLOUDAS5 0 92 0.310000E+02 0.00E+00 0.00E+00 0.00
54 FLOUDAS6 0 25 -0.170000E+02 -0.66E-12 0.23E-11 0.00
55 OAER 0 196 -0.192310E+01 0.25E-06 0.68E-09 0.00
56 SPRING 0 2099 0.846246E+00 -0.40E-07 0.13E-09 0.20
57 DAKOTA 0 112 0.136340E+01 -0.28E-12 0.31E-13 0.00
58 PROB02 0 155 0.112235E+06 0.00E+00 0.00E+00 0.00
59 PROB03 0 24 0.100000E+02 0.00E+00 0.00E+00 0.00
60 PROB10 0 73 0.344550E+01 -0.17E-10 0.19E-10 0.00
61 BATCH 0 10635 0.285506E+00 0.17E-05 0.20E-07 15.11
62 BATCHDES 0 658 0.239960E+06 0.43E+00 0.10E-10 0.02
63 DU OPT5 0 7047 0.202563E+02 0.15E+01 0.00E+00 0.79
64 DU OPT 0 5924 0.684523E+01 0.92E+00 0.00E+00 0.28
65 ST E13 0 44 0.200000E+01 0.47E-08 0.00E+00 0.00
66 ST E32 4 2750 -0.184000E+02 -0.12E+02 0.32E+03 0.59
67 ST E36 0 391 -0.246000E+03 -0.18E-10 0.14E-09 0.00
68 ST E38 0 662 0.719773E+04 0.61E-12 0.20E-12 0.01
69 ST MIQP1 0 116 0.281000E+03 0.00E+00 0.00E+00 0.00
70 ST MIQP2 0 169 0.200000E+01 0.00E+00 0.00E+00 0.00
71 ST MIQP3 0 22 -0.600000E+01 0.00E+00 0.00E+00 0.00
72 ST MIQP4 0 48 -0.457400E+04 -0.16E-09 0.30E-08 0.00
73 ST MIQP5 0 145 -0.333889E+03 0.33E-07 0.83E-10 0.00
74 ST TEST1 0 50 0.100000E+01 0.00E+00 0.00E+00 0.00
75 ST TEST2 0 61 -0.925000E+01 0.00E+00 0.00E+00 0.00
76 ST TEST3 0 100 -0.700000E+01 0.00E+00 0.00E+00 0.00
77 ST TEST4 0 65 -0.700000E+01 0.00E+00 0.00E+00 0.00
78 ST TEST5 0 75 -0.110000E+03 0.00E+00 0.00E+00 0.00
79 ST TEST6 0 312 0.471000E+03 0.00E+00 0.00E+00 0.02
80 ST TEST8 0 577 -0.296050E+05 0.00E+00 0.00E+00 0.10
81 ST TESTGR1 0 170 -0.127976E+02 0.11E-02 0.00E+00 0.01
82 ST TESTGR3 0 326 -0.205900E+02 0.00E+00 0.00E+00 0.17
83 ST TESTPH4 0 36 -0.805000E+02 0.00E+00 0.00E+00 0.00
84 TLN2 0 302 0.530000E+01 0.00E+00 0.00E+00 0.03

A.1 Academic Test Set 193

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

85 TLN4 0 3962 0.830000E+01 0.00E+00 0.00E+00 9.84
86 TLN5 0 6872 0.106000E+02 0.29E-01 0.00E+00 25.55
87 TLN6 0 7954 0.163000E+02 0.65E-01 0.00E+00 50.10
88 PROCSEL 0 658 -0.192310E+01 0.14E-06 0.76E-11 0.02
89 TLOSS 0 2121 0.163000E+02 0.00E+00 0.00E+00 13.49
90 TLTR 0 1491 0.611333E+02 0.27E+00 0.00E+00 6.61
91 ALAN 0 758 0.292500E+01 0.90E-02 0.10E-07 0.03
92 MEANVARX 0 3991 0.141897E+02 -0.12E-01 0.23E-11 1.21
93 HMITTELMANN 0 167 0.160000E+02 0.23E+00 0.00E+00 0.04
94 MIP EX 0 138 0.350000E+01 0.00E+00 0.00E+00 0.00
95 MGRID CYCLES1 0 219 0.800000E+01 0.00E+00 0.00E+00 0.02
96 MGRID CYCLES2 0 1566 0.300000E+03 0.00E+00 0.00E+00 0.10
97 CROP5 0 87 0.100409E+00 -0.51E-05 0.00E+00 0.00
98 CROP20 0 5451 0.148424E+00 0.13E+00 0.00E+00 6.51
99 CROP50 0 7841 0.374595E+00 0.13E-04 0.00E+00 10.86
100 CROP100 0 9684 0.209021E+02 0.12E+02 0.00E+00 19.42

Tab. A.6: Detailed Results of MISQPOA for the Academic Test Set

The results of the new outer approximation method MIQPSOA are reviewed in detail
in Table A.7.

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

1 MITP1 0 289 -0.100097E+05 0.00E+00 0.00E+00 0.00
2 QIP1 0 39 -0.200000E+02 0.00E+00 0.00E+00 0.00
3 MITP2 0 48 0.350000E+01 -0.47E-10 0.82E-10 0.00
4 ASAADI11 0 217 -0.409578E+02 -0.28E-04 0.63E-05 0.00
5 ASAADI12 0 104 -0.380000E+02 0.00E+00 0.00E+00 0.00
6 ASAADI21 0 380 0.694903E+03 0.37E-08 0.00E+00 0.00
7 ASAADI22 0 257 0.700000E+03 0.00E+00 0.00E+00 0.01
8 ASAADI31 0 3923 0.372190E+02 -0.14E-04 0.00E+00 0.13
9 ASAADI32 0 877 0.430000E+02 0.00E+00 0.00E+00 0.40
10 DIRTY 0 44671 -0.304575E+01 0.49E-03 0.00E+00 2.92
11 BRAAK1 0 7251 0.100000E+01 0.91E-06 0.13E-14 0.08
12 BRAAK2 0 1581 -0.271811E+01 0.64E-04 0.00E+00 0.03
13 BRAAK3 0 746 -0.107199E+00 0.45E+00 0.00E+00 0.01
14 DEX2 0 66 -0.569375E+02 0.00E+00 0.00E+00 0.00
15 TP83 0 117 -0.306655E+05 -0.12E-10 0.86E-10 0.00
16 WP02 0 47 -0.244444E+01 -0.18E-05 0.00E+00 0.00
17 NVS01 0 112 0.167339E+02 0.34E+00 0.45E-12 0.00
18 NVS02 0 485 0.605795E+01 0.16E-01 0.74E-12 0.01
19 NVS03 0 58 0.160000E+02 0.00E+00 0.00E+00 0.00
20 NVS04 0 104 0.720000E+00 0.83E-14 0.00E+00 0.00
21 NVS05 0 790 0.775390E+01 0.42E+00 0.84E-04 0.03
22 NVS06 0 67 0.177031E+01 0.28E-06 0.00E+00 0.00
23 NVS07 0 48 0.400000E+01 0.00E+00 0.00E+00 0.00
24 NVS08 0 136 0.240126E+02 0.24E-01 0.00E+00 0.00
25 NVS09 0 94 -0.431343E+02 0.71E-07 0.00E+00 0.00

194 A Detailed MINLP Results

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

26 NVS10 0 110 -0.310800E+03 -0.18E-15 0.00E+00 0.00
27 NVS11 0 238 -0.431000E+03 0.00E+00 0.00E+00 0.01
28 NVS12 0 452 -0.481200E+03 0.00E+00 0.00E+00 0.01
29 NVS13 0 740 -0.585200E+03 0.00E+00 0.00E+00 0.02
30 NVS14 0 615 -0.403582E+05 -0.12E-06 0.19E-13 0.01
31 NVS15 0 65 0.100000E+01 0.00E+00 0.00E+00 0.00
32 NVS16 0 64 0.703125E+00 0.00E+00 0.00E+00 0.00
33 NVS17 0 3134 -0.110040E+04 -0.21E-15 0.00E+00 0.38
34 NVS18 0 832 -0.778400E+03 0.00E+00 0.00E+00 0.08
35 NVS19 0 2701 -0.109840E+04 0.00E+00 0.00E+00 0.61
36 NVS20 0 1306 0.230922E+03 -0.21E-07 0.22E-15 0.04
37 NVS21 0 120 -0.128640E-02 0.10E+01 0.00E+00 0.00
38 NVS22 4 213 0.644726E+02 0.96E+01 0.70E-02 0.02
39 NVS23 0 4300 -0.112520E+04 0.00E+00 0.00E+00 2.41
40 NVS24 0 3826 -0.102380E+04 0.91E-02 0.00E+00 1.12
41 GEAR 0 138 0.100001E+01 0.14E-04 0.00E+00 0.00
42 GEAR2 0 928 0.100636E+01 0.64E-02 0.00E+00 0.05
43 GEAR3 0 255 0.100001E+01 0.57E-05 0.39E-11 0.00
44 GEAR4 0 113 0.000000E+00 -0.10E+01 0.57E-04 0.00
45 WINDFAC 0 1116 0.750000E+00 0.19E+01 0.90E-09 0.03
46 DG1 0 796 0.600871E+01 -0.17E-03 0.13E-04 0.02
47 DG2 0 124 0.172142E+02 0.27E-05 0.22E-10 0.00
48 DG3 0 3135 0.680097E+02 -0.38E-05 0.00E+00 0.33
49 FLOUDAS1 0 187 0.793111E+01 0.34E-01 0.00E+00 0.00
50 FLOUDAS2 0 27 0.107654E+01 0.29E-05 0.00E+00 0.00
51 FLOUDAS3 0 181 0.457958E+01 -0.26E-07 0.11E-07 0.00
52 FLOUDAS4 0 570 -0.824670E+00 0.13E+00 0.12E-06 0.04
53 FLOUDAS5 0 24 0.310000E+02 0.00E+00 0.00E+00 0.00
54 FLOUDAS6 0 24 -0.170000E+02 -0.39E-12 0.13E-11 0.00
55 OAER 0 241 -0.192347E+01 -0.19E-03 0.32E-04 0.00
56 SPRING 0 1283 0.126241E+01 0.49E+00 0.70E-04 0.11
57 DAKOTA 0 218 0.136221E+01 -0.87E-03 0.86E-04 0.00
58 PROB02 0 198 0.112235E+06 0.00E+00 0.00E+00 0.00
59 PROB03 0 25 0.100000E+02 0.00E+00 0.00E+00 0.00
60 PROB10 0 26 0.344550E+01 -0.46E-11 0.41E-11 0.00
61 BATCH 0 5889 0.333240E+00 0.17E+00 0.14E-04 6.35
62 BATCHDES 0 159 0.239954E+06 0.43E+00 0.74E-04 0.00
63 DU OPT5 0 3949 0.258716E+02 0.22E+01 0.00E+00 0.22
64 DU OPT 0 7498 0.606938E+01 0.71E+00 0.00E+00 0.49
65 ST E13 0 17 0.223607E+01 0.12E+00 0.00E+00 0.00
66 ST E32 4 1131 -0.405178E+02 -0.27E+02 0.50E+00 0.34
67 ST E36 0 310 -0.244843E+03 0.47E-02 0.14E-05 0.01
68 ST E38 0 174 0.719773E+04 0.60E-12 0.38E-14 0.00
69 ST MIQP1 0 39 0.281000E+03 0.00E+00 0.00E+00 0.00
70 ST MIQP2 0 81 0.200000E+01 0.00E+00 0.00E+00 0.00
71 ST MIQP3 0 51 -0.600000E+01 0.00E+00 0.00E+00 0.00
72 ST MIQP4 0 63 -0.457400E+04 -0.82E-12 0.24E-10 0.00

A.1 Academic Test Set 195

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

73 ST MIQP5 0 124 -0.333889E+03 0.33E-07 0.88E-12 0.00
74 ST TEST1 0 22 0.100000E+01 0.00E+00 0.00E+00 0.00
75 ST TEST2 0 33 -0.925000E+01 0.00E+00 0.00E+00 0.00
76 ST TEST3 0 113 -0.700000E+01 0.00E+00 0.00E+00 0.00
77 ST TEST4 0 80 -0.700000E+01 0.00E+00 0.00E+00 0.00
78 ST TEST5 0 120 -0.110000E+03 0.00E+00 0.00E+00 0.00
79 ST TEST6 0 85 0.471000E+03 0.00E+00 0.00E+00 0.00
80 ST TEST8 0 752 -0.296050E+05 0.00E+00 0.00E+00 0.10
81 ST TESTGR1 0 974 -0.128116E+02 -0.14E-15 0.00E+00 0.25
82 ST TESTGR3 0 1664 -0.205900E+02 0.00E+00 0.00E+00 1.19
83 ST TESTPH4 0 26 -0.805000E+02 0.00E+00 0.00E+00 0.00
84 TLN2 0 111 0.530000E+01 0.00E+00 0.00E+00 0.02
85 TLN4 0 268 0.100000E+02 0.20E+00 0.00E+00 3.66
86 TLN5 0 326 0.140000E+02 0.36E+00 0.00E+00 7.19
87 TLN6 0 520 0.171000E+02 0.12E+00 0.00E+00 12.25
88 PROCSEL 0 379 -0.141101E+01 0.27E+00 0.68E-05 0.02
89 TLOSS 0 681 0.181000E+02 0.11E+00 0.00E+00 22.97
90 TLTR 0 289 0.480667E+02 -0.74E-15 0.00E+00 6.47
91 ALAN 0 167 0.292500E+01 0.90E-02 0.30E-10 0.00
92 MEANVARX 0 1269 0.141897E+02 -0.12E-01 0.10E-13 0.10
93 HMITTELMANN 0 101 0.500000E+02 0.28E+01 0.00E+00 0.02
94 MIP EX 0 25 0.350000E+01 0.00E+00 0.00E+00 0.00
95 MGRID CYCLES1 0 54 0.800000E+01 0.00E+00 0.00E+00 0.00
96 MGRID CYCLES2 0 883 0.310000E+03 0.33E-01 0.44E-05 0.05
97 CROP5 0 522 0.100409E+00 -0.51E-05 0.00E+00 0.03
98 CROP20 0 637 0.661098E+00 0.40E+01 0.00E+00 5.55
99 CROP50 0 1992 0.174059E+01 0.36E+01 0.00E+00 61.55
100 CROP100 0 2063 -0.102991E+03 -0.67E+02 0.00E+00 183.45

Tab. A.7: Detailed Results of MIQPSOA for the Academic Test Set

The detailed results of the code MIQPSOA without performing mixed-integer search
steps, i.e., applying well-known linear outer approximatin techniques, are shown in
Table A.8.

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

1 MITP1 0 550 -0.786540E+04 0.21E+00 0.00E+00 0.00
2 QIP1 0 55 -0.100000E+02 0.50E+00 0.00E+00 0.00
3 MITP2 0 48 0.350000E+01 -0.47E-10 0.82E-10 0.00
4 ASAADI11 0 329 -0.409574E+02 -0.20E-04 0.30E-09 0.00
5 ASAADI12 0 116 -0.380000E+02 0.00E+00 0.00E+00 0.00
6 ASAADI21 0 531 0.694903E+03 0.37E-08 0.00E+00 0.00
7 ASAADI22 0 496 0.700000E+03 0.00E+00 0.00E+00 0.01
8 ASAADI31 0 3873 0.372190E+02 -0.14E-04 0.00E+00 0.07
9 ASAADI32 0 911 0.430000E+02 0.00E+00 0.00E+00 0.36
10 DIRTY 0 43090 -0.304574E+01 0.49E-03 0.00E+00 0.79
11 BRAAK1 0 9909 0.100000E+01 0.66E-06 0.19E-13 0.05
12 BRAAK2 0 1929 -0.271828E+01 -0.27E-06 0.12E-09 0.01
13 BRAAK3 0 748 -0.104979E+00 0.47E+00 0.00E+00 0.00

196 A Detailed MINLP Results

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

14 DEX2 0 85 -0.569375E+02 0.00E+00 0.00E+00 0.00
15 TP83 0 247 -0.306655E+05 -0.12E-10 0.86E-10 0.00
16 WP02 0 88 -0.244444E+01 -0.18E-05 0.00E+00 0.00
17 NVS01 0 66 0.491987E+03 0.38E+02 0.14E-09 0.00
18 NVS02 4 131 0.596418E+01 -0.80E-07 0.10E+01 0.00
19 NVS03 0 76 0.160000E+02 0.00E+00 0.00E+00 0.00
20 NVS04 0 100 0.720000E+00 0.83E-14 0.00E+00 0.00
21 NVS05 0 1470 0.588728E+01 0.76E-01 0.97E-04 0.01
22 NVS06 0 76 0.177031E+01 0.28E-06 0.00E+00 0.00
23 NVS07 0 34 0.400000E+01 0.00E+00 0.00E+00 0.00
24 NVS08 0 410 0.234497E+02 -0.87E-06 0.48E-05 0.00
25 NVS09 0 94 -0.431343E+02 0.71E-07 0.00E+00 0.00
26 NVS10 0 111 -0.310800E+03 -0.18E-15 0.00E+00 0.00
27 NVS11 0 269 -0.431000E+03 0.00E+00 0.00E+00 0.00
28 NVS12 0 511 -0.481200E+03 0.00E+00 0.00E+00 0.01
29 NVS13 0 431 -0.542200E+03 0.73E-01 0.00E+00 0.01
30 NVS14 0 413 -0.374822E+05 0.71E-01 0.16E-12 0.00
31 NVS15 0 86 0.100000E+01 0.00E+00 0.00E+00 0.00
32 NVS16 0 62 0.703125E+00 0.00E+00 0.00E+00 0.00
33 NVS17 0 234 -0.392800E+03 0.64E+00 0.00E+00 0.01
34 NVS18 0 886 -0.778400E+03 0.00E+00 0.00E+00 0.08
35 NVS19 0 999 -0.988200E+03 0.10E+00 0.00E+00 0.50
36 NVS20 0 1499 0.230922E+03 -0.21E-07 0.00E+00 0.02
37 NVS21 0 215 -0.490860E+01 0.14E+00 0.00E+00 0.00
38 NVS22 0 239 0.822135E+01 0.36E+00 0.14E-05 0.00
39 NVS23 0 154 -0.111400E+03 0.90E+00 0.00E+00 0.00
40 NVS24 0 259 -0.118000E+03 0.89E+00 0.00E+00 0.03
41 GEAR 0 138 0.100001E+01 0.14E-04 0.00E+00 0.00
42 GEAR2 0 1052 0.100636E+01 0.64E-02 0.49E-11 0.01
43 GEAR3 0 255 0.100001E+01 0.57E-05 0.39E-11 0.00
44 GEAR4 0 324 0.000000E+00 -0.10E+01 0.57E-04 0.01
45 WINDFAC 4 312 0.443763E+02 0.17E+03 0.27E+00 0.00
46 DG1 0 172 0.600876E+01 -0.16E-03 0.32E-07 0.00
47 DG2 0 361 0.426835E+02 0.15E+01 0.21E-10 0.00
48 DG3 0 1471 0.680097E+02 -0.38E-05 0.70E-07 0.03
49 FLOUDAS1 0 186 0.793111E+01 0.34E-01 0.00E+00 0.00
50 FLOUDAS2 0 26 0.107654E+01 0.29E-05 0.00E+00 0.00
51 FLOUDAS3 0 197 0.457958E+01 -0.26E-07 0.11E-07 0.00
52 FLOUDAS4 0 525 -0.943472E+00 -0.21E-05 0.54E-04 0.00
53 FLOUDAS5 0 26 0.310000E+02 0.00E+00 0.00E+00 0.00
54 FLOUDAS6 0 33 -0.170000E+02 -0.51E-11 0.17E-10 0.00
55 OAER 0 727 -0.192310E+01 -0.22E-05 0.35E-06 0.00
56 SPRING 4 247 0.125393E+00 -0.85E+00 0.27E+00 0.00
57 DAKOTA 0 146 0.136340E+01 0.00E+00 0.00E+00 0.00
58 PROB02 0 71 0.368285E+06 0.23E+01 0.00E+00 0.00
59 PROB03 0 25 0.100000E+02 0.00E+00 0.00E+00 0.00
60 PROB10 0 61 0.344550E+01 -0.12E-11 0.21E-12 0.00

A.1 Academic Test Set 197

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

61 BATCH 0 17769 0.344933E+00 0.21E+00 0.20E-04 119.46
62 BATCHDES 0 297 0.239958E+06 0.43E+00 0.31E-04 0.00
63 DU OPT5 0 4483 0.258716E+02 0.22E+01 0.00E+00 0.06
64 DU OPT 0 7785 0.760374E+01 0.11E+01 0.00E+00 0.10
65 ST E13 0 17 0.223607E+01 0.12E+00 0.00E+00 0.00
66 ST E32 4 6291 -0.222519E+01 -0.56E+00 0.85E+01 0.02
67 ST E36 0 127 -0.197217E+03 0.20E+00 0.90E-04 0.00
68 ST E38 0 321 0.719773E+04 0.60E-12 0.38E-14 0.00
69 ST MIQP1 0 39 0.281000E+03 0.00E+00 0.00E+00 0.00
70 ST MIQP2 0 71 0.200000E+01 0.00E+00 0.00E+00 0.00
71 ST MIQP3 0 32 -0.600000E+01 0.00E+00 0.00E+00 0.00
72 ST MIQP4 0 44 -0.457400E+04 0.00E+00 0.00E+00 0.00
73 ST MIQP5 0 205 -0.333889E+03 0.33E-07 0.22E-15 0.00
74 ST TEST1 0 22 0.100000E+01 0.00E+00 0.00E+00 0.00
75 ST TEST2 0 46 -0.925000E+01 0.00E+00 0.00E+00 0.00
76 ST TEST3 0 97 -0.700000E+01 0.00E+00 0.00E+00 0.00
77 ST TEST4 0 79 -0.700000E+01 0.00E+00 0.00E+00 0.00
78 ST TEST5 0 75 -0.110000E+03 0.00E+00 0.00E+00 0.00
79 ST TEST6 0 74 0.471000E+03 0.00E+00 0.00E+00 0.00
80 ST TEST8 4 147 0.276831E+07 0.95E+02 0.49E+02 0.00
81 ST TESTGR1 0 974 -0.128116E+02 -0.14E-15 0.00E+00 0.23
82 ST TESTGR3 0 701 -0.205900E+02 0.00E+00 0.00E+00 0.69
83 ST TESTPH4 0 35 -0.805000E+02 0.00E+00 0.00E+00 0.00
84 TLN2 0 81 0.530000E+01 0.00E+00 0.00E+00 0.00
85 TLN4 4 139 0.400000E+01 -0.52E+00 0.10E+01 1.52
86 TLN5 4 203 0.500000E+01 -0.51E+00 0.10E+01 1.85
87 TLN6 4 279 0.600000E+01 -0.61E+00 0.10E+01 2.74
88 PROCSEL 0 1272 -0.192310E+01 0.50E-07 0.78E-07 0.01
89 TLOSS 4 279 0.600000E+01 -0.63E+00 0.25E+04 4.34
90 TLTR 4 267 0.350000E+02 -0.27E+00 0.12E+03 5.21
91 ALAN 4 141 0.703141E+01 0.14E+01 0.27E-01 0.00
92 MEANVARX 0 724 0.235829E+02 0.64E+00 0.56E-16 0.08
93 HMITTELMANN 0 116 0.210000E+02 0.62E+00 0.00E+00 0.01
94 MIP EX 0 51 0.350000E+01 0.00E+00 0.00E+00 0.00
95 MGRID CYCLES1 0 71 0.800000E+01 0.00E+00 0.00E+00 0.00
96 MGRID CYCLES2 0 473 0.310000E+03 0.33E-01 0.44E-05 0.03
97 CROP5 0 873 0.100409E+00 -0.51E-05 0.00E+00 0.06
98 CROP20 0 1569 0.404518E+00 0.21E+01 0.00E+00 10.32
99 CROP50 0 2370 0.169215E+01 0.35E+01 0.00E+00 99.29
100 CROP100 0 2063 -0.102461E+03 -0.66E+02 0.00E+00 181.62

Tab. A.8: Detailed Results of a Linear Outer Approximation Method for the Aca-
demic Test Set

The results of the NLP-based branch-and-bound method MINLPB4 are presented in
Table A.9.

198 A Detailed MINLP Results

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

1 MITP1 0 144 -0.100097E+05 0.42E-14 0.00E+00 0.00
2 QIP1 0 35 -0.200000E+02 0.00E+00 0.00E+00 0.00
3 MITP2 0 163 0.350000E+01 -0.83E-07 0.83E-07 0.00
4 ASAADI11 0 96 -0.409574E+02 -0.20E-04 0.18E-10 0.00
5 ASAADI12 0 344 -0.380000E+02 0.00E+00 0.00E+00 0.00
6 ASAADI21 0 832 0.694903E+03 0.28E-07 0.00E+00 0.00
7 ASAADI22 0 2118 0.700000E+03 0.00E+00 0.00E+00 0.01
8 ASAADI31 0 4893 0.372190E+02 -0.14E-04 0.40E-13 0.01
9 ASAADI32 0 16938 0.430000E+02 0.00E+00 0.00E+00 0.04
10 DIRTY 0 9880 -0.304680E+01 0.15E-03 0.00E+00 0.06
11 BRAAK1 0 763 0.344800E+01 0.24E+01 0.00E+00 0.00
12 BRAAK2 0 2698 -0.935872E+00 0.66E+00 0.00E+00 0.00
13 BRAAK3 0 538 -0.196176E+00 0.20E-02 0.00E+00 0.00
14 DEX2 0 60 -0.569375E+02 0.00E+00 0.00E+00 0.00
15 TP83 0 186 -0.306655E+05 0.47E-06 0.18E-06 0.00
16 WP02 0 34 -0.244444E+01 -0.18E-05 0.00E+00 0.00
17 NVS01 0 240 0.124697E+02 -0.95E-07 0.58E-14 0.00
18 NVS02 0 1045 0.596418E+01 -0.80E-07 0.13E-12 0.00
19 NVS03 0 54 0.160000E+02 0.00E+00 0.00E+00 0.00
20 NVS04 0 345 0.720000E+00 0.83E-14 0.00E+00 0.00
21 NVS05 0 548 0.547093E+01 0.20E-07 0.20E-09 0.00
22 NVS06 0 114 0.177031E+01 0.28E-06 0.00E+00 0.00
23 NVS07 0 45 0.400000E+01 0.00E+00 0.00E+00 0.00
24 NVS08 0 149 0.234497E+02 -0.11E-06 0.29E-10 0.00
25 NVS09 0 55 -0.431343E+02 0.71E-07 0.00E+00 0.00
26 NVS10 0 53 -0.310800E+03 -0.18E-15 0.00E+00 0.00
27 NVS11 0 147 -0.431000E+03 0.00E+00 0.00E+00 0.00
28 NVS12 0 263 -0.481200E+03 0.00E+00 0.00E+00 0.00
29 NVS13 0 740 -0.585200E+03 0.00E+00 0.00E+00 0.00
30 NVS14 0 1747 -0.403582E+05 -0.12E-06 0.20E-12 0.00
31 NVS15 0 112 0.100000E+01 0.00E+00 0.00E+00 0.00
32 NVS16 0 57 0.703125E+00 0.00E+00 0.00E+00 0.00
33 NVS17 0 4058 -0.110040E+04 -0.21E-15 0.00E+00 0.01
34 NVS18 0 2751 -0.778400E+03 0.00E+00 0.00E+00 0.00
35 NVS19 0 6292 -0.109840E+04 0.00E+00 0.00E+00 0.02
36 NVS20 0 2635 0.230922E+03 -0.20E-07 0.60E-13 0.01
37 NVS21 0 4 -0.201000E-04 0.10E+01 0.00E+00 0.00
38 NVS22 0 598 0.605822E+01 0.00E+00 0.28E-06 0.00
39 NVS23 0 8897 -0.112520E+04 0.00E+00 0.00E+00 0.03
40 NVS24 0 13465 -0.102380E+04 0.91E-02 0.00E+00 0.05
41 GEAR 0 90 0.100000E+01 0.78E-06 0.00E+00 0.00
42 GEAR2 0 3484 0.100003E+01 0.31E-04 0.00E+00 0.01
43 GEAR3 0 333 0.100000E+01 0.78E-06 0.72E-11 0.00
44 GEAR4 3 345189 0.000000E+00 -0.10E+01 0.10E+01 0.66
45 WINDFAC 0 843 0.254487E+00 -0.65E-08 0.10E-12 0.01
46 DG1 0 212 0.600876E+01 -0.16E-03 0.79E-09 0.00
47 DG2 0 636 0.172142E+02 0.27E-05 0.00E+00 0.00

A.1 Academic Test Set 199

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

48 DG3 0 1930 0.680097E+02 -0.37E-05 0.10E-12 0.02
49 FLOUDAS1 0 55 0.766718E+01 -0.39E-08 0.11E-08 0.00
50 FLOUDAS2 0 68 0.107654E+01 0.29E-05 0.00E+00 0.00
51 FLOUDAS3 0 408 0.457958E+01 -0.60E-07 0.85E-07 0.00
52 FLOUDAS4 0 1322 -0.943471E+00 -0.34E-08 0.12E-06 0.00
53 FLOUDAS5 0 42 0.310000E+02 0.00E+00 0.00E+00 0.00
54 FLOUDAS6 0 12 -0.170000E+02 0.18E-10 0.00E+00 0.00
55 OAER 0 290 -0.192310E+01 0.24E-06 0.22E-10 0.00
56 SPRING 0 2431 0.846246E+00 -0.37E-07 0.20E-08 0.01
57 DAKOTA 0 85 0.136340E+01 0.00E+00 0.00E+00 0.00
58 PROB02 0 141 0.112235E+06 0.78E-13 0.00E+00 0.00
59 PROB03 0 48 0.100000E+02 0.00E+00 0.00E+00 0.00
60 PROB10 0 43 0.344550E+01 0.18E-10 0.00E+00 0.00
61 BATCH 0 17190 0.285506E+00 0.17E-05 0.10E-07 0.37
62 BATCHDES 0 100 0.239960E+06 0.43E+00 0.54E-07 0.00
63 DU OPT5 0 37456 0.174526E+02 0.12E+01 0.00E+00 0.33
64 DU OPT 0 22312 0.751195E+01 0.11E+01 0.00E+00 0.20
65 ST E13 0 15 0.223607E+01 0.12E+00 0.00E+00 0.00
66 ST E32 0 51793 -0.143041E+01 0.12E-07 0.16E-09 0.60
67 ST E36 0 168 -0.166444E+03 0.32E+00 0.39E-14 0.00
68 ST E38 0 111 0.719773E+04 0.60E-12 0.00E+00 0.00
69 ST MIQP1 0 574 0.281000E+03 0.00E+00 0.00E+00 0.00
70 ST MIQP2 0 146 0.200000E+01 -0.21E-06 0.17E-07 0.00
71 ST MIQP3 0 27 -0.600000E+01 -0.65E-14 0.13E-13 0.00
72 ST MIQP4 0 175 -0.457400E+04 -0.24E-10 0.57E-09 0.00
73 ST MIQP5 0 96 -0.333889E+03 0.33E-07 0.97E-11 0.00
74 ST TEST1 0 165 0.100000E+01 0.00E+00 0.00E+00 0.00
75 ST TEST2 0 63 -0.925000E+01 0.00E+00 0.00E+00 0.00
76 ST TEST3 0 673 -0.700000E+01 -0.13E-11 0.89E-11 0.00
77 ST TEST4 0 98 -0.700000E+01 0.47E-10 0.00E+00 0.00
78 ST TEST5 0 3061 -0.110000E+03 0.00E+00 0.00E+00 0.02
79 ST TEST6 0 4017 0.471000E+03 0.00E+00 0.00E+00 0.02
80 ST TEST8 0 436 -0.296050E+05 -0.37E-11 0.21E-10 0.01
81 ST TESTGR1 0 9061 -0.128116E+02 -0.28E-13 0.99E-13 0.02
82 ST TESTGR3 0 73716 -0.205900E+02 0.00E+00 0.00E+00 0.31
83 ST TESTPH4 0 48 -0.805000E+02 0.00E+00 0.00E+00 0.00
84 TLN2 0 3779 0.530000E+01 -0.22E-11 0.58E-11 0.01
85 TLN4 1 2720887 0.860000E+01 0.36E-01 0.49E-31 13.79
86 TLN5 1 4229766 0.106000E+02 0.29E-01 0.00E+00 26.12
87 TLN6 1 5707675 0.159000E+02 0.39E-01 0.56E-10 50.69
88 PROCSEL 0 630 -0.192310E+01 0.14E-06 0.71E-11 0.00
89 TLOSS 0 38934 0.163000E+02 -0.76E-10 0.79E-08 0.48
90 TLTR 2 2405 0.000000E+00 -0.10E+01 0.10E+01 0.04
91 ALAN 0 379 0.292500E+01 0.90E-02 0.18E-10 0.00
92 MEANVARX 0 1377 0.141897E+02 -0.12E-01 0.21E-11 0.01
93 HMITTELMANN 0 2097 0.130000E+02 0.00E+00 0.00E+00 0.01
94 MIP EX 0 72 0.350000E+01 -0.35E-07 0.83E-07 0.00

200 A Detailed MINLP Results

TP NAME IFAIL Nf F OBJ ERR VIOL TIME

95 MGRID CYCLES1 0 610 0.800000E+01 0.00E+00 0.00E+00 0.00
96 MGRID CYCLES2 0 59222 0.300000E+03 0.00E+00 0.00E+00 0.18
97 CROP5 0 1345 0.100409E+00 -0.51E-05 0.00E+00 0.00
98 CROP20 0 452223 0.131785E+00 -0.17E-07 0.00E+00 4.23
99 CROP50 1 5312432 0.585701E+00 0.56E+00 0.00E+00 130.33
100 CROP100 0 101 -0.886964E+02 -0.58E+02 0.00E+00 0.01

Tab. A.9: Detailed Results of MINLPB4 for the Academic Test Set

A.2 Test Cases from Petroleum Industry

We considered a test set containing 55 optimization problems, that were provided by
our cooperation partner shell. The test cases represent some of the problem charac-
teristics arising in well relinking and lift gas applications, see Chapter 1 for further
details. The subsequent table presents the problem characteristics and the best-known
objective value. See also Table A.2 for further explanation.

TP nc ni nb me m f∗

1 3 0 9 3 9 -0.16045000E+04
2 6 0 18 6 15 -0.18000000E+04
3 6 0 18 6 15 -0.23083000E+04
4 6 0 18 6 15 -0.25082919E+04
5 6 0 18 6 15 -0.26266000E+04
6 6 0 18 6 15 -0.28045000E+04
7 6 0 18 6 15 -0.30995000E+04
8 9 0 27 9 21 -0.26310000E+04
9 9 0 27 9 21 -0.30406261E+04
10 9 0 27 9 21 -0.34045000E+04
11 10 0 10 0 1 -0.15020820E+04
12 10 0 10 0 1 -0.30418740E+04
13 10 0 10 0 1 -0.45049970E+04
14 10 0 10 0 1 -0.59232000E+04
15 10 0 10 0 1 -0.72820330E+04
16 10 0 10 0 1 -0.85874180E+04
17 10 0 10 0 1 -0.97723790E+04
18 10 0 10 0 1 -0.10789980E+05
19 10 0 10 0 1 -0.11644540E+05
20 10 0 10 0 1 -0.12317110E+05
21 10 0 10 0 11 -0.22360680E+03
22 10 0 10 0 11 -0.31622780E+03
23 10 0 10 0 11 -0.38890870E+03
24 10 0 10 0 11 -0.46475800E+03
25 10 0 10 0 11 -0.54382900E+03
26 10 0 10 0 11 -0.62749500E+03
27 10 0 10 0 11 -0.71554180E+03

A.2 Test Cases from Petroleum Industry 201

TP nc ni nb me m f∗

28 10 0 10 0 11 -0.80638080E+03
29 10 0 10 0 11 -0.90124910E+03
30 10 0 10 0 11 -0.99636840E+03
31 10 0 10 0 11 -0.10831670E+04
32 10 0 10 0 11 -0.11635080E+04
33 10 0 10 0 11 -0.12386480E+04
34 10 0 10 0 11 -0.13094850E+04
35 10 0 10 0 11 -0.13766810E+04
36 10 0 10 0 11 -0.14407460E+04
37 10 0 10 0 11 -0.15021000E+04
38 10 0 10 0 11 -0.23041000E+04
39 10 0 10 0 11 -0.30419000E+04
40 10 0 10 0 11 -0.37610000E+04
41 10 0 10 0 11 -0.45050000E+04
42 10 0 10 0 11 -0.52231000E+04
43 10 0 10 0 11 -0.59232000E+04
44 10 0 10 0 11 -0.66091000E+04
45 10 0 10 0 11 -0.72820000E+04
46 10 0 10 0 11 -0.79417000E+04
47 10 0 10 0 11 -0.85874000E+04
48 10 0 10 0 11 -0.92014000E+04
49 10 0 10 0 11 -0.97724000E+04
50 10 0 10 0 11 -0.10301000E+05
51 10 0 10 0 11 -0.10790000E+05
52 10 0 10 0 11 -0.11238000E+05
53 10 0 10 0 11 -0.11645000E+05
54 10 0 10 0 11 -0.12008000E+05
55 10 0 10 0 11 -0.12317000E+05

Tab. A.10: Characteristics of Shell Test Cases

The subsequent Table A.11 presents detailed results of the solver MISQP for the
petroleum test cases.

TP IFAIL Nf F OBJ ERR VIOL TIME

1 0 368 -0.16044944E+04 0.35E-05 0.86E-11 0.04
2 0 1125 -0.18000000E+04 -0.11E-11 0.81E-11 0.80
3 0 1411 -0.23082919E+04 0.35E-05 0.85E-10 1.03
4 0 3299 -0.25082919E+04 0.20E-07 0.54E-11 2.06
5 0 1811 -0.26249297E+04 0.64E-03 0.65E-11 1.24
6 0 1506 -0.28044944E+04 0.20E-05 0.46E-11 0.84
7 0 733 -0.30995309E+04 -0.10E-04 0.22E-09 0.32
8 0 6396 -0.25090878E+04 0.46E-01 0.37E-10 22.45
9 0 4493 -0.30254621E+04 0.50E-02 0.33E-10 16.75
10 1 74084 -0.33644979E+04 0.12E-01 0.32E-10 22.86
11 0 597 -0.15020819E+04 0.74E-07 0.00E+00 0.04
12 0 532 -0.30418744E+04 -0.14E-06 0.58E-08 0.04
13 0 2115 -0.45049972E+04 -0.50E-07 0.00E+00 0.23

202 A Detailed MINLP Results

TP IFAIL Nf F OBJ ERR VIOL TIME

14 0 1225 -0.59231537E+04 0.78E-05 0.00E+00 0.09
15 0 1940 -0.72663608E+04 0.22E-02 0.00E+00 0.17
16 0 453 -0.85874181E+04 -0.14E-07 0.00E+00 0.02
17 0 487 -0.97723791E+04 -0.13E-07 0.00E+00 0.01
18 0 549 -0.10789985E+05 -0.44E-06 0.00E+00 0.01
19 0 484 -0.11644542E+05 -0.21E-06 0.00E+00 0.01
20 0 42 -0.12317111E+05 -0.96E-07 0.00E+00 0.00
21 0 3071 -0.22360680E+03 -0.19E-09 0.51E-08 0.70
22 0 7511 -0.31622800E+03 -0.63E-06 0.59E-06 2.03
23 0 4042 -0.38890877E+03 -0.19E-06 0.97E-07 1.36
24 0 3561 -0.46475800E+03 -0.47E-08 0.12E-08 1.38
25 0 4141 -0.54221767E+03 0.30E-02 0.75E-09 1.56
26 0 2021 -0.62749510E+03 -0.15E-06 0.94E-07 0.92
27 0 2787 -0.71554175E+03 0.66E-07 0.75E-09 1.12
28 0 1265 -0.80498447E+03 0.17E-02 0.75E-09 0.71
29 0 1985 -0.90000000E+03 0.14E-02 0.75E-09 1.18
30 0 1619 -0.99636842E+03 -0.18E-07 0.11E-07 0.83
31 0 2791 -0.10831667E+04 0.31E-06 0.49E-08 1.28
32 0 2443 -0.11635076E+04 0.32E-06 0.73E-09 1.08
33 0 2701 -0.12386485E+04 -0.38E-06 0.16E-07 1.17
34 0 2139 -0.13094846E+04 0.28E-06 0.73E-09 0.98
35 0 3227 -0.13766808E+04 0.15E-06 0.73E-09 1.56
36 0 6272 -0.13565595E+04 0.58E-01 0.89E-06 4.55
37 0 1500 -0.14560231E+04 0.31E-01 0.59E-06 0.68
38 0 1880 -0.23040726E+04 0.12E-04 0.54E-07 1.24
39 0 2252 -0.30418746E+04 0.84E-05 0.45E-07 2.09
40 0 2106 -0.37609839E+04 0.43E-05 0.64E-09 2.14
41 0 1676 -0.44728364E+04 0.71E-02 0.37E-06 0.64
42 0 8839 -0.52231478E+04 -0.92E-05 0.46E-06 2.14
43 0 2740 -0.59089773E+04 0.24E-02 0.19E-06 0.84
44 0 3358 -0.66090883E+04 0.18E-05 0.85E-06 0.60
45 0 2934 -0.72727074E+04 0.13E-02 0.24E-06 0.51
46 0 2706 -0.79417410E+04 -0.52E-05 0.43E-08 0.31
47 0 1980 -0.85874196E+04 -0.23E-05 0.22E-06 0.20
48 0 1743 -0.92014344E+04 -0.37E-05 0.27E-06 0.17
49 0 1743 -0.97723804E+04 0.20E-05 0.17E-06 0.15
50 0 1657 -0.10301601E+05 -0.58E-04 0.32E-06 0.13
51 0 1214 -0.10789986E+05 0.13E-05 0.29E-06 0.09
52 0 680 -0.11237843E+05 0.14E-04 0.60E-09 0.05
53 0 549 -0.11644542E+05 0.39E-04 0.73E-08 0.03
54 0 421 -0.12007632E+05 0.31E-04 0.20E-06 0.02
55 0 42 -0.12317111E+05 -0.90E-05 0.00E+00 0.00

Tab. A.11: Detailed Results of MISQP for the Shell Test Set

We review the results of the basic version of MISQP for the industrial test cases in
Table A.12.

A.2 Test Cases from Petroleum Industry 203

TP IFAIL Nf F OBJ ERR VIOL TIME

1 0 91 -0.16044944E+04 0.35E-05 0.86E-11 0.00
2 4 172 -0.14203822E+04 0.21E+00 0.37E+00 0.21
3 0 325 -0.23082919E+04 0.35E-05 0.41E-11 0.17
4 0 326 -0.23066960E+04 0.80E-01 0.59E-11 0.17
5 0 225 -0.26249297E+04 0.64E-03 0.65E-11 0.20
6 0 200 -0.28044944E+04 0.20E-05 0.16E-10 0.07
7 0 350 -0.30995309E+04 -0.10E-04 0.22E-09 0.13
8 0 1148 -0.24073929E+04 0.85E-01 0.46E-11 1.82
9 0 631 -0.27037975E+04 0.11E+00 0.31E-10 5.93
10 0 741 -0.31016949E+04 0.89E-01 0.81E-11 1.65
11 0 146 -0.15020819E+04 0.74E-07 0.00E+00 0.01
12 0 275 -0.30418744E+04 -0.14E-06 0.58E-08 0.02
13 0 253 -0.43499808E+04 0.34E-01 0.00E+00 0.03
14 0 896 -0.59089762E+04 0.24E-02 0.00E+00 0.07
15 0 1152 -0.70493335E+04 0.32E-01 0.00E+00 0.11
16 0 453 -0.85874181E+04 -0.14E-07 0.00E+00 0.02
17 0 487 -0.97723791E+04 -0.13E-07 0.00E+00 0.01
18 0 549 -0.10789985E+05 -0.44E-06 0.00E+00 0.01
19 0 484 -0.11644542E+05 -0.21E-06 0.00E+00 0.01
20 0 42 -0.12317111E+05 -0.96E-07 0.00E+00 0.00
21 0 849 -0.22360680E+03 -0.19E-09 0.51E-08 0.18
22 0 1191 -0.20554840E+03 0.35E+00 0.34E-06 0.32
23 0 1144 -0.35601993E+03 0.85E-01 0.38E-06 0.43
24 0 893 -0.46016301E+03 0.99E-02 0.75E-09 0.61
25 0 550 -0.46556417E+03 0.14E+00 0.75E-09 0.26
26 0 717 -0.61967734E+03 0.12E-01 0.75E-09 0.54
27 0 787 -0.71116102E+03 0.61E-02 0.75E-09 0.58
28 0 530 -0.80498447E+03 0.17E-02 0.75E-09 0.41
29 0 764 -0.89148754E+03 0.11E-01 0.17E-07 0.58
30 0 547 -0.77459667E+03 0.22E+00 0.74E-09 0.44
31 0 857 -0.93367637E+03 0.14E+00 0.70E-06 0.59
32 0 572 -0.91747004E+03 0.21E+00 0.35E-06 0.38
33 0 767 -0.10446291E+04 0.16E+00 0.75E-09 0.36
34 0 896 -0.10770330E+04 0.18E+00 0.12E-08 0.50
35 0 934 -0.12041600E+04 0.13E+00 0.27E-06 0.42
36 0 682 -0.12414723E+04 0.14E+00 0.55E-06 0.54
37 0 828 -0.14321328E+04 0.47E-01 0.77E-06 0.37
38 0 997 -0.23040726E+04 0.12E-04 0.54E-07 0.49
39 0 908 -0.25872285E+04 0.15E+00 0.47E-07 0.45
40 0 867 -0.36663333E+04 0.25E-01 0.69E-08 0.44
41 0 863 -0.44728364E+04 0.71E-02 0.37E-06 0.31
42 0 907 -0.50852783E+04 0.26E-01 0.93E-06 0.42
43 0 991 -0.59089773E+04 0.24E-02 0.19E-06 0.29
44 0 843 -0.66090864E+04 0.21E-05 0.31E-06 0.15
45 0 948 -0.72727074E+04 0.13E-02 0.24E-06 0.14
46 0 764 -0.79258282E+04 0.20E-02 0.35E-07 0.07
47 0 763 -0.85874196E+04 -0.23E-05 0.22E-06 0.05

204 A Detailed MINLP Results

TP IFAIL Nf F OBJ ERR VIOL TIME

48 0 757 -0.92014344E+04 -0.37E-05 0.27E-06 0.07
49 0 655 -0.97723804E+04 0.20E-05 0.17E-06 0.04
50 0 673 -0.10301601E+05 -0.58E-04 0.32E-06 0.04
51 0 467 -0.10789986E+05 0.13E-05 0.29E-06 0.02
52 0 445 -0.11237843E+05 0.14E-04 0.60E-09 0.02
53 0 360 -0.11644542E+05 0.39E-04 0.73E-08 0.02
54 0 295 -0.12007632E+05 0.31E-04 0.20E-06 0.01
55 0 42 -0.12317111E+05 -0.90E-05 0.00E+00 0.00

Tab. A.12: Detailed Results of MISQP without Fine-tuning for the Shell Test Set

The subsequent table shows the detailed results of the code MISQPOA for the Shell
test case library.

TP IFAIL Nf F OBJ ERR VIOL TIME

1 0 490 -0.16044944E+04 0.35E-05 0.36E-11 0.05
2 0 786 -0.18000000E+04 -0.67E-11 0.22E-10 1.08
3 0 1418 -0.23082919E+04 0.35E-05 0.15E-10 1.90
4 0 2028 -0.25082920E+04 -0.26E-07 0.83E-07 2.33
5 0 1029 -0.26246799E+04 0.73E-03 0.83E-07 0.74
6 0 1022 -0.28044944E+04 0.20E-05 0.54E-11 0.99
7 0 574 -0.30995309E+04 -0.10E-04 0.81E-11 0.30
8 0 1611 -0.26310453E+04 -0.17E-04 0.32E-10 12.49
9 0 1690 -0.30315764E+04 0.30E-02 0.11E-10 6.30
10 0 2039 -0.33037975E+04 0.30E-01 0.24E-10 5.60
11 0 491 -0.15020819E+04 0.74E-07 0.00E+00 0.07
12 0 594 -0.29532883E+04 0.29E-01 0.00E+00 0.10
13 0 2699 -0.45049972E+04 -0.50E-07 0.00E+00 0.11
14 0 946 -0.59231537E+04 0.78E-05 0.00E+00 0.05
15 0 1429 -0.72820327E+04 0.44E-07 0.00E+00 0.12
16 0 406 -0.85874181E+04 -0.14E-07 0.00E+00 0.02
17 0 309 -0.97723791E+04 -0.13E-07 0.00E+00 0.01
18 0 1397 -0.10789985E+05 -0.44E-06 0.00E+00 0.03
19 0 165 -0.11644542E+05 -0.21E-06 0.00E+00 0.01
20 0 74 -0.12317111E+05 -0.96E-07 0.00E+00 0.00
21 0 3052 -0.22360680E+03 0.10E-07 0.21E-14 0.76
22 0 4722 -0.31622777E+03 0.11E-06 0.75E-09 1.12
23 0 5615 -0.38890873E+03 -0.76E-07 0.77E-14 1.33
24 0 13974 -0.46475800E+03 -0.33E-08 0.19E-14 2.58
25 0 11804 -0.54382902E+03 -0.32E-07 0.60E-13 2.87
26 0 16680 -0.62749502E+03 -0.32E-07 0.75E-09 5.59
27 0 15890 -0.71554175E+03 0.66E-07 0.56E-13 6.03
28 0 20262 -0.80638080E+03 -0.41E-08 0.20E-12 7.20
29 0 22318 -0.90124913E+03 -0.37E-07 0.17E-13 8.48
30 0 22202 -0.99636841E+03 -0.58E-08 0.23E-12 11.05
31 0 22137 -0.10831667E+04 0.32E-06 0.13E-12 12.92
32 0 27529 -0.11635076E+04 0.32E-06 0.45E-15 14.02

A.2 Test Cases from Petroleum Industry 205

TP IFAIL Nf F OBJ ERR VIOL TIME

33 0 27650 -0.12386485E+04 -0.37E-06 0.73E-09 17.37
34 0 38466 -0.13094846E+04 0.28E-06 0.47E-15 31.26
35 0 37231 -0.13766808E+04 0.15E-06 0.73E-09 34.69
36 0 42456 -0.14407463E+04 -0.23E-06 0.32E-12 45.10
37 0 44927 -0.14797804E+04 0.15E-01 0.11E-13 42.55
38 0 47624 -0.23040725E+04 0.12E-04 0.33E-13 47.64
39 0 54610 -0.30418744E+04 0.84E-05 0.21E-12 55.60
40 0 59181 -0.37609839E+04 0.43E-05 0.26E-13 60.45
41 0 61213 -0.44728347E+04 0.71E-02 0.42E-13 66.54
42 0 64049 -0.51796477E+04 0.83E-02 0.34E-12 45.11
43 0 65739 -0.58882935E+04 0.59E-02 0.14E-11 35.61
44 0 63924 -0.65832171E+04 0.39E-02 0.57E-10 26.85
45 0 52269 -0.72663607E+04 0.21E-02 0.54E-10 14.04
46 0 37291 -0.79417409E+04 -0.52E-05 0.94E-13 4.40
47 0 30299 -0.85874180E+04 -0.21E-05 0.73E-13 3.01
48 0 20995 -0.92014325E+04 -0.35E-05 0.15E-13 1.26
49 0 9167 -0.97723791E+04 0.21E-05 0.66E-14 0.43
50 0 5028 -0.10301598E+05 -0.58E-04 0.69E-13 0.27
51 0 2836 -0.10789985E+05 0.14E-05 0.10E-12 0.12
52 0 1032 -0.11237843E+05 0.14E-04 0.16E-13 0.06
53 0 393 -0.11644542E+05 0.39E-04 0.36E-13 0.03
54 0 721 -0.12007631E+05 0.31E-04 0.13E-10 0.04
55 0 85 -0.12317111E+05 -0.90E-05 0.00E+00 0.00

Tab. A.13: Detailed Results of MISQPOA for the Shell Test Set

Table A.14 reviews the results of the new outer approximatin method MIQPSOA for
the Shell test set in detail.

TP IFAIL Nf F OBJ ERR VIOL TIME

1 0 257 -0.16044944E+04 0.35E-05 0.00E+00 0.29
2 0 776 -0.91348656E+03 0.49E+00 0.98E-06 0.53
3 0 1567 -0.20044944E+04 0.13E+00 0.68E-11 0.42
4 0 500 -0.22044944E+04 0.12E+00 0.59E-11 0.30
5 0 502 -0.24044944E+04 0.85E-01 0.00E+00 0.31
6 0 1211 -0.23693519E+04 0.16E+00 0.00E+00 0.42
7 0 770 -0.30995309E+04 -0.10E-04 0.79E-15 0.31
8 0 1059 -0.25082919E+04 0.47E-01 0.11E-10 1.96
9 0 2006 -0.27876421E+04 0.83E-01 0.00E+00 1.53
10 0 1245 -0.31143884E+04 0.85E-01 0.38E-10 0.70
11 0 1126 -0.15020819E+04 0.74E-07 0.00E+00 0.25
12 0 1033 -0.30099834E+04 0.10E-01 0.17E-10 0.23
13 0 1440 -0.45049972E+04 -0.50E-07 0.00E+00 0.39
14 0 925 -0.59231537E+04 0.78E-05 0.00E+00 0.20
15 0 2284 -0.72820327E+04 0.43E-07 0.00E+00 0.29
16 0 1261 -0.85729954E+04 0.17E-02 0.00E+00 0.21
17 0 1386 -0.97723791E+04 -0.13E-07 0.00E+00 0.21
18 0 1491 -0.10789985E+05 -0.44E-06 0.36E-11 0.22

206 A Detailed MINLP Results

TP IFAIL Nf F OBJ ERR VIOL TIME

19 0 1155 -0.11644542E+05 -0.21E-06 0.00E+00 0.21
20 0 861 -0.12317111E+05 -0.96E-07 0.00E+00 0.20
21 0 1204 -0.22360680E+03 0.43E-08 0.29E-08 0.32
22 0 2847 -0.31622784E+03 -0.13E-06 0.19E-06 0.51
23 0 3305 -0.38890880E+03 -0.26E-06 0.16E-06 0.59
24 0 4134 -0.46475800E+03 -0.33E-08 0.15E-12 0.71
25 0 4841 -0.54382902E+03 -0.32E-07 0.28E-10 0.87
26 0 6874 -0.62749502E+03 -0.32E-07 0.10E-10 1.22
27 0 8570 -0.71554175E+03 0.66E-07 0.14E-11 1.83
28 0 12089 -0.80638088E+03 -0.97E-07 0.76E-07 3.14
29 0 14712 -0.90124926E+03 -0.18E-06 0.10E-06 5.78
30 0 19667 -0.99636888E+03 -0.48E-06 0.40E-06 10.91
31 0 9056 -0.10831672E+04 -0.22E-06 0.50E-06 1.94
32 0 21000 -0.11635076E+04 0.32E-06 0.32E-08 11.25
33 0 11190 -0.12386485E+04 -0.37E-06 0.20E-09 2.18
34 0 11248 -0.12181954E+04 0.70E-01 0.65E-08 2.24
35 0 33325 -0.13766808E+04 0.15E-06 0.93E-12 38.11
36 0 33355 -0.14407463E+04 -0.24E-06 0.46E-08 35.51
37 0 6491 -0.14474989E+04 0.36E-01 0.62E-06 0.90
38 0 10298 -0.22803510E+04 0.10E-01 0.84E-07 1.21
39 0 12083 -0.30418746E+04 0.83E-05 0.87E-07 2.09
40 0 21341 -0.37469990E+04 0.37E-02 0.43E-07 3.70
41 0 13377 -0.43416587E+04 0.36E-01 0.49E-08 1.69
42 0 22950 -0.51052915E+04 0.23E-01 0.27E-07 3.41
43 0 35907 -0.58326674E+04 0.15E-01 0.25E-06 8.01
44 0 11520 -0.64926747E+04 0.18E-01 0.34E-06 1.35
45 0 30998 -0.72300772E+04 0.71E-02 0.32E-06 3.96
46 1 40600 -0.79253199E+04 0.21E-02 0.15E-06 5.95
47 0 22858 -0.85874209E+04 -0.24E-05 0.85E-06 3.03
48 0 23974 -0.92014328E+04 -0.36E-05 0.79E-07 2.18
49 0 2100 -0.97723792E+04 0.21E-05 0.97E-08 0.41
50 0 13498 -0.10301599E+05 -0.58E-04 0.76E-07 1.10
51 0 5891 -0.10789986E+05 0.13E-05 0.48E-06 0.53
52 0 2585 -0.11237846E+05 0.14E-04 0.54E-06 0.33
53 0 1032 -0.11644544E+05 0.39E-04 0.23E-06 0.25
54 0 865 -0.12007635E+05 0.30E-04 0.93E-06 0.23
55 0 589 -0.12317111E+05 -0.90E-05 0.34E-16 0.20

Tab. A.14: Detailed Results of MIQPSOA for the Shell Test Set

Table A.15 reviews the results of the code MIQPSOA without performing mixed-
integer search steps, i.e., applying a linear outer approximation method for solving
the industrial test set in detail.

TP IFAIL Nf F OBJ ERR VIOL TIME

1 0 369 -0.64900000E+03 0.60E+00 0.00E+00 0.00
2 0 1322 -0.16591837E+04 0.78E-01 0.00E+00 0.02
3 4 561 -0.20000000E+01 0.10E+01 0.10E+01 0.01
4 0 2426 -0.23061893E+04 0.81E-01 0.79E-15 0.16

A.2 Test Cases from Petroleum Industry 207

TP IFAIL Nf F OBJ ERR VIOL TIME

5 0 2401 -0.24044944E+04 0.85E-01 0.14E-09 0.18
6 0 2351 -0.28044944E+04 0.20E-05 0.79E-15 0.18
7 0 1272 -0.30995309E+04 -0.10E-04 0.44E-10 0.05
8 0 6550 -0.23061893E+04 0.12E+00 0.12E-10 2.23
9 0 6301 -0.30073929E+04 0.11E-01 0.00E+00 2.11
10 0 5793 -0.34044944E+04 0.17E-05 0.15E-15 1.32
11 0 703 -0.36767670E+03 0.76E+00 0.00E+00 0.00
12 0 657 -0.73618206E+03 0.76E+00 0.00E+00 0.00
13 0 2344 -0.43988635E+04 0.24E-01 0.00E+00 0.01
14 0 1448 -0.54812179E+04 0.75E-01 0.00E+00 0.00
15 0 1217 -0.72037317E+04 0.11E-01 0.00E+00 0.00
16 0 1165 -0.85874181E+04 -0.14E-07 0.43E-11 0.00
17 0 1501 -0.97723791E+04 -0.13E-07 0.14E-11 0.00
18 0 1501 -0.10789985E+05 -0.44E-06 0.00E+00 0.00
19 0 1123 -0.11644542E+05 -0.21E-06 0.00E+00 0.00
20 0 850 -0.12317111E+05 -0.96E-07 0.00E+00 0.00
21 0 2234 -0.22360680E+03 0.85E-08 0.80E-09 0.02
22 0 1869 -0.31622791E+03 -0.36E-06 0.37E-06 0.04
23 0 2371 -0.38890875E+03 -0.14E-06 0.53E-07 0.09
24 0 3153 -0.46475801E+03 -0.12E-07 0.75E-08 0.13
25 0 6861 -0.54382902E+03 -0.32E-07 0.28E-10 0.42
26 0 6961 -0.62749502E+03 -0.32E-07 0.10E-10 0.78
27 0 10708 -0.71554175E+03 0.66E-07 0.69E-10 1.76
28 0 15151 -0.80638080E+03 -0.42E-08 0.35E-10 2.62
29 0 19805 -0.90124926E+03 -0.18E-06 0.10E-06 6.02
30 0 20293 -0.99636843E+03 -0.27E-07 0.18E-07 10.37
31 0 22772 -0.10831667E+04 0.32E-06 0.10E-08 11.32
32 0 25115 -0.11635076E+04 0.32E-06 0.51E-09 17.24
33 0 28212 -0.12386485E+04 -0.37E-06 0.34E-09 19.02
34 0 34555 -0.13094846E+04 0.28E-06 0.95E-10 34.15
35 0 43220 -0.13766819E+04 -0.63E-06 0.92E-06 50.19
36 0 45873 -0.13997333E+04 0.28E-01 0.76E-06 51.03
37 0 48206 -0.14797804E+04 0.15E-01 0.45E-08 65.21
38 0 62813 -0.22150059E+04 0.39E-01 0.11E-06 89.33
39 0 75649 -0.29663117E+04 0.25E-01 0.54E-06 144.17
40 0 78536 -0.37405888E+04 0.54E-02 0.16E-06 102.90
41 0 90278 -0.44681105E+04 0.82E-02 0.32E-06 170.03
42 0 101167 -0.51894847E+04 0.64E-02 0.41E-07 146.92
43 0 102971 -0.59231541E+04 0.78E-05 0.90E-07 68.36
44 0 103728 -0.65832193E+04 0.39E-02 0.48E-06 56.85
45 1 104068 -0.72649846E+04 0.23E-02 0.30E-07 29.68
46 1 104292 -0.79276734E+04 0.18E-02 0.80E-06 19.30
47 0 76865 -0.85874181E+04 -0.21E-05 0.16E-07 5.74
48 0 52110 -0.92014325E+04 -0.35E-05 0.17E-07 1.52
49 0 26443 -0.97723810E+04 0.19E-05 0.27E-06 0.32
50 0 15127 -0.10301598E+05 -0.58E-04 0.84E-07 0.10
51 0 11069 -0.10789986E+05 0.13E-05 0.26E-06 0.05

208 A Detailed MINLP Results

TP IFAIL Nf F OBJ ERR VIOL TIME

52 0 2942 -0.11237843E+05 0.14E-04 0.23E-07 0.01
53 0 1561 -0.11644544E+05 0.39E-04 0.36E-06 0.01
54 0 1497 -0.12007633E+05 0.31E-04 0.59E-06 0.00
55 0 629 -0.12317111E+05 -0.90E-05 0.34E-16 0.00

Tab. A.15: Detailed Results of a Linear Outer Approximation Method for the Shell
Test Set

Finally, the detailed results of the NLP-based branch-and-bound method MINLPB4
are shown in Table A.16 for the Shell test set.

TP IFAIL Nf F OBJ ERR VIOL TIME

1 0 4242 -0.16044944E+04 0.35E-05 0.00E+00 0.01
2 0 41131 -0.18000000E+04 -0.41E-11 0.12E-10 0.19
3 0 46820 -0.23082919E+04 0.35E-05 0.33E-10 0.26
4 0 26664 -0.25082919E+04 0.20E-07 0.16E-11 0.17
5 0 36104 -0.26265882E+04 0.45E-05 0.00E+00 0.20
6 0 61224 -0.28044944E+04 0.20E-05 0.35E-10 0.30
7 0 53144 -0.30995309E+04 -0.10E-04 0.15E-10 0.27
8 0 148592 -0.26310453E+04 -0.17E-04 0.10E-11 1.37
9 0 157099 -0.30406261E+04 -0.92E-08 0.28E-11 1.45
10 0 258510 -0.34044944E+04 0.17E-05 0.35E-10 2.25
11 0 11429 -0.15020819E+04 0.74E-07 0.53E-07 0.03
12 0 3151 -0.30418744E+04 -0.14E-06 0.00E+00 0.01
13 0 4678 -0.45049972E+04 -0.49E-07 0.00E+00 0.02
14 0 716 -0.59231534E+04 0.79E-05 0.16E-09 0.00
15 0 2652 -0.72820324E+04 0.80E-07 0.00E+00 0.01
16 0 1285 -0.85729953E+04 0.17E-02 0.00E+00 0.01
17 0 1178 -0.97723788E+04 0.21E-07 0.63E-10 0.01
18 0 1239 -0.10789985E+05 -0.43E-06 0.00E+00 0.00
19 0 945 -0.11644542E+05 -0.18E-06 0.00E+00 0.00
20 0 840 -0.12317111E+05 -0.96E-07 0.00E+00 0.00
21 0 10435 -0.22360680E+03 0.10E-07 0.43E-11 0.05
22 0 13431 -0.31622777E+03 0.11E-06 0.54E-12 0.06
23 0 17380 -0.38890873E+03 -0.76E-07 0.26E-11 0.07
24 0 29307 -0.46475800E+03 -0.34E-08 0.38E-10 0.11
25 0 60881 -0.54382902E+03 -0.32E-07 0.41E-12 0.35
26 0 101764 -0.62749502E+03 -0.32E-07 0.34E-11 0.69
27 0 135235 -0.71554175E+03 0.66E-07 0.92E-12 1.69
28 0 166490 -0.80638080E+03 -0.41E-08 0.33-134 1.90
29 0 194240 -0.90124913E+03 -0.37E-07 0.60E-12 1.61
30 0 93376 -0.99636841E+03 -0.58E-08 0.16E-97 1.16
31 0 112026 -0.10831667E+04 0.32E-06 0.21E-11 0.65
32 0 72788 -0.11635076E+04 0.32E-06 0.67E-12 0.22
33 0 80193 -0.12386485E+04 -0.37E-06 0.24E-12 0.24
34 0 97214 -0.13094846E+04 0.28E-06 0.11E-12 0.28
35 0 168280 -0.13766808E+04 0.15E-06 0.88E-13 0.70

A.2 Test Cases from Petroleum Industry 209

TP IFAIL Nf F OBJ ERR VIOL TIME

36 0 166996 -0.14407463E+04 -0.23E-06 0.36E-13 0.46
37 0 252654 -0.15020819E+04 0.12E-04 0.12E-30 0.92
38 0 382609 -0.23040725E+04 0.12E-04 0.68E-10 0.96
39 0 592379 -0.30418744E+04 0.84E-05 0.83E-14 1.41
40 0 834812 -0.37609839E+04 0.43E-05 0.58E-13 1.87
41 0 897972 -0.45049972E+04 0.62E-06 0.97E-13 2.08
42 0 914388 -0.52231456E+04 -0.87E-05 0.19E-10 2.15
43 0 797857 -0.59231537E+04 0.78E-05 0.83E-11 1.88
44 0 611168 -0.66090846E+04 0.23E-05 0.35E-10 1.44
45 0 402145 -0.72820326E+04 -0.45E-05 0.49E-11 0.97
46 0 246640 -0.79417410E+04 -0.52E-05 0.92E-11 0.62
47 0 139950 -0.85874181E+04 -0.21E-05 0.23E-10 0.37
48 0 71172 -0.92014325E+04 -0.35E-05 0.73E-12 0.21
49 0 41408 -0.97723791E+04 0.21E-05 0.52E-13 0.13
50 0 26367 -0.10301598E+05 -0.58E-04 0.93E-14 0.08
51 0 23636 -0.10789985E+05 0.14E-05 0.26E-13 0.06
52 0 19521 -0.11237843E+05 0.14E-04 0.64E-11 0.06
53 0 10254 -0.11644542E+05 0.39E-04 0.24E-13 0.04
54 0 6535 -0.12007631E+05 0.31E-04 0.88E-12 0.03
55 0 567 -0.12317111E+05 -0.90E-05 0.34E-16 0.00

Tab. A.16: Detailed Results of MINLPB4 for the Shell Test Set

210 A Detailed MINLP Results

B. DETAILED MIQP RESULTS

In the sequel we present the detailed results of all 46 MIQP test cases. We compare
the following criteria.

Abreviation Description

TP Number of the test case.
SETTING Solver setting, see Table 6.4.
NODES Number of branch-and-bound nodes.
TIME Calculation time in seconds.

REDGAP Gap closed by cutting planes.
CUTS Number of generated cutting planes.

F Optimal objective value.
ER Number of QP failures.

GAP Optimality gap.

Tab. B.1: Criteria for detailed MIQP Results

TP SETTING NODES TIME REDGAP CUTS F ER GAP

1 MIQL1 8647 0.123E+01 0.000E+00 0 -0.319588E+04 0 0
1 MIQL2 8647 0.143D+01 0.000D+00 0 -0.319588D+04 0 0
1 MIQL3 8647 0.138E+01 0.000E+00 0 -0.319588E+04 0 0
1 MIQL4 5777 0.135E+01 0.000E+00 0 -0.319588E+04 4 0
1 MIQL5 8319 0.206E+01 0.000E+00 0 -0.319588E+04 0 0
1 MIQL6 8319 0.205E+01 0.000E+00 0 -0.319588E+04 0 0
1 MIQL7 8597 0.202E+01 0.000E+00 0 -0.319588E+04 0 0
1 MIQL8 8659 0.157E+01 0.000E+00 0 -0.319588E+04 0 0
1 SCIP – 0.493E+01 – – -0.319588E+04 0 0

2 MIQL1 79522 0.193E+02 0.000E+00 0 0.799171E+04 0 0
2 MIQL2 79522 0.222E+02 0.000E+00 0 0.799171E+04 0 0
2 MIQL3 79522 0.205E+02 0.000E+00 0 0.799171E+04 0 0
2 MIQL4 79522 0.236E+02 0.000E+00 0 0.799171E+04 0 0
2 MIQL5 70598 0.361E+02 0.000E+00 0 0.799171E+04 0 0
2 MIQL6 70598 0.365E+02 0.000E+00 0 0.799171E+04 0 0
2 MIQL7 79061 0.497E+02 0.000E+00 0 0.799171E+04 0 0
2 MIQL8 134790 0.356E+02 0.000E+00 0 0.799171E+04 1 0
2 SCIP – 0.363E+01 – – 0.799171E+04 0 0

212 B Detailed MIQP Results

TP SETTING NODES TIME REDGAP CUTS F ER GAP

3 MIQL1 39878 0.611E+01 0.000E+00 0 0.240435E+04 11 0
3 MIQL2 39878 0.726E+01 0.000E+00 0 0.240435E+04 11 0
3 MIQL3 39878 0.673E+01 0.000E+00 0 0.240435E+04 11 0
3 MIQL4 39881 0.791E+01 0.000E+00 0 0.240435E+04 12 0
3 MIQL5 34811 0.105E+02 0.000E+00 0 0.240435E+04 11 0
3 MIQL6 34811 0.106E+02 0.000E+00 0 0.240435E+04 11 0
3 MIQL7 38799 0.125E+02 0.000E+00 0 0.240435E+04 17 0
3 MIQL8 47603 0.735E+01 0.000E+00 0 0.240435E+04 11 0
3 SCIP – 0.102E+02 – – 0.240435E+04 0 0

4 MIQL1 76604 0.168E+02 0.000E+00 0 -0.195681E+00 84 0
4 MIQL2 51987 0.108E+02 0.746E-01 3 -0.195681E+00 48 0
4 MIQL3 59298 0.128E+02 0.487E-01 2 -0.195681E+00 377 0
4 MIQL4 76963 0.216E+02 0.000E+00 0 -0.195681E+00 122 0
4 MIQL5 65888 0.273E+02 0.000E+00 0 -0.195681E+00 117 0
4 MIQL6 43796 0.171E+02 0.487E-01 2 -0.195681E+00 428 0
4 MIQL7 68821 0.301E+02 0.000E+00 0 -0.195681E+00 131 0
4 MIQL8 93480 0.203E+02 0.000E+00 0 -0.195681E+00 106 0
4 SCIP – 0.258E+01 – – -0.195681E+00 0 0

5 MIQL1 106916 0.233E+02 0.000E+00 0 0.170000E+02 16 0
5 MIQL2 83653 0.193E+02 0.110E-01 4 0.170000E+02 3 0
5 MIQL3 84928 0.178E+02 0.110E-01 4 0.170000E+02 24 0
5 MIQL4 106505 0.293E+02 0.000E+00 0 0.170000E+02 10 0
5 MIQL5 80499 0.349E+02 0.000E+00 0 0.170000E+02 3 0
5 MIQL6 64959 0.244E+02 0.110E-01 4 0.170000E+02 28 0
5 MIQL7 95023 0.478E+02 0.000E+00 0 0.170000E+02 3 0
5 MIQL8 150495 0.405E+02 0.000E+00 0 0.170000E+02 2 0
5 SCIP – 0.282E+01 – – 0.170000E+02 0 0

6 MIQL1 21468 0.292E+01 0.000E+00 0 0.111722E-02 6 0
6 MIQL2 13404 0.233E+01 0.470E-01 6 0.111722E-02 8 0
6 MIQL3 15543 0.236E+01 0.470E-01 4 0.111722E-02 21 0
6 MIQL4 21596 0.402E+01 0.000E+00 0 0.111722E-02 9 0
6 MIQL5 15818 0.399E+01 0.000E+00 0 0.111722E-02 9 0
6 MIQL6 11714 0.293E+01 0.470E-01 4 0.111722E-02 32 0
6 MIQL7 19045 0.499E+01 0.000E+00 0 0.111722E-02 9 0
6 MIQL8 31723 0.360E+01 0.000E+00 0 0.111722E-02 5 0
6 SCIP – 0.655E+00 – – 0.158582E-02 0 0

7 MIQL1 12773 0.151E+01 0.000E+00 0 -0.284760E+00 9 0
7 MIQL2 8514 0.146E+01 0.842E-01 3 -0.284760E+00 14 0
7 MIQL3 9061 0.128E+01 0.234E-01 1 -0.284760E+00 10 0
7 MIQL4 13465 0.225E+01 0.000E+00 0 -0.284760E+00 9 0
7 MIQL5 10022 0.240E+01 0.000E+00 0 -0.284760E+00 6 0
7 MIQL6 7943 0.183E+01 0.234E-01 1 -0.284760E+00 11 0

213

TP SETTING NODES TIME REDGAP CUTS F ER GAP

7 MIQL7 11553 0.292E+01 0.000E+00 0 -0.284760E+00 13 0
7 MIQL8 20305 0.202E+01 0.000E+00 0 -0.284760E+00 13 0
7 SCIP – 0.508E+00 – – -0.284760E+00 0 0

8 MIQL1 27282 0.400E+01 0.000E+00 0 -0.219722E+00 49 0
8 MIQL2 22740 0.392E+01 0.878E-01 2 -0.219722E+00 42 0
8 MIQL3 22696 0.361E+01 0.878E-01 2 -0.219722E+00 64 0
8 MIQL4 27263 0.534E+01 0.000E+00 0 -0.219722E+00 55 0
8 MIQL5 23381 0.642E+01 0.000E+00 0 -0.219722E+00 61 0
8 MIQL6 17392 0.514E+01 0.878E-01 2 -0.219722E+00 77 0
8 MIQL7 24859 0.725E+01 0.000E+00 0 -0.219722E+00 67 0
8 MIQL8 27982 0.397E+01 0.000E+00 0 -0.219722E+00 46 0
8 SCIP – 0.977E+00 – – -0.219722E+00 0 0

9 MIQL1 149440 0.646E+02 0.000E+00 0 -0.348897E+00 198 0
9 MIQL2 111596 0.465E+02 0.745E-01 2 -0.348897E+00 392 0
9 MIQL3 110939 0.434E+02 0.745E-01 2 -0.348897E+00 451 0
9 MIQL4 148234 0.830E+02 0.000E+00 0 -0.348897E+00 260 0
9 MIQL5 96103 0.784E+02 0.000E+00 0 -0.348897E+00 170 0
9 MIQL6 87316 0.612E+02 0.745E-01 2 -0.348897E+00 535 0
9 MIQL7 117467 0.126E+03 0.000E+00 0 -0.348897E+00 286 0
9 MIQL8 173382 0.755E+02 0.000E+00 0 -0.348897E+00 208 0
9 SCIP – 0.111E+02 – – -0.334469E+00 0 0

10 MIQL1 22914 0.381E+01 0.000E+00 0 0.123422E+01 127 0
10 MIQL2 12713 0.358E+01 0.631E-01 6 0.123422E+01 0 0
10 MIQL3 12584 0.289E+01 0.631E-01 5 0.123422E+01 0 0
10 MIQL4 22618 0.552E+01 0.000E+00 0 0.123422E+01 137 0
10 MIQL5 6610 0.210E+01 0.000E+00 0 0.123422E+01 20 0
10 MIQL6 10268 0.382E+01 0.631E-01 5 0.123422E+01 0 0
10 MIQL7 16491 0.658E+01 0.000E+00 0 0.123422E+01 170 0
10 MIQL8 43821 0.601E+01 0.000E+00 0 0.123422E+01 94 0
10 SCIP – 0.111E+03 – – 0.123422E+01 0 0

11 MIQL1 30261 0.592E+01 0.000E+00 0 -0.731080E+00 45 0
11 MIQL2 18236 0.494E+01 0.573E-01 4 -0.731080E+00 36 0
11 MIQL3 19870 0.441E+01 0.573E-01 4 -0.731080E+00 45 0
11 MIQL4 30532 0.817E+01 0.000E+00 0 -0.731080E+00 57 0
11 MIQL5 21996 0.868E+01 0.000E+00 0 -0.731080E+00 46 0
11 MIQL6 16351 0.594E+01 0.573E-01 4 -0.731080E+00 52 0
11 MIQL7 26403 0.109E+02 0.000E+00 0 -0.731080E+00 71 0
11 MIQL8 37473 0.673E+01 0.000E+00 0 -0.731080E+00 49 0
11 SCIP – 0.117E+02 – – -0.725985E+00 0 0

12 MIQL1 169398 0.821E+02 0.000E+00 0 0.115009E+00 310 0
12 MIQL2 193766 0.120E+03 0.627E-01 7 0.115009E+00 365 0
12 MIQL3 207939 0.128E+03 0.627E-01 6 0.115009E+00 859 0

214 B Detailed MIQP Results

TP SETTING NODES TIME REDGAP CUTS F ER GAP

12 MIQL4 170839 0.105E+03 0.000E+00 0 0.115009E+00 400 0
12 MIQL5 118490 0.115E+03 0.000E+00 0 0.115009E+00 371 0
12 MIQL6 117410 0.115E+03 0.627E-01 6 0.115009E+00 494 0
12 MIQL7 144237 0.172E+03 0.000E+00 0 0.115009E+00 437 0
12 MIQL8 248790 0.136E+03 0.000E+00 0 0.115009E+00 273 0
12 SCIP – 0.281E+01 – – 0.116108E+00 0 0

13 MIQL1 34054 0.734E+01 0.000E+00 0 -0.886997E+00 29 0
13 MIQL2 50693 0.142E+02 0.405E-01 5 -0.886997E+00 89 0
13 MIQL3 53604 0.134E+02 0.203E-01 3 -0.886997E+00 52 0
13 MIQL4 33986 0.971E+01 0.000E+00 0 -0.886997E+00 31 0
13 MIQL5 26627 0.109E+02 0.000E+00 0 -0.886997E+00 51 0
13 MIQL6 40476 0.184E+02 0.203E-01 3 -0.886997E+00 79 0
13 MIQL7 31913 0.135E+02 0.000E+00 0 -0.886997E+00 53 0
13 MIQL8 46892 0.907E+01 0.000E+00 0 -0.886997E+00 45 0
13 SCIP – 0.132E+02 – – -0.886997E+00 0 0

14 MIQL1 10433 0.140E+01 0.000E+00 0 0.313804E-01 4 0
14 MIQL2 11177 0.222E+01 0.635E-01 2 0.313804E-01 4 0
14 MIQL3 11327 0.185E+01 0.635E-01 2 0.313804E-01 166 0
14 MIQL4 10427 0.215E+01 0.000E+00 0 0.313804E-01 9 0
14 MIQL5 6086 0.178E+01 0.000E+00 0 0.313804E-01 11 0
14 MIQL6 6051 0.193E+01 0.635E-01 2 0.313804E-01 221 0
14 MIQL7 7269 0.219E+01 0.000E+00 0 0.313804E-01 15 0
14 MIQL8 16085 0.173E+01 0.000E+00 0 0.313804E-01 3 0
14 SCIP – 0.156E+01 – – 0.463081E-01 0 0

15 MIQL1 193056 0.104E+03 0.000E+00 0 0.519714E+01 16 0
15 MIQL2 131785 0.658E+02 0.109E-01 3 0.519714E+01 11 0
15 MIQL3 131576 0.564E+02 0.109E-01 3 0.519714E+01 8 0
15 MIQL4 197309 0.138E+03 0.000E+00 0 0.519714E+01 45 0
15 MIQL5 152190 0.138E+03 0.000E+00 0 0.519714E+01 43 0
15 MIQL6 101550 0.739E+02 0.109E-01 3 0.519714E+01 11 0
15 MIQL7 160425 0.168E+03 0.000E+00 0 0.519714E+01 50 0
15 MIQL8 496389 0.298E+03 0.000E+00 0 0.519714E+01 58 0
15 SCIP – 0.111E+03 – – 0.519714E+01 0 0

16 MIQL1 79994 0.192E+02 0.000E+00 0 0.430903E+01 40 0
16 MIQL2 73175 0.206E+02 0.140E-01 2 0.430903E+01 0 0
16 MIQL3 76601 0.190E+02 0.140E-01 2 0.430903E+01 0 0
16 MIQL4 80646 0.294E+02 0.000E+00 0 0.430903E+01 83 0
16 MIQL5 48985 0.220E+02 0.000E+00 0 0.430903E+01 61 0
16 MIQL6 34768 0.176E+02 0.140E-01 2 0.430903E+01 0 0
16 MIQL7 52699 0.242E+02 0.000E+00 0 0.430903E+01 83 0
16 MIQL8 98569 0.224E+02 0.000E+00 0 0.430903E+01 36 0
16 SCIP – 0.892E+01 – – 0.430903E+01 0 0

215

TP SETTING NODES TIME REDGAP CUTS F ER GAP

17 MIQL1 18517 0.255E+01 0.000E+00 0 -0.923139E+00 2 0
17 MIQL2 12441 0.268E+01 0.473E-01 3 -0.923139E+00 3 0
17 MIQL3 12808 0.204E+01 0.835E-01 3 -0.923139E+00 7 0
17 MIQL4 18471 0.392E+01 0.000E+00 0 -0.923139E+00 5 0
17 MIQL5 9674 0.297E+01 0.000E+00 0 -0.923139E+00 3 0
17 MIQL6 6977 0.216E+01 0.835E-01 3 -0.923139E+00 10 0
17 MIQL7 11517 0.370E+01 0.000E+00 0 -0.923139E+00 4 0
17 MIQL8 28850 0.327E+01 0.000E+00 0 -0.923139E+00 2 0
17 SCIP – 0.521E+01 – – -0.907496E+00 0 0

18 MIQL1 11780 0.158E+01 0.000E+00 0 0.000000E+00 2 0
18 MIQL2 7635 0.208E+01 0.400E-01 4 0.000000E+00 2 0
18 MIQL3 6401 0.142E+01 0.418E-01 2 0.000000E+00 7 0
18 MIQL4 7791 0.171E+01 0.000E+00 0 0.000000E+00 3 0
18 MIQL5 7435 0.216E+01 0.000E+00 0 0.000000E+00 3 0
18 MIQL6 6163 0.185E+01 0.418E-01 2 0.000000E+00 9 0
18 MIQL7 7723 0.227E+01 0.000E+00 0 0.000000E+00 3 0
18 MIQL8 7757 0.124E+01 0.000E+00 0 0.000000E+00 1 0
18 SCIP – 0.373E+00 – – 0.000000E+00 0 0

19 MIQL1 189613 0.112E+03 0.000E+00 0 0.146042E+02 7 0
19 MIQL2 161836 0.111E+03 0.734E-03 1 0.146042E+02 3 0
19 MIQL3 189613 0.116E+03 0.000E+00 0 0.146042E+02 7 0
19 MIQL4 189255 0.156E+03 0.000E+00 0 0.146042E+02 40 0
19 MIQL5 100118 0.116E+03 0.000E+00 0 0.146042E+02 1 0
19 MIQL6 100118 0.117E+03 0.000E+00 0 0.146042E+02 1 0
19 MIQL7 124029 0.177E+03 0.000E+00 0 0.146042E+02 1 0
19 MIQL8 629914 0.327E+03 0.000E+00 0 0.146042E+02 79 0
19 SCIP – 0.510E+03 – – 0.146042E+02 0 0

20 MIQL1 136727 0.629E+02 0.000E+00 0 0.191010E+01 218 0
20 MIQL2 137257 0.806E+02 0.473E-03 1 0.191010E+01 216 0
20 MIQL3 136727 0.671E+02 0.000E+00 0 0.191010E+01 218 0
20 MIQL4 149690 0.109E+03 0.000E+00 0 0.191010E+01 362 0
20 MIQL5 65471 0.646E+02 0.000E+00 0 0.191010E+01 281 0
20 MIQL6 65471 0.650E+02 0.000E+00 0 0.191010E+01 281 0
20 MIQL7 82859 0.988E+02 0.000E+00 0 0.191010E+01 359 0
20 MIQL8 533183 0.217E+03 0.000E+00 0 0.191010E+01 560 0
20 SCIP – 0.234E+03 – – 0.191010E+01 0 0

21 MIQL1 6216 0.134E+01 0.000E+00 0 -0.499951E+00 15 0
21 MIQL2 6216 0.790E+01 0.000E+00 0 -0.499951E+00 15 0
21 MIQL3 6216 0.251E+01 0.000E+00 0 -0.499951E+00 15 0
21 MIQL4 6239 0.250E+01 0.000E+00 0 -0.499951E+00 15 0
21 MIQL5 3083 0.172E+01 0.000E+00 0 -0.499951E+00 21 0
21 MIQL6 3083 0.177E+01 0.000E+00 0 -0.499951E+00 21 0
21 MIQL7 3805 0.218E+01 0.000E+00 0 -0.499951E+00 14 0

216 B Detailed MIQP Results

TP SETTING NODES TIME REDGAP CUTS F ER GAP

21 MIQL8 24163 0.285E+01 0.000E+00 0 -0.499951E+00 44 0
21 SCIP – 0.235E+02 – – -0.499951E+00 0 0

22 MIQL1 44888 0.168E+02 0.000E+00 0 0.271000E+02 6 0
22 MIQL2 18529 0.120E+02 0.147E+00 3 0.271000E+02 0 0
22 MIQL3 21121 0.840E+01 0.147E+00 3 0.271000E+02 3 0
22 MIQL4 36946 0.210E+02 0.000E+00 0 0.271000E+02 4 0
22 MIQL5 28134 0.217E+02 0.000E+00 0 0.271000E+02 3 0
22 MIQL6 12457 0.885E+01 0.147E+00 3 0.271000E+02 0 0
22 MIQL7 36761 0.280E+02 0.000E+00 0 0.271000E+02 5 0
22 MIQL8 47171 0.169E+02 0.000E+00 0 0.271000E+02 0 0
22 SCIP – 0.294E+01 – – 0.271000E+02 0 0

23 MIQL1 38338 0.617E+01 0.000E+00 0 0.135918E+01 4 0
23 MIQL2 31398 0.575E+01 0.474E-01 3 0.135918E+01 5 0
23 MIQL3 32018 0.553E+01 0.460E-01 2 0.135918E+01 24 0
23 MIQL4 38223 0.772E+01 0.000E+00 0 0.135918E+01 4 0
23 MIQL5 30621 0.880E+01 0.000E+00 0 0.135918E+01 6 0
23 MIQL6 26636 0.746E+01 0.460E-01 2 0.135918E+01 20 0
23 MIQL7 36507 0.105E+02 0.000E+00 0 0.135918E+01 10 0
23 MIQL8 42078 0.632E+01 0.000E+00 0 0.135918E+01 2 0
23 SCIP – 0.189E+01 – – 0.135918E+01 0 0

24 MIQL1 26573 0.752E+01 0.000E+00 0 -0.842309E+00 9 0
24 MIQL2 29294 0.122E+02 0.170E-01 7 -0.842309E+00 4 0
24 MIQL3 32584 0.110E+02 0.106E-01 5 -0.842309E+00 99 0
24 MIQL4 26736 0.109E+02 0.000E+00 0 -0.842309E+00 14 0
24 MIQL5 17331 0.106E+02 0.000E+00 0 -0.842309E+00 8 0
24 MIQL6 21184 0.142E+02 0.106E-01 5 -0.842309E+00 85 0
24 MIQL7 19413 0.122E+02 0.000E+00 0 -0.842309E+00 13 0
24 MIQL8 32052 0.809E+01 0.000E+00 0 -0.842309E+00 7 0
24 SCIP – 0.181E+01 – – -0.828992E+00 0 0

25 MIQL1 289359 0.185E+03 0.000E+00 0 -0.462977E+00 247 0
25 MIQL2 480975 0.499E+03 0.120E+00 6 -0.462977E+00 1000 0
25 MIQL3 503419 0.480E+03 0.120E+00 4 -0.462977E+00 1000 0
25 MIQL4 293059 0.293E+03 0.000E+00 0 -0.462977E+00 823 0
25 MIQL5 118458 0.200E+03 0.000E+00 0 -0.462977E+00 283 0
25 MIQL6 199008 0.474E+03 0.120E+00 4 -0.462977E+00 1000 0
25 MIQL7 130509 0.252E+03 0.000E+00 0 -0.462977E+00 472 0
25 MIQL8 929642 0.509E+03 0.000E+00 0 -0.462977E+00 273 0
25 SCIP – 0.703E+01 – – -0.462977E+00 0 0

26 MIQL1 24673 0.102E+02 0.000E+00 0 0.244210E+01 0 0
26 MIQL2 21545 0.203E+02 0.939E-01 2 0.244210E+01 500 0
26 MIQL3 1117 0.177E+01 0.188E+00 4 0.244210E+01 83 0
26 MIQL4 24917 0.140E+02 0.000E+00 0 0.244210E+01 0 0

217

TP SETTING NODES TIME REDGAP CUTS F ER GAP

26 MIQL5 20020 0.160E+02 0.000E+00 0 0.244210E+01 0 0
26 MIQL6 675 0.572E+00 0.188E+00 4 0.244210E+01 101 0
26 MIQL7 23227 0.192E+02 0.000E+00 0 0.244210E+01 0 0
26 MIQL8 155241 0.356E+02 0.000E+00 0 0.244210E+01 9 0
26 SCIP – 0.960E+02 – – 0.244210E+01 0 0

27 MIQL1 53338 0.270E+02 0.000E+00 0 0.103579E+02 3 0
27 MIQL2 53338 0.349E+02 0.000E+00 0 0.103579E+02 3 0
27 MIQL3 53338 0.297E+02 0.000E+00 0 0.103579E+02 3 0
27 MIQL4 45038 0.293E+02 0.000E+00 0 0.103579E+02 7 0
27 MIQL5 46024 0.454E+02 0.000E+00 0 0.103579E+02 9 0
27 MIQL6 46024 0.455E+02 0.000E+00 0 0.103579E+02 9 0
27 MIQL7 44269 0.449E+02 0.000E+00 0 0.103579E+02 10 0
27 MIQL8 371341 0.108E+03 0.000E+00 0 0.103579E+02 72 0
27 SCIP – 0.511E+02 – – 0.103579E+02 0 0

28 MIQL1 9714 0.768E+01 0.000E+00 0 0.218394E+01 69 0
28 MIQL2 9862 0.106E+02 0.684E-01 3 0.218394E+01 55 0
28 MIQL3 29134 0.237E+02 0.168E+00 6 0.218394E+01 117 0
28 MIQL4 10016 0.122E+02 0.000E+00 0 0.218394E+01 131 0
28 MIQL5 7048 0.124E+02 0.000E+00 0 0.218394E+01 37 0
28 MIQL6 19395 0.346E+02 0.168E+00 6 0.218394E+01 102 0
28 MIQL7 7733 0.140E+02 0.000E+00 0 0.218394E+01 126 0
28 MIQL8 22511 0.104E+02 0.000E+00 0 0.218394E+01 94 0
28 SCIP – 0.152E+01 – – 0.218394E+01 0 0

29 MIQL1 278355 0.243E+03 0.000E+00 0 0.761000E+02 0 0
29 MIQL2 445727 0.643E+03 0.340E+00 4 0.761000E+02 3 0
29 MIQL3 603063 0.936E+03 0.318E+00 4 0.761000E+02 190 0
29 MIQL4 273682 0.310E+03 0.000E+00 0 0.761000E+02 0 0
29 MIQL5 208926 0.384E+03 0.000E+00 0 0.761000E+02 0 0
29 MIQL6 450251 0.150E+04 0.318E+00 4 0.761000E+02 141 0
29 MIQL7 241681 0.496E+03 0.000E+00 0 0.761000E+02 0 0
29 MIQL8 289760 0.262E+03 0.000E+00 0 0.761000E+02 0 0
29 SCIP – 0.390E+00 – – 0.761000E+02 0 0

30 MIQL1 45066 0.210E+02 0.000E+00 0 -0.184565E+00 0 0
30 MIQL2 45066 0.245E+02 0.000E+00 0 -0.184565E+00 0 0
30 MIQL3 45066 0.217E+02 0.000E+00 0 -0.184565E+00 0 0
30 MIQL4 45066 0.292E+02 0.000E+00 0 -0.184565E+00 0 0
30 MIQL5 33226 0.301E+02 0.000E+00 0 -0.184565E+00 0 0
30 MIQL6 33226 0.302E+02 0.000E+00 0 -0.184565E+00 0 0
30 MIQL7 44069 0.416E+02 0.000E+00 0 -0.184565E+00 0 0
30 MIQL8 58852 0.231E+02 0.000E+00 0 -0.184565E+00 0 0
30 SCIP – 0.102E+04 – – -0.176184E+00 0 26.42

31 MIQL1 43816 0.205E+02 0.000E+00 0 -0.895764E-01 0 0

218 B Detailed MIQP Results

TP SETTING NODES TIME REDGAP CUTS F ER GAP

31 MIQL2 43816 0.236E+02 0.000E+00 0 -0.895764E-01 0 0
31 MIQL3 43816 0.211E+02 0.000E+00 0 -0.895764E-01 0 0
31 MIQL4 43816 0.285E+02 0.000E+00 0 -0.895764E-01 0 0
31 MIQL5 34040 0.314E+02 0.000E+00 0 -0.895764E-01 0 0
31 MIQL6 34040 0.315E+02 0.000E+00 0 -0.895764E-01 0 0
31 MIQL7 42523 0.399E+02 0.000E+00 0 -0.895764E-01 0 0
31 MIQL8 51287 0.215E+02 0.000E+00 0 -0.895764E-01 0 0
31 SCIP – 0.102E+04 – – -0.760732E-01 0 48.24

32 MIQL1 18096 0.642E+01 0.000E+00 0 -0.768226E-01 0 0
32 MIQL2 17369 0.863E+01 0.000E+00 0 -0.768226E-01 0 0
32 MIQL3 18096 0.677E+01 0.000E+00 0 -0.768226E-01 0 0
32 MIQL4 17369 0.876E+01 0.000E+00 0 -0.768226E-01 0 0
32 MIQL5 13052 0.911E+01 0.000E+00 0 -0.768226E-01 0 0
32 MIQL6 13052 0.887E+01 0.000E+00 0 -0.768226E-01 0 0
32 MIQL7 17369 0.120E+02 0.000E+00 0 -0.768226E-01 0 0
32 MIQL8 17369 0.635E+01 0.000E+00 0 -0.768226E-01 0 0
32 SCIP – 0.103E+04 – – -0.639556E-01 0 54.91

33 MIQL1 23288 0.854E+01 0.000E+00 0 -0.561962E-01 0 0
33 MIQL2 23288 0.109E+02 0.000E+00 0 -0.561962E-01 0 0
33 MIQL3 23288 0.894E+01 0.000E+00 0 -0.561962E-01 0 0
33 MIQL4 23288 0.125E+02 0.000E+00 0 -0.561962E-01 0 0
33 MIQL5 16644 0.123E+02 0.000E+00 0 -0.561962E-01 0 0
33 MIQL6 16644 0.124E+02 0.000E+00 0 -0.561962E-01 0 0
33 MIQL7 21645 0.168E+02 0.000E+00 0 -0.561962E-01 0 0
33 MIQL8 26311 0.892E+01 0.000E+00 0 -0.561962E-01 0 0
33 SCIP – 0.103E+04 – – -0.407432E-01 0 60.06

34 MIQL1 43946 0.194E+02 0.000E+00 0 -0.285981E+00 0 0
34 MIQL2 43946 0.226E+02 0.000E+00 0 -0.285981E+00 0 0
34 MIQL3 43946 0.201E+02 0.000E+00 0 -0.285981E+00 0 0
34 MIQL4 43946 0.284E+02 0.000E+00 0 -0.285981E+00 0 0
34 MIQL5 29431 0.272E+02 0.000E+00 0 -0.285981E+00 0 0
34 MIQL6 29431 0.273E+02 0.000E+00 0 -0.285981E+00 0 0
34 MIQL7 39077 0.397E+02 0.000E+00 0 -0.285981E+00 0 0
34 MIQL8 92077 0.282E+02 0.000E+00 0 -0.285981E+00 0 0
34 SCIP – 0.102E+04 – – -0.271812E+00 0 20.96

35 MIQL1 20345 0.756E+01 0.000E+00 0 -0.219086E+00 0 0
35 MIQL2 20345 0.962E+01 0.000E+00 0 -0.219086E+00 0 0
35 MIQL3 20345 0.797E+01 0.000E+00 0 -0.219086E+00 0 0
35 MIQL4 20345 0.112E+02 0.000E+00 0 -0.219086E+00 0 0
35 MIQL5 14228 0.112E+02 0.000E+00 0 -0.219086E+00 0 0
35 MIQL6 14228 0.112E+02 0.000E+00 0 -0.219086E+00 0 0
35 MIQL7 18039 0.149E+02 0.000E+00 0 -0.219086E+00 0 0
35 MIQL8 38892 0.933E+01 0.000E+00 0 -0.219086E+00 0 0

219

TP SETTING NODES TIME REDGAP CUTS F ER GAP

35 SCIP – 0.102E+04 – – -0.211989E+00 0 22.99

36 MIQL1 38494 0.153E+02 0.000E+00 0 -0.253280E+00 0 0
36 MIQL2 38494 0.181E+02 0.000E+00 0 -0.253280E+00 0 0
36 MIQL3 38494 0.158E+02 0.000E+00 0 -0.253280E+00 0 0
36 MIQL4 38494 0.233E+02 0.000E+00 0 -0.253280E+00 0 0
36 MIQL5 22923 0.199E+02 0.000E+00 0 -0.253280E+00 0 0
36 MIQL6 22923 0.200E+02 0.000E+00 0 -0.253280E+00 0 0
36 MIQL7 31583 0.295E+02 0.000E+00 0 -0.253280E+00 0 0
36 MIQL8 49315 0.164E+02 0.000E+00 0 -0.253280E+00 0 0
36 SCIP – 0.102E+04 – – -0.243009E+00 0 21.03

37 MIQL1 47912 0.220E+02 0.000E+00 0 -0.169228E+00 0 0
37 MIQL2 47417 0.250E+02 0.000E+00 0 -0.169228E+00 0 0
37 MIQL3 47912 0.226E+02 0.000E+00 0 -0.169228E+00 0 0
37 MIQL4 47417 0.302E+02 0.000E+00 0 -0.169228E+00 0 0
37 MIQL5 38230 0.344E+02 0.000E+00 0 -0.169228E+00 0 0
37 MIQL6 38230 0.316E+02 0.000E+00 0 -0.169228E+00 0 0
37 MIQL7 47417 0.391E+02 0.000E+00 0 -0.169228E+00 0 0
37 MIQL8 47417 0.218E+02 0.000E+00 0 -0.169228E+00 0 0
37 SCIP – 0.102E+04 – – -0.155441E+00 0 30.04

38 MIQL1 42386 0.183E+02 0.000E+00 0 -0.262034E+00 0 0
38 MIQL2 42386 0.212E+02 0.000E+00 0 -0.262034E+00 0 0
38 MIQL3 42386 0.188E+02 0.000E+00 0 -0.262034E+00 0 0
38 MIQL4 42386 0.256E+02 0.000E+00 0 -0.262034E+00 0 0
38 MIQL5 29896 0.251E+02 0.000E+00 0 -0.262034E+00 0 0
38 MIQL6 29896 0.252E+02 0.000E+00 0 -0.262034E+00 0 0
38 MIQL7 40813 0.375E+02 0.000E+00 0 -0.262034E+00 0 0
38 MIQL8 58728 0.208E+02 0.000E+00 0 -0.262034E+00 0 0
38 SCIP – 0.102E+04 – – -0.252765E+00 0 21.92

39 MIQL1 43937 0.198E+02 0.000E+00 0 -0.124097E+00 0 0
39 MIQL2 43937 0.231E+02 0.000E+00 0 -0.124097E+00 0 0
39 MIQL3 43937 0.204E+02 0.000E+00 0 -0.124097E+00 0 0
39 MIQL4 43937 0.275E+02 0.000E+00 0 -0.124097E+00 0 0
39 MIQL5 31482 0.283E+02 0.000E+00 0 -0.124097E+00 0 0
39 MIQL6 31482 0.284E+02 0.000E+00 0 -0.124097E+00 0 0
39 MIQL7 42297 0.398E+02 0.000E+00 0 -0.124097E+00 0 0
39 MIQL8 50707 0.206E+02 0.000E+00 0 -0.124097E+00 0 0
39 SCIP – 0.102E+04 – – -0.121339E+00 0 32.45

40 MIQL1 22439 0.620E+01 0.000E+00 0 -0.318334E+00 0 0
40 MIQL2 20299 0.802E+01 0.000E+00 0 -0.318334E+00 0 0
40 MIQL3 22439 0.655E+01 0.000E+00 0 -0.318334E+00 0 0
40 MIQL4 20299 0.827E+01 0.000E+00 0 -0.318334E+00 0 0
40 MIQL5 11932 0.632E+01 0.000E+00 0 -0.318334E+00 0 0

220 B Detailed MIQP Results

TP SETTING NODES TIME REDGAP CUTS F ER GAP

40 MIQL6 11932 0.626E+01 0.000E+00 0 -0.318334E+00 0 0
40 MIQL7 20299 0.107E+02 0.000E+00 0 -0.318334E+00 0 0
40 MIQL8 20299 0.583E+01 0.000E+00 0 -0.318334E+00 0 0
40 SCIP – 0.102E+04 – – -0.306354E+00 0 17.77

41 MIQL1 93738 0.366E+02 0.000E+00 0 -0.419773E+00 38 0
41 MIQL2 41630 0.168E+02 0.319E-01 7 -0.419773E+00 48 0
41 MIQL3 41842 0.149E+02 0.287E-01 6 -0.419773E+00 54 0
41 MIQL4 93865 0.502E+02 0.000E+00 0 -0.419773E+00 59 0
41 MIQL5 78250 0.597E+02 0.000E+00 0 -0.419773E+00 73 0
41 MIQL6 36889 0.234E+02 0.287E-01 6 -0.419773E+00 100 0
41 MIQL7 81003 0.681E+02 0.000E+00 0 -0.419773E+00 78 0
41 MIQL8 141006 0.535E+02 0.000E+00 0 -0.419773E+00 62 0
41 SCIP – 0.166E+01 – – -0.419773E+00 0 0

42 MIQL1 222092 0.157E+03 0.000E+00 0 0.000000E+00 368 0
42 MIQL2 319065 0.344E+03 0.123E-01 2 0.000000E+00 304 0
42 MIQL3 346281 0.342E+03 0.216E-01 2 0.000000E+00 323 0
42 MIQL4 209647 0.182E+03 0.000E+00 0 0.000000E+00 877 0
42 MIQL5 205734 0.263E+03 0.000E+00 0 0.000000E+00 1000 0
42 MIQL6 327257 0.595E+03 0.216E-01 2 0.000000E+00 701 0
42 MIQL7 210127 0.276E+03 0.000E+00 0 0.000000E+00 1000 0
42 MIQL8 207407 0.138E+03 0.000E+00 0 0.000000E+00 1000 0
42 SCIP – 0.300E+01 – – 0.000000E+00 0 0

43 MIQL1 33478 0.135E+02 0.000E+00 0 -0.865117E-01 0 0
43 MIQL2 33478 0.163E+02 0.000E+00 0 -0.865117E-01 0 0
43 MIQL3 33478 0.140E+02 0.000E+00 0 -0.865117E-01 0 0
43 MIQL4 33478 0.193E+02 0.000E+00 0 -0.865117E-01 0 0
43 MIQL5 23953 0.197E+02 0.000E+00 0 -0.865117E-01 0 0
43 MIQL6 23953 0.198E+02 0.000E+00 0 -0.865117E-01 0 0
43 MIQL7 31019 0.273E+02 0.000E+00 0 -0.865117E-01 0 0
43 MIQL8 31989 0.133E+02 0.000E+00 0 -0.865117E-01 0 0
43 SCIP – 0.103E+04 – – -0.743918E-01 0 48.44

44 MIQL1 31389 0.106E+02 0.000E+00 0 -0.588872E-01 0 0
44 MIQL2 31389 0.135E+02 0.000E+00 0 -0.588872E-01 0 0
44 MIQL3 31389 0.112E+02 0.000E+00 0 -0.588872E-01 0 0
44 MIQL4 31389 0.171E+02 0.000E+00 0 -0.588872E-01 0 0
44 MIQL5 18387 0.141E+02 0.000E+00 0 -0.588872E-01 0 0
44 MIQL6 18387 0.142E+02 0.000E+00 0 -0.588872E-01 0 0
44 MIQL7 24403 0.199E+02 0.000E+00 0 -0.588872E-01 0 0
44 MIQL8 31580 0.106E+02 0.000E+00 0 -0.588872E-01 0 0
44 SCIP – 0.102E+04 – – -0.515129E-01 0 55.32

45 MIQL1 37386 0.143E+02 0.000E+00 0 -0.431877E-01 0 0
45 MIQL2 37386 0.175E+02 0.000E+00 0 -0.431877E-01 0 0

221

TP SETTING NODES TIME REDGAP CUTS F ER GAP

45 MIQL3 37386 0.150E+02 0.000E+00 0 -0.431877E-01 0 0
45 MIQL4 37386 0.195E+02 0.000E+00 0 -0.431877E-01 0 0
45 MIQL5 27111 0.201E+02 0.000E+00 0 -0.431877E-01 0 0
45 MIQL6 27111 0.201E+02 0.000E+00 0 -0.431877E-01 0 0
45 MIQL7 36659 0.292E+02 0.000E+00 0 -0.431877E-01 0 0
45 MIQL8 44390 0.152E+02 0.000E+00 0 -0.431877E-01 0 0
45 SCIP – 0.103E+04 – – -0.318330E-01 0 68.58

46 MIQL1 38567 0.153E+02 0.000E+00 0 -0.953241E-01 0 0
46 MIQL2 38567 0.187E+02 0.000E+00 0 -0.953241E-01 0 0
46 MIQL3 38567 0.159E+02 0.000E+00 0 -0.953241E-01 0 0
46 MIQL4 38567 0.213E+02 0.000E+00 0 -0.953241E-01 0 0
46 MIQL5 28295 0.218E+02 0.000E+00 0 -0.953241E-01 0 0
46 MIQL6 28295 0.219E+02 0.000E+00 0 -0.953241E-01 0 0
46 MIQL7 37801 0.311E+02 0.000E+00 0 -0.953241E-01 0 0
46 MIQL8 48813 0.168E+02 0.000E+00 0 -0.953241E-01 0 0
46 SCIP – 0.102E+04 – – -0.791613E-01 0 50.82

Tab. B.2: Detailed MIQP Results

BIBLIOGRAPHY

[1] Abhishek K., Leyffer S., Linderoth J. T. (2010): FilMINT: An Outer
Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs, In-
forms Journal on Computing, Vol. 22, No. 4, Fall 2010, pp. 555-567

[2] Achterberg T. (2004): SCIP - a framework to integrate constraint and mixed-
integer programming, Technical Report 04-19, Zuse Institute Berlin, Germany

[3] Achterberg T., Koch T., Martin A. (2005): Branching rules revisited, Operations
Research Letters, Vol. 33, 42–54

[4] Achterberg T. (2009): Constraint Integer Programming, Dissertation, Technical
university Berlin

[5] Asaadi J. (1973): A computational comparison of some non-linear programs,
Mathematical Programming, Vol. 4, 144–154

[6] Armijo L. (1966): Minimization of functions having Lipschitz continuous first
partial derivatives, Pacific Journal of Mathematics, Vol. 16, 1–3

[7] Audet C., Dennis J.E. (2001): Pattern search algorithm for mixed variable pro-
gramming, SIAM Journal on Optimization, Vol. 11, 573–594

[8] Ayatollahi S., Narimani M., Moshfeghiam M. (2004): Intermittent gas lift in
Aghjari Oil 488 Field, a mathematical study, Journal of Petroleum Science and
Engineering, Vol. 42, 245-255

[9] Balas E. (1971): Intersection cuts - a new type of cutting planes for integer
programming, Operations Research, Vol. 19, 19-39

[10] Balas E. (1975): Disjunctive programming - cutting planes from logical condi-
tions, Nonlinear Programming, Vol. 2, 330-382

[11] Balas E. (1979): Disjunctive programming, Annals of Discrete Mathematics, Vol.
5, 3-51

[12] Balas E. (1998): Disjunctive programming: Properties of the convex hull of fea-
sible points, Discrete Applied Mathematics, Vol. 89, 1-44

224 Bibliography

[13] Balas E., Ceria S., Cornuejols G. (1993): A lift-and-project cutting plane algo-
rithm for mixed 0-1 programs, Mathematical Programming, Vol. 58, 295-324

[14] Balas E., Jeroslow R. (1980): Strengthening cuts for mixed-integer programs,
European Journal of Operations Research, Vol. 4, 224-234

[15] Balas E., Perregaard M. (2001): Generating cuts from multiple-term disjunc-
tions, Lecture Notes in Computer Science, Vol. 2081, 348-360

[16] Balas E., Perregaard M. (2002): Lift-and-project for mixed 0-1 programming:
recent progress, Discrete Applied Mathematics, Vol. 123, 129-154

[17] Balas E., Perregaard M. (2003): A precise correspondence between lift-and-
project cuts, simple disjunctive cuts, and mixed-integer gomory cuts, Mathe-
matical Programming, Vol. 94, 221-2245

[18] Balas E., Bonami P. (2008): New Variants of Lift-and-Project Cut Generation
from the LP Tableau: Open Source Implementation and Testing IPCO 2007,
89-103

[19] Barton P., Selot A. (2007): A production allocation framework for natural gas
production systems, Computer Aided Chemical Engineering, 24, 539-544

[20] Beling P.A., Megiddo N. (1998): Using fast matrix multiplication to find basic
solutions, Theoretical Computer Science, Vol. 205, 307-316

[21] Belotti P., Lee J., Liberti L., Margot F., Wächter A. (2009): Branching and
bounds tightening techniques for non-convex MINLP, Optimization Methods
and Software, Vol. 24, 597–634

[22] Benders J. F. (1962): Partitioning procedures for solving mixed variable pro-
gramming problems, Numerische Mathematik, 4, pp. 238-252

[23] Berthold T. (2007): Heuristics of the Branch-Cut-and-Price-Framework SCIP,
ZIB-Report 07-30, Zuse Institute Berlin

[24] Berthold T., Heinz S., Vigerske S. (2009): Extending a CIP framework to solve
MIQCPs, ZIB-Report 09-23, Zuse Institute Berlin

[25] Bienstock D. (1994): Computational study of a family of mixed-integer quadratic
programming problems, Columbia University New York, USA

[26] Bixby R.E., Fenelon M., Gu Z., Rothberg E., and Wunderling R. (2004): Mixed
integer programming: A progress report, in Martin Grötschel (ed.), The sharpest
cut: The impact of Manfred Padberg and his work, MPS-SIAM Series on Opti-
mization, Vol. 4

Bibliography 225

[27] Bonami P., Biegler L. T., Conn A. R., Cornuejols G., Grossmann I. E., Laird C.
D., Lee J., Lodi A., Margot F., Sawaya N., Wächter A. (2008): An algorithmic
framework for convex mixed integer nonlinear programs, Discrete Optimization,
5

[28] Bonami P., Kilinc M., Linderoth J. (2011): Alogrithms and software for convex
mixed integer nonlinear programs IMA Volumes, to appear

[29] Borchers B., Mitchell J.E. (1994): An improved branch-and-bound algorithm
for mixed-integer nonlinear programming, Computers and Operations Research,
Vol. 21, No. 4, 359-367

[30] van de Braak G. (2001): Das Verfahren MISQP zur gemischt ganzzahligen nicht-
linearen Programmierung für den Entwurf elektronischer Bauteile, Diploma
Thesis, Department of Numerical and Instrumental Mathematics, University
of Münster, Germany

[31] Brooke A., Kendrick D., Meeraus A. (1988): GAMS: A User’s Guide, The Sci-
entificS

[32] Buchheim C., Caprara A., Lodi A. (2012): An effective branch-and-bound algo-
rithm for convex quadratic integer programming, Mathematical Programming,
Volume 135, Issue 1-2, pp 369-395

[33] Bünner M.J., Schittkowski K., van de Braak G. (2004): Optimal design of elec-
tronic components by mixed-integer nonlinear programming, Optimization and
Engineering, Vol. 5, 271-294

[34] Bussieck M.R., Drud A.S., Meeraus A. (2007): MINLPLib - A collection of test
models for mixed-integer nonlinear programming, GAMS Development Corp.,
Washington D.C., USA

[35] Byrd R.H., Schnabel R.B., Shultz G.A. (1987): A trust region algorithm for
nonlinearly constrained optimization, SIAM Journal on Numerical Analysis, Vol.
24,erical Analysis, Vol. 24, 1152–1170

[36] Cha J.Z., Mayne R.W. (1989): Optimization with discrete variables via recursive
quadratic programming: Part 2 - algorithms and results, Transactions of the
ASME, Journal of Mechanisms, Transmissions, and Automation in Design, Vol.
111, 130–136

[37] Ceria S., Pataki G. (1998): Solving integer and disjunctive programs by lift-and-
project, Lecture Notes in Computer Science, Vol. 1412, 271-283

[38] Ceria S., Soares J. (1997): Disjunctive cut generation for mixed 0-1 programs:
duality and lifting, GSB, Columbia University New York, USA

226 Bibliography

[39] Chamberlain R.M., Lemarechal C., Pedersen H.C., Powell M.J.D. (1982): The
watchdog technique for forcing convergence in algorithms for constrained opti-
mization, Mathematical Programming Study, Vol. 16, 1–17

[40] Cornuejols G. (2008): Valid inequalities for mixed integer linear programming,
Mathematical Programming, Series B, Vol. 112, 3-44

[41] CPLEX, IBM: http://ibm.com/software/integration/optimization/cplex.

[42] Dakin R.J. (1965): A tree search algorithm for mixed-integer programming prob-
lems, Computer Journal, Vol. 8, 250-255

[43] Duran M., Grossmann I.E. (1986): An outer-approximation algorithm for a class
of Mixed Integer Nonlinear Programs, Mathematical Programming, Vol. 36, 307-
339

[44] Eldred M.S., Giunta A.A.,van Bloemen Waanders B.G., Wojtkiewicz S.F.,
Hart W.E., Alleva M.D. (2002): DAKOTA: A multilevel parallel object-oriented
framework for design optimization, parameter estimation, uncertainty quantifi-
cation, and sensitivity analysis, Version 3.1 Users Manuel, Report SAND20001-
3796, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-
0847

[45] Exler O., Schittkowski K. (2007): A trust region SQP algorithm for mixed-
integer nonlinear programming, Optimization Letters, Vol. 1, No. 3, 269-280

[46] Exler O., Lehmann T., Schittkowski K. (2009): MISQPN : A Fortran subroutine
for mixed-integer nonlinear optimization by outer approximation supported by
mixed-integer search steps - user’s guide, version 1.0, Report, Department of
Computer Science, University of Bayreuth

[47] Exler O., Lehmann T., Schittkowski K. (2011): A Comparative Study of SQP-
Type Algorithms for Nonlinear and Nonconvex Mixed-Integer Optimization, sub-
mitted to Mathematical Programming Computation

[48] Exler O., Lehmann T., Schittkowski K. (2011): MISQP: A Fortran subroutine of
a trust region SQP algorithm for mixed-integer nonlinear programming - user’s
guide, Report, Department of Computer Science, University of Bayreuth

[49] Fletcher R. (1982): Second order correction for nondifferentiable optimization,
in: Watson G.A., ed., Numerical Analysis, Springer, Berlin, pp. 85–115

[50] Fletcher R., Leyffer S. (1994): Solving mixed-integer nonlinear programs by outer
approximation, Mathematical Programming, Vol. 66, 327-349

[51] Fletcher R., Leyffer S. (2002): Nonlinear programming without a penalty func-
tion, Mathematical Programming, Vol. 91, 239–269

Bibliography 227

[52] Floudas C.A. (1995): Nonlinear and Mixed-Integer Optimization, Oxford Uni-
versity Press, New York, Oxford

[53] Floudas C.A., Pardalos P.M., Adjiman C.S., Esposito W.R., Gumus Z.H., Hard-
ing S.T., Klepeis J.L., Meyer C.A., Schweiger C.A. (1999): Handbook of Test
Problems in Local and Global Optimization, Kluwer Academic Publishers

[54] Forrest J., de la Nuez D., Lougee-Heimer R. (2002): Clp: An Open Source code
for solving linear programming problems,
http://www.coin-or.org/Clp/userguide/index.html

[55] Fügenschuh A., Hiller B., Humpola J., Koch T., Lehmann T., Schwarz
R., Schweiger J., Szabo J. (2011): Gas network topology optimization for
upcoming market requirements, ZIB-Report 11-09, Zuse Institute Berlin,
http://vs24.kobv.de/opus4-zib/frontdoor/index/index/docId/1234, to appear
in Proc. of the 8th International Conference on the European Energy Market
(EEM)

[56] Fukushima M. (1986): A successive quadratic programming algorithm with global
and superlinear convergence properties, Mathematical Programming, Vol. 35,
253–264

[57] Geoffrion A. M. (1972) Generalized benders decomposition, Journal of optimiza-
tion theory and applications, Vol. 10, No. 4, pp 237-260

[58] Goldfarb D., Idnani A. (1983): A numerically stable method for solving strictly
convex quadratic programs, Mathematical Programming, Vol. 27, 1-33

[59] Gomory, R.E. (1958): An algorithm for integer solutions to linear programs,
Princeton I.B.M. Mathematics Research Project, Technical Report No. 1,
Princeton University, USA

[60] Gould N.I.M, Toint Ph.L. (2006): Global convergence of a non-monotone trustre-
gion filter algorithm for nonlinear programming, in: Hager W.W., Huang S.,
Pardalos P.M., Prokopyev O.A. eds., Multiscale Optimization Methods and Ap-
plications, Springer, New York, pp. 125–150

[61] Grossmann I.E., Kravanja Z. (1997): Mixed-integer nonlinear programming: A
survey of algorithms and applications, in: Conn A.R., Biegler L.T., Coleman
T.F., Santosa F.N. (eds.): Large-Scale Optimization with Applications, Part II:
Optimal Design and Control, Springer, New York, Berlin

[62] Grossmann I.E. (2002): Review of nonlinear mixed-integer and disjunctive pro-
gramming techniques, Optimization and Engineering, Vol. 3, 227-252

[63] Grossmann I.E., Lee S. (2002): Generalized convex disjunctive programming:
nonlinear convex hull relaxation, Computational Optimization and Applica-
tions, Volume 26, Number 1, 83-100

228 Bibliography

[64] Gupta O.K., Ravindran A. (1985): Branch and bound experiments in convex
nonlinear integer programming, Management Science, Vol. 31, 1533-1546

[65] Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187,
Springer

[66] Jarre F., Stoer J. (2003) Optimierung, Springer

[67] Kelley J.E. (1960): The cutting-plane method for solving convex programs, Jour-
nal of the Society for Industrial and Applied Mathematics, Vol. 8, No. 4, pp.
703-712

[68] Kilinc M., Linderoth J., Luedtke J. (2010): Effective separation of disjunctive
cuts for convex mixed integer nonlinear programs, Technical Report, Computer
Sciences Department, University of Wisconsin-Madison

[69] Krumke O. (2006): Integer programming, Report, Technische Universität Kaiser-
slautern

[70] Lehmann T. (2006): Quadratisch L1-Optimierung mit Anwendungen auf
Support-Vektor-Maschinen, Diploma Thesis, University of Bayreuth, Germany

[71] Lehmann T., Schittkowski K. (2009): MIQL : A Fortran subroutine for con-
vex mixed-integer quadratic programming - user’s guide, version 1.0, Report,
Department of Computer Science, University of Bayreuth

[72] Lehmann T., Schittkowski K. (2009): MINLPB4 : A Fortran code for nonlin-
ear mixed-integer quadratic programming by branch-and-bound - user’s guide,
version 1.0, Report, Department of Computer Science, University of Bayreuth

[73] Lehmann T., Schittkowski K. (2009): MISQPOA: A Fortran subroutine for
mixed-integer nonlinear optimization by outer approximation - user’s guide, ver-
sion 1.0, Report, Department of Computer Science, University of Bayreuth

[74] Lehmann T., Schittkowski K., Spickenreuther T. (2009): BFOUR: A Fortran
subroutine for integer optimization by branch-and-bound - user’s guide -, Report,
Department of Computer Science, University of Bayreuth, Germany

[75] Leyffer S., Fletcher R. (1998): Numerical experiments with lower bounds for
MIQP branch-and-bound, SIAM Journal on Optimization, Vol. 8, 604-616

[76] Leyffer S. (2001): Integrating SQP and branch-and-bound for mixed-integer non-
linear programming, Computational Optimization and Applications, Vol. 18,
295–309

[77] Li H.-L., Chou C.-T. (1994): A global approach for nonlinear mixed discrete
programming in design optimization, Engineering Optimization, Vol. 22, 109–
122

Bibliography 229

[78] Maratos N. (1978): Exact penalty function algorithms for finite dimensional
and control optimization problems, Ph.D. Thesis, Imperial College Sci. Tech.,
University of London

[79] Mayne D.Q., Polak E. (1982): A superlinearly convergent algorithm for con-
strained optimization problems, Mathematical Programming Study, Vol. 16,
45–61

[80] McCormick G.P. (1976): Computability of global solutions to factorable non-
convex programs: part I – convex underestimating problems, Mathematical Pro-
gramming, Vol. 10, pp.147-175

[81] Möller M. (2004): Mixed integer models for the optimization of gas networks
in the stationary case Doctoral Thesis, Technische Universität Darmstadt, Ger-
many

[82] Nowak I., Alperin H., Vigerske, S. (2005): LaGO - An object oriented library
for solving MINLPs, International Series of Numerical Mathematics, Vol. 152

[83] Nowak I. (2005): Relaxation and decomposition methods for mixed integer non-
linear programming, International Series of Numerical Mathematics, Vol. 152,
Birkhäuser,ISBN 978-3-7643-7238-5

[84] Omojokun E.O. (1989): Trust Region Algorithms for Optimization with Nonlin-
ear Equality and Inequality Constraints, Ph.D. Thesis, University of Colorado
at Boulder, USA

[85] Pan P. (2008), A primal deficient-basis simplex algorithm for linear program-
ming, Applied mathematics and computation, Vol. 196, No. 2, 898-912

[86] Perregaard M. (2003): Generating disjunctive cuts for mixed-integer programs,
Doctoral Dissertation, Carnegie Mellon University Pittsburgh, USA

[87] Powell M.J.D. (1983): ZQPCVX, A Fortran subroutine for convex quadratic
programming, Report DAMTP/1983/NA17, University of Cambridge, England

[88] Powell M.J.D. and Yuan Y. (1986): A recursive quadratic programming algo-
rithm that uses differentiable exact penalty function, Mathematical Program-
ming, Vol. 35, 265–278

[89] Powell M.J.D. and Yuan Y. (1991): A trust region algorithm for equality con-
strained optimization, Mathematical Programming, Vol. 49, 189–211

[90] Quesada L., Grossmann I.E. (1992): An LP/NLP based branch and bound algo-
rithm for convex MINLP optimization problems Computers & Chemical Engi-
neering

[91] Ray T., Sarker R. (2007): Genetic algorithm for solving a gas lift optimization
problem, Journal of Petroleum Science and Engineering, Vol. 59, 84-96

230 Bibliography

[92] Sahinidis N.V. (1996): BARON: a general purpose global optimization software
package, Journal of Global Optimization, Vol. 8(2), pp. 201-205

[93] Schittkowski K. (1983): On the convergence of a sequential quadratic program-
ming method with an augmented Lagrangian search direction, Optimization, Vol.
14, 197- 216

[94] Schittkowski K. (2003): QL : A Fortran code for convex quadratic programming
- User’s guide, Report, Department of Mathematics, University of Bayreuth,
Germany

[95] Schittkowski K. (2010): A collection of 100 test problems for nonlinear mixed-
integer programming in Fortran - user’s guide, Report, Department of Computer
Science, University of Bayreuth

[96] Schittkowski K., Yuan Y. X. (2010) Sequential Quadratic Programming Methods
to appear: Wiley Encyclopedia of Operations Research and Management Science

[97] Selot A., Kuok L.K., Robinson M., Mason T.L., Barton P. (2008): A short term
operational planning model for upstream natural gas production systems, AIChE
Journal, 54, 495-515

[98] Sun X., Ruan N., Li D. (2006): An efficient algorithm for nonlienar integer pro-
gramming problems arising in series-parallel reliability systems, Optimization
Methods and Software, Vol. 21 617-634

[99] Tawarmalani M., Sahinidis N.V. (2005): A polyhedral branch-and-cut approach
to global optimization, Mathematical Programming, Vol. 103, 225-249

[100] Thekale A., Gradl T., Klamroth K., Rüde U. (2009): Optimizing the num-
ber of multigrid cycles in the full multigrid algorithm, Report 09-5, Friedrich-
Alexander-University Erlangen-Nürnberg, Institute for Computer Science

[101] Ulbrich S. (2004): On the superlinear local convergence of a filter-SQP method,
Mathematical Programming, Vol. 100, 217–245

[102] Ulbrich M., Ulbrich S. (2003): Non-monotone trust region methods for nonlin-
ear equality constrained optimization without a penalty function, Mathematical
Programming Ser B, Vol. 95, 103–135

[103] Vardi A. (1985): A trust region algorithm for equality constrained minimiza-
tion: convergence properties and implementation, SIAM Journal on Numerical
Analysis, Vol. 22, 575–591

[104] Viswanathan J.,Grossmann I.E. (1990): A combined penalty function and outer-
approximation method for MINLP optimization, Comput. chem. Engng., Vol.
14

Bibliography 231

[105] A. Wächter, L. T. Biegler (2006): On the Implementation of an Interior-Point
Filter Line-Search Algorithm for Large-Scale Nonlinear Programming, Mathe-
matical Programming 106(1), pp. 25-57

[106] Wang P., Litvak M. (2004): Gas lift optimization for long-term reservoir simu-
lations, SPE Reservoir Evaluation & Engineering, Vol. 11, No. 1, 147-153

[107] Werner. J. (1999): Lecture notes on optimization, Institut für Numerische und
Angewandte Mathematik, Universität Göttingen.

[108] Westerlund T., Petterson F. (1995): An extended cutting plane method for solv-
ing convex MINLP problems, Computers and Chemical Engineering, Vol. 21,
131-136

[109] Westerlund, Pörn (2002): Solving pseudo-convex mixed-integer optimization
problems by cutting plane techniques, Optimization and Engineering, Vol. 3,
253-280

[110] Wojtaszek D. T. (2008): Faster MIP solutions via new node selection rules Ph.D.
Thesis, Carleton university, NR40542

[111] Wolters K. (2006): Implementation of cutting plane separators for mixed-integer
programs, Diploma Thesis, Zuse Institute Berlin, Germany

[112] Yuan Y. X. (1995): On the convergence of a new trust region algorithm, Nu-
merische Mathematik, Vol. 70, No. 4, pp. 515-539

Acknowledgment

Finally, I would like to thank all people, that supported and accompanied me during
the years of working at this thesis.

I am very thankful to my supervisor Prof. Dr. Klaus Schittkowski, who guided me in
the right direction with regard to successful and interesting research topics. Further-
more, he supported me with his expertise, his patience and by sharing his international
contacts in the optimization society. His high ambitions helped a lot to improve the
scientific quality of this thesis. I would like to thank him for giving me the oppor-
tunity to work in the very interesting industrial cooperation with Shell on practical
engineering problems.

I am also very thankful to my second supervisor Prof. Dr. Jörg Rambau, who always
took the time for discussing my research results and who handed out good advises
whenever possible.

The major part of my research was founded by the company Shell SIEP Rijswijk
within the GameChanger Project IDC-2005050006. I am grateful for this support and
I appreciated the work in a professional industrial environment on real world problems.

A special thanks goes to Prof. Dr. Christof Büskens at the University of Bremen for
providing the possibility to work in his team on the development of a new nonlinear
programming solver. I enjoyed the time in Bremen very much especially due to your
good company Patrik, Matthias and Jörg.

I also want to thank my former colleagues from the Konrad-Zuse-Institute in Berlin. I
had a very interesting time, in which I could improve my knowledge on optimization
as well as my programming skills a lot. I am thankful for the new contacts in the
optimization community and the work for EON on important future topics in the
energy industry. Thank you Jesco, Jonas, Robert, Stefan, Benjamin, Armin, Thorsten
and all the other guys from the ZIB for the nice time there.

Thanks to all members of the former team of Prof. Dr. Schittkowski for the nice time
and friendly atmosphere. Thank you Sonja, Oliver, Axel, Björn, Thorsten and Mrs.
Lachmann. Especially the scientific discussions with Oliver on MINLP solvers and
related topics were very helpful.

Ein großer Dank gilt besonders meinen Freunden, die mich in den vergangenen Jahren
stets unterstützt und aufgemuntert haben. Ihr hattet immer Verständnis dafür hatten,
wenn ich ein Treffen nicht wahrnehmen konnte oder eine Party ausfallen lassen musste
(es waren zum Glück nicht zu viele). Dies gilt besonders für meine Schulfreunde Steve,
Basit, Stephan und Kahli aber auch für meine Studienfreunde, die mich viele Jahre
an der Universität Bayreuth begleitet haben. Danke Sonja, Stefan, Peter, Armin,
Jörg, Sascha, Tobi, Matthias, Steffi, Frank, Nicole und all die anderen (ehemaligen)

234 Bibliography

Bayreuther.

Mein größter Dank gilt aber meiner Familie, wobei ich mich besonders bei meinen
Eltern und Geschwistern bedanken möchte, da Ihr mir immer zur Seite gestanden
habt und mich immer unterstützt.

Thomas

Erklärung

Ich versichere an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe.

Des Weiteren versichere ich, dass ich die Hilfe von gewerblichen Promotionsberatern
bzw. -vermittlern oder ähnlichen Dienstleistern weder bisher in Anspruch genommen
habe noch künftig in Anspruch nehmen werde.

Ich versichere außerdem, dass die vorliegende Arbeit in gleicher oder ähnlicher Form
noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde.

Erlangen, den 15.04.2013

Thomas Lehmann
Anton-Bruckner-Str. 36
91052 Erlangen

Lebenslauf

Persönliche Daten
Thomas Lehmann

Geburtstag: 09.07.1980

Ausbildung

seit 02/2007 Promotion an der Universität Bayreuth

On Efficient Solution Methods for Mixed-Integer Nonlinear and

Mixed-Integer Quadratic Optimization Problems

10/2000 - 04/2006 Studium der Wirtschaftsmathematik an der Universität Bayreuth

Abschluss: Diplom, Note: 1,2

Diplomarbeit: L1-Optimierung für Support-Vector-Machines

09/2003 - 07/2004 Auslandsaufenthalt

Mathematikstudium an der Universität Exeter, England

07/1999 - 04/2000 Wehrdienst

Flugabwehrraketenkanonier der Luftwaffe in Pfullendorf/Manching

09/1990 - 06/1999 Schulische Ausbildung am Arnold Gymnasium in Neustadt/Co

Abschluss: Abitur, Note: 1,3

01/1999 Teilnahme am Wettbewerb Jugend forscht im Gebiet Arbeitswelt

Berufserfahrung

seit 02/2012 Engineer bei der Siemens AG

01/2010 - 12/2011 Wissenschaftlicher Mitarbeiter am Konrad-Zuse-Zentrums Berlin

02/2007 - 12/2009 Wissenschaftlicher Mitarbeiter der Universität Bayreuth

08/2006 - 12/2006 Wissenschaftlicher Mitarbeiter der Universität Bremen

Erlangen, 15. April 2013

