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Summary  

Novel hybrid nanoparticles were synthesized based on combinations of various 

layered silicates as inorganic core and well-defined polymer chains as a shell. In all 

cases positively charged 2-(dimethylamino)ethyl methacrylate (DMAEMA) was 

incorporated into the polymeric structure to serve as a firm anchor onto the 

negatively charged clay surface via electrostatic adsorption. 

First, hybrid nanofillers were synthesized to improve the mechanical properties of a 

homopolymer matrix by combining a shear-stiff synthetic K-hectorite with a tailored 

surface activity. For this, the synthetic fluorohectorite with very high aspect ratios 

was organophilized with a specifically designed macroinitiator created by statistical 

Reversible Addition Fragmentation Chain Transfer (RAFT) copolymerization of 

DMAEMA and the initator-monomer 2-(2-bromoisobutyryloxy)ethyl methacrylate 

(BIEM). The copolymer was firmly anchored through multiple cationic charges 

distributed over the chain while the multiple initiating functions were used to 

polymerize the monomer of choice via Atom Transfer Radical Polymerization (ATRP). 

The final hybrid was equipped with a hydrophobic polymeric shell of poly(methyl 

methacrylate) (PMMA), which enables dispersion in organic solvents. The hybrid 

particles were compounded into a polymeric matrix of commercial PMMA and 

tested with regard to its reinforcing properties. The similarity of the polymeric shell 

to the homopolymer matrix of the chosen sample composite combined with the 

inherent stiffness of the inorganic core lead to an increase in tensile modulus of up 

to 84 % at 5% filler content. 

Further, patchy hybrid nanodiscs based on natural montmorillonite as core and a 

shell made from compartments of two different polymers were evaluated as cheap 

and versatile compatibilizers in an immiscible polymer blend. In a simple one-step 

modification process a shell comprising patches of either of two polymer species 

(PMMA and polystyrene, PS), each chosen to be similar in polarity to one of the 

matrix polymers, was attached to the inorganic core via Coulomb interaction. The 

behaviour of these particles in a solvent-cast blend of 2:1 PS/PMMA was investigated 

via transmission electron microscopy (TEM) and dynamic-mechanical analysis (DMA). 
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Particles were found distributed in both of the blend’s domains and at the interface 

and an improvement of the storage module of 17% was found. 

Finally, kaolinite was used as a core to create true hybrid Janus nanodiscs, which 

were applied for compatibilizing an immiscible polymer blend of 2:1 PS/PMMA. It 

was possible to create two chemically distinct surfaces on the clay particle by 

addressing each of its two basal surfaces individually via simple, but selective, 

surface modification. Two diblock copolymers were used to create the Janus 

structure, each one with a first block consisting of monomer units bearing the 

anchoring group for the respective surface and a second block, PS or PMMA, tailored 

to the polarity of the respective matrix polymer. Thus it was possible to direct the 

Janus particles straight into the interface between the polymeric domains, visualized 

by TEM images taken from solvent-cast nanocomposite films. 



 Zusammenfassung 

3 

Zusammenfassung 

Die vorliegende Arbeit befasst sich mit der Synthese einer Reihe neuartiger 

Hybridnanopartikel durch die Kombinationen verschiedener Schichtsilikattypen als 

anorganischem Kern und wohldefinierter Polymerketten als organische Schale. In 

allen Fällen wurde positiv geladenes 2-(Dimethylamino)ethylmethacrylat (DMAEMA) 

in die Polymerketten integriert und diente der festen Verankerung der Ketten auf 

der negativ geladenen Schichtsilikatoberfläche durch elektrostatische Adsorption. 

Als erstes wurden Nanofüllstoffe entwickelt um die mechanischen Eigenschaften 

einer Matrix aus Homopolymer zu verbessern. Dies gelang durch eine Kombination 

von außergewöhnlicher Scherfestigkeit eines synthetischen K-Hectorits als Füllstoffs 

mit einer maßgeschneiderten Oberflächenaktivität. Hierzu wurde ein synthetisch 

hergestellter Fluorohectorit mit hohem Aspektverhältnis durch einen speziell 

entwickelten Macroinitiator (MI), hergestellt durch statistische Copolymerisation von 

DMAEMA und Bromoisobutyryloxyethylmethacrylat (BIEM) mittels Reversibler 

Additions-Fragmentierungs Kettenübertragungs (RAFT) Polymerisation, selektiv auf 

den externen Basalflächen organophilisiert. Über die positiven Ladungen mehrerer 

DMAEMA Einheiten konnte das Copolymer fest auf der Oberfläche des Schichtsilikats 

verankert werden. Die durch BIEM bereitgestellten Initiatorfunktionen dienten zum 

Starten der Polymerisation eines ausgewählten Monomers durch Radikalische Atom 

Transfer Polymerisation (ATRP). Der fertige Hybrid war mit einer hydrophoben 

Polymethylmethacylat (PMMA) Schale ausgestattet, welche die Dispersion in 

organischen Lösemitteln erlaubte. Die Hybridpartikel wurden als Füllstoffe mit einer 

Matrix aus kommerziellem PMMA kompoundiert und auf ihre verstärkenden 

Eigenschaften geprüft. Durch die Kombination aus einer Schale, die chemisch der 

Matrix angepasst ist, und der dem anorganischen Kern eigenen Scherfestigkeit 

konnte eine Verbesserung des Elastizitätsmoduls von 84% erreicht werden bei 5% 

Füllstoffgehalt. 

Des Weiteren wurden neuartige, scheibchenförmige Kern-Schale Nanopartikel auf 

der Basis von natürlichem Montmorillonit (MMT) als Kern und einer 

oberflächenkompartimentalisierten Schale als billige und vielseitige 

Verträglichkeitsvermittler in nicht-mischbaren Polymerblends untersucht. In einer 
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einfachen einstufigen Modifikation wurde unter Ausnutzung von Coulomb-

Wechselwirkungen auf den anorganischen Kern eine Schale aufgebracht, die aus 

Flicken zweier Polymerarten (PMMA und Polystyrol, PS) bestand. Beide 

Polymerarten waren so ausgewählt, dass sie jeweils der Polarität eines der 

Matrixpolymeren gleichen. Das Verhalten dieser Partikel in Polymerblends mit der 

Zusammensetzung 2:1 PS/PMMA wurde an Dünnfilmen mit Hilfe von 

Transmissionselektronenmikroskopie (TEM) und Dynamisch-mechanischer Analyse 

(DMA) untersucht. Die Partikel wurden verteilt auf jeweils beide Domänen und in der 

Grenzfläche vorgefunden und führten zu einer Verbesserung des Elastizitätsmoduls 

um 17%. 

Letztlich wurde Kaolinit als anorganischer Kern verwendet um echte 

scheibchenförmige Hybrid Janus Partikel zu generieren. Dies gelang mit Hilfe von 

einfacher, selektiver Oberflächenmodifikation. Die Partikel wurden anschließend zur 

Kompatibilisierung eines nicht-mischbaren Polymerblends mit der Zusammensetzung 

2:1 PS/PMMA genutzt. Um die Janus-Struktur auf der Schichtsilikat Oberfläche zu 

erzeugen wurden zwei Blockcopolymere verwendet, bei denen jeweils ein Block dazu 

diente, spezifisch auf die jeweiligen externen Basalfläche anzudocken und ein 

weiterer Block (PS oder PMMA) auf die Polarität der Matrix maßgeschneidert war. 

Dadurch war es möglich die Janus Partikel direkt in die Grenzfläche zwischen den 

Domänen zu platzieren. Dies konnte in TEM Aufnahmen von aus Lösung gezogenen 

Dünnfilmen der Nanokomposite visualisiert werden. 
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Glossary 

AIBN Azobisisobutyronitrile 

ATRP Atom Tansfer Radical Polymerization 

BET Specific surface area according to the equation of Brunauer, Emmett, Teller  

BiEM (2-Bromoisobutyryloxy)ethyl methacrylate 

C12-hect Potassium fluorohectorite with a dodecylamine modified surface 

CBPT 2-Cyano-2-propyl benzodithioate 

CEC Cation exchange capacity 

CTA Chain Transfer Agent 

δ Chemical shift (NMR spectroscopy) 

Dx-b-Sy  Poly(2-(dimethylamino)ethyl methacrylate)x-block-polystyreney 

DCB Dithionite-citrate-bicarbonate 

DCM Dichloromethane 

DI Deionized water  

DLS Dynamic light scattering 

DMA Dynamic-mechanical analysis  

DMAc Dimethylacetamide 

DMAEMA 2-(Dimethylamino)ethyl methacrylate  

DMSO  Dimethylsulfoxid 

DP Degree of polymerization 

EDTA Ethylenediaminetetraacetic acid  

EDX Energy dispersive X-ray spectroscopy  

GPC Gel permeation chromatography 

1
H-NMR Proton Nuclear Magnetic Resonance Spectroscopy 

HDT Heat distortion temperature  

HEMA Hydroxyethyl methacrylate 

hybrid-hect Potassium fluorohectorite with a polymeric PMMA shell 

IR Infrared spectroscopy 

K-hect Potassium fluorohectorite 

LUM LUMiFuge® 114  

MAS Magic angle spinning 

Mg-hect Magnesium fluorohectorite 

MI Macro-initiator: (poly(2-(2-bromoisobutyryloxy)ethyl methacrylate)-stat-(2-

dimethyl(amino)ethyl methacrylate)  

MMT Montmorillonite 

Mn Number average molecular weight 

Mw Weight average molecular weight 
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MWD Molecular weight distribution 

NA Avogadro constant 

Na-hect Sodium fluorohectorite 

NMF N-Methylformamide  

O-hect Potassium fluorohectorite with a macro-initiator modified surface 

OS External octahedralsurface of a kaolinite tactoide 

PCM Poly(3-(2,3-Dihydroxybenzoyloxy) Propyl Methacrylat)46-stat-(Methyl Methacrylat)466 

PDI  Polydispersity Index 

PDPS Poly((2-dimethylamino)ethyl methacrylate)-block-polystyrene  

PMMA Poly(methyl methacrylate) 

PPE (Poly(2,6-dimethyl-1,4-phenylene ether)  

ppm Parts per million 

ppm Parts per million 

PS Poly(styrene) 

PXRD Powder x-ray diffraction  

RAFT Reversible Addition-Fragmentation Chain Transfer 

RI Refractive Index  

RT Room temperature (25 °C) 

Ru(bpy)3
 2+

 Ruthenium-Tris-2,2'-Bipyridin-Komplex 

SAN Poly(styrene-co-acrylonitrile) 

SEC  Size Exclusion Chromatography 

si-ATRP Surface-initiated Atom Transfer Radical Polymerization 

TEM Transmission Electron Microscopy  

Tg Glass transition temperature 

TGA Thermogravimetric analysis 

THF Tetrahydrofuran 

TMS Tetramethylsilane 

TS External tetrahedralsurface of a kaolinite tactoide 

UV Ultraviolet 

wt% Weightpercentage 
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1 Chapter 1:   Introduction 

 

1.1 Layered silicates 

In mankind's early history, the utilization of new materials lead to major 

technological progress, from the stone- over the bronze- to the copper-age, the new 

materials enabled better tools, better hygiene and better protection and also often 

decided the fate of civilizations. Modern society in contrast needs highly specialized 

materials, often tailored to a single task, to face the challenges of its rapidly 

advancing technological sectors like automotive, aerospace, hygiene, energy and 

engineering. Living in the age of polymers, there is already a large supply of basic and 

advanced materials to choose from, but the introduction of nanotechnology, and 

with it nanoparticles, opened up a vast range of possibilities for better and novel 

materials, where even the cheapest basic polymers, which make up most of the 

daily-use items around the world, can be mixed with a small amount of nanosized 

objects to enhance and alter their properties significantly1. 

Clay minerals have been used since thousands of years by cultures worldwide as 

ceramics, but due to their manifold other properties, e.g. high water adsorption, 

capacity for cation exchange, non-Newtonian fluid behavior they found their way 

into modern applications, like filtration, purification, encapsulation of wastes, drilling 

and gardening. A recently advanced topic and one of growing interest is their use in 

polymeric materials as cheap and versatile nanofillers to enhance their toughness, 

flame retardency and gas barrier properties. All of these properties are a direct 

result from their unique layered sheet-like structure after which they are named and 

classified. 

Gary W. Beall and Clois E. Powell ask as an introductory question to their book2: „Can 

one imagine the utility of a dispersed-phase reinforcement for polymers that has a 

thickness of 1 nm, a plate-like morphology with minimal dimensions of 150 to 200 

nm, robust with a modulus of 180 GPa, non-toxic [...], a surface area in excess of 750 

m²/g, a charge suitable for altering its hydrophilic balance at will, and a refractive 

index similar to polymer so that the nanoparticle will appear transparent in the 
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polymer composite? How difficult would it be to prepare such a particle?” As the 

authors are discussing naturally occurring layered silicates, this rhetorical question 

amplifies the potential which lies in these clay minerals found all over the world in 

sedimentary rocks like bentonites or kaoline.  

Layers are held together by van-der-Waals forces, hydrogen bonds and electrostatic 

interactions forming large stacks (tactoids) in the dry state. Each layer is roughly 1 

nm in height and is made up from two different basic building blocks3, namely [TO4]-

tetrahedra and [M(O,OH)6]-octahedra. Most commonly tetrahedral cations are Si4+, 

Al3+ and Fe3+, while octahedra feature Al3+, Fe3+, Mg2+, Fe2+ or Li+. Each corner of one 

polyhedron is occupied by O2-, OH- or F- anions. Tetrahedra are connected via three 

shared corners and form a two-dimensional hexagonal lattice structure (Figure 1.1). 

The fourth apical corner acts as connection to the octahedral layer. Octahedra are 

connected to each other by shared edges and the upper and lower triangular sides of 

all tetrahedra lie in plane respectively. 

 

Figure 1.1 Schematic representation of a 2:1 layered Silicate. T= Tetrahedron, O=octahedron. 

Reprinted with permission from reference [
4
]. 

 

There are two important types of layered silicates, in both cases each lamella 

consists of one octahedral layer connected either on one side to a tetrahedral layer 

(named 1:1 layered silicate, e.g. kaolinite, chapter 1.1.3) or sandwich-like on both 

sides (called 2:1 layered silicate, e.g. montmorillonite or hectorite, chapter 1.1.1 and 
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1.1.2). This has a major influence on the way how each silicate compensates its layer 

charge resulting from isomorphous substitution. 

Any cation in the tetrahedral or octahedral layer which is replaced by a cation of 

lower valency will contribute to a permanent net layer charge, ζ, which is 

compensated by counter-ions close to the layer. The amount of (exchangeable) 

counter-ions is denoted as cation exchange capacity (CEC). In the case of 2:1 silicates 

the cations reside on the external basal planes and in the interlayer spaces. The 

interlayer distance varies with the cation species and its degree of hydration 

between 9.1 Å and 18.0 Å. A 1:1 silicate does not have any cations in its interlayer 

space and compensates its charge only at the external tetrahedral layer.  

In the case where the open spaces of all octahedrons are filled with cations the layer 

is called trioctahedral or brucitic (e.g. hectorite, see chapter 1.1.2), while an 

occupation of only 2/3 is named dioctahedral or gibbsitic (e.g. montmorillonite and 

kaolinite, chapter 1.1.1 and 1.1.3) (Figure B7c). As a result cations of higher valency 

(Al3+ vs. Mg2+) are incorporated into dioctahedral structures to compensate for the 

layer charge.  

With natural silicates varying degrees of isomorphous substitution occur in each 

layer, depending on the conditions under which they were formed. 

1.1.1 Natural montmorillonite 

Montmorillonite (MMT) is a natural 2:1 layered silicate from the smectite group with 

the dioctahedral structure (Na, Ca)0.3(Al, Mg)2(Si4O10)(OH)2·nH2O. It is found all over 

the world5. It is an alteration product of volcanic tuff and ash, forming bentonite 

beds, and of wall rocks bordering hydrothermal mineral deposits. It forms under 

alkaline conditions of poor drainage, with Mg, Ca, Na, and K remaining in the soil. As 

it is a natural product it contains impurities, most commonly feldspar, quartz, mica, 

carbonate and hydroxycarbonate, which have to be removed prior to commercial 

application. Furthermore, all of its properties depend on the conditions it was 

formed under, varying with its origin. E.g. the CEC reaches from 90 up to 150 

meq/100g as the negative charge is distributed inhomogenously inside each layer 

and between layers, resulting in inhomogeneous surface coverage with counterions, 
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sometimes resulting in clusters forming around spots with high density of 

isomorphous substitution6, 7. Counterions usually are hydrated sodium or calcium 

cations, and increasing hydration fosters desaggregation of tactoids and partial 

exfoliation. Delamination into singular layers of 1 nm height is only observed after 

ion exchange with Li and removal of amorphous binders. Combined with a lateral 

dimension of up to over 300 nm, they can reach aspect ratios, α, of up to 300 in 

theory. Though, these single sheets lose their intrinsic stiffness and start to curl and 

break under shear (e.g. during mixing), their practical aspect ratio after processing is 

usually not higher than 1008. 

Nevertheless, due to its easy mining and processing MMT rapidly became the 

commercially most attractive clay as an additive for polymeric matrices in the last 

decades and there is a range of companies, supplying MMT with different grades of 

purity, dimensions and CEC. In its pristine form it is only miscible with hydrophilic 

polymers, such as poly(ethylene oxide) and poly(vinyl alcohol)9, 10. To render MMT 

miscible with hydrophobic polymers, alkali counterions classically are exchanged 

with cationic-organic surfactants, such as alkylammonium salts11, 12. 

1.1.2 Synthetic hectorite (Na-fluorohectorite) 

Hectorite is a 2:1 layered silicate commonly of the structure Na0.3(Mg,Li)3Si4O10(OH, 

F)2. Natural hectorite belongs to the smectite group as well and is related to 

montmorillonite, but has a trioctahedral structure.  

Its natural variant suffers from the same impurities and inhomogenities described in 

1.1.1. To omit those disadvantages, classical solid-state reactions and melt synthesis 

have been used to produce artificial hectorite. High temperatures lead to statistical 

distribution of isomorphous substitution, generating a homogeneous layer charge. 

Until recently this procedure has been very expensive and industrially inapplicable. 

Development of a new synthetic route in powerful high frequency furnaces by 

Hussein Kalo at the department of Inorganic Chemistry I of University of Bayreuth 

under supervision of Prof. Breu allows for production quantities of kilograms with a 

price of 18 €/kg. But price is not the only benefit; by synthesis it is possible to create 

much larger platelets, leading to huge practical aspect ratios α of up to 20000 in case 
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of Li-fluorohectorite or annealed Na-fluorohectorite (hectorite where part of the 

octahedral O-atoms have been replaced by F-atoms is called fluorohectorite). With 

homogeneity in surface charge and far less impurities than natural clay13 it is possible 

to control alternation between a highly hydrated ‘shear-labile’ state and a 

nonhydrated ’shear-stiff’, mica-like state by simple cation exchange. This transition 

between hydration states cannot be observed for natural MMT due to heterogeneity 

of charge density and lower layer charge. Cation exchange toward Mg-

fluorohectorite gives a highly hydrated and therefore ‘shear-labile’ state, enabling 

exfoliation by application of shear forces in a stirred media mill14. A subsequent 

cation exchange with K+ ions yielded a collapsed non-swollen, ‘shear-stiff´, mica-like 

material. Powder x-ray diffraction (PXRD) measurements showed that collapsed 

stacks will not exchange interlayer cations and thus reactivity is restricted to external 

basal planes. This prevents the curvature observed in delaminated single sheets and 

should substantially increase potential reinforcement effects15. 

These unique properties have led to a renewed academic interest to develop hybrid 

materials based on synthetic hectorite for industrial applications.  

1.1.3 Natural kaolinite 

Kaolinite is a 1:1 silicate, with the formula unit of Al2Si2O5(OH)4. Tactoid height 

ranges from 70 nm to 100 nm and lateral extension varies between 500 nm and 15 

µm, depending strongly on its origin. Kaolinite has several features not found in 2:1 

silicates. Single lamellae in tactoids are not held together by van-der-Waals forces 

but by strong hydrogen bonds between µ-hydroxide-groups of the octahedral layer 

and the silicon network of the tetrahedra (Figure 1.2)16, resulting in much smaller 

interlamellar distances of 7.2 Å. This makes intercalation difficult and restricts it to 

only a small range of neutral molecules with high dipolar moments like Dimethyl 

sulfoxide (DMSO)17 and N-Methylformamide (NMF)18.  
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Figure 1.2 Schematic represantation of 1:1 layered silicate (kaolinite). OS= Octahedral surface, 

TS= tetrahedral surface. Reprinted with permission from reference [
14

]. 

 

The most interesting feature in the particle architecture is the preservation of its 

polar lamellar structure throughout the tactoid, which means each particle has two 

chemically distinct surfaces, which can also be selectively targeted for modification 

to create Janus structures (see chapter 1.2.3).  

A combination of both features (no intercalation and chemically distinct external 

surfaces) leads to the interesting fact that the negative charge generated by 

isomorphous substitution of Si4+ against Al3+ in the tetrahedral layer can only be 

compensated by counterions at the tetrahedral surface (abbreviated TS), which 

means the outermost tetrahedral layer of a tactoid19, 20. Natural counter ions are 

sodium and calcium, which are easily replaced by other ions respective to their 

comparatively low CEC, which lies at ~2.6 meq/100g.  

Recent studies show that the octahedral layer can be selectively addressed by 

molecules bearing a catechol moiety21. Those groups most likely will undergo a 

condensation reaction and bind covalently to the µ-hydroxide groups of the 

octahedral surface (called OS), similar to what was observed with alcohols and 

structurally related aluminum oxide surfaces22, 23. 

 

1.2 Organic/inorganic hybrid nanoparticles 

Nanomaterials have, by definition, at least one dimension in the nanometer scale 

(<100 nm) and show novel properties strongly influenced by the large surface to 
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volume ratio. The synthesis, characterization, and applications of nanoparticles are 

among the most important sections of the wide range of nanotechnology. In recent 

years, nanoparticles have gained tremendous attention as the transition from 

microparticles to nanoparticles was seen to lead to immense changes in the physical 

and chemical properties of a material. Due to the vast increase in surface area to 

volume ratio gained from this step down in length scale, surface atoms and their 

effects now play a dominant role over bulk atoms. Especially when introduced into 

composites, the huge specific interphase area alters the properties of the matrix 

considerably. 

Research started in the 1980s with nanoparticles made from one material24-26, but it 

was quickly discovered, that adding a shell around the core particle gives rise to new 

materials only possible by combination of both properties27-29. The name 

“core/shell” particles was adopted for materials consisting of a inorganic/organic 

core of different shapes and an inorganic or organic shell. Applications are 

manifold30  and advances in surface modification techniques allow for ever new 

combinations of core properties and shell properties. A recent example for the 

multifunctionality of inorganic core/ polymeric shell hybrids are superparamagnetic 

and fluorescent CdSe(ZnS) nanoparticles coated with protective silica and bearing a 

polymeric thermo-responsive poly(N-isopropylacrylamide) shell31. 

1.2.1 Clay based hybrid nanoparticles 

Clay particles are well suited inorganic cores for the creation of hybrid particles. Even 

the symmetrical 2:1 structure of smectites already provides two chemically different 

reactive sites for attaching a shell: basal surfaces and edges. The previously 

described inherent negative layer charge of layered silicates enables facile 

modification of the basal surface and interlayer spaces with organic molecules 

bearing a positively charged group by simple cation exchange. Modification of edge 

located silanol groups with silicon halides, acid halides or silazanes leads to stronger 

covalent bonds. Both sites can be accessed to go beyond simple alkyl ammonium 

surfactant modification by attaching polymers with tailored properties via controlled 

polymerization of suitable monomers and chain length. Classically smectite-based 
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hybrid nanoparticles are implemented into polymeric materials to enhance 

toughness, flame retardancy and gas barrier properties.  

1.2.2 Patchy nanoparticles 

For mixtures of polymer species of different polarity it is energetically favourable to 

segregate and form domains of their single polymer species, respectively. If bound to 

an inflexible core, complete phase segregation becomes inherently difficult and 

formation of compartmentalized (patchy) shells can be observed.  

There has been a recent breakthrough in creation of multicompartment micelles by 

hierarchical self-assembly of ABC triblock terpolymers32 and patchy wormlike 

crystalline core micelles made from ABC triblocks with crystallisable core33. These 

groups report on the potential of patchy particles for hierarchical step-growth 

polymerization of multicompartment micelles into “micron-scaled segmented 

supracolloid polymers”32 and their use as super surfactants close to pure Janus 

colloids in surface activity, while usually being less complicated to produce. 

On the core/shell particle side there are few examples utilizing the promising 

potential of a patchy shell. Furthermore, most of the produced patchy particles are 

spherical in nature34.  

As shown by Schmelz et al. patchy particles made from triblock terpolymers with 

crystallized middle block act as giant surfactants in mixtures of immiscible fluids, 

reducing the surface tension with an effect comparable to that of Janus cylinders35. 

In this thesis we use disc-like montmorillonite 2:1 layered silicates as core to 

investigate the influence of a patchy shell on its interfacial behavior in an immiscible 

polymer blend. 

1.2.3 Janus nanoparticles 

Particles which embed exactly two distinct sides or surfaces of different chemical 

property and/or polarity into one structure are called Janus particles, named after 

the Roman god Janus with two faces and whose name is used symbolically for 

entities showing character or behavior of two incompatible sides. This non-

centrosymmetric appearance leads to a unique set of characteristics regarding 
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material properties and self-assembly behavior36. A whole spectrum of different 

Janus particle architectures is known. Janus particles can be categorized according to 

their dimensions. There are three-dimensional spherical particles, two versions of 

two-dimensional disc-like structures and two different one-dimensional cylinders. 

While their overall geometry can be simple and symmetric, the lack of chemical 

centrosymmetry proved to be the biggest challenge in their preparation. 

The pioneers in the field of Janus particles were Casagrande and Veyssié. They 

embedded half of a mesoscopic glass bead into a substrate and then silylated the 

other half. As the amount of particles producible by those syntheses was very 

limited, all their methods had the major drawback that they were not applicable on a 

larger scales37, 38. Recently the application of photopolymerization and 

photolithographic polymerization to microfluidic devices enabled an even higher 

degree of control and structural variety. The microfluidic device sends a two-phase 

stream into a channel. There it is cut into droplets by an aqueous crossflow, 

containing surfactants to stabilize the resultant particles. Then a 

photopolymerization locks the shape of the biphasic particles. Unfortunately this 

method is not able to create particles with submicron dimensions yet39. Another 

interesting approach was developed by Müller and coworkers36 , using the self-

assembly behavior of triblock terpolymers. Triblock polymers with phase-separating 

outer blocks will undergo self-assembly upon film casting and form nanometer-

scaled bulk structures, which can be locked by crosslinking the inner part (in this case 

polybutadiene). Upon dissolution of the polymer, the crosslinked part will preserve 

its bulk shape and thus will yield non-centrosymmetric particles. By defined 

engineering of the terpolymer composition the bulk structure and thus the resulting 

particle shape and size can be controlled. 

All these approaches have in common, that they start with symmetrical systems and 

break those apart into non-symmetrical particles or complicatedly synthesize non 

symmetrical building blocks to start with instead of applying intrinsically polar 

particles like kaolinite. As described in chapter 1.1.3 it is possible to address each 

side individually in solution, facilitating the creation of disc-like Janus particles based 

on a layered silicate, even in large quantities. 
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Several fields of application result from the unique structural properties of Janus 

particles. They have evoked great academic interest, as they represent a class of 

particles with extraordinary self-assembly behavior. Fundamental understanding of 

self-assembly processes is attributed with the possibility to create new 

functionalities not present in the individual building blocks by assembling them into 

hierarchical superstructures. Their enormous surface activity puts them into the 

focus of industrial applications as super-surfactants and structuring agents in 

polymer blends. Furthermore the anisotropic character of single Janus particles is 

used for optical and analytical probes in confined space 40, 41, medical sensors for cell 

targeting42 and switchable electro-optical devices39. 

. 

1.3  (Clay reinforced) nanocomposites 

The commercial breakthrough of clay reinforced nanocomposites happened in the 

early 1990´s when Toyota researchers published their work on nylon-6-clay 

thermoplastic nanocomposite technology43, 44. The key aspect was a fundamental 

improvement of properties at minimal loading. At only 4.2 wt% clay the modulus 

doubled, strength increased by 50 % and the heat distortion temperature (HDT) 

increased by 80 °C compared to neat polymer. Toyota still holds a broad range of 

patents in this technological field. Nevertheless academic and industrial interest is 

still strong and research and development of clay reinforced nanocomposites is 

growing. 

For most applications it is necessary to organophilize the clay surface to increase the 

compatibility with the matrix and enable a good dispersability. A well known 

commercial brand of organophilized MMT is the Cloisite product family by Rockwood 

Additives, which has been optimized for application in aliphatic polymer matrices. 

On their product webpage it is claimed that their clay based products can act as a 

new flame retardant approach, increase modulus and tensile strength, improve 

barrier properties, increase dimensional stability, are thermoplastic recyclable, 

improve clarity, increase HDT, reinforce and lower density45, while at a much lower 

loading (3-5 wt%) compared to conventional fillers (20-60%). However, as most of 
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these benefits are a result of large practical aspect ratios they strongly depend on 

the composite preparation and nanofiller – matrix interaction as detailed in the next 

chapter. 

1.3.1 Nanocomposites based on homopolymers 

Addition of layered silicates to polymer matrices can result in great improvements of 

not only mechanical properties. Depending on compatibility and mixing conditions, 

the clay tactoids can have different degrees of exfoliation and, thus, aspect ratio, 

stiffness and dispersion will vary. Organophilization through cation exchange with 

organic molecules increases interlayer space and decreases electrostatic interactions 

between layers and thus helps to separate the single sheets of one tactoid from 

another through shear forces. High compatibility and interaction between surface 

and matrix will keep the layers from re-aggregating and reduce probability of fatigue 

cracks at interfaces during stress46. 

With natural clays, the key component to harness all beneficial properties of a nano-

scaled well dispersed filler is surface modification. Only with synthetic hectorite, as 

described in chapter 1.1.2 it is possible to tune inherent stiffness and aspect ratio 

beyond what is possible with natural clay. By organophilization it is possible to 

achieve high degrees of exfoliation and dispersion, while at the same time 

modification with classical surfactants is known to decrease interaction between 

particle and matrix4. But for maximum energy transfer from matrix to filler strong 

interactions between both are necessary. Together with novel approaches to surface 

modification by polymer chains it should be possible to realize well dispersed, 

interacting, shear-stiff, high-aspect ratio nanofillers.  

1.3.2 Nanocomposites based on polymer blends  

Blending of polymers has become a successful way of delivering affordable materials 

with properties easily tailored to technical applications, not available by the use of 

single polymers47.  

Due to the incompatibility between polymeric phases of different polarity in a blend, 

micron sized phase separation resulting from high interfacial tension has to be 
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overcome by addition of compatibilizers like surfactants, diblock copolymers or 

triblock copolymers47. To minimize interfacial tension a compatibilizer made from 

two building blocks of different polarities similar to the ones of the polymer phases is 

advantageous48. 

Natural, unmodified clay layers are generally hydrophilic due to hydrated 

counterions and thus incompatible with hydrophobic polymers. They are not 

particularly suited as compatibilizers for polymer blends as agglomeration and phase 

separation do not improve the shape of the interface and the domain sizes. 

Concerning polymer blends of mixed polarity, with one hydrophilic and one 

hydrophobic phase, classical organoclay, such as the Cloisite® series, homogeneously 

surface-modified with alkyl chains, may show favourable interaction with one 

polymer component, yet unfavourable with the other. In that case the 

compatibilizing effect depends on the relative strength of the interaction parameter, 

, and thus on polymer composition49. In several examples from literature it avoided 

the hydrophilic one and concentrated in the hydrophobic phase showing weak 

interfacial activity50-52. Such particles will still contribute a reinforcing effect if 

dispersed well in one phase compared to an unmodified blend.  

A Janus particle where one side of the surface is tailored to be favourable for one 

component and the other side for the other component tends to stay in the 

interface, minimizing the free energy, reducing domain size and interfacial tension 

significantly36. However, modifying anisometric particles with isotropic surface to 

obtain Janus character is not trivial and has not been reported for smectites yet.  

 

1.4 Motivation and objective of this thesis 

The field of nanoparticles is of outstanding academic and industrial interest as 

nanotechnological achievements already impact the development of sensors, 

materials and even medicine. They will continue to shape technological 

advancement, and breakthroughs on the nanolevel might lead to inventions people 

thought to be impossible. However there is still a long way to go and science is still at 

the beginning of understanding all the phenomena related to matters on the 
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nanoscale. As mentioned previously, transition from microparticles to nanoparticles 

was seen to lead to immense changes in the physical and chemical properties of a 

material. Furthermore the potential of combining fascinating properties, like 

quantum luminescence, magnetism, and many more of inorganic matter with the 

tunable responsiveness and tailored compatibility with technical and biological 

environments of organic polymers, seems like an endless playground and able to 

solve current and future scientific challenges.  

The objective of this thesis was to create novel hybrid nanoparticles and apply them 

in the field of polymer nanocomposites. For that, three types of layered silicates with 

exceptional properties were used as the inorganic disc-like shaped core of the 

respective hybrid particle. Combined with the expertise on controlled polymerisation 

it was possible to create polymeric shells tailored to the task at hand.  
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2 Chapter 2:   Experimental Part and Methods 

 

2.1 Materials 

Synthetic Na-fluorohectorite (Na-hect) with an idealized chemical formula unit 

Na0.5[Mg2.5Li 0.5]Si4O10F2 was prepared via melt synthesis according to literature13. 

The clay has a CEC of 110 mequiv/100 g, as determined by applying the copper 

complex ([Cu(trien)]2+) method.53 

Natural MMT (PGV from Nanocor®) was purified in a four-step procedure including 

the removal of carbonates and magnesium, deferration and ozonization. Therefore, 

the clay mineral was stirred in a Na2H2EDTA solution (0.1 M) at 55 °C for two hours 

and the precipitate centrifuged three times at 3500 rpm for 10 min to remove the 

EDTA complex. Magnesium was removed at pH 8 using the same procedure. Ferrous 

impurities (amorphous binders) were extracted by adding Na2S2O4 to a solution of 

Na-citrate (0.3 M) and NaHCO3 (1 M) and stirring for 1 hour at 80 °C. Flocculation of 

the mineral platelets was promoted by adding NaCl. The precipitate was washed 

with water and centrifuged at 2000 rpm several times. Finally, organic compounds 

were removed by fluxing the MMT solution with ozone for 6 h. 

Kaolinite (Amazone 88/90) from Brazil was provided by Vale International S.A. (Saint-

Prex, Switzerland). The mineral was size fractioned by a hydrocyclone but no 

dispersing agent and no sedimentation agent were added. The kaolinite was further 

purified by removal of calcium- and magnesium-carbonates with 

ethylenediaminetetraacetic acid (EDTA), followed by deferration via the dithionite-

citrate-bicarbonate (DCB)-method. Moreover ozonisation was applied for 2 hours to 

remove organic impurities. The particle size of the material was fractionated to < 2 

µm by the Atterberg procedure to remove traces of agglomerates. This material was 

used in characterization experiments. Size fractionated kaolinite < 500 nm was used 

in blending experiments. Purity of the kaolinite was confirmed applying powder X-

ray dif-fraction (PXRD), solid-state nuclear magnetic resonance (NMR) spectroscopy, 

infrared (IR) spectroscopy, and energy dispersive X-ray spectroscopy (EDX).  
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2-Cyano-2-propyl benzodithioate (CPBT) (97%, Aldrich), 2-bromoisobutyryl bromide 

(98%, Alfa-Aesar), triethylamine (min. 99%, Aldrich), 2-hydroxyethyl methacrylate 

(HEMA) (97% Aldrich) and N,N,N',N',N"-pentamethyldiethylenetriamine (PMDETA) 

(97%, Aldrich) were used as received without further purification. Ethyl 2-

bromoisobutyrate (EBiB) (99%, Aldrich) was used as sacrificial free radical initiator. 

Azobisisobutyronitrile (AIBN) (98%, Aldrich) was used after recrystallization twice 

from methanol. Solvents such as Tetrahydrofuran (THF) (p.a.), Dimethylsulfoxid 

(DMSO) (p.a.), Dimethylacetamide (DMAc) and anisole (p.a.) were purchased from 

Aldrich and used as received unless stated otherwise. Dichlormethane (p.a. Aldrich) 

was stored over molecular sieves (4 Å) to remove water traces. 2-

Dimethyl(amino)ethyl methacrylate (DMAEMA) (98% Aldrich), styrene (99% Aldrich) 

and methyl methacrylate (MMA) (99% Aldrich) were passed over a basic alumina 

column to remove stabilizer prior to polymerisation. 2-(2-Bromoisobutyryloxy)ethyl 

methacrylate (BIEM) was synthesized according to literature54. Copper bromide (98% 

Fluka) was purified according to the method described by Keller55. MgCl2 and KCl 

used for cation exchange were purchased from Grüssing GmbH Analytika, Germany. 

Poly(methyl methacrylate), PMMA, (Mw = 120,000 g/mol) and polystyrene, PS, (Mw = 

192,000 g/mol) were purchased from Sigma Aldrich and used without any further 

treatment. THF was dried by distillation over Na, and dichloromethane (DCM) was 

dried by distillation over CaH2 under an argon atmosphere.  

 

2.2 Instrumentation 

2.2.1 Nuclear magnetic resonance spectroscopy (NMR) 

Liquid 1H-NMR spectra were recorded under ambient conditions on a Bruker Avance 

300 spectrometer. Chemical shifts (δ) are given in parts per million downfield from 

tetramethylsilane (TMS) as internal standard. The 13C solid-state NMR measurements 

were performed on a Bruker Avance 2 spectrometer operating at 7.05 T with a 

resonance frequency ν0 of 75.468 MHz under magic angle spinning condition (νrot = 

10 kHz) via cross polarization. The 13C spectra were referenced relative to TMS. 
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2.2.2 Size exclusion chromatographie (SEC) 

The molecular weights and molecular weight distribution of the polymers were 

measured by SEC. Column set: 5 μm SDV gel, 102, 103, 104, and 105 Å, 30 cm each 

(PSS, Mainz). Used detectors are refractive index (RI) and ultraviolet (UV) operated at 

254 nm. Polystyrene standards (PSS, Mainz) with narrow molecular weight 

distribution were used for calibration of the column set, and tetrahydrofuran (THF) 

and Dimethylacetamide (DMAc) were used as eluents at a flow rate of 1 ml/min. 

2.2.3 Transmission electron microscopy (TEM) 

The polymer/hybrid thin films were cut with a Leica EM UC7 microtome and TEM 

images were recorded with a Zeiss EM 922 Omega microscope at 200 kV. 

2.2.4 Scanning electron microscope (SEM) 

The scanning electron microscope (SEM) images were recorded with a field-emission 

LEO Gemini microscope 1530 (Zeiss) with an acceleration of 2 kV equipped with a 

field emission cathode. The films were mounted on a sample holder and sputtered 

with platinum. 

2.2.5 Thermogravimetric analysis (TGA) 

TGA was carried out using a Mettler Toledo TGA/SDTA 85 at a heating rate of 5 

K/min between 30 and 700 °C under air-flow of 60 ml/min. The typical sample 

weight was between 8 and 15 mg. 

2.2.6 Dynamic light scattering 

DLS experiments were carried out to determine the hydrodynamic radii of the 

polymers. For that purpose an ALV DLS/SLS-SP 5022F compact goniometer system 

with an ALV 5000/E correlator and a He-Ne Laser (λ = 632.8 nm) at 25°C was used. 

Before the experiment, the solution (concentration of 1 g/l) was filtered through a 

Millipore syringe filter with pore size of 0.45 μm. Resulting intensity autocorrelation 

functions were processed by CONTIN-analyses and the apparent hydrodynamic radii 

were calculated using the Stokes-Einstein-relation. 
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2.2.7 Stability measurements (LUMiFuge®) 

The stability measurements were performed in a LUMiFuge® 114 (LUM) with a 

variable rotation frequency of 300, 600, 900 rpm (rounds per minute) and different 

time intervals of 200 s, 300 s, and 900 s, respectively. Kaolinite suspensions (0.25 

wt%) in THF and water were placed in tubes in horizontal positions on the disc of the 

LUMiFuge®. During the horizontal rotation of this disc the transparencies of the 

suspensions were measured in the area between the menisci and the sediment. The 

mean transparency of the whole area was determined. The transparency was 

measured in time intervals of 10 s while increasing rotation speed stepwise. High 

turbidity, even after applying centrifugal forces indicates a stable suspension. 

2.2.8 Charge titration stability analysis (Stabisizer®) 

Determination of point of zero charge of the clay platelets was done using a 

Stabisizer® (Particle Metrix GmbH). Therefore the microionic clouds of localized 

particles are displaced by flow induced via a piston. The generated potential is 

measured and used for monitoring titration with mono- and polycationic species. 

After complete replacement of displaceable sodium ions by immobile cations the 

point of zero charge is reached. Four separate solutions containing the polycationic 

MI solution (1 g/l) in deionized water (DI) were prepared with different pH values 

using acetic acid (100 %) in order to protonize the amine functions. The point of zero 

charge for the clay basal surface was measured using a charge titration stability 

analyzer. 

2.2.9 Dynamic-mechanical analysis (DMA) and tensile tests 

Dynamic-mechanical analysis (DMA) experiments are carried out in the tension 

mode at a constant force of 5 N and a temperature range from 30 to 140 °C using a 

Mettler Toledo DMA/STDA 861e. The heating rate is 5 °C/min and the test specimens 

is approximately 25 mm in length, 6 mm in width and 1 mm in thickness.  

Tensile modulus, tensile strength and elongation at break were measured using a 

Universal Tensile Tester according to ISO 527 applying a strain rate of 1 mm/min. For 
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each material at least 8 samples were tested. The elongation at break was 

determined by a macro-displacement-transducer. 

2.2.10 Powder X-ray diffraction (PXRD) 

The powder X-ray diffraction (PXRD) patterns were recorded in reflection mode using 

nickel filtered Cu-Kα radiation λ =1.54187 Å on a Bragg-Brentano-geometry 

diffractometer (PANalytical Xpert-Pro) equipped with an X′Celerator Scientific RTMS 

detector. 

2.2.11 Fourier-transform infrared spectroscopy (FT-IR) 

The particles powders of untreated and treated clay were characterized with a 

Nicolet FTIR 460 (Thermo Nicolet Corp.). The transmittance absorption spectra were 

scanned 64 times at 4 cm-1 spectral resolution at room temperature. 

2.2.12 Specific surface area measurements 

The specific surface area of a freeze-dried K-hect sample was calculated from the N2 

adsorption/desorption isotherms using the Brunauer-Emmett-Teller (BET) equation. 

Measurements were carried out on a Quantachrome Nova 2000e analyzer. 

 

2.3 Tailoring of stacks height and stiffness of fluorohectorite 

The aqueous dispersion of synthetic Na-hect was transferred to a highly hydrated 

‘shear-labile’ state by exchanging the interlayer Na+ with Mg2+ cations (Mg-hect). The 

aqueous dispersion of Mg-hect was processed in a stirred media mill (LabStar LS1) 

for 60 minutes in order to exfoliate the tactoid stacks by applying shear forces. The 

degree of exfoliation was controlled by the number of milling passages14. 

Subsequently, the clay was transferred into a collapsed and non-swollen ‘shear-stiff’ 

mica-like material (K-hect) with no intracrystalline reactivity by exchanging Mg2+ with 

K+ cations56. All exchanging procedures were followed by washing several times with 

water to remove chlorine ions. 
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2.4 Synthesis of the copolymers for surface modification 

2.4.1 Synthesis of the catechol-modified PMMA copolymer (PCM) 

3,4-Dibenzoxybenzoic acid 1 and 3-hydroxypropylbenzoate 2 were prepared 

following literature procedures (scheme 5.1).57  

 

3-Methacryloyloxypropyl-3,4-dibenzoxybenzoate 3 

Compound 2 (2.11 g, 5.38 mmol) was dissolved in dry DCM (20 ml) and cooled in an 

ice bath. Et3N (1.12 ml, 8.07 mmol) and methacryloyl chloride (626 µl, 6.47 mmol) 

were added and the reaction mixture was stirred at room temperature for 3 h. After 

washing with water the aqueous phase was extracted with DCM and the combined 

organic phases were dried over Na2SO4, filtered and concentrated in vacuum. The 

residue was purified by column chromatography (silica gel 60, ethyl acetate/n-

hexane 1:2, v/v). Yield: 1.64 g (3.57 mmol, 67%); colorless oil; Rf = 0.63 (ethyl 

acetate/n-hexane 1:2); νmax (ATR)/cm-1: 3032, 2963, 1711, 1636, 1599, 1510, 1454, 

1427, 1380, 1321, 1266, 1204, 1163, 1130, 1104, 1038, 1006, 944, 815, 761, 734, 

695; 1H NMR (300 MHz, CDCl3):  1.92 (3 H, s), 2.0-2.2 (2 H, m), 4.28 (2 H, t, 3J 6.3 Hz), 

4.36 (2 H, t, 3J 6.3 Hz), 5.18 (2 H, s), 5.21 (2 H, s), 5.5-5.6 (1 H, m), 6.0-6.1 (1 H, m), 

6.91 (1 H, d, 3J 9.0 Hz), 7.3-7.5 (10 H, m), 7.6-7.7 (2 H, m); 13C NMR (75.5 MHz, CDCl3): 

 18.3, 28.2, 61.3, 61.4, 70.8, 71.2, 113.2, 115.6, 123.0, 124.0, 125.6, 127.1, 127.4, 

127.9, 128.0, 128.5, 128.6, 128.9, 136.2, 136.5, 136.8, 148.3, 153.0, 166.1, 167.3; 

m/z (%) 461 (13) [M+], 460 (47) [M+], 369 (6), 317 (8), 225 (17), 181 (27), 127 (12), 91 

(100).  

 

Copolymer PCBM 4 

Methyl methacrylate (650 mg, 6.52 mmol), compound 3 (100 mg, 0.22 mmol) and 

dodecanethiol (26 mg, 0.13 mmol) were dissolved in dry THF (3 ml) under argon 

atmosphere and AIBN (10 mg) was added to the reaction mixture, which was stirred 

under reflux for 5 h. The solution was poured into cyclohexane (100 ml) and the 

appearing colorless precipitate was collected and precipitated once more from an 

acetone/cyclohexane mixture. Yield: 710 mg; colorless solid; νmax (ATR)/cm-1: 2996, 
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2952, 1722, 1601, 1484, 1448, 1432, 1385, 1363, 1268, 1241, 1189, 1144, 989, 965, 

911, 842, 761, 748, 698; 1H NMR (300 MHz, acetone-d6):  0.8-1.0 (33 H, m), 1.8-2.0 

(24 H, m), 3.61 (30 H, s), 4.1-4.2 (2 H, m), 4.3-4.4 (2 H, m), 5.2-5.3 (4 H, m), 7.1-7.7 

(13 H, m). 

 

Copolymer PCM 5  

Compound 4 (580 mg) was dissolved in dioxane/methanol (40 ml, 1:1), flushed with 

argon and 10% Pd/C (80 mg) was added. The argon atmosphere was replaced by 

hydrogen gas and the reaction mixture was stirred at room temperature for 5 h. The 

suspension was filtered over celite and the filtrate was concentrated in vacuum. The 

oily residue was triturated with n-hexane and dried in vacuum. Yield: 500 mg; off-

white solid; νmax (ATR)/cm-1: 3392, 2996, 2950, 1725, 1605, 1480, 1444, 1386, 1270, 

1239, 1191, 1146, 1121, 988, 965, 889, 873, 842, 765, 750; 1H NMR (300 MHz, 

DMSO-d6):  0.5-0.9 (33 H, m), 1.6-2.0 (24 H, m), 3.55 (30 H, s), 4.0-4.1 (2 H, m), 4.2-

4.3 (2 H, m), 6.81 (1 H, d, 3J 7.9 Hz), 7.2-7.4 (2 H, m), 9.32 (1 H, s), 9.81 (1 H, s); 13C 

NMR (75.5 MHz, DMSO-d6):  16.1, 18.4, 27.5, 43.9, 51.6, 53.7, 60.8, 115.2, 116.3, 

120.5, 121.8, 145.0, 150.4, 165.5, 176.2, 176.9, 177.3. 

2.4.2 Synthesis of poly(2-(2-bromoisobutyryloxy)ethyl methacrylate)-stat-

(2-dimethyl(amino)ethyl methacrylate) (MI) via Reversible Addition-

Fragmentation Chain Transfer (RAFT) polymerization 

To a 100 ml round bottom flask, equipped with rubber septum, 1.7 g (6.1 mmol) of 

BIEM, 6.7 g (42.8 mmol) of DMAEMA, 270 mg (1.2 mmol) of 2-cyano-2-propyl 

benzodithioate (CPBT), 100 mg (0.6 mmol) of AIBN, 40 ml of DMSO as solvent and 2 

ml of anisole as internal standard were added. After three freeze-pump-thaw cycles 

the reaction was placed into an oil bath at 70 °C for 4 h to reach a conversion of 54% 

as determined by 1H NMR spectroscopy. The resulting polymer solution was cooled 

down, exposed to air and dialysed against dioxane until no monomer related peaks 

at 5.8-6.4 ppm were detected by NMR spectroscopy. Mn = 9000 g/mol and Mw = 

16000 g/mol was determined via SEC with DMAc as eluent and a DMAEMA 

calibration. The final polymer is from here on referred to as maco-initiator (MI). 1H 
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NMR (300 MHz, CDCl3, δ in ppm): 4.4 – 4.1 (R-C(-CH3)-COO-CH2-CH2-OOC-C(CH3)2-Br), 

4.0 (R-C(-CH3)-COO-CH2-CH2-N-(CH3)2), 2.6 (R-C(-CH3)-COO-CH2-CH2-N-(CH3)2), 2.2 (R-

C(-CH3)-COO-CH2-CH2-N-(CH3)2), 1.9 (R-C(-CH3)-COO-CH2-CH2-OOC-C(CH3)2-Br), 1.8 (R-

C(-CH3)-COO-CH2-CH2-N-(CH3)2). 

2.4.3 Synthesis of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) 

based diblocks via RAFT 

All polymerizations were carried out at 80°C in septum sealed flasks. Detailed 

amounts of reactants are listed in Table 1. In each case DMAEMA precursors were 

prepared by placing 1,4-dioxane, DMAEMA, AIBN, the chain transfer agent (CTA), 2-

cyano-2-propyl benzodithioate, and 1,3,5-trioxane in the reaction flask. Nitrogen 

flow was established for 20 min at room temperature and then the polymerization 

was initiated by heating the flask in an oil-bath. The precursor solution was 

transferred to a degassed and heated solution of 1,4-dioxane, second monomer and 

1,3,5-trioxane after 4h at a typical conversion of DMAEMA of above 90 %. The 

reaction was terminated by cooling in an ice bath and exposure to atmospheric 

oxygen. The polymers were purified by precipitation into a non-solvent (isopropanol 

for PS containing diblocks and cyclohexane for PMMA containing diblocks) and 

freeze-dried from 1,4-dioxane. Final polymers are abbreviated D17-b-M300 in the case 

of poly(2-(dimethylamino)ethyl methacrylate)17-block-poly(methyl methacrylate)300 

and D17-b-S360 in the case of poly(2-(dimethylamino)ethyl methacrylate)17-block-

polystyrene300. 

Table 1  Applied amounts of chemicals in the preparation of the PDMAEMA-macro-CTA and 

the diblock-copolymers in 1,4-dioxane . 

Formula a DMAEMA / 
mg, mmol 

CTA / mg, 
mmol 

AIBN / mg, 
mmol 

Monomer / g, 
mmol 

Solvent/ 
ml 

D17-b-M300 380; 2.5 54; 0.25 15; 0.09 12.0; 120 30 

D16-b-S360 1083; 6.9 149; 0.67 38; 0.24 35.2; 338 30 

D16-b-S115 1402; 9.1 100; 0.45 26; 0.18 18.8; 181 30 
a
 repeating units of DMAEMA calculated by subtracting the molecular weight of CPBDT (221.00 g/mol) 

and dividing by the molecular weight of DMAEMA (157.21 g/mol), repeating units of the second block 
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were calculated by subtracting the molecular weight of DMAEMA block, acronyms: D: DMAEMA, , S: 

styrene, M: MMA 

 

 

Figure 3.1 a) Synthesis of the statistical copolymer (PDB) and characterization via b) 
1
H-NMR 

spectrum and c) SEC trace with DMAc as an eluent. 

 

2.5 Clay surface modification 

2.5.1 Surface modification of K-fluorohectorite and surface-initiated Atom 

Transfer Radical Polymerization (si-ATRP) of methyl methacrylate 

(MMA) 

The external surface of K-hect (10 g) was modified with the MI (320 mg) in DI water 

at pH=6.8. Subsequently, the flocculated hydrophobic nanoplatelets (O-hect) were 

centrifuged and redispersed in THF. The grafting of MMA was initiated from O-hect 

via a copper mediated ATRP in the presence of EBiB as a free sacrificial initiator. All 

experiments were performed under inert atmosphere in a conventional run 

procedure58, 59; A dispersion of the O-hect (10 g; calculated 390 µmol of initiating 

4 3 2 1 0

chemical shift [ppm]

20 22 24 26 28 30 32 34

elution volume [ml]

b) c) 

a) 
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sites) in 400 ml THF, MMA (164.5 g; 1.462 mol) and EBiB (19 mg; 97.5 µmol) were 

added to a flask and sealed with a rubber septum. The reaction mixture was 

degassed three times by freeze-pump-thaw cycles and filled with argon. In a 

separate flask a stock solution of PMDETA, Cu(I)Cl and Cu(II)Cl2 (338 mg; 975 µmol, 

115.8 mg; 1.17 mmol and 39.2 mg; 292.5 µmol) in 20 ml anisole was degassed for 30 

min under argon. Finally, 10ml of the stock solution was introduced to the reaction 

flask by a syringe. The reaction flask was immersed in an oil bath at 80 °C. Samples 

were withdrawn at various times to monitor the reaction kinetics and it was stopped 

after 300 min by cooling and exposing to air. The final hybrids of K-hect with a 

polymeric shell of PMMA chains with an average DP of 380 (hybrid-hect (DP 380)) 

were centrifuged and washed several times with THF. 

As a reference a nanofiller with a commercial surfactant, dodecylamine, was used 

after protonation using one equivalent of HCl (0.1 mol). Standard procedures were 

used to exchange the K+ cations with the organic cation (C12 ammonium chloride)60. 

After ion exchange, the modified nanoplatelets (C12-hect) were centrifuged and 

washed several times with DI water, ethanol, and THF.  

2.5.2 Surface modification of montmorillonite (MMT) 

The diblock copolymer solutions of D17-b-M300 and D17-b-S360 for surface modification 

of MMT were prepared in two different ways:  

1. Solutions with pre-formed micelles of D17-b-M300 and D17-b-S360 were prepared by 

dissolving the polymer in THF and adding water (pH=6.5) dropwise until turbidity 

occurred.  

2. Molecularly dispersed solutions were prepared by adding the freeze dried polymer 

into THF and stirring until no solids were visible anymore and the transparent 

solution had a slightly pink colour. 

The polymer solutions (30 mg, 1 mg/mL) were added to a dispersion of MMT in 

water (100 mg, 5 mg/mL, pH=6.5) using a cannula and stirred over night. Final 

MMT/PS/PMMA hybrid particles (hybrid-MMT) were purified by removing non-

anchored polymer via centrifugation at 4000 rpm, decantation of the supernatant 

and redispersion in water (1x) and THF (3x) using ultrasonication. 
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2.5.3 Surface modification of kaolinite 

It is possible to modify each side, the tetrahedral surface and the octahedral surface 

(TS and OS), of the kaolinite specifically and individually without influencing the 

other side as shown in a previous publication21. The order of modification chosen, 

starting with D16-b-S115 has a purely practical purpose, as the DMAEMA block of the 

D16-b-S115 is charged at pH 6 and thus kaolinite can be modified in aqueous 

suspension where it is dispersed best. After cation exchange the unilaterally 

modified kaolinite can be dispersed in THF more easily than unmodified kaolinite, as 

seen in Fig. 5.4 (stability measurements). PCM is soluble in THF, but not in water. 

Nevertheless pristine kaolinite can be modified by PCM as first step as well, but for 

that kaolinite has to be dispersed in THF by vigorous stirring first. 

 

Modification of TS 

100 mg D16-b-S115 were dissolved in 30 ml THF. 400 mg of the kaolinite was 

suspended in 30 ml of water (pH~ 5.5, degree of protonation of the DMAEMA block 

~80 %61). After 20 min of stirring a complete flocculation of the kaolinite was 

achieved and the suspension was washed ten times with THF to remove the excess 

of D16-b-S115. The hybrid was dispersed and stored in THF to prevent drying. 

 

Modification of OS 

100 mg of PCM was dissolved in 20 ml dry THF under argon atmosphere in a Schlenk 

flask. 400 mg kaolinite (pristine or already unilaterally modified hybrid) was 

dispersed in the PCM THF solution by vigorous stirring over night at 60 °C. After the 

reaction the kaolinite was washed ten times with THF to remove the excess of PCM 

and then dispersed in THF to give hybrid-kaolinite. 
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2.6 Preparation of clay/polymer nanocomposites 

2.6.1 Embedding of K-fluorohectorite/PMMA hybrid particles (hybrid-hect) 

into a PMMA Matrix for tensile testing 

Two different K-fluorohectorite/PMMA hybrid nanoparticles were evaluated as 

nanofillers in a PMMA matrix: hybrid-hect (DP 380) and C12-hect were mixed with a 

solution of PMMA in THF (5 wt. -% clay loading), respectively. To ensure good 

distribution of the clay in the polymer matrix both dispersions were placed in an 

overhead shaker overnight. Both dispersions were film casted and dried in a vacuum 

oven first at 90 °C for 14 h followed by drying at 140 °C for another 18 h. Neat PMMA 

was treated in a similar way before melt compounding. The dried nanocomposite 

materials were melt-compounded in a discontinuous counter-rotating twin-screw 

microcompounder (DSM Xplore, 15 ml microcompounder) at a temperature of 190 

°C, a mixing speed of 210 rpm and a mixing time of 3 min. The material was added 

stepwise to the running microcompounder and during each cycle a batch of 7.5 g 

was processed. After extrusion, the melt was injection-moulded with a microinjector 

(DSM Xplore 12 ml injection moulding machine; melt temperature: 190 °C; mould 

temperature: 40 °C; injection pressure: 8 bar) into dumbbell specimens (75 mm × 5 

mm × 2 mm) for tensile testing. 

2.6.2 Preparation of hybrid-clay/polystyrene (PS)/PMMA nanocomposite 

samples for TEM analysis 

PS and PMMA in the ratio of 1:2 were dissolved in THF. The polymer content of the 

solutions was 10 wt%. 50 mg of hybrid-clay (hybrid-MMT or hybrid-kaolinite) was 

suspended in 10 ml of the PS/PMMA solutions by 15 minutes of strong shearing 

(Heidolph Silent Crusher, 16.000 rpm) at 30 °C, resulting in 5 wt% hybrid-clay in the 

final, dry blend.  

A film was cast by letting the solvent evaporate slowly from the mixture in a glass 

vial. The resulting dry film was cut with an ultramicrotome and examined via TEM. 
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2.6.3 Preparation of hybrid-MMT/PS/PMMA nanocomposite samples for 

DMA 

The PS/PMMA matrix containing the hybrids is cast into glass petri dishes and dried 

in a vacuum oven. The polymer is crushed and melt pressed into DMA mould 

samples using hot plates from P/O/Weber co. (Germany). The samples are melted at 

200 °C without pressure for about 6 minutes, removing last traces of THF, then heat 

pressed for 5 minutes using 70-75 kN and finally cold pressed for 3 minutes using 30-

40 kN. 
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3 Chapter 3:  Hybrid mica-like particles based on high 

aspect ratio fluorohectorite  

This chapter is the result of an intensive cooperation with Mazen Ziadeh and major 

parts of this chapter are to be submitted to the Journal of Materials Chemistry under 

the title: “Tailored Mica-Like Clay / Poly(Methyl Methacrylate) Hybrid Nanofiller 

Based on High Aspect Ratio Fluorohectorite” by Mazen Ziadeh and Stephan Weiß, 

Bianca Fischer, Axel H. E. Müller, Volker Altstädt and Josef Breu. 

3.1 Preparation of tailored mica-like K-fluorohectorite/PMMA hybrid 

particles 

In contrast to the aforementioned common pathways towards hybrid nanofiller 

based on (partially) delaminated, surface grafted natural clays, we present a novel 

strategy yielding ‘shear-stiff’ nanofiller covered with polymer chains of the desired 

molecular weight preventing any intercalation into the interlayer during the grafting 

process and thus preserving the aspect ratio.  

3.1.1 Tailoring of a high aspect ratio mica-like nanofiller 

To harness the advantages of large platelets with homogeneity in surface charge and 

far less impurities than natural clay13 a Na-hectorite (Na-hect) was prepared via melt 

synthesis. The resulting synthetic clay platelets featured large lateral extension and a 

homogenous charge distribution. The novel Na-hect is an optimal material because it 

allows for a controlled alternation between highly hydrated, ‘shear-labile’ state and 

a non-hydrated, ’shear-stiff’, mica-like state by simple cation exchange. This 

transition between hydration states cannot be observed for natural MMT due to 

heterogeneity of charge density and lower layer charge. Cation exchange towards 

Mg-hect gives a highly hydrated and therefore ‘shear-labile’ state, enabling the 

exfoliation by applying shear forces in a stirred media mill14. A subsequent cation 

exchange with K+ ions yielded a collapsed non-swollen, ‘shear-stiff’, mica-like 

material as depicted in Fig. 3.2a. We were able to obtain a rough estimation of the 

average aspect ratio using a previously introduced method which correlates the 
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tactoid thickness as determined by the Scherrer equation with the value of the total 

specific surface area56. The high aspect ratio of the nanoplatelets increased the 

fraction of surface/interface significantly. Thus, by having a median particle size 

distribution, X50, of 6.4 µm as determined by static light scattering and a large 

external specific surface area of 68 m2/g obtained via N2-adsorption measurement 

using the BET equation, we can estimate an average aspect ratio of 550. 

3.1.2 Selective surface modification of the mica-like nanofiller 

The main concern of this study is to produce high aspect ratio mica-like hybrid 

nanofiller which do not undergo exfoliation during the subsequent polymer grafting 

from the clay surface. As mentioned before a good interfacial management between 

filler and matrix is necessary to increase the potential of clay as a reinforcing phase 

in polymeric nanocomposites. In general, commercially available surfactants provide 

good adhesion to the clay surface, but cannot generate optimal interaction with a 

broad range of matrices, due to their limited chemical structure. Polymer chains 

attached to the clay’s surface can provide better interfacial interaction, as they can 

be tailored to the chemical structure of the matrix polymer by using a similar 

composition of monomer units. Monocationic initiators are suboptimal for grafting 

polymer chains from layered silicates, as on the one hand they are able to intercalate 

between the layer stacks, widen them and make them prone to exfoliation. On the 

other hand, polymer chains having only one single positive charge have a chance to 

detach from the clay surface under stress62, 63. To optimize the compatibility 

between nanofiller and matrix a tailor-made polycationic macroinitiator (MI), 

inspired by the one used by Armes to modify ultrafine inorganic oxide sols64, was 

developed. It showed strong adhesion to the surface of the clay due to multiple 

anchoring groups and is capable to increase the compatibility between nanofiller and 

matrix since it is bearing multiple initiator groups for a subsequent si-ATRP. The MI 

used in this study consists of a statistical copolymer of 2-(dimethyl ethylamino)ethyl 

methacrylate (DMAEMA) and 2-(2-Bromoisobutyryloxy)ethyl methacrylate (BIEM). 

The ratio was determined via 1H-NMR analysis to be 2:1 on average, and the average 

chain length according to SEC was 30, yielding around ten potential ATRP initiator 

functions per MI (Fig. 3.1). Furthermore, by tuning pH one can control the charge 
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density of the amine groups for optimal adhesion and stability of the MI on clay 

surface while uncharged amine groups act as neutral spacer (Fig. 3.2 b). In addition, 

by adjusting the ratio of BIEM to DMAEMA, it is possible to control the grafting 

density of the resulting polymeric chains. 

 

Figure 3.2 (a) A structural scheme of tailoring ‘shear-stiff’, mica-like platelets with high aspect 

ratio after exfoliation and exchanging the interlayer cations. (b) Selective 

modification restricted to external basal planes using MI. 

 

The amount of MI anchored to the external basal surface can be determined by 

measuring the point of zero charge using a Stabisizer®. To attain different 

protonation degrees of the amine function of PDMAEMA the pH of the solution was 

adjusted using acetic acid. The pH dependent titration curves of different aqueous 

solutions with the same amount of K-hect are shown in Fig. 3.3.  

It is clear that adjusting the pH of the solution influences the anchoring density of 

the MI. With lower pH the degree of protonation increases61 and therefore less 

polymer is required to cover the surface and reach the point of zero charge. There is 

a strong relationship between higher packing density of MI on the external basal 

surface and the concentration of the initiated grafted PMMA from the stiff surface65. 

The modification of K-hect with MI leads to the organophilization of the clay altering 

its state from hydrophilic to hydrophobic, leading to flocculation of the platelets in 

aqueous solution. It is noteworthy to mention that the quality of the dispersion in 

THF after organophilization is significantly enhanced at higher pH which means more 

MI being anchored onto the surface. Prior to all polymerizations, modification of K-

hect took place at pH=6.8 in order to maximize the amount of initiating groups and 
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the quality of dispersion in THF.  K-hect modified at this pH will be referred to as O-

hect hereafter. 

 

Figure 3.3 Volume of MI (1g/l) needed to achieve point of 0 charge using pH dependent 

solutions (■) pH: 7.8, (●) pH: 6.8, (▲) pH: 5.7 and (▼) pH: 5.1. 

 

The modified mica-like surface was analysed qualitatively by FT-IR and solid state 

NMR. Fig. 3.4 illustrates the FT-IR spectra of K-hect and that of O-hect. The K-hect 

spectrum exhibits peaks for Si-O out-of-plane bending at 708 cm-1 and also Si-O 

stretching band at 970 cm-1. Furthermore, H-O-H bending at 1637 cm-1 and a wide 

vibration of O-H stretching band in the range 3600-3100 cm-1 is observed66. After 

modification with MI distinguished peaks that can be assigned to the C=O and C-O 

vibrations at 1735 and 1216 cm-1, respectively, can be found. 
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Figure 3.4 FT-IR spectra of (a) K-hect and (b) O-hect. 

 

A solid state 13C NMR spectrum (Fig. 3.5) of O-hect was obtained with clear signals 

shown at 174 ppm and 45 ppm which is assigned to the carbonyl groups (carbon 

atoms of C=O) and N(CH3)2 group of DMAEMA, respectively. Furthermore, the signal 

at 24 ppm is assigned to the (CH3)2 group of the bromine ester and the CH3 group of 

the polymer backbone. The broad signal at 56 ppm corresponds to CH2 in the 

polymer backbone while the signals at 63-69 ppm are assigned to (CH2CH2) in 

DMAEMA and BIEM, confirming the presence of MI on the mica-like surface. 
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Figure 3.5 
13

C solid state NMR spectrum of O-hect. 

 

These qualitative analyses confirmed the presence of MI on the surface of the clay 

while surface potential measurements combined with TGA provide quantitative 

analyses of the organic content of the modified platelets. Therefore, we can 

determine the amount of surface-attached MI at pH=6.8 to be 3.1 wt%. Based on a 

surface area of 68 m²/g of K-hect we can calculate a grafting density of 0.3 ATRP 

initiator functions per nm² using the following formula: 

 

Where; 𝜌 is the grafting density (initiator per nm2), MI is the molar amount of the 

initiating species per g of O-hect, NA is the Avogadro constant and SA is the surface 

area in m2/g. 

3.1.3 Surface-initiated ATRP of MMA 

In addition to the surface bound MI, EBiB was used as a sacrificial initiator due to its 

structural similarity to the incorporated BIEM in the MI. It has already been shown 

that surface initiated polymers and polymers grown in solution have comparable 

molecular weights and polydispersity indices67, 68. The use of sacrificial initiator is a 

facile strategy to determine the chain length of polymers that were grafted from the 
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clay surface. The ATRP technique allows for preparation of polymers with narrow 

molecular weight distributions and precise control over the architecture. Table 3.1 

gives the number and weight average molecular weights Mn and Mw, respectively, of 

the free PMMA grown in solution determined by SEC as a function of reaction time. 

The differences between theoretical and experimental values can be attributed to an 

initiation efficiency of less than 100%. 

Table 3.1 Molecular weights of the free PMMA chains as a function of polymerization time in 

THF [MMA] : [PMDETA] : [EBiB/MI] : [Cu(I)Cl] : [Cu(II)Cl2] (3000 : 2 : 0.2/0.8 : 1.2 : 0.3) 

Reaction time (min) Conv.
a 

(%) DP
 a

 
Mn

 a
 

(kg/mol) 
 DP

 b
 Mn 

b
 (kg/mol) Mw

 b
 (kg/mol) PDI

 b
   

10 1 36 3.5  84 8.4 10.0 1.2   

20 2 72 7.2  100 10.0 13.0 1.3   

30 4 120 12.0  150 15.0 17.0 1.1   

60 5 143 14.3  190 19.0 23.0 1.2   

120 7 203 20.3  310 31.0 36.0 1.2   

300 9 263 26.3  380 38.0 50.0 1.3   

a
 determined by 

1
H NMR spectroscopy. 

b
 determined by SEC with THF as eluent and PMMA standard 

calibration. 

 

The reaction shows a controlled character with a very good polydispersity index. Fig. 

3.6 (left) shows first-order kinetic of ln[M0]/[M] as a function of time, whereas, 

polymerization rate slowed down after 120 min. This indicates that the number of 

the initiating species remained approximately constant up to 120 min reaction time 

and then started to decrease. Furthermore, by plotting the molecular weight versus 

conversion as in Fig. 3.6 (right), a linear increase ascertained the controlled 

behaviour of the reaction. Based on a surface area of 68 m²/g of K-hect we can 

calculate a grafting density of 0.08 chains per nm² using the following formula: 
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Where 𝜌 is the grafting density (chains per nm2), MP is the molar amount of PMMA 

chains with a DP of 380, NA is the Avogadro constant and SA is the surface area in 

m2/g. 

 

Figure 3.6 (▲) First-order kinetic plot for the polymerization of PMMA. (■) Evolution of the 

molecular weight with conversion of PMMA. 

 

For a qualitative analysis of the grafted polymer hybrid, FT-IR spectra of neat PMMA 

and hybrid nanofiller with grafted PMMA chains are compared in Fig. 3.7. 

Characteristic CH vibrations (2800-3000 cm-1), C=O vibration (1727 cm-1) and C-O 

vibration (1263 cm-1) confirm the presence of PMMA on the surface even after 

extensive washing with THF.  
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Figure 3.7 FT-IR spectra of neat PMMA (black), surface modified O-hect (red) and hybrid 

nanofiller (blue). 

 

The amount of surface grafted PMMA was examined by TGA (Fig. 3.8). As expected, 

nanocomposites with longer polymer chains showed a higher weight loss of organic 

material. O-hect was found to have 3.1 % loss of volatile materials after heating up 

to 400 °C (the weight loss prior to 100 °C is neglected due to the traces of solvent). 

The grafted hybrids showed a weight loss of 15.2 % and 32.4 % for grafted PMMA 

chains with a DP of 150 and 380, respectively.  
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Figure 3.8 TGA measurements showing weight loss versus temperature for O-hect (red),  

hybrid with PMMA DP 150 (blue), hybrid with PMMA DP 380 (green) and neat 

PMMA (black). 

 

Powder X-ray diffraction (PXRD) was used to track any changes in the interlamellar 

spacing during preparation of the hybrid nanofiller. The PXRD patterns of exfoliated 

K-hect and the hybrid nanofiller are shown in Fig. 3.9. 
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Figure 3.9 PXRD patterns of the (001) peak of K-hect (─), C12-hect (∙∙∙) and of hybrid nanofiller 

(DP 380) (­­­). 

 

The recorded PXRD patterns showed no shifting of the characteristic (001) sharp 

reflection at d001= 9.9 Å which is typical for non-hydrated mica-like clay. This 

observation assures that all treatments including surface grafting do not have any 

influence on the interlamellar structure. The morphological changes of the clay’s 

external surface were analyzed using scanning electron microscopy (SEM). In Fig. 

3.10 a) a high aspect ratio of K-hect can be seen after exfoliation, having a large 

lateral extension and smooth surface. In comparison to O-hect (Fig. 3.10 b), the 

surface grafted hybrid nanofiller has a rougher and coarse surface (Fig. 3.10 c). The 

pattern is typical for collapsed PMMA chains in a dried state forming mushroom-like 

structures, as expected for the achieved grafting density. 
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Figure 3.10 SEM images of a) exfoliated K-hect, b) surface morphology prior of O-hect c) Surface 

of hybrid nanofiller covered with collapsed polymer chains above entanglement 

length. *(Arrows indicate clay fragments from milling treatment, actual polymers are 

the smaller structures on the surface). 

 

3.2 Mechanical properties of the clay/PMMA nanocomposites 

The mechanical properties of neat PMMA and PMMA/clay nanocomposites 

determined by tensile evaluation tests at a 5 wt% clay loading are presented in Fig.6. 

With incorporation of hybrid clay particles the tensile modulus of PMMA/clay 

nanocomposites showed a significant enhancement compared to neat PMMA. The 

improvement for C12-hect is already 45 % and hybrid-hect (DP 380) almost doubled 

the tensile modulus with an improvement of 84 %. The addition of the nanoplatelets 

has no significant influence on the tensile strength. The elongation at break is 

reduced by 35% in case of C12-hect and on the contrary shows an increase of 18% 

for the hybrid-hect (DP 380).  
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Figure 3.9 Young’s modulus (orange, striped), tensile strength (grey) and elongation at break 

(blue) of neat PMMA and two different clay/PMMA nanocomposites. 

 

The incorporation of high aspect ratio nanoplatelets into a PMMA matrix already 

leads to a significant reinforcement effect compared to neat PMMA as demonstrated 

by Fischer et al. in 201269. The optimization of the preparation method through 

solution blending eliminates any agglomerates formed in a normal melt blending 

process, which usually are the cause for a significant reduction in the tensile 

strength70. The absence of such agglomerates reduces any local stress concentration 

in the matrix and thus the tensile strength of the composite is not affected by the 

addition of the nanofiller.  

Significant shifts in the elongation at break behaviour were observed depending on 

the type of nanofiller. Usually, the addition of rigid nanofillers to a brittle matrix 

leads to an increase in modulus at the expense of strength, strain and toughness as 

embrittlement takes place71. 

This behaviour was observed for the incorporation of C12-hect, which increased the 

modulus by 45 %, but reduced the elongation at break by 35 %. The clay acts as a 

barrier and thus restricts the sliding of polymer chains among each other. On the 

contrary a significant increase in modulus and elongation at break was observed for 
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the novel hybrid nanofiller, which emphasizes the importance of the addition of 

polymeric chains matching the polarity of the matrix onto the hybrid’s surface. This 

leads to a better adhesion of the nanofiller to the matrix, which generates an 

effective stress transfer from the matrix to the nanofiller while still participating in 

the sliding of polymer chains among each other and consequently leads to a 

significant increase in both, the modulus and elongation at break without sacrificing 

tensile strength.  

 

3.3 Conclusion 

Surface-initiated ATRP was successfully employed to graft PMMA chains from the 

external basal planes of a shear-stiff, mica-like K-hect to create novel hybrid 

nanofiller. The employed synthetic fluorohectorite was characterized by a high 

aspect ratio and homogeneity of layer charge, while the multiple anchoring groups 

of the synthesized macroinitiator enabled a strong adhesion to the clay’s surface. 

The kinetic study of si-ATRP of PMMA confirmed a controlled polymerization in a 

linear variation. Furthermore, grafted polymer chains allow for stable dispersions of 

the hybrids in various organic solvents. The obtained hybrid nanofiller shows a 

strong reinforcing effect after being compounded into a PMMA matrix due to the 

synergistic effect of inherent shear stiffness and huge lateral extension of the clay 

itself and the optimized interface between the hybrid nanofiller and the matrix 

through addition of a tailored polymeric shell. 
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4 Chapter 4:   Patchy hybrid particles based on poly-

mer grafted montmorillonite (MMT) 

4.1 Preparation of patchy hybrid particles based on MMT 

To compatibilize an immiscible binary polymer blend, a hybrid clay particle with 

homogeneous shell as used in the last chapter is not perfect. Based on the 

assumption, that a particle with a binary polymer shell should be drawn towards the 

interface if placed into a mixture of two immiscible components (polymers in a blend 

or liquids of different polarity) by the Pickering effect, we created disc-like particles 

with compartmentalized surface, bearing patches of polymer, each matching one of 

the components of an immiscible blend (Figure 4.1). We hypothesize, that the 

fraction of polymer chains with unfavourable interactions would collapse and stay 

close to the solid surface of the hybrid disc, whereas polymer chains with favourable 

interaction would protrude into the matrix.  

 

Fig. 4.1 General approach to patchy hybrid nanodiscs via grafting of diblock copolymers onto 

clay surface and selective collapse of chains at an interface. 
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4.1.1 Synthesis of DMAEMA based diblock copolymers via sequential RAFT 

polymerization 

 

Fig. 4.2 RAFT-polymerization of DMAEMA using 2-cyano-2-propyl benzodithioate (CPBDT) as 

chain transfer agent 

 

As shown in chapter 3 and in literature, positively charged poly(2-

(dimethylamino)ethyl methacrylate) (PDMAEMA) can firmly attach to negatively 

charged surfaces, like those of layered silicates or colloidal silica64, 72. In this chapter, 

protonated PDMAEMA is incorporated into a diblock copolymer and, as it can be 

charged positively depending on the pH or permanently by quaternization, is used as 

a flexible cationic anchoring group to equip clay particles with a polymeric shell. The 

polymer of DMAEMA is easily accessible via RAFT polymerization and can undergo 

copolymerization with a range of different monomers greatly contributing to the 

flexibility of modifying clay surfaces with polymers of different polarities, 

responsiveness and sensitivities. It served as an anchor to the MMT external planes 

via cation exchange. The block-length was kept short and stayed in the range of 14 

to 20 repeating units for all diblock-copolymers, as with increasing length of chain it 

becomes more likely to crosslink several platelets by the same anchoring block.  

Controlled radical polymerization by the RAFT-process guarantees low 

polydispersities of the obtained polymers which is a precondition to generate well 

defined microphase-seperated solutions and thus control over patch size. Also RAFT 

polymerization is applicable to various monomers and the synthesis of block-

copolymers is facile.  
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Here, 2-cyano-2-propyl-benzodithioate (CPBDT) was used as RAFT-agent as shown in 

Fig. 4.2. Typically, the molar ratio of CPBDT : DMAEMA : AIBN was 1 : 10 : 0.3 and the 

polymerization was carried out until conversion reached 90 %. As shown in Fig. 4.3 

the kinetics are of first order with an induction period of several minutes which 

indicates a fully established RAFT-equilibrium after that time. The molecular weight 

increases linearly while the PDI is constantly 1.2. The molecular weight is higher than 

expected from the ratio of CTA to monomer. Analysis of the monomer unit ratios in 

the final diblock via 1H NMR analysis confirmed the Mn values of the precursors 

obtained from SEC (Dimethylacetamid (DMAc) as eluent and PDMAEMA standard 

calibration, Fig. 4.3). This observation can be explained by a low transfer constant of 

the initial CTA molecule, resulting in nearly free radical polymerization kinetics until 

the CTA has added a monomer unit, increasing its transfer constant and thus 

enabling controlled polymerization. This is known as the hybrid effect and in this 

case results in an effective ratio of CTA to monomer of about 1 to 15 and explains 

the elevated molecular weights. As the targeted degree of polymerization is very low 

the molecular weight evolution is very sensitive to the amount of CTA effectively 

participating in the RAFT-process. Nevertheless the variation of 5 Units of DMAEMA 

was accepted, as it is not expected to influence the properties of the final hybrids in 

a substantial way72. 

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

0

500

1000

1500

2000

2500

3000

 

X
P

M
n
 /

 g
/m

o
l

1,0

1,2

1,4

1,6

1,8

2,0

P
D

I

0 50 100 150 200 250

0,0

0,5

1,0

1,5

2,0

2,5

 

 

-l
n

(1
-x

p
)

t / min

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

0

500

1000

1500

2000

2500

3000

 

X
P

M
n
 /

 g
/m

o
l

1,0

1,2

1,4

1,6

1,8

2,0

P
D

I

0 50 100 150 200 250

0,0

0,5

1,0

1,5

2,0

2,5

 

 

-l
n

(1
-x

p
)

t / min

 

Fig. 4.3 First-order kinetics of the RAFT polymerization of DMAEMA with CPBDT in 1,4-

dioxane at 80 °C (left). Evolution of the molecular weight and PDI (right). The 

theoretical molecular weight is given as a straight black line. Determined with DMAc 

as eluent and PDMAEMA standard calibration 
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In this chapter, we copolymerized PDMAEMA with polystyrene (PS) and poly(methyl 

methacrylate) (PMMA) in a block-like fashion to achieve maximum compatibility with 

both phases of a PS/PMMA binary blend. To synthesize the diblock copolymers 

PDMAEMA macro-CTAs were transferred to a degassed solution of the second 

monomer directly without any purification. This procedure delivers the diblock 

copolymers in the most facile and straightforward way. As the second monomer was 

applied in a 100- to 500-fold excess and the polymerization of the precursor was 

carried out up to high conversions the amount of unconsumed DMAEMA in the 

second block is negligible. Table 2 shows the basic information about the synthesized 

diblock-copolymers.  

Table 2  Molecular weight of the PDMAEMA-macro-CTA, the diblock-copolymers as well as 

the conversion of the second monomer and the final PDI. 

Formula a Mn
macro-CTA / 

kg/mol b 
Mn

total / 
g/mol b 

Xp
second block / 

% c 
PDI b 

D17-b-M300 2.9 33.0 64 1.1 

D16-b-S360 2.6 39.0 50 1.3 
a
 repeating units of DMAEMA calculated by subtracting the molecular weight of CPBDT (221.0 g/mol) 

and dividing by the molecular weight of DMAEMA (157.2 g/mol), repeating units of the second block 
calculated by subtracting the molecular weight of DMAEMA block and dividing by the molecular 
weight of the respective monomer, acronyms: D: DMAEMA, S: styrene, M: MMA; 

b
 determined by SEC 

with DMAc as eluent and PS and PMMA standard calibration, respectively; the PDI of all macroCTAs 
was well below 1.3; 

c
 calculated from 

1
H-NMR by integration of the decreasing vinyl groups against 

peaks of the internal standard, 1,3,5-trioxane. 

 

In Fig. 4.4 the SEC-traces of D17-b-M300 and D16-b-S360 are shown. It can be seen that 

the DMAEMA precursor is completely consumed with time indicating a quantitative 

blocking efficiency. Nevertheless, in the progress of the polymerization a shoulder at 

lower molecular weights is formed. This could be due to irreversible termination via 

disproportionation or introduction of oxygen during sample extraction (for SEC and 

NMR).  
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Fig. 4.4 Evolution of SEC-traces of D17-b-S360 (left) and D17-b-M300 (right) with conversion. 
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Fig. 4.5 First-order kinetics of the RAFT polymerization of MMA (blue squares) and PS (red 

circles), respectively, with PDMAEMA-Macro-CTA in 1,4-dioxane at 80 °C (left). 

Evolution of the molecular weights of D17-b-M300 (blue squares) and D16-b-S360 (red 

circles), respectively (right). Theoretical molecular weights are given in straight lines 

with respective color. DMAc was used as eluent and PS and PMMA as respective 

standard calibration 

 

For the styrene containing diblock copolymers polymerization was slower than for 

methacrylate based monomers (Fig. 4.5 left). This rate retarding effect was only 

observed for this monomer and is discussed in literature as originating either from 

terminating side reactions of the intermediate radicals or extremely slow 

fragmentation of those species.73  
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Fig. 4.6 
1
H-NMR spectra of D17-b-M300 (blue) and D16-b-S360 (red). 

The final compositions were determined as PDMAEMA16-b-PS360 and PDMAEMA17-b-

PMMA300 by the 1H NMR (Fig. 4.6) integral ratios between characteristic signals of 

the respective two blocks (PS: 5H, aromatic, δ 6.8-7.3 ppm; PMMA: 3H, -CH3, δ 3.6 

ppm; PDMAEMA: 2H, -CH2-, δ 4.1 ppm). 

 

4.1.2 Solution behaviour of the diblock copolymers 

MMT is best dispersed in water and does not disperse in organic solvents. As a 

consequence, modification of the basal planes has to take place in water if high 

degrees of exfoliation for minimum stack heights and maximum surface area are 

desired. The diblock copolymers used for surface modification consist of a 

hydrophilic, charged DMAEMA block and a hydrophobic PS or PMMA block. Both 

blocks are completely soluble in THF, but the hydrophobic block is insoluble in water. 

A diblock copolymer solution in THF will form micelles upon contact with water, 

where the PS or PMMA block will form the inner core and the charged DMAEMA 

parts make up the hydrophilic shell. There are two routes to form micelles: Either, 

slow addition of water to a solution of polymer in THF, creating near-equilibrium 

state micelles, or rapid addition of the THF solution to a large quantity of water, 

creating smaller micelles, freezing them in a non-equilibrium state. A control over 

micelle size is desired, as we consider a strong relation between micelle sizes and 
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patch size on the surface of the clay after modification. An optimum grafting onto 

process and development of patches is expected if the diblock-copolymer micelles 

are clearly smaller than the MMT clay, which has an average diameter of 300 nm, 

determined by SLS and TEM. Otherwise attachment of different platelets to the 

same micelle can lead to aggregation and coverage with only one polymer species 

becomes more likely. The micelles of D17-b-M300 and D16-b-S360 were investigated by 

DLS and TEM. Therefore the polymers were dissolved in THF (5 mg/ml) and after 

filtration into a sample vial filtered water (pH=6.5) was added dropwise until the 

amount of water was 10 % (Fig. 4.7 a, dotted line) and 15 % (Fig. 4.7 a, compact line) 

of the volume, respectively.  

 

Fig. 4.7 Dynamic light scattering of D17-b-M300 (blue line) and D16-b-S360 (red line) a) in 1/1 

(V/V) THF/water solutions prepared by addition of water to a solution in THF, 10 % 

water dotted line, 15 % water compact line, b) in 1/1 (V/V) THF/water solutions 

prepared by rapid addition of THF polymer solution into stirred water. 

 

The dynamic light scattering results are shown in Fig. 4.7 a). The volume fraction of 

the hydrophilic PDMAEMA block of both polymers, D17-b-M300 and D16-b-S360, is less 

than 30%, which lead to the formation of vesicles well above the size of the MMT 

with z-average hydrodynamic radii of 670 nm for D17-b-M300 and 410 nm for D16-b-

S360 (Fig. 4.7 a). From the light scattering experiments it is obvious that attempted 

control of micellication of the synthesized polymers by equilibration even at a low 
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volume ratio of water to THF of 10% will lead to structures, which are considered to 

be too large for useful modification. Nevertheless, rapid addition of 1 mg/ml 

polymer solutions from THF into a vial with the same volume of stirred, filtered 

water (pH=6.5) resulted in very small micelles of sizes below 100 nm, with z-average 

radii of 67 nm, and 50 nm respectively (Fig. 4.7 b). 

4.1.3 Modification of the basal planes 

In all experiments, which showed successful modification, polymers (30 mg, 1 

mg/ml)  were simply dissolved in THF and added directly to a rapidly stirred clay 

suspension in water (100 mg, 5 mg/ml, pH=6.5) via a small cannula, without 

formation of micelles prior to addition.  

Concentration of polymer in THF was kept low and the charged PDMAEMA block is 

held responsible to prevent precipitation upon contact with the water phase and 

instead form small (below 100 nm) frozen micelles, keeping the polymer reactive 

enough for surface modification to take place, similar to the experiment described 

above (Fig 4.7 b). The assumed micellar sizes are in good agreement with patch sizes 

observed in SEM (12 - 45 nm, median: 23 nm, 60 individual patches taken into 

account) (Fig. 4.8 left).  

Upon addition of polymer solution and stirring for several minutes, flocculation 

occurred and after a short time of standing still all of the once stable suspension 

sedimented, leaving a clear supernatant. After repeated centrifugation and washing 

with THF the unattached polymer was removed and the micelles sitting on the clay’s 

surface were broken up. Therefore a morphology change from micelle to lamella had 

to occur by THF lowering the Tg of the hydrophobic block below room temperature, 

rendering it flexible again and exposing it to the solvent. Afterwards the hybrid 

formed a stable suspension in THF, which is a clear sign for successful 

organophilization.  
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Fig. 4.8 SEM images of hybrids based on hectorite (left) and MMT (right) modified with a 1:1 

(molar) mixture of D17-b-M300 and D16-b-S360 in THF 

 

By this approach it was possible to modify several types of clay (for kaolinite see 

chapter 5): The small particle (tactoid) size and agglomeration into band-like 

structures or self-supporting clay films upon drying makes it difficult to visualize the 

successful grafting and its patchiness in general on the surface of MMT. Since no 

individual platelets are visible, but rather agglomerates of several µm in diameter, it 

is impossible to distinguish polymer from platelets. As a proof of principle larger and 

stiffer synthetic clay was used. The same shear-stiff K-fluorohectorite from chapter 3 

was modified via “grafting onto”. Qualitative analysis of SEM images showed less 

grafting density and more inhomogeneous surface coverage (Fig. 4.8) as compared 

to experiments with polymeric shells attached via a “grafting from” technique (Fig. 

3.10). 

While SEM analysis of the synthetic clays delivered evidence for successful grafting 

of polymer onto the clay surface, it was not possible to prove grafting of both 

polymer species in this way. 1H-NMR analysis was used to determine whether 

preferential adsorption of either of the polymers occurred. Ratios between peaks of 

the 5 aromatic protons in the PS block (δ=6.4-7.2 ppm) and the 3 protons of the CH3-

O- ester group of the PMMA block (δ=3.6 ppm) where compared, between the 

solution used to modify the clay and the supernatant after centrifugation for the first 
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time. Both ratios of PS to PMMA were roughly the same before and after 

modification (deviation of less than 10%), which leads to the assumption that 

adsorption is primarily controlled by the PDMAEMA block, which is of comparable 

length in all cases, and there is no significant preferential adsorption depending on 

the species of the second block with the given species.  
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Fig. 4.9 TGA results showing the temperature dependent weights of different hybrid 

particles: unmodified MMT (solid gray), D16-b-S360 modified MMT (solid black), D17-b-

M300 modified MMT (striped gray), patchy hybrid MMT modified with both 

aforementioned diblock copolymers (solid red) 

 

To quantify the amount of surface-bound polymer a thermogravimetric analysis 

(TGA) was performed (Fig. 4.9): unmodified MMT showed a total mass loss of 2 %, 

while all hybrids showed a mass loss of around 12-15 % in the most relevant region 

(200-500 °C), which gives a calculated grafting density of 0.5 units of DMAEMA per 

nm² for completely exfoliated MMT using the following formula:  

 

Where; ρ is the grafting density (initiator per nm2), MD is the average molar amount 

of DMAEMA units per g of hybrid, NA is the Avogadro constant and SA is the surface 
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area of 68 m2/g. The calculated value is around half of the cation exchange capacity 

(CEC) value provided by the company for the employed MMT (PGV) in a theoretical 

delaminated state  and. The discrepancy can be explained by incomplete exfoliation.  

 

4.2 Mechanical properties of the clay/PMMA/PS nanocomposites 

4.2.1 Preparation of clay/PS/PMMA blends 

Dually modified PS/PMMA-patchy hybrid particles, with the polymer patches on 

each side should be able to selectively collapse or extend to match the surface 

tension of the polymer phase they reside in, were tested as compatibilizers in films 

of PS/PMMA blends cast from THF, a good solvent for both polymers and a good 

dispersant for the hybrids. Located at an interface, each side should collapse the 

incompatible polymer chains and extend the compatible ones into the matrix, 

forming a Janus-like structure.  

For comparison and to be able to estimate the effect of the patchy character 

additional blends with homogeneously modified clay (either PS or PMMA as shell) 

and blends with unmodified MMT were prepared by solvent casting under the same 

conditions. A PS/PMMA ratio of 1:2 (wt/wt) was chosen. The Flory-Huggins 

parameter for a blend of this molecular weight is χSM = 0.041 at 20 °C74 indicating its 

incompatibility. 

The samples for transmission electron microscopy (TEM) were prepared by casting 

the polymer solution with dispersed clay into a glass vial followed by slow drying and 

microtome cutting. The difference between PS and PMMA is clearly visible in the 

TEM images (Fig. 4.9) even without selective staining. Dark grey areas result from 

stronger electron contrast of PS and light grey areas from PMMA, which is more 

easily damaged by the electron beam. The clay particles appear even darker, almost 

black, and their profile shapes are clearly visible due to their strong contrast, the 

completely white regions are holes in the film introduced during ultra microtome 

cutting. 
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We are aware of the fact that solvent evaporation will trap the system in a 

metastable state and such prepared films can only show a qualitative aspect of 

compatibilization achieved by our hybrid particles. For pure PS/PMMA blend films of 

comparable molecular weight without compatibilizer, it is known, that large (several 

µm in diameter) spherical domains of the minority phase inside a matrix formed by 

the majority phase result from phase segregation51. From literature on classical 

organoclays (e.g. Cloisite 20A), it is known, that modification with simple alkyl chains 

will lead to dispersion only in the PMMA phase of a PS/PMMA blend and formation 

of clusters in PS homopolymer blends.75 Analysis of blends mixed with PS-grafted 

MMT (modified with D16-b-S360) showed that the hybrids without exception stay in 

the PS phase or assemble at the interface, though no strong tendency for interfacial 

interaction is observed (Fig. 4.10 a). Similar results are obtained for hybrids based on 

PMMA-grafted MMT (modified with D17-b-M300). Both hybrids stay in the phase of 

the polymer their surface is modified with. Though being the minority phase, we can 

find prominently huge domains of PMMA, filled with randomly oriented hybrid 

platelets (Fig. 4.10 b). The observed polygonal shape of polymer domains can be 

attributed to increased viscosity of the filler-rich phase rather than interfacial 

activity, as there are only a few platelets directly assembled at the interface. 

 

Fig. 4.10 TEM images of 2:1 (wt/wt) PS/PMMA blend films a) showing D16-b-S360 modified 

hybrids in the PS phase only, b) D17-b-M300 modified hybrids in PMMA phase. The 

fraction of the added hybrid is 5 wt% and the scale bar represents 1 µm. 

 

b

) 

a

) 
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Blends compatibilized with patchy hybrid particles (shell based on modification with 

a 1:1 (molar) mixture of D16-b-S360 and D17-b-M300) show a completely different 

structure. Hybrids are randomly oriented and distributed over the whole blend in 

both phases and the interface (Fig. 4.11 a). The domain size is reduced compared to 

blends compatibilized with unmodified and single-polymer-species modified clay. 

Domain shapes are completely irregular (Fig. 4.11 b), following the shape of platelets 

where they reside in the interface. As not all of the interfacial area is covered, the 

hybrids act as a physical barrier and increase viscosity, preventing the formation of 

large spherical domains (Fig. 4.11 b). Regarding the structure of the polymeric shell 

of the patchy hybrids, we expect three different cases: a hybrid residing in the PS 

phase will have its PMMA chains collapsed near the clay surface, screened by 

extended PS chains, interacting with the matrix. Hybrids in the PMMA phase will 

show opposite behaviour, where PMMA chains are extended and PS chains are 

collapsed. In an interface, a hybrid would show both aforementioned behaviours at 

once, according to the polymer phase the respective side is facing. 

 

Fig. 4.11 TEM images of 2:1 (wt/wt) PS/PMMA blend films a) showing patchy hybrids with 

PMMA and PS shell in the PS phase, the PMMA phase and the interface, b) close up. 

The fraction of the added patchy hybrids is 5 wt% and the scale bar represents 1 

µm. 

 

As the blend morphology is created under influence of THF as a solvent and is fixated 

only after slow evaporation of the solvent, the shell of each hybrid has enough time 

a

) 

b

) 
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and is flexible enough to extend and collapse its polymer chains to match the 

interfacial tension / surface energy of the polymer phase it resides in. Compared to a 

pure Janus or Pickering particle it can find its energetic minimum not only at an 

interface, but inside one of the phases as well.  

4.2.2 DMA of the blends 

From the variety of DMA data, the storage modulus, E', is plotted in dependence of 

the heating temperature, T. (Fig. 4.12).   
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Fig. 4.12 DMA results showing the temperature dependend storage moduli of 2:1 PS:PMMA 

blends: uncompatibilized pure blend (solid black), blend compatibilized with 5 wt% 

alkylammonium-modified PGV (dotted gray) and compatibilized with patchy hybrids 

of PGV (solid red). 

 

The storage modulus of a pure, uncompatibilized 2:1 PS/PMMA blend is 3.2 ±0.1 GPa 

at 35 °C, compatibilization with a C12-alkylammonium modified MMT resulted in a 

storage modulus increase of ~7 % to 3.4 ±0.1 GPa, while compatibilization by a 

patchy hybrid resulted in an increase of 17 % to 3.9 ± 0.1 GPa (Fig. 4.12). Thus, a 

significantly higher degree of reinforcement is observed by compatibilizing the blend 

with patchy hybrids than with simple organoclay. 
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4.3 Conclusion 

The experimental data presented confirm the successful grafting of different patches 

of two diblock copolymer species onto the surface of clays from the smectite group, 

creating novel patchy hybrid particles. We used a versatile and simple approach to 

synthesize functional diblock copolymers which consist of a short anchoring block to 

attach to the clay surface and a longer block adding the desired polarity or 

functionality. A combination of two or more of different diblock copolymers grafted 

onto clay can lead to a dynamic shell which is able to adapt to environments of 

different polarity and even show interfacial activity in immiscible polymer blends. 

The dispersion in both phases and the interface of an immiscible polymer blend 

indicates the relevance of the theoretical concept of selective polymer chain collapse 

and extension in the polymeric shell of the particles and leads to a reinforcing effect, 

shown in an increase of up to 17 % in Young’s-modulus.  

While the presented method did not lead to Janus-type behaviour, characterized by 

preferable presence in the interface, the method should allow further interesting 

combinations of different diblock copolymers to functionalize the patchy shell of the 

hybrid particles, opening up new fields unreachable with homogeneously modified 

particles. 
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5 Chapter 5:  Hybrid Janus particles based on polymer 

modified kaolinite 

This chapter is the result of the cooperation with Dunja Hirseman and major parts of 

this chapter were published in Polymer 2013, 54, 1388-1396 under the title: “Hybrid 

Janus particles based on polymer-modified kaolinite” by Stephan Weiss, Dunja 

Hirsemann, Bernhard Biersack, Mazen Ziadeh, Axel H.E. Müller, Josef Breu, Text and 

respective figures are adapted and reprinted with permission. Copyright 2013 

Elsevier 

5.1 Preparation of hybrid janus particles based on kaolinite 

The investigations of randomly compartmentalized, patchy hybrid particles based on 

MMT showed interfacial activity too low to attach to the interphase between PS and 

PMMA in an immiscible blend of both. One of the reasons we found was the 

flexibility of the particle shell, with immiscible patches collapsing and miscible 

patches extending into the matrix, thus keeping the hybrid particle flexible enough 

to adapt to its surroundings, independent of where it was located. The next logical 

step was to create disc-like Janus hybrid particles, with a shell comprised of exactly 

two chemically distinct, oppositely located compartments, increasing intrinsic 

polarity of the hybrid and targeting the interphase of the blend as the energetically 

most favourable location. 2:1 Smectites, like hectorite and montmorillonite are not 

well suited to create Janus particles, as it is very tedious to selectively address each 

of their external basal planes individually. However, due to its polar crystal structure, 

the two opposing external basal planes of kaolinite, TS and OS are truncated by 

distinct functional groups and may selectively be modified by simple cation exchange 

and covalent grafting via catechol groups, respectively, making it the perfect base for 

a disc-like hybrid Janus particle. As an example we chose poly((2-

dimethylamino)ethyl methacrylate)-block-polystyrene (D16-b-S115) and poly(3-(2,3-

dihydroxy-benzoyloxy)propyl methacrylate)-stat-(methyl methacrylate)) (PCM). 
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Fig. 5.1 Structure of poly(3-(2,3-dihydroxybenzoyloxy)propyl methacrylate)-stat-(methyl 

methacrylate) (PCM) (top) and poly(2-(dimethylamino)ethyl methacrylate)-block-

polystyrene (D16-b-S115) cations (bottom). 

 

PCM is a statistical copolymer, while D16-b-S115 is a block copolymer (Fig. 5.1). 

Consequently, both modifiers interact with the kaolinite basal planes in a different 

manner (Fig. 5.2). PCM will likely be close to the OS, forming short loops or lying flat. 

In contrast, the polystyrene block might arrange brush-like on the TS of the kaolinite. 

The resulting Janus particles are tailored for compatibilizing PS-PMMA or industrially 

more relevant PPE–SAN (poly(2,6-dimethyl-1,4-phenylene ether) (PPE), poly(styrene-

co-acrylonitrile) (SAN)) blends50, 51.  
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Fig. 5.2 Schematic picture of a) pristine kaolinite, b) modified with D16-b-S115 on the 

tetrahedral surface (TS), c) further modified with PCM on the opposite octahedral 

surface (OS) and d) embedding of the final hybrid particle at the interface in a PS-

PMMA blend. 

 

5.1.1 Synthesis of the copolymers PCM and D16-b-S115 

Synthesis of the catechol-modified poly(methyl methacrylate) copolymer (PCM) 

Initially, a suitable catechol modified methacrylate monomer was prepared for 

copolymerization with methyl methacrylate (MMA). 3,4-Dibenzoxy-(3-

hydroxypropyl)benzoate 2 was obtained from 3,4-dibenzoxybenzoic acid 1.57 

Reaction of 2 with methacryloyl chloride gave the mixed diester 3 (Scheme 5.1). 

OBn

OBn

CO2H

OBn

OBn

O O OH

OBn

OBn

O O O O

1 2 3

(i) (ii)

 

Scheme 5.1 Synthesis of the catechol monomer. Reagents and conditions: (i) SOCl2, CH2(CH2OH)2, 

Et3N, THF / DCM, r.t., 5 h, 51%; (ii) CH2C(CH3)COCl, Et3N, DCM, r.t., 3 h, 67%. 

 

Monomer 3 was copolymerized with a 30-fold excess of MMA by free radical 

polymerization using AIBN as initiator and dodecanethiol as transfer agent to gain 

control and reduce molecular weight, giving copolymer 4. 1H NMR spectroscopy and 
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integration of the proton signals of the copolymer 4 confirmed the applied ratio of 

1:30 of monomer 3 and MMA in the copolymer. Subsequent catalytic hydrogenation 

removed the benzyl protecting groups from the copolymer 4 giving the catechol 

modified copolymer 5 (Scheme 5.2). Both FT-IR and 1H NMR spectroscopy gave 

evidence for the free catechol moieties of the copolymers 5 and revealed new 

signals for the catechol hydroxy groups of the copolymer (5: νmax = 3392 cm-1; dH = 

9.32, 9.81). The synthesized copolymer has a number-average molecular weight Mn 

= 10,000 g/mol (based on PMMA calibration) with a PDI of 1.7. 
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CO2Me
OO

O

O

OR

OR
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4: R = Bn
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30

+

 

Scheme 5.2 Synthesis of PCM. Reagents and conditions: (i) AIBN, THF, reflux, 5 h; (ii) H2, Pd/C 

(10%), MeOH / dioxane, r.t., 5 h. 

 

Synthesis of the PDMAEMA-b-PS block copolymer (PDPS) 

The selected block copolymer was synthesized via sequential RAFT polymerization, 

has a number average molecular weight of 16000 g mol-1 and exhibits a narrow 

molecular weight distribution with Mw/Mn ~1.13 (determined by DMAc SEC with PS 

calibration). DMAEMA was polymerized as a first block achieving a conversion near 

99 % (as determined by 1H- NMR), an Mw of 3200 g/mol and a PDI of 1.20. This 

PDMAEMA was utilized as a macro-RAFT agent without further purification and for 

the polymerization of styrene. The final composition was determined as 

PDMAEMA20-PS115 by the 1H-NMR integral ratios between characteristic signals of 

the two blocks (PS: 5H, aromatic, δ 6.8–7.3 ppm; PDMAEMA: 2H, –CH2–, δ 4 ppm). 
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Fig. 5.3 SEC-Traces of Poly(DMAEMA) precursor (black curve, right) and D16-b-S115 diblock 

copolymer (red curve, left). 

 

5.1.2 Modification of the kaolinite basal planes 

It is possible to modify each side (TS and OS) of the kaolinite specifically and 

individually21 without influencing the other side. The chosen order of modification, 

starting with D16-b-S115 has a practical purpose, as the DMAEMA block of the D16-b-

S115 is charged at the pH of 6 and thus kaolinite can be modified in aqueous 

suspension, where it is dispersed best. After that, the one-sidedly modified kaolinite 

can be dispersed in THF more easily than unmodified kaolinite. PCM is soluble in 

THF, but not in water. Nevertheless pristine kaolinite can be modified by PCM as a 

first step as well, but for that it has to be dispersed in THF by vigorous stirring.  

Successful surface modification of kaolinite with both polymeric modifiers was 

proven by 13C solid-state MAS (magic angle spinning) NMR, while TGA 

(thermogravimetric analysis) was performed to estimate the amount of polymer 

bound to both external basal surfaces of kaolinite. Moreover, the selective nature of 

the modification was confirmed indirectly by qualitatively comparing the 

sedimentation stability (as determined by LUMiFuge®) of suspensions of differently 

modified samples.  
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We used a natural fine-grained kaolinite with typical dimensions of the ideally 

hexagonal platelets that were < 2 µm in diameter and up to 70 nm in height. The 

specific surface area was approximately 4 m2 g-1, and about 80 % of this area could 

be attributed to the external basal surfaces. Nevertheless, the detection of 

monolayer coverage of the external surfaces required highly sensitive analytical 

methods, and the proof of the selective modification is inherently difficult, but 

selectivity of anchoring groups was already shown in our previous publication21. 

 

13C solid-state NMR spectra of kaolinite samples solely modified at the OS with PCM 

(Fig. 5.4a, PCM-kaolinite) or solely modified with D16-b-S115 at the TS (Fig. 5.4b, D16-b-

S115-kaolinite) as well as dually modified kaolinite (Fig. 5.4c, D16-b-S115/PCM-kaolinite) 

were recorded in order to demonstrate the modification. Please note that according 

to the TGA results the total weight fraction of modifiers is less than 5%. Therefore 

the noise is high. 

The spectrum of the PCM-kaolinite (Fig. 5.4a) featured a signal at 16.5 ppm 

indicating the presence of a CH3 group of the MMA monomer. Moreover, the –OCH3 

group and the CH2 polymer backbone of PCM could be identified at 44.8 ppm and at 

51.5 ppm. Additionally, at 177.1 ppm a signal was detected which is caused by the 

C=O group of the MMA ester function. The aromatic ring of the catechol function 

was hardly detectable at 127.1 ppm with small signal-to-noise ratio. 

D16-b-S115-kaolinite (Fig. 5.4b) featured all the characteristic signals of the neat D16-b-

S115 polymer. At 39.8 ppm and at 44.5 ppm the characteristic CH2 backbone signals 

and CH2 signals of the DMAEMA were recorded. At 127.1 ppm and 146.7 ppm the 

aromatic CH1 groups of the styrene could be observed while only a very small signal 

caused by C=O ester function of the DMAEMA block at 177.1 ppm was detected. 
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Fig. 5.4 
13

C solid-state MAS NMR spectra of a) PCM-kaolinite b) D16-b-S115-kaolinite and c) 

PCM/ D16-b-S115-kaolinite. 

 

The spectrum of the D16-b-S115/PCM-kaolinite (Fig. 5.4c) represents an overlay of the 

specific signals of both modifiers indicating that a successful modification with both 

surface modifiers is feasible. The signals at 16.5 ppm, 51.5 ppm and 177.1 ppm are 

only or mainly caused by the modification with PCM while the signals at 39.8 ppm, 

127.1 ppm and 146.7 ppm could only or mainly be assigned to D16-b-S115. Please note 

that the low loading required very long measurement times (17 h). Therefore, cross-

polarization measurement 76 was performed and quantification of signals by 

integration is impossible. However, the relative intensities of the different signals of 

each individual modifier (Fig. 5.4a, b) do not change (Fig. 5.4c) indicating that no 

significant structural changes of the polymer chains occur upon adsorption of the 

second modifier. This fact in turn would indicate that the adsorption of the two 

modifiers occurs in a spatially segregated mode as expected given the Janus 

character.  

In summary, modification with PCM and D16-b-S115 can unequivocally be proven by 

13C solid-state NMR, however, due to the very low loading neither quantification nor 

determination of the ratio between D16-b-S115 and PCM can be achieved. 



Chapter 5   

69 

 

Since quantification by NMR was impossible estimating the amount of polymer 

adsorbed was attempted by TGA. The TGA of pristine kaolinite (Fig. 5.5, pink) 

features a dehydroxylation to metakaolinite above 410 °C 77 which is accompanied 

by a mass loss of approximately 13.0 wt%. At 410 °C the modifiers D16-b-S115 and 

PCM are, however, already removed as indicated by TGA experiments of mixtures of 

polymer with inert quartz. Below 410°C pristine kaolinite showed only a minute mass 

loss of about 0.3 %, probably due to physically adsorbed water which is expected to 

be completely removed by the surface modification. Consequently, the complete 

mass loss observed up to a temperature of 410°C may be attributed to the modifiers. 

 

Fig. 5.5 TGA of pristine kaolinite (pink), PCM-kaolinite (blue), D16-b-S115-kaolinite (red) and 

D16-b-S115/PCM-modified kaolinite (black). 

 

In the case of the D16-b-S115-kaolinite (Fig. 5.5, red) a one-step decomposition with a 

mass loss of 2.7 wt% starting at 275 °C was observed. In contrast the modifier the 

PCM-kaolinite (Fig. 5.5, blue) featured a comparatively slow mass loss of 2.7 wt% 

starting at about 100 °C. The similar overall mass loss for D16-b-S115-kaolinite and 

PCM-kaolinite is of course just coincidental. 

The D16-b-S115/PCM-kaolinite (Fig. 5.5, black) shows a mass loss of 5% in total, close 

to the sum of the weight losses of D16-b-S115-kaolinite and PCM-kaolinite, indicating 

that the adsorption of the two modifiers does not influence each other. Moreover, 

the shape of the TGA-curve of D16-b-S115/PCM-kaolinite (Fig. 5.5, black) shows the 

prominent features of both, D16-b-S115-kaolinite and PCM-kaolinite curves. 
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The experimentally observed loading of D16-b-S115-kaolinite may be compared to the 

loading expected from the CEC of the kaolinite which was around 2.0 mval/100g. 

Assuming charge neutrality and given that at a pH of ~5.5 approximately 80 % of the 

DMAEMA monomer units are protonated,61 a weight content of the D16-b-S115 in the 

range of 2.1 wt% of the D16-b-S115-kaolinite is expected, slightly less than the 

experimentally observed mass loss of 2.7 wt%. This difference might be caused 

either by a lower degree of protonation of the adsorbed D16-b-S115. 

To verify the selective nature of the dual modification of D16-b-S115/PCM-kaolinite 

indirectly, the stability of the suspension was compared with pristine kaolinite (Fig. 

5.6, pink), PCM-kaolinite (Fig. 5.6, blue), and D16-b-S115-kaolinite (Fig. 5.6, red). Since 

the wettability of the samples differs significantly, the experiments were performed 

in water and in THF.  

Please note that in Fig. 5.6 dimeric aggregates are shown rather than intercalation 

com-pounds. Kaolinite does not form intercalation compounds with polycations, the 

ion exchange is limited to the tetrahedral external basal surface.  

With pristine kaolinite both, TS and OS are highly hygroscopic and consequently 

suspensions in water were quite stable (Fig. 5.6a, pink), while in THF the stability was 

very low (Fig. 5.6b, pink).  

In contrast, with D16-b-S115-kaolinite (Fig. 5.6a, red) the TS was rendered 

hydrophobic, while the OS remains hydrophilic. Finally, with D16-b-S115/PCM-kaolinite 

the dual modification renders both, TS and OS highly hydrophobic (Fig. 5.6a, black). 

The aqueous suspensions of both, D16-b-S115-kaolinite and D16-b-S115/PCM-kaolinite 

were very unstable. The transparency values in-crease rapidly at early stages of the 

measurement for both suspensions indicating a high incompatibility between the 

solvent and the modified kaolinite particles. Apparently, modification of the TS plane 

makes the whole platelet so hydrophobic, that a ranking regarding the stability of 

these two suspensions in water, cannot be made because differences observed with 

these highly unstable suspensions are insignificant.  

Surprisingly, in case of the OS-modified PCM-kaolinite (Fig. 5.6a, blue) a high stability 

of the suspension in water can be achieved which is even comparable with the 

pristine kaolinite (Fig. 5.6a pink, blue) despite the hydrophobization of the OS. 

Contrary to D16-b-S115-kaolinite where the long PS-brushes extend into the solvent, 
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the statistical copolymer PCM stays comparatively close to the surface. Moreover, 

the hydrated inorganic cations residing at unmodified TS contribute to an efficient 

electrostatic stabilization of PCM-kaolinite in water. Alternatively, the stability of 

PCM-kaolinite might be explained by the formation of sandwich structures as 

depicted in Fig. 6a (blue framed inset). For such sandwich structures only the 

hydrophilic TS are exposed to the aqueous media. Such polymer-bridged sandwich 

structures would not be expected for D16-b-S115-kaolinite because the long PS-

brushes will hamper dimer-formation sterically. 

In THF (Fig. 5.6b) both, the PCM-kaolinite (Fig. 5.6b, blue) as well as the D16-b-S115-

kaolinite (Fig. 5.6b, red), showed good stability which in turn is comparable to that of 

the dually modified D16-b-S115/PCM-kaolinite (Fig. 5.6b, black). This suggests that 

even the short PCM loops at the OS were able to assure a good stability in THF and 

expectedly the longer chains perform as well. Moreover, it would be expected that 

sandwich structures of D16-b-S115- and PCM-kaolinite are formed (Fig. 5.6b, red and 

blue squares). 

 

Fig. 5.6 Integrated transparency of 0.25 wt% suspensions in a) water and b) THF of pristine 

kaolinite (pink), PCM-kaolinite (blue), D16-b-S115-kaolinite (red) and D16-b-S115/PCM-

kaolinite (black) under time dependent centrifugal forces of 300 rpm, 600 rpm, and 

900 rpm. 

 

In summary, the stabilities in water- and THF-suspensions observed for the different 

kaolinite samples are in line with a specific modification of TS and OS by D16-b-S115 

and PCM, respectively, and strongly support the Janus character of D16-b-S115/PCM-

kaolinite. 
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5.2 TEM Analysis of the morphology of the hybrid-kaolinite / PMMA/ 

PS nanocomposites 

Dually modified D16-b-S115/PCM-kaolinite, where the surface tensions of the 

opposing basal surfaces are fine-tuned to match PS and PMMA, respectively, was 

tested as compatibilizer in films of incompatible PS-PMMA blends cast from THF, 

similar to the process used in chapter 4.3.4. For comparison and to be able to 

estimate the effect of the Janus character in excess of the pure Pickering effect 

additional blends with unilaterally modified and blends with unmodified kaolinite 

were prepared by solvent casting under the same conditions. A PS/PMMA ratio of 

1:2 (wt/wt) was chosen.  

The samples for transmission electron microscopy (TEM) were prepared by casting 

the polymer solution with dispersed clay into a glass vial followed by slow drying and 

microtome cutting. All images are unstained. Dark grey areas result from stronger 

electron contrast of PS and light grey areas from PMMA. The kaolinite particles 

appear even darker, almost black, and their shapes are clearly visible due to their 

strong contrast, the completely white regions are holes in the film, introduced during 

ultra microtome cutting.  

Similar to what was the case with experiments conducted in chapter 4.3.4 we are 

aware of the fact that solvent evaporation will trap the system in a metastable state 

and such prepared films can only show the qualitative aspect of compatibilization 

achieved by our hybrid particles. To determine industrially relevant quantitative 

effects, like mechanical properties of compatibilized blends, it is necessary to 

conduct extrusion experiments and mechanical tests. 

For pure PS/PMMA blend films of comparable molecular weight that contain no 

compatibilizers, it is known, that large (several µm in diameter) spherical domains of 

the minority phase inside a matrix formed by the majority phase result from phase 

segregation.51 

With unmodified kaolinite we observe macrophase separation (Fig. 5.7a). No 

dispersion is achieved, only large aggregates of clay particles can be found, 

separating from the matrix, trapped inside the polymer phase where they happen to 

be upon drying (Fig. 5.7a). This behaviour is expected due to the clay’s hydrophilic 
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nature (charged on one side and polar hydroxy groups on the other side) and the 

fact that it does not form stable dispersions in THF (and thus is hard to disperse in 

the Polymer mixture to start with). In another experiment we modified the TS of 

kaolinite with dodecylamine, which is comparable in structure to the alkyl 

ammonium salts used to prepare commercial organoclay like the widely used Cloisite 

20A. Here we can observe clustering in the PMMA phase (Fig. 5.7b). Like in the 

Lumifuge experiments we expect the kaolinite to form sandwich structures with the 

alkyl chains of the organophilized TS aggregated via hydrophobic interactions in the 

inside and the polar OS at the outside or the other way round. In none of the cases 

we could find a surface which has high compatibility with any of the polymer phases 

and thus is not dispersed homogeneously. This observation is in good agreement 

with literature about other organoclay (e.g. Cloisite 20A), which disperses only in the 

PMMA phase of a PS/PMMA blend and forms strong clusters in PS homopolymer 

blends.75 Obviously modification of one side is not sufficient to align the particles at 

the interface under these conditions. 
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Fig. 5.7 TEM images of 3:7 (wt/wt) PS/PMMA blend films. a) with pristine kaolinite, b) with 

unilaterally organophilized kaolinite, c) with D16-b-S115/PCM-kaolinite, and d) close 

up at an inter-face. The fraction of the clay is 5wt% and the scale bar represents 500 

nm. 

 

In contrast, in the film prepared with the Janus-type D16-b-S115/PCM-kaolinite (Fig. 

5.7c, d) the kaolinite particles are assembled exactly at the interface between both 

polymer phases. A nearly full coverage of the interface by compatibilizer is realized. 

Due to the Janus character of the modified kaolinite the interfacial tension of the 

platelets in the blend interface should be very low. Therefore, the assembly of the 

particles at the interface is energetically highly favored. As a consequence, the PS 

domains are no longer spherical but appear polygonal following the shape of the clay 

platelets (Fig. 5.7c, d). 
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5.3 Conclusion 

A synopsis of all experimental data presented confirms that the external basal planes 

of kaolinite platelets can be selectively addressed by polystyrene and PMMA, similar 

to what has been studied in detail for the molecular modification with Ru(bpy)3
2+ and 

a phosphorous-labelled catechol (3-Diphenylphosphinyloxypropyl-3,4-

dihydroxybenzoate) in literature21. Janus-type D16-b-S115/PCM-kaolinite platelets 

obtained by dual modification showed interfacial activity in a solvent-cast PS/PMMA 

blend film. Obviously, blend preparation via melt extrusion would be advantageous. 

Work in that direction is on the way but the results obtained by solvent-casting 

already give a strong indication on the efficiency of the hybrid Janus particles as 

blend compatibilizers. 

While the presented work represents a proof of principle, the approach is, of course, 

highly modular and should allow for facile and affordable fine-tuning of appropriate 

compatibilizers for a broad range of blend systems. 

The intrinsically polar structure of kaolinite serves as versatile core of these Janus 

platelets. Adjustment of the surface tensions of both basal planes can easily and 

selectively be tailored for each specific blend composition. Moreover, particle size 

distribution and morphology (aspect ratio) may be varied over a wide range by the 

choice of the kaolinite source. Furthermore, that concept is not restricted to 

kaolinite but can be transferred to any other inorganic material which possesses a 

polar crystal structure and where opposing crystal faces are truncated by chemically 

different functional groups, paving the way to selective modification. 

An additional advantage of the concept should be an inherent reinforcement of the 

blend by the inorganic filler, which, moreover, is concentrated at the blends 

interfaces. This should create a synergistic effect stretching far beyond a pure 

Pickering effect and should boost the mechanical properties of the blend. 
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