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Abstract

In transition metal clusters, potentially profitable technological applications and fascinating
fundamental questions are closely connected. Bimetallic nanoalloys, e.g., have become
increasingly popular as their performance in catalysis is often superior to their pure
counterparts. Exemplary for this are gold-platinum (Au-Pt) nanoalloys that have been
used as highly potent catalysts in electrocatalysis and in a variety of oxidation reactions.
However, the mere existence of Au-Pt nanoalloys is astonishing, as Au and Pt cannot be
mixed in bulk over a wide range of compositions. Furthermore, how a combination of
Au and Pt in nanoalloys results in their special properties has not yet been determined
conclusively.

It has been shown in empirical simulations and first-principles density functional theory
(DFT) calculations that Au-Pt nanoalloys preferably arrange in a core-shell mixing pattern
with Au forming a shell around a Pt core. This is in contradiction to many experimental
studies that report the formation of solid solutions of Au and Pt. In the present work,
this seeming discrepancy is addressed by simulating x-ray diffraction patterns that are
experimentally used to characterize nanoalloys. It is shown that the interpretation of the
diffraction patterns relies on questionable assumptions and therefore does not suffice as a
definite characterization tool for Au-Pt nanoalloys.

To shed light on the special catalytic properties of Au-Pt nanoalloys under rather
different experimental conditions, a thorough investigation of their electronic and structural
properties has been carried out. It is found that features favorable for catalysis in Au-Pt
nanoalloys emerge as a consequence of combining two fundamental properties: Pt contributes
a high density of states close to the Fermi level, which promotes chemical activity. Au
increases the structural flexibility of the Au-Pt system, which might be beneficial for the
formation of active and element-specific binding sites as well as regeneration of the catalyst
after the reaction.

Although DFT offers an attractive compromise between computational effort and
accuracy for a theoretical description of Au-Pt nanoalloys, other transition metal compounds
severely challenge existing DFT approximations. Manganese (Mn) doped silicon (Si) clusters
represent an ideal model system to study the interaction of a single magnetic impurity
with a semiconducting host both experimentally and theoretically. The transition from
exohedral (lowly coordinated) to endohedral (highly coordinated) doping that occurs for Si
clusters with more than ten atoms, is accompanied by complete quenching of the magnetic
moment of Mn. We show that MnSi+11, the smallest endohedral cluster found in experiment,
suffers strongly from a well-known general problem of most DFT approximations: the
self-interaction error. Finally, a universal correlation between magnetic moment and the
coordination of the Mn dopant is established that can be generalized to extended systems
and suggests a route to stabilize the magnetic moment of bulk Mn-Si compounds.





Kurzdarstellung

In Übergangsmetallclustern liegen gewinnbringende technische Anwendungen und fundamen-
tale Fragen oftmals nah beieinander. Dimetallische Nanolegierungen erfreuen sich beispiel-
sweise großer Beliebtheit, weil sie in diversen katalytischen Reaktionen den entsprech-enden
reinen Metallen überlegen sind. Gold-Platin (Au-Pt) Nanolegierungen wurden als äußerst
wirksame Katalysatoren in der Elektrokatalyse und für eine Reihe von Oxidationsreaktionen
identifiziert. Genau genommen ist jedoch die bloße Existenz dieser Nanolegierungen er-
staunlich, da Au und Pt in ausgedehnten Systemen kaum mischbar sind. Bislang ist zudem
nicht klar, auf welche Weise eine Kombination von Au und Pt in einer Nanolegierung zu
speziellen Eigenschaften führt.

In empirischen Simulationen und nicht-empirischen Dichtefunktionaltheorie (DFT) Rech-
nungen konnte gezeigt werden, dass Au-Pt Nanolegierungen ein AuSchalePtKern Mischungsmu-
ster bevorzugen. Dies steht im Widerspruch zu experimentellen Studien, in denen homogen
gemischte Cluster beobachtet wurden. In der vorliegenden Arbeit wird diese scheinbare
Diskrepanz durch Simulation von Röntgenbeugungsmustern untersucht. Es wird gezeigt,
dass die übliche Auswertung dieser Beugungsmuster auf mehrdeutigen Annahmen beruht
und somit nicht zur alleinigen Charakterisierung von Au-Pt Nanolegierungen ausreicht.

Um Aufschluss über die hohe katalytische Aktivität von Au-Pt Nanolegierungen zu
erlangen, wurden ihre elektronischen und strukturellen Eigenschaften untersucht. Es wird
gezeigt, dass sich die günstigen Eigenschaften von Au-Pt Nanolegierungen als Konsequenz
der Kombination zweier fundamentaler Eigenschaften ergeben können: Pt trägt zu einer
hohen Zustandsdichte am Ferminiveau bei, welche förderlich für die chemische Aktivität
sein kann. Mit steigendem Au-Anteil steigt wiederum die strukturelle Flexibilität der Au-Pt
Systeme. Dies kann für die Bildung aktiver und elementspezifischer Katalysezentren sowie
zur Regeneration des Katalysators nach der Reaktion von Nutzen sein.

DFT bietet für die Behandlung von Au-Pt Nanolegierungen einen guten Kompromiss
zwischen rechnerischem Aufwand und Genauigkeit. Im zweiten Teil dieser Arbeit geht es
jedoch um eine andere Übergangsmetallverbindung, welche existierende Näherungen der
DFT auf eine harte Probe stellt. Siliziumcluster (Si) dotiert mit einem einzelnen Manganatom
(Mn) sind ein ideales Modellsystem um die Frage zu untersuchen, wie eine magnetische
Verunreinigung mit einem halbleitenden Wirtsmaterial wechselwirkt. Der Übergang von
exohedraler (niedrige Koordination) zu endohedraler (hohe Koordination) Dotierung findet
für Cluster mit mehr als zehn Si-Atomen statt und wird von einer kompletten Auslöschung
des magnetischen Moments begleitet. In dieser Arbeit wird gezeigt, dass MnSi+11, der kleinste
experimentell identifizierte endohedrale Cluster, besonders stark unter einem wohlbekannten
Problem vieler DFT Näherungen leidet: dem Selbstwechselwirkungsfehler. Abschließend wird
ein universeller Zusammenhang zwischen dem magnetischen Moment und der Koordination
des Mn-Dotieratoms gezeigt, der auch auf Festkörpersysteme übertragen werden kann.
Dieser Zusammenhang eröffnet die Möglichkeit das magnetische Moment von ausgedehnten
Mn-Si Verbindungen zu stabilisieren.
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Introduction

It seems to be pure understatement that the elements at the center of the periodic table
are called transition elements or, even more modestly, subgroup elements. All transition
elements are metallic in the bulk, exhibit rich physical and chemical properties and have
been used for tool, weapon and jewelry manufacturing for thousands of years. Among many
other fascinating features such as the nobility of copper, silver and gold, transition metals
possess unique catalytic and magnetic properties both as free ions and in the bulk.

In between atomic physics and solid state physics lies the regime of cluster physics.
Clusters have been called ”strange morsels of matter” [1] to point out their unusual electronic,
magnetic and optical properties that often change discontinuously upon going from very
small systems consisting of not more than three atoms to clusters containing thousands of
atoms that can already be considered to behave bulk-like in some respects. These special
features emerge as a consequence of two basic effects. Firstly, in clusters or nanoparticles
(NP) a larger fraction of the atoms can occupy positions at the surface as compared to
extended systems. Secondly, the small size of clusters directly influences the electronic
structure by quantum confinement. The electronic structure of small gold (Au) clusters can,
e.g., be described remarkably well by delocalized states in an electron-in-a-box model [2].

Transition metal clusters are a particularly interesting field of study and much research
activity has been devoted to exploring their fundamental and often technologically useful
properties. Fig. 1.1 shows a table of those elements that belong to the class of transition
metals. A general and slightly more restrictive definition states that the free transition
element atoms possess an incomplete d-shell in the ground state or in excited states of small
energy [3]. For our purposes the overview that Fig. 1.1 provides shall be sufficient. In the
following paragraphs the unusual properties of transition metal clusters are illustrated using
two examples: the high catalytic activity of small Au clusters and the size-dependence of
spin and orbital moments of free 3d transition metal clusters.



2 Chapter 1 — Introduction

Sc Ti V Cr Mn Fe Co Ni Cu

Y Zr Nb Mo Tc Ru Rh Pd Ag

Hf Ta W Re Os Ir Pt

Rf Db Sg Bh Hs Mt Ds Rg

Zn

Cd

Au Hg

Cn

21 22 23 24 25 26 27 28 29 30

39 40 41 42 43 44 45 46 47 48

72 73 74 75 76 77 78 79 80

104 105 106 107 108 109 110 111 112

Figure 1.1: The periodic table of the transition metal elements.
The elements marked in yellow, Mn, Ni, Pd, Pt and Au are
relevant for the present work. Their rich electronic structure
featuring open 3d and 5d shells manifests itself, e.g., in special
catalytic and magnetic properties.

Au is best known as a noble,
but ductile metal, well suited for
the use as coin or jewelry. This
view, however, only applies to
smooth Au surfaces and large
(> 10 nm) Au particles. In 1987
the pioneering work of Masatake
Haruta showed that both highly
dispersed Au particles and scrat-
ched Au surfaces exhibit high cat-
alytic activity in a variety of in-
dustrially important reactions [4].
In the original work it was shown

that Au NP catalyze the oxidation of carbon monoxide at temperatures below 0 ◦C [5].
This discovery was followed by a scientific “gold rush” and an ongoing quest for further
catalytically active nanomaterials [2, 6]. Haruta’s Au particles had a diameter of ≈ 5 nm. It
was later observed by Sanchez et al. that also very small Au clusters are catalytically active
and that the smallest catalytically active NP is Au8 [7]. The influence of the support [8] and
the NP’s structure [9] on the catalytic activity have been studied intensively. In the past
years Au has become less expensive than other catalysts used in large scale technological
processes such as palladium (Pd) or platinum (Pt). A pointed statement of A. Stephen K.
Hashmi illustrates the growing significance of Au NP for catalysis: ”Overall, a change of
paradigm has taken place. While the ancient alchemists investigated the question of how to
make gold, now the question is what to make with gold.” [10]

The strict definition above characterizes a transition element by having an open d-shell.
Consequently, as free atoms, most transition elements carry a spin- and an orbital magnetic
moment. The size of this moment can (assuming only one incomplete subshell) be estimated
using Hund’s rules. The 3d elements iron (Fe), cobalt (Co) and nickel (Ni), e.g., have in
compliance with Hund’s first rule electronic valence configurations of 4s23d6, 4s23d7 and
4s23d8, resulting in 4µB, 3µB and 2µB spin magnetic moments and 2µB, 3µB and 3µB
orbital magnetic moments, respectively. In the bulk Fe, Co and Ni are the commonly known
elements that exhibit ferromagnetic order at room temperature. The magnetic moment
of these systems arises almost entirely from the electron spins, as the orbital magnetic
moment is quenched due to the symmetry of the crystal lattice. The question of how the
orbital and spin magnetic moment as well as magnetic order phenomena develop upon
going from single atoms to the bulk is of fundamental interest and another typical example
for the unusual properties of transition metal clusters. Fe, Co and Ni clusters have been
investigated using Stern-Gerlach deflection experiments for clusters consisting of up to 700
atoms and it has been found that even clusters with several hundreds of atoms still carry
larger magnetic moments than the corresponding bulk [11, 12]. Yet smaller, size-selected
Fe clusters have been studied using x-ray circular dichroism spectroscopy (XMCD). This
technique allows to obtain information about spin and orbital magnetic moments separately
and showed that the orbital magnetic moment in free Fe clusters is strongly quenched even
for very small clusters [13]. The size-dependence of spin and orbital magnetic moments of
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Fe clusters exemplifies that the transition to bulk-like behavior very much depends on the
property of interest.

In the present work the elements marked in yellow in Fig. 1.1 will be brought into focus.
The main two parts of this thesis are concerned with the structural and electronic properties
of Au-Pt and Au-Pd nanoalloys and of manganese (Mn) doped silicon (Si) clusters. Au-
Pt(Pd) nanoalloys have special qualities that make them attractive for their use as catalysts.
Mn doped Si clusters, on the other hand, represent a system with interesting magnetic
properties. Most results presented in this thesis stem from density functional theory (DFT)
calculations, a method that offers an excellent trade-off between computational cost and
accuracy. Following a discussion of the basic principles of ground state DFT, important
approximations to it and some of its exact properties, I present computational methods
relevant for this work in Chapter 2. Subject of Chapter 3 are the structural and electronic
properties of binary Au-Pt and Au-Pd clusters, also called nanoalloys or NP in the following.
The theoretical description of 3d transition metal compounds and the correct prediction
of magnetic moments is a challenge for existing approximations to DFT. This point is
illustrated in Chapter 4 by a study of the magnetic-to-nonmagnetic transition that has
experimentally been observed in small Si clusters doped with a single Mn impurity. Chapter
5 summarizes the results and gives an outlook to Ni-Pd NP, the all-rounder transition
metal nanoalloy, as this system combines high catalytic activity with interesting magnetic
properties. Finally, three appendices are attached to this work in which the effects of a
finite temperature and of the NP interaction with a support material on electronic and
structural properties of Au-Pt nanoalloys, their optical absorption spectra simulated within
Mie theory and computational and technical details are discussed.
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Theoretical and technical framework

Most of the results presented in this thesis rely on calculations using DFT in conjunction
with a variety of computational methods, such as pseudopotentials and several geometry
optimization schemes to determine ground state geometries or transition states. The
following pages therefore give a short introduction to DFT and the approximations used in
typical DFT calculations. Furthermore, the physical meaning of the Kohn-Sham (KS) and
generalized Kohn-Sham (GKS) eigenvalues, as the main output from such calculations, is
discussed. Three different schemes for the generation of pseudopotentials are presented in
Sec. 2.4. Finally, in Sec. 2.5, I discuss two methods for global geometry optimization and
one for the determination of transition states.

2.1 Foundations of Density Functional Theory

When Walter Kohn received the Nobel Prize for chemistry in 1998 for the development
of DFT he said: “In my view DFT makes two kinds of contributions to the science of
multiparticle quantum systems [...]. The first is in the area of fundamental understanding
[...]. The second contribution is practical.” [14]. In fact, it is mostly this practicability
that has made DFT a standard tool in chemistry and physics for calculating, e.g., binding
energies of molecules and clusters or the band structure of solids.

The foundations of DFT were laid in 1964 by Hohenberg and Kohn in their seminal
paper [15], in which they proved that the ground state electron density n(r) can serve as a
basic variable containing all information about an N -electron system. The Hamiltonian
of a stationary system of such interacting electrons has the form Ĥ = T̂ + V̂ext + Ŵ ,
where T̂ = ∑N

i=1 p̂
2
i /2m is the kinetic energy operator, V̂ext = ∑N

i=1 vext(r̂i) characterizes
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the interaction of the electrons with all external potentials and Ŵ = ∑
i<j w(r̂i, r̂j) is the

electron-electron interaction.
The Hohenberg-Kohn theorem can be subsumed in two statements: First, for a given

electron-electron interaction Ŵ there is a one-to-one mapping between the external potential
vext (up to a physically irrelevant constant), the (non-degenerate) ground state |ψ0〉 resulting
from Schrödinger’s equation Ĥ|ψ0〉 = E0|ψ0〉 and the ground state density n(r). |ψ0〉 is a
unique functional of the ground state density, hence every ground state observable, and
in particular the ground state energy, is a density functional, too. Second, using the
Raleigh-Ritz variational principle one can obtain the exact ground state density and energy
corresponding to vext by minimizing the energy functional

E[n] = F [n] +
∫
vext(r)n(r)d3r. (2.1)

F [n] = 〈ψ[n]|T̂ + Ŵ |ψ[n]〉 is a universal functional, i.e., it is independent of vext(r). This
provides a simple and exact reformulation of Schrödinger’s equation. However, as Hohenberg
and Kohn noted already in 1964 [15]: “The major part of the complexities of the many-
electron problem are associated with the determination of the universal functional F [n].”

The most successful approach to determine F [n] was proposed in 1965 by Kohn and
Sham [16], who reformulated the energy functional of a system of N interacting electrons as

E[n] = Ts[n] + EH[n] + Eext[n] + Exc[n], (2.2)

where Ts[n] is the kinetic energy of a system of N non-interacting electrons. EH[n] is the
classical electrostatic Hartree energy

EH = e2

2

∫ ∫
n(r)n(r′)
|r − r′|

d3rd3r′ (2.3)

and Eext[n] describes the interaction between the electrons and the external potential

Eext[n] =
∫
vext(r)n(r)d3r. (2.4)

Exc[n], the exchange-correlation (xc) energy functional, is defined as consisting of every
contribution not treated by EH and Ts, i.e.,

Exc = T − Ts +W − EH. (2.5)

Here, T is the full kinetic energy of the interacting electron system and W is the electron-
electron interaction energy. Minimization of Eq. (2.2) with respect to nσ, the total spin
density, and comparison with the corresponding term for a system of N non-interacting
electrons leads to the same ground state density if the N non-interacting electrons are
subject to an effective, local, multiplicative potential

vKS
σ (r) = vext(r) + vH(r) + vxc,σ(r), (2.6)

in which vH is the Hartree potential vH = e2 ∫ n(r′)/|r − r′|d3r′ and vxc,σ = δExc/δnσ
the xc potential. Eq. (2.6) defines the so-called KS potential. Regarding the question of
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whether such a potential exists for all densities (v-representability problem) the reader is
referred to Ref. [17] and references therein. In most practically relevant cases the density
is v-representable. This means that one can calculate the ground state density n(r) of
the many-electron system in an external potential vext(r) by solving the Schrödinger-like
one-particle equations (

− h̄2

2m∇
2 + vKS

σ (r)
)
ϕiσ(r) = εiσϕiσ(r), (2.7)

and summing over all occupied KS orbitals, ϕiσ(r),

n(r) =
∑
σ=↑,↓

nσ(r) =
∑
σ=↑,↓

Nσ∑
i=1

fiσ|ϕiσ(r)|2. (2.8)

The sum over all occupation numbers fiσ yields the total number of electrons

∑
σ=↑,↓

Nσ∑
i=1

fiσ = N. (2.9)

Equations (2.6) – (2.8) constitute the KS equations, that have to be solved self-consistently
in most practical applications of DFT.

The KS equations are in principle an exact reformulation of the full interacting many-
body problem of quantum mechanics. However, all exchange and correlation effects that go
beyond the Hartree energy EH and the non-interacting kinetic energy Ts are by definition
(Eq. (2.5)) included in the xc energy Exc, which is in general not known exactly. The most
important approximations to Exc are discussed in the following section.

2.2 Exchange-correlation energy functionals

Approximations to the xc energy functional can roughly be divided into two groups: explicit
and implicit density functionals. Commonly used functional approximations of the first
kind are the local density approximation (LDA) and the generalized gradient approximation
(GGA). Functionals of the second group do not explicitly depend on the density but on
the orbitals, i.e., they possess an implicit dependence on the electron density by virtue
of the Hohenberg-Kohn theorem. Prominent examples are so-called hybrid functionals
and range-separated hybrid (RSH) functionals, meta-GGAs as well as the self-interaction
correction (SIC). A thorough discussion of the properties and limits of all functionals is
beyond the scope of this thesis. A comprehensive overview can be found in Ref. [18] and
references therein. Relevant approximations for the present work are described in the
following.



8 Chapter 2 — Theoretical and technical framework

The LDA1 is one of the most often used approximations to Exc and was introduced
already by Hohenberg and Kohn [15]. It is based on the simple idea that in a system in
which the electron density varies only slowly in space, exc, the xc energy per electron, is
approximately equal to ehom

xc in the homogeneous electron gas. One then obtains Exc by
integration of exc over space. The exchange contribution is exactly known to be

ELDA
x [n] = −3e2

4

( 3
π

)1/3 ∫
n(r)4/3d3r. (2.10)

The correlation part has been computed with high accuracy using Monte-Carlo methods
[19]. Many widely used LDA energy functionals, e.g., the ones by Vosko, Wilke and Nusair
[20], Perdew and Zunger [21] and Perdew and Wang [22], are based on parametrizations of
these early Monte-Carlo calculations extended by known limits and scaling laws derived
from the exact Ehom

c . The large number of systems for which the LDA leads to qualitatively
reasonable results2 is surprising taking into account that for most systems the assumption
of a nearly homogeneous electron density is an oversimplification. This can be rationalized
by introducing the concept of the xc hole nxc(r, r′) = ρ2(r, r′)/n(r)− n(r′) with ρ2(r, r′)
representing the electron pair density. The xc hole has to obey the sum rule∫

nxc(r, r′)d3r = −1. (2.11)

The LDA’s xc hole satisfies Eq. (2.11) even in rather inhomogeneous situations [23]. This
leads to a subtle error cancellation between the exchange and the correlation part of ELDA

xc .
A systematic way to improve on the LDA is to include not only information about the

electron density at each point r, but also on the rate of its spatial variation. Such GGA
functionals have the form

EGGA
xc [n] =

∫
f(n(r),∇n(r))d3r. (2.12)

The function f(n(r),∇n(r)) is constructed either by trying to satisfy as many exact
constraints of the exact xc energy functional as possible (leading, e.g., to one of the most
popular GGAs of Perdew, Burke and Ernzerhof (PBE) [24] or by fitting to large sets of
test molecules (e.g., BLYP, consisting of the exchange functional of Becke [25] and the
correlation functional of Lee, Yang and Parr [26]).

Although the LDA and the GGA perform satisfactorily in many practical calculations,
their failure in others is dramatic. This qualitatively incorrect behavior can in most cases be
traced back to one common source, the self-interaction error (SIE) [21], which is a problem
that was recognized already in Thomas-Fermi theory [27, 28], an ancestor of DFT. The
SIE is trivial to define in an one-electron system with density n1, in which there is no
electron-electron interaction. Here, the exact xc energy (potential) and the Hartree energy

1And the local spin density approximation (LSDA) for spin-polarized systems.
2Although being far from chemical accuracy, which would require an error of less than 0.04336 eV per

particle as compared to the experiment.
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(potential) have to cancel each other

EH[n1] + Exc[n1] = 0 (2.13)
vH[n1](r) + vxc[n1](r) = 0

by definition. An approximate functional must therefore satisfy Eq. (2.13) in order to be
free of one-electron self-interaction. This notion can be extended to many-electron systems
by identifying single electrons with KS orbital densities niσ = fiσ|ϕiσ|2. According to
Perdew and Zunger [21, 29] one can then define the one-electron SIE in a many-electron
system as

eiσ = EH[niσ] + Exc[niσ, 0]. (2.14)
If ∑

σ=↑,↓

Nσ∑
i=1

eiσ = 0 (2.15)

the approximate functional is considered free of one-electron self-interaction. This definition
suggests a straightforward way of correcting Eapprox

xc for self-interaction by simply subtracting
the erroneous terms from the approximate xc functional

ESIC
xc [n↑, n↓] = Eapprox

xc [n↑, n↓]−
∑
σ=↑,↓

Nσ∑
i=1

(EH[niσ] + Eapprox
xc [niσ, 0]). (2.16)

This so-called self-interaction correction (SIC) an example for an orbital-dependent, implicit
density functional. Two conceptual intricacies are associated with such functionals. First,
the functional derivative δExc/δnσ cannot be evaluated as straightforwardly as for explicit
density functionals. One way to deal with this problem and at the same time to stay within
the conceptual realm of KS DFT, is to use a functional derivative chain rule

vOEP
xc,σ = δExc[{ϕjτ}]

δnσ(r) (2.17)

=
∑
α=↑,↓

Nα∑
i=1

∫
δExc[{ϕjτ}]
δϕiα(r′)

δϕiα(r′)
δnσ(r) d

3r′ + c.c. (2.18)

=
∑

α,β=↑,↓

Nα∑
i=1

∫ ∫
δExc[{ϕjτ}]
δϕiα(r′)

δϕiα(r′)
δvKS
β (r′′)

δvKS
β (r′′)
δnσ(r) d3r′d3r′′ + c.c., (2.19)

where α, β, σ and τ denote the spin polarization and c.c. the complex conjugate. From this
expression one obtains the optimized effective potential (OEP) equation

Nσ∑
i=1

fiσ

∫
ϕ∗iσ(r′)[vOEP

xc,σ (r′)− uxc,iσ(r′)]GKS
iσ (r′, r)ϕiσ(r)d3r′ + c.c. = 0 (2.20)

in which GKS
iσ (r′, r) is the KS Green’s function

GKS
iσ (r′, r) =

∞∑
j=1
j 6=i

ϕjσ(r′)ϕ∗jσ(r)
εiσ − εjσ

(2.21)
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and uxc,iσ(r) an orbital specific potential

uxc,iσ(r) = 1
fiσϕ∗iσ(r)

δExc[{ϕjτ}]
δϕiσ(r) . (2.22)

The vxc,σ that solves Eq. (2.20) is called the optimized effective potential, as it yields the KS
orbitals that minimize the total energy. For practical applications, a full OEP calculation is
often computationally too demanding, as Eq. (2.20) is an integral equation and contains the
complete set of occupied and unoccupied KS eigenvalues. The approximation of Krieger, Li
and Iafrate (KLI) [30]

vKLI
xc,σ(r) = 1

2nσ(r)

Nσ∑
i=1
|ϕiσ(r)|2[uxc,iσ(r) + (v̄KLI

xc,iσ − ūxc,iσ)] + c.c. (2.23)

with

v̄KLI
xc,iσ =

∫
ϕ∗iσ(r′)vKLI

xc,σ(r′)ϕiσ(r′)d3r′ (2.24)

ūxc,iσ =
∫
ϕ∗iσ(r′)uxc,iσ(r′)ϕiσ(r′)d3r′ (2.25)

provides an alternative that reduces the computational effort, but can in many cases yield
results very close to those from a full OEP calculation [18].

The second intricacy of orbital-dependent functionals such as the SIC, is intimately
related to the quantum mechanical nature (indistinguishability) of the interacting many-
electron problem itself: One-electron orbitals are an artificial concept introduced through
the KS ansatz and the KS orbitals are in no way unique among other orbital sets that also
sum up to the correct ground state density. This unitary invariance problem means that
different OEP can be constructed depending on the chosen orbital set. A generalization
of the OEP method can be employed to deal with the unitary invariance problem via a
density-conserving unitary transformation of the KS orbitals [31]. A detailed discussion of
the OEP and approximations to it can be found in Ref. [17] and [18]. The ambiguity of the
one-electron orbital sets also directly affects the definition of a SIE in many-electron systems.
Attempts have been made to define a many-electron SIE. The issue will be discussed in
Sec. 4.2. Eq. (2.14) is useful even without carrying out an actual SIC calculation. It
provides a simple criterion for whether the KS eigenvalue spectrum resulting from a given
approximate xc functional is physically reliable (see discussion in Sec. 2.3 and a practical
example in Sec. 4.3) [32, 33].

A second class of orbital-dependent functionals are meta-GGAs. They contain the KS
kinetic energy density

τσ(r) = h̄2

2m

Nσ∑
i=1

fiσ|∇ϕiσ(r)|2 (2.26)

(and sometimes terms ∇2nσ) and improve in some respects upon semilocal functionals, e.g.,
they in principle can achieve absence of the self-correlation error. However, as complete
self-interaction absence is not guaranteed by meta-GGAs, they share conceptual difficulties
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with the LDA and GGA. An example for a meta-GGA relevant for the correct description
of the 2d-3d transition in small Au-cluster anions [34] is the one by Tao, Perdew, Staroverov
and Scuseria [35].

Hybrid functionals are among the most often used xc functional approximations and have
become a favorite tool of quantum chemistry. Such functionals are constructed of a fixed
fraction of exact exchange Eex

x as well as semilocal exchange Eapprox
x and correlation Eapprox

c
3.

The approach was first introduced in 1993 by Becke [36], who proposed a functional form

Ehyb
xc = bEex

x + (1− b)Eapprox
x + Eapprox

c , (2.27)

in which Eex
x denotes the Fock integral

Eex
x = −e

2

2
∑
σ=↑,↓

Nσ∑
i,j=1

fiσfjσ

∫ ∫ ϕ∗iσ(r)ϕ∗jσ(r′)ϕjσ(r)ϕiσ(r′)
|r − r′|

d3rd3r′. (2.28)

The parameter b is determined either by fitting to extensive test sets of molecules or
rationalized by virtue of the adiabatic connection formalism [37, 38]. An example for the
latter approach is the one-parameter hybrid PBE0, based on the PBE GGA [24] in which
b = 0.25 [39]. However, most of today’s hybrid functionals employ even more parameters,
the most prominent example being the 3-parameter B3LYP functional [40, 41], that contains
fractions of the semilocal Becke functional [25] as Eapprox

x , the GGA by Lee, Yang and Parr
[26] as Eapprox

c and the LDA parametrization by Vosko, Wilke and Nusair [20].
Finally, I want to mention the range-separated hybrids (RSHs). The underlying concept

of these functionals is to separate the electron-electron interaction into a long-range and a
short-range part via

1
|r − r′|

= erf(ω|r − r′|)
|r − r′|︸ ︷︷ ︸
long range

+ 1− erf(ω|r − r′|)
|r − r′|︸ ︷︷ ︸

short range

. (2.29)

The screening function is for numerical reasons often chosen as the error function and ω
is an adjustable parameter that determines at which length scale the short-range part of
Eq. (2.29) decays to zero and the long-range part becomes dominant. The long-range part
is given by the screened Fock integral, so that one preserves the advantages of employing
semilocal exchange at short range, while incorporating 100% of the non-local exact exchange
at long range and thus obtains the correct asymptotic behavior of the xc potential. Hence,
RSHs are particularly useful for the description of charge transfer excitations, but they can
also improve on ground state properties [42].

An example for such a functional is ωPBE, which is a RSH that models the exchange hole
of the PBE GGA at short range [43]. The range-separation parameter can be obtained in
different ways: One can empirically determine the value of ω that describes thermochemistry
or charge transfer excitations best. However, evidence suggests that in fact considerably

3Prior to their formal justification via the generalized KS framework, these functionals had been seen as
”hybrids” between DFT and Hartree-Fock.
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different range-separation parameters might be necessary depending on the particular
system and properties of interest. Another approach is therefore to tune ω for each system
in such a way that certain properties of the exact functional (such as Eq. (2.33) in Sec. 2.3)
are fulfilled [44].

Orbital-dependent functionals can be used in conjunction with the OEP method as
explained above. The widely used hybrids (and RSHs) are practically always implemented
in a way which leaves the grounds of the KS framework. This second approach is justified
by the observation that it is possible to formulate a so-called generalized KS approach
in which the interacting N -electron system is mapped onto another interacting auxiliary
system, which can, however, still be represented by a single Slater-determinant [45].

2.3 Interpretation of (generalized) Kohn-Sham eigenvalues

Given their status as merely auxiliary quantities within the KS framework, it might be
surprising that the KS eigenvalues should carry any physical meaning at all. However, the
success of DFT partly relies on the fact that in an overwhelmingly large number of systems
the eigenvalue spectra agree, apart from a shift of the complete spectrum, remarkably
well with experimentally obtained quasiparticle energies. In the early days of DFT this
agreement was regarded accidental. Later, Görling could show that KS eigenvalue differences
have in fact a well-defined physical meaning as excitation energies of zeroth order in the
electron-electron interaction [46]. The derivation is based on linking the interacting full
Hamiltonian to the KS Hamiltonian through

[T̂ + αŴ + V̂ α]|ψαn〉 = Eαn |ψαn〉. (2.30)

The coupling constant α creates a continuous (adiabatic) connection between the fully
interacting N -electron system with α = 1 and V̂ α=1 = V̂ext and the non-interacting KS
system with α = 0 and V̂ α=0 = vKS [37, 38]. Using Görling-Levy perturbation theory [47]
one can then expand Eαn in a Taylor series in α and show that excitation energies can
rigorously be gained from ground state DFT. In particular, the zeroth order term connects
the quasiparticle excitation energies to KS eigenvalue differences.

The practical usefulness of Görling’s finding of course depends on the quality of this
zeroth order approximation. Chong et al. could show that the energetically highest lying
occupied KS levels can be interpreted as approximate, but rather accurate, relaxed vertical
ionization potentials, provided that they are computed using a high-quality xc potential
[48]. Already earlier it was observed by Janak [49] that

∂E

∂fiσ
= εiσ, (2.31)

where fiσ is the (fractional) occupation of the i-th KS orbital. A rigorous physical meaning,
however, can only be assigned to the highest occupied KS eigenvalue εHOMO, which is
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identical to minus the ionization potential I(N) of the fully interacting physical system.
This was proved by Almbladh and von Barth [50] by deriving differential equations for the
quasiparticle amplitudes

Fn,σ(r) := 〈ψN−1
n |Ψ̂σ(r)|ψN0 〉, (2.32)

where Ψ̂σ(r) is the electron-field operator which annihilates an electron of spin σ at r and
ψNn are the N -electron eigenstates of the full many-body Hamiltonian. A closer look at the
asymptotic decay of this quasiparticle amplitude shows that the asymptotically leading
amplitude is obtained for n = 0 and that the density itself is dominated by F0,σ(r) for
|r| → ∞. By comparing this result to the asymptotic form of the KS density, which is
dominated by the most weakly decaying KS orbital, one arrives at the identity

εHOMO(N) = −I(N) = E(N)− E(N − 1). (2.33)

Similarly, one can show for the electron affinity A(N), i.e., the energy gained by bringing in
a particle from infinity that

εHOMO(N + 1) = −A(N) = E(N + 1)− E(N). (2.34)

E(N − 1), E(N) and E(N + 1) are the energies of the N − 1, N and N + 1 electron system,
respectively.

In practical calculations one often faces the problem of not knowing whether the used
xc functional describes the system of interest accurately or not. As a rule of thumb may
count, that in systems in which the upper occupied KS orbitals are localized on a similar
length scale, standard xc functionals result in eigenvalue spectra that are physically reliable
[21]. The SIE in such systems, that can be evaluated using Eq. (2.14), affects all relevant
orbitals in the same way and therefore only amounts to a common shift of the eigenvalue
spectrum [32]. In systems in which the upper orbitals differ in their degree of localization,
the spectrum will be distorted as a result of the SIE affecting the orbitals differently. In
this sense, evaluation of Eq. (2.14) can serve as a warning for systems that are strongly
affected by the SIE. Note, however, that the relation between orbital localization and the
SIE is not trivial [51].

The close connection between the SIE and the reliability of an eigenvalue spectrum
suggests that self-interaction free approaches (in the sense of Eq. (2.15)) should yield good
agreement with experiment in cases in which semilocal functionals fail and indeed this has
been shown for a number of systems (see e.g. Ref. [32]). However, these approaches are
numerically expensive, especially in cases in which finding the energetically most favorable
position of the nuclei poses additional problems (see Sec. 2.5). The commonly used hybrid
functionals can at least partly cancel the SIE by employing a fraction of exact exchange.

As mentioned earlier, hybrid functionals are typically implemented in a GKS framework.
The GKS equations (

− h̄2

2m∇
2 + vext(r) + vH([n], r) + vc,σ([n], b, r)

+bv̂ex
x,σ[n] + (1− b)vx,σ([n], r)

)
ϕiσ(r) = εGKS

iσ ϕiσ(r),
(2.35)
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in which

v̂ex
x,σ[n]ϕiσ(r) = −e2 ∑

σ=↑,↓

Nσ∑
j=1

∫ ϕjσ(r)ϕ∗jσ(r′)
|r − r′|

ϕiσ(r′)d3r′ (2.36)

denotes the non-local Fock operator, are by construction exact, just as the KS equations.
The resulting eigenvalues εGKS

iσ differ from the exact KS eigenvalues by

b∆vx,σ,i = b〈ϕiσ(r)|v̂ex
x,σ[n]− vx,σ([n], r)|ϕiσ(r)〉, (2.37)

if one neglects differences in the KS and GKS orbitals and the correlation potential [45].
As ∆vx,N = 0 for the highest occupied GKS eigenvalue, the relation εGKS

HOMO = −I(N) holds
also for the GKS case. There is again no such equality for all the other GKS eigenvalues.
However, one can show that including a fraction of the non-local exchange mimics a partial
self-interaction correction [52]. Consequently, GKS eigenvalues agree well with experimental
results for many cases in which semilocal functionals fail.

2.4 Pseudopotentials

The basic idea of replacing the strong Coulomb potential of the nucleus and the screening
effect of the tightly bound core electrons by an effective core potential (commonly refered
to as pseudopotential), has its roots in the simple notion that only the valence electrons of
an atom determine its chemical properties.

The approach was originally introduced by Fermi when he studied low energy electron
scattering from atoms [53]. In fact, the aim of the pseudopotential construction is to find an
effective potential that mimics the scattering properties of nucleus and core electrons reliably
over a certain energy range. The degrees of freedom of pseudopotential generation then allow
to devise them in such a way as to minimize the computational effort. Firstly, by reducing the
number of electrons that have to be considered explicitly in the DFT calculation. Secondly,
because pseudopotentials allow the numerical description of potentials and orbitals on much
coarser grids or with fewer plane wave components than would be necessary if the highly
oscillatory structure of the orbitals in the core-region had to be represented completely. In
the present thesis pseudopotentials enter the stage at yet another point. When one deals
with heavy-element transition metal compounds such as Au and Pt, relativistic effects such
as spin-orbit coupling and the relativistic mass increase of electrons in the core region are
crucial for the accurate description of the electronic, and thus also the geometric structure
of the compounds [54]. Pseudopotentials offer ways in which these effects can be accounted
for implicitly.

An important concept underlying most pseudopotential generation schemes is the
frozen-core approximation: The core states, evaluated in an all-electron atomic reference
calculation, are assumed not to change if in a different environment, i.e., in a molecule or
solid. For this reason the radius of the core region rc is a crucial parameter determining
transferability and accuracy of the pseudopotential.
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2.4.1 Norm-conserving pseudopotentials

The spirit of norm-conservation is to start the construction of the pseudopotential from the
all-electron orbitals that stem from a self-consistent solution of the radial KS equation4 (for
a spin-unpolarized case)(

− h̄2

2m
d2

dr2 + h̄2l(l + 1)
2mr2 + vKS([n], r)

)
rRil(r) = εilrRil(r), (2.38)

in which rRil = ϕil and l denotes the angular momentum quantum number. The pseudopo-
tential has to fulfill four properties to be considered norm-conserving: First, all-electron (AE)
and pseudo (PP) valence eigenvalues must agree for a chosen atomic reference configuration.
Second, all-electron and pseudo orbitals agree beyond a chosen core radius rc. Third, the
integrated charge inside rc of the all-electron and the pseudo charge densities agree for each
valence state ∫ rc

0
|RPP

il (r)|2r2dr =
∫ rc

0
|RAE

il |2r2dr, (2.39)

as this ensures that the total charge in the core region is conserved. And last, the logarithmic
derivatives of the all-electron and the pseudo orbitals and their first energy derivatives
agree for r > rc [56]. The freedom that is left in constructing the pseudopotential can then
be used to make it as smooth as possible at the same time ensuring transferability to as
many different chemical environments as possible. Different schemes for pseudopotential
generation were proposed, e.g., by Bachelet, Hamann and Schlüter [57] and by Troullier
and Martins [58].

By inverting the radial KS equations one then obtains the screened pseudopotential
from the pseudo wavefunction

vPP
screened,l = εl −

h̄2

2m

(
l(l + 1)
r2 − 1

rRPP
l (r)

d2

dr2 [rRPP
l (r)]

)
. (2.40)

In the last step the screening of the valence electrons has to be removed to obtain an
unscreened (”bare”) ionic pseudopotential

vPP
ionic,l(r) = vPP

screened,l(r)− vPP
H [nval](r)− vPP

xc [nval(r)] (2.41)

The resulting pseudopotential differs for every angular momentum component l, i.e., the
effective external potential in the KS equations is not local anymore. A further transforma-
tion suggested by Kleinman and Bylander brings Eq. (2.41) in a separable non-local form
that reduces computation time and storage space. Troullier-Martins pseudopotentials in
Kleinman-Bylander form are used throughout this work for calculations on real-space grids
using a local version of the PARSEC program package [59], e.g., for the calculation of the
SIE of Mn-doped Si clusters in Sec. 4.3.

4If relativistic effects are to be included one has to use Dirac’s formulation of the kinetic energy. The
Schrödinger-like Eq. (2.38) is then replaced by a pair of coupled equations for minor and major orbital
components, which outside the core radius reduce approximately to a Schrödinger-type equation for the
major orbital component [55].
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A final remark on norm-conserving pseudopotentials concerns their applicability to
spin-polarized systems. In Eq. (2.41), it is implicitly assumed that core and valence charge
density do not significantly overlap and that the xc potential can thus be written as

vxc,σ[nval + ncore, ξ] = (vxc,σ[nval + ncore, ξ]− vxc,σ[nval, ξval]) + vxc,σ[nval, ξval], (2.42)

where
ξ(r) =

nval
↑ (r)− nval

↓ (r)
nval(r) + ncore(r) (2.43)

and
ξval(r) =

nval
↑ (r)− nval

↓ (r)
nval
↑ (r) + nval

↓ (r)
. (2.44)

Since vxc,σ is a non-linear function of the charge density the ionic pseudopotential will
depend on the valence configuration. This feature is particularly worrisome for magnetic
elements, whose spin density distribution is highly sensitive to their environment. An ionic
pseudopotential depending on the valence charge density would thus be not transferable
from the atomic to a condensed matter case. A straightforward solution to this problem was
suggested by Louie, Froyen and Cohen by introducing a so-called non-linear core correction

vPP
ionic,l,σ(r) = vPP

screened,l,σ(r)− vPP
H [nval](r)− vPP

xc,σ[nval + ncore, ξ(r)](r) (2.45)

The resulting pseudopotential is essentially independent of spin polarization and reference
atomic configuration and thus highly transferable [60].

The remaining drawback is connected to the construction of norm-conserving pseudopo-
tentials for xc functionals containing exact exchange. In these cases the density in the core
region affects the exchange potential in the valence region via the non-local xc potential. A
spurious long-range tail in the ionic pseudopotential is the consequence which can cause
erroneous bond lengths and binding energies. The issue is discussed in detail in Ref. [61] as
well as in Ref. [18] and references therein.

2.4.2 Energy-adjusted pseudopotentials

Energy-adjusted pseudopotentials were used to treat Au and Pt (Pd) in all calculations
using the TURBOMOLE program suite [62] (see Sec. 3.2 – 3.4.1). Here, an atomic model
potential of the form

vPP(ri) = −Q
ri

+
∑
l

∑
k

Alk exp(−αlkr2
i )Pl (2.46)

Pl =
∑
m

|lm〉〈lm|,

where Q is the charge of the nucleus, ri the radial distance of the electrons from the nucleus
and lm are the angular momentum quantum numbers, is used [63]. The pseudopotential
parameters Alk and αlk are adjusted to total valence energies from numerical all-electron
calculations. Relativistic effects are implicitly accounted for by fitting the pseudopotential
parameters to the results of relativistic all-electron calculations. For optimal accuracy 18
(19) valence electrons have to be considered explicitly for Pt and Pd (Au).
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2.4.3 Projector augmented waves

A natural choice of basis function for calculations of periodic solids are plane waves. These
are often combined with the so-called projector augmented wave (PAW) formalism [64–66].
This method allows to remove the highly oscillatory core states from the calculation of
energies, densities, etc. and at the same time keeping information about the full Bloch
wavefunction in the core and valence region.

The Bloch functions Ψnk(r) are converted into smooth functions Ψ̃nk(r) by virtue of a
linear transformation T = 1+ T0, that is unity everywhere except in spherical regions with
radius rac around each nucleus denoted by a. Here k and n are the wave vector and the
band index, respectively.

The transformation operator T0 can be represented by three sets of basis functions:
the all-electron orbitals ϕai , which are obtained by solving the radial Schrödinger equation,
smooth pseudo orbitals ϕ̃ai that have to equal the all-electron orbitals outside the core
region and so called projector functions p̃ai :

T0 =
∑
i,a

[ϕai (r −Ra)− ϕ̃ai (r −Ra)] 〈p̃ai |. (2.47)

Here Ra denotes the position of the nuclei. The projector functions have to vanish outside
the core region and fulfill 〈p̃ai |ϕ̃aj 〉 = δij [64]. The transformation between all-electron and
pseudo Bloch functions Ψ̃nk(r) can be expressed as

Ψnk = Ψ̃nk +
∑
i,a

cai [ϕai (r −Ra)− ϕ̃ai (r −Ra)] , (2.48)

where
Ψ̃nk =

∑
i,a

cai ϕ̃
a
i (2.49)

and the expansion coefficients fulfill

cai = 〈p̃ai |Ψ̃nk〉. (2.50)

With these definitions all operators can now be expressed as sums of three contributions.
The electron density, e.g., is n(r) = ñ(r) + n1(r)− ñ1(r). Here ñ(r) is the pseudo density,
which can be expressed as a plane wave expansion throughout the unit cell

ñ(r) =
∑
nk
fnk|Ψ̃nk(r)|2, (2.51)

where fnk are the respective occupation numbers. n1(r) and ñ1(r) cancel each other
for r > rac and are localized around each nucleus: n1(r) = ∑

a n
a(r −Ra) and ñ1(r) =∑

a ñ
a(r −Ra), where

na(r) =
∑
nk,i,j

fnk〈Ψ̃nk|p̃ai 〉〈p̃aj |Ψ̃nk〉(ϕai (r))∗ϕaj (r) (2.52)
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and
ña(r) =

∑
nk,i,j

fnk〈Ψ̃nk|p̃ai 〉〈p̃aj |Ψ̃nk〉(ϕ̃ai (r))∗ϕ̃aj (r). (2.53)

Similar expressions can be derived for other quantities. See, e.g., Ref. [65], for a detailed
derivation of the KS Hamiltonian within the PAW formalism and methods for constructing
the basis and projector functions.

Plane waves in conjunction with PAW were used to compute activation barriers for
adatom diffusion on Au- and Pt-surfaces in Sec. 3.4.3 with the Vienna-Ab-inito-Simulation-
Package (VASP) [67].

2.5 Methods of geometry optimization

Probably the most infamous characteristic of atomic clusters is that the search for their
ground state geometric structure somewhat resembles searching a needle in a haystack. The
potential energy surface even of comparably small clusters can exhibit hundreds of local
minima, a situation additionally complicated for alloy clusters, in which for every possible
geometric arrangement of the M cluster atoms of type A and B there are

PA,B = M !
MA!MB! (2.54)

possible arrangements of the MA A- and the MB = M −MA B-type atoms. Clusters
with the same geometry but different arrangements of atom types A and B are called
homotops. Local geometry optimizations starting from structures either randomly generated
or stemming from ”educated guesses”5 can yield the desired ground state. Most often,
however, one needs to scan a much larger part of the cluster potential energy surface in an
unbiased as possible way.

Optimization techniques accomplishing this task are called global optimization algorithms.
Note however, that although a global optimization may in principle yield the correct ground
state, in practice there is no way to ensure its success, but comparison with experimental
data. Mn-doped Si-clusters, a system discussed in Chap. 4, are an example.

In the following, two methods of geometry optimization, namely simulated annealing and
the ”big bang” method, are presented. Additionally, an algorithm for searching transition
states, the Nudged Elastic Band (NEB) method, is discussed.

2.5.1 Simulated annealing

The simulated annealing technique has a very descriptive equivalent in real-world physics.
Consider, e.g., the growth of a single crystal from a melt, which is achieved by careful

5This could be highly symmetric geometries, such as icosahedra, tetrahedra, octahedra, etc. Such
polyhedra indeed turn out to be the ground state structure of many transition metal clusters, e.g., Au20
which has tetrahedral geometry [68].
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annealing. The material is melted and subsequently the temperature is decreased very
slowly, especially near the freezing point of the material. This procedure prevents the
substance from being trapped in metastable states, i.e., forming a glass or a crystal with a
large number of defects.

A global optimization scheme inspired by this process was proposed in 1983 by Kirk-
patrick, Gelatt and Vecchi [69] and two years later by Černý [70]. It can be applied to a
variety of optimization problems, even if the concept of temperature is not immediately
applicable.

For the optimization of cluster structures, temperature is defined via the equipartition
theorem

T = 2Ekin
kBNf

, (2.55)

in which kB is the Boltzmann constant, Nf is the number of degrees of freedom of the system
and Ekin is the average kinetic energy of the atoms. In this work (using the TURBOMOLE
program package), the energy of the electronic system as well as its gradients were calculated
in a DFT framework. A Leapfrog Verlet algorithm [71] was used to compute the dynamical
evolution of the atomic nuclei Ra according to Newton’s equations

ma d
2

dt2
Ra = −∇a

[
EKS ({Ra})

]
, (2.56)

with EKS being the energy resulting from a self-consistent solution of the KS equations for
a set of fixed atomic positions Ra. Starting with randomly generated velocities that are
equivalent to some initial temperature which lies well beyond the system’s melting point,
the temperature is then reduced slowly, e.g., every 100 time steps by a factor of 0.95, until
convergence of the geometry is reached. Although simulated annealing in principle allows
to find the global minimum structure in the limit of infinitely slow cooling, in practice many
different starting geometries and temperatures have to be tested to avoid trapping in local
energy minima.

2.5.2 The ”Big Bang” search

The optimization algorithm with the eccentric name ”big bang” search represents a simple
and unbiased method to scan the phase space of a cluster for its global minimum [72].
A large number of random configurations of the M cluster atoms is created in a volume
highly compressed compared to the usual molar volume of the system. These geometries
are then relaxed using a standard local gradient-based optimization procedure. If the
volume of the initial configuration is chosen appropriately, the clusters will explode upon
relaxation, but subsequently relax into a minimum of the potential energy surface. This
method was e.g. used to determine the ground state structures of small neutral and cationic
silicon [72] and copper clusters [73]. In this work a modification of the ”big bang” search
was used for searching the ground state structures presented in Sec. 4.3, in which instead
of hundreds, only a few configurations were created randomly in a compressed volume.
These were then used as the starting point for a molecular dynamics (MD) simulation at a
moderate temperature of 300 K. The lowest energy geometries from these simulations were
subsequently locally relaxed using a standard gradient-based optimization algorithm.
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2.5.3 The Nudged Elastic Band method

A different optimization technique has to be applied if one is not interested in finding
the global minimum of a system, but rather the minimum energy path (MEP) between
two local minima. Examples are chemical reactions or diffusion events, e.g., on surfaces.
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Figure 2.1: Contour plot of the potential energy
surface of a simple model adapted from Ref. [74].
The dashed line is a linear interpolation between
initial and final state of the system. The solid
line represents the elastic band that is close to
convergence to the MEP.

The height of the saddle point between these local minima can then be used to determine
reaction rates using transition state theory [75]. For the so-called Elastic Band methods
[74, 76], inital and final state of the reaction of interest have to be known. Fig. 2.1 shows
an illustrative example.

Plotted are the contours of the potential energy surface of a simple model potential,
that can, e.g., be used to describe an activated process (a chemical reaction) coupled to a
medium (a solvent in which the reaction takes place). For details of this model that are
of no interest here, I refer the reader to Ref. [74, 77]. The model illustrates a potential
energy surface exhibiting two local minima and one saddle point between them. A string of
images (black spheres), i.e., geometrical configurations, denoted by {Ri} with i = 0...N ,
connected by springs with spring constant ki is used to describe the path. Typically a linear
interpolation between inital and final state is sufficient as a first guess of the MEP.

The force acting on image i is

F i = −∇E(Ri) + F s
i , (2.57)

with the spring force

F s
i = ki+1(Ri+1 −Ri)− ki(Ri −Ri−1). (2.58)

This ”plain” elastic band method leads to some problems. If the spring constant is too high,
i.e., the elastic band to stiff, it might cut a corner and thus might not be able to converge
to the true MEP. For smaller spring constants the elastic band can approach the MEP,
but in the crucial region around the saddle point the resolution of the elastic band can be
too low, because images in this region tend to slide away from the saddle point due to the
component of ∇E(Ri) in the direction of the path.
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i-1

i

i+1

Figure 2.2: Forces acting on an
image along the NEB. The re-
sulting force FNEB

i pulls the im-
age in the direction of the MEP.

A simple force projection scheme, which is dubbed ”nudg-
ing” the path, solves these problems. In this scheme, forces
due to the potential only act perpendicular to the band,
while spring forces act parallel to the band. This means that
the total energy acting on image i in the NEB is

FNEB
i = F⊥i + F ‖i (2.59)
F⊥i = −∇E(Ri)− (−∇E(Ri) · τ̂ iτ̂ i) (2.60)

F
‖
i = k(|Ri+1 −Ri|)− |Ri −Ri−1|)τ̂ i, (2.61)

where k is the spring constant and τ̂ i the tangent along the
path.

Fig. 2.2 illustrates the forces acting on each image along
the NEB. F i denotes the force due to the potential. The
component F⊥i is obtained by subtracting out the compo-
nent parallel to the tangent τ̂ i. Nudging ensures that the
resolution of the elastic band in the vicinity of a saddle point

is better than for plain elastic band methods as described above. However, if the number of
images is small, the NEB method can fail to locate the saddle point.

In cases where one needs to find the highest saddle point between R0 and RN , e.g., to
determine activation barriers, the NEB method can be modified in such a way that the
image l highest in energy does not feel any spring forces and climbs to the saddle point via
a reflection in the force along the tangent

FCI
l = F l − 2F l · τ̂ lτ̂ l. (2.62)

Next to this so-called climbing-image NEB (CI-NEB) other variations of the method exist.
For a detailed comparison of these methods as well as a range of optimization algorithms
for updating the forces in NEB and CI-NEB the reader is referred to Ref. [74].





3

The bimetallic effect in Au-Pt and
Au-Pd nanoalloys

3.1 Au-Pt and Au-Pd nanoalloys in catalysis

Alloying of two (or more) elements is a promising route to enhance the catalytic activity
of transition metal NP and improve their element-specific selectivity [78]. Loosely based
on Aristotle’s bon mot that “the whole is greater than the sum of its parts”, these effects
are frequently dubbed synergistic. Au-Pt nanoalloys are a prominent example of a system
which exhibits increased turnover rates in a variety of oxidation reactions [79–81] as
well as enticing properties in electrocatalytic applications [82–90] compared to their pure
counterparts. Au-Pt nanoalloys are beneficial because they reduce the well-known problem
of ”poisoning” of Pt catalyst anodes used in direct methanol fuel cells with strongly adsorbed
intermediate CO-species. Furthermore, increased turnover rates allow to carry out reactions
at room temperature and without possibly toxic solvents, thus causing less impact on the
environment. Finally, by changing the Au-Pt composition one can tune their catalytic
properties which makes Au-Pt nanoalloys potentially useful for many different catalytic
reactions. When looking deeper into these problems, several puzzles appear.

The first puzzle is the miscibility of Au and Pt on the nanoscale. It is well known that
the bulk phase diagram of Au-Pt alloys exhibits a large miscibility gap for a wide range of
Au-Pt compositions. In going to the nanoscale it has been reported that Au-Pt NP can
form true solid solutions. Such Au-Pt nanoalloys have, e.g., been synthesized in thermally
evaporated fatty amine films, where they were alloyed at low temperature [91], in spherical
polyelectrolyte brushes (SPBs) [80] and in ionic liquids by a sputter deposition technique
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[92]. Other groups have obtained stable Au-Pt nanoalloys by capping them with thiolates
[82, 93] or by supporting them on silica [79].

core-shell random layered

Figure 3.1: Three possible miscibility
patterns in bimetallic NP. From left to
right: core-shell, randomly mixed and lay-
ered. Other patterns such as several lay-
ers/shells or an ordered solid solution are
possible.

Theory, in contrast, consistently predicts a
Aushell-Ptcore mixing pattern as energetically most
favorable [94–97]. An illustration of different mixing
patterns in NP is given in Fig. 3.1.

Theoretical studies of clusters in the experi-
mentally relevant size range of several hundred up
to thousands of atoms have been based on semi-
empirical MD simulations and were mostly con-
cerned with the melting behaviour of the Au-Pt
NP [98–101]. A global geometry optimization using
a genetic algorithm with a semiempirical Gupta-
many-body potential of Au-Pt clusters with 2–100

atoms has been performed by Logsdail et al. [102]. First-principles DFT studies existed,
up to the beginning of this work, only for very small clusters with 2–13 atoms [103, 104].
However, more recent studies on larger clusters (including one that will briefly be presented
in Sec. 3.2), have confirmed that Au-Pt NP prefer a core-shell mixing pattern [94–97]. This
seeming discrepancy of theory and experiment is subject of Sec. 3.3.

The second Au-Pt nanoalloy puzzle is their enhanced catalytic activity as compared to
their pure counterparts. Considering the known bulk electronic properties of Pt and Au1

it is not per se clear, why a combination of Pt and Au should lead to enhanced catalytic
activity at all (see also Sec. 3.4.1). Additionally, while it is known how the electronic
structure of Au changes upon going from the bulk to small NP [2], similar insights into the
electronic structure of Au-Pt nanoalloys are rare. Explanations for the special properties of
Au-Pt nanoalloys have been attempted in several studies, mainly concentrating on the local
electronic structure of Pt [85, 95, 104, 106]. A detailed understanding of the concurrence of
Au and Pt leading to favorable catalytic properties in a variety of different reactions, i.e.,
independent of the type of support or matrix the NP are immobilized in, possible solvents
and different reaction temperatures, is lacking. Puzzle number two will be subject of Sec.
3.4.

Although elements from the Pt-group are chemically similar, the above matters are
slightly different for Au-Pd nanoalloys. The structural characterization of Au-Pd NP is
much easier as compared to Au-Pt NP, as Au and Pd’s atomic numbers are sufficiently
different to allow for the use of high-resolution techniques, e.g., high-angle-annular-dark-field
transmission electron microscopy [107]. Synergistic effects have been observed for Au-Pd
NP catalysts in a variety of reactions. Two recent examples are Au-Pd nanoalloys used for
electrocatalytic H2O2 production [108] and for solvent-free oxidation of primary carbon-
hydrogen bonds [107]. As the following sections will focus primarily on Au-Pt nanoalloys, I
refer the reader to Ref. [78] and references therein, for a summary of studies in which a
synergistic effect of Au-Pd catalysts was observed. Insights into the electronic structure of
Au-Pd nanoalloys and their impact on Au-Pd catalysis are discussed in Sec. 3.4.1.

1Presented in a nutshell in “Why gold is the noblest of all metals” by Hammer et al. in Ref. [105].
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3.2 Geometric structure and mixing patterns of Au-Pt nanoalloys

This section gives a short summary of results that are discussed in detail in Ref. [109]. Most
of the nanoalloy properties that will be identified in the following sections as being favorable
for catalytic activity are to a large extend independent of the exact geometric structure of
the clusters. Still, energetically low-lying Au-Pt isomers are a well-chosen starting point for
the study of these properties. In combined efforts of theory and experiment, the ground
state structure of many pure neutral and charged Au clusters has been determined. A
prominent example are Au20 and Au−20, whose ground state structure is a regular tetrahedron
as revealed by gas phase infrared spectroscopy [110] and photoelectron spectroscopy [68].
Au20 is an excellent toy model for the present study as it represents a cutout of the fcc
lattice in which both bulk Au and Pt crystallize. Furthermore, many of the experimentally
observed Au-Pt nanoalloys have been shown to be largely faceted and bulk-like (e.g. [80]).

Figure 3.2: There are three
symmetry-inequivalent ways
how to replace one Au atom in
the Au20 tetrahedron by a Pt
atom.

By systematically replacing Au by Pt atoms in Au20 one
finds that the energetically lowest lying homotop is always
that in which Pt is as highly coordinated as possible. In
going from Au20 to Au19Pt1, as illustrated in Fig. 3.2, the
energetically lowest lying homotop is the one in which Pt
occupies a position in the middle of one of the four facets.
As a result of this growth pattern a AushellPtcore structure
emerges naturally. That the core-shell mixing pattern is not a
mere artifact was tested by comparing homotops and isomers
with fixed Au-Pt composition especially for structural motifs
other than the rather special tetrahedral structure as well
as for larger clusters. The stability of a variety of structures
was tested using simulated annealing (see Sec. 2.5). In
these simulations the clusters were heated to a temperature
of 600 K and subsequently slowly annealed. Importantly,
the core-shell mixing pattern remains stable throughout the
entire simulation and can therefore be regarded as being stable even at elevated temperatures.

Fig. 3.3 shows, as an example, different Au20Pt20 isomers from A to F with increasing
total energy. Note that even a complete segregation of the Au and the Pt component
(C and D) is energetically more favorable than the random mixing pattern (E and F).
Computational details on the geometry optimization and the accuracy of the used xc
functional and basis sets as well as structures of tetrahedral and amorphous AunPt20−n
clusters can be found in Ref. [109] and [94]. In this work, Au-Pt NP with ≈ 1000 valence
electrons, i.e., 60-atom clusters, were the largest systems for which full local geometry
optimizations were performed. The Gupta potential based Au30Pt30 structure [102] was
used as a starting point for these calculations.

However, considering that experimentally relevant nanocatalysts range between sizes of
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1 and 4 nm, we need even larger systems to exclude that the observed effects are only due
to the comparably small size of the clusters.

A B C

D E F

Figure 3.3: Structures are named after the
geometry that served as a starting point of
the geomtry optimization either “Gupta”
[102] or “Sutton Chen” [111]. A: Gupta
core-shell, B: Sutton-Chen core-shell, C:
Sutton-Chen layered, D: Gupta layered, E:
Gupta random, F: Sutton-Chen random.

Two strategies were used to overcome the com-
putational limitations that first principles DFT cal-
culations face for systems with significantly more
than 1000 valence electrons. Firstly, we constructed
truncated octahedral clusters with closed atomic
shells, i.e., with 38, 201, 586 and 1289 atoms as illus-
trated in Fig. 3.4 and optimized them in empirical
MD simulations. These clusters are, analogously to
Au20, cutouts of the fcc lattice and are used in the
studies discussed in Sec. 3.3 and 3.4. Clusters with
regular polyhedral structures and closed atomic
shells are sometimes called “magic”, in analogy to
the magic electron numbers that were discovered
by Knight et al. in 1984 in sodium clusters [112].

This seminal discovery triggered the development of cluster physics much beyond the realm
of the simple spherical jellium model which was used to explain the abundance of sodium
clusters containing 2, 8, 20, 40,... atoms. Electronic shell closure effects within the jellium
model are responsible for the stability of these cluster sizes in the simple alkali metals and
even in Au clusters, as their 6s states form a good free electron gas [2].

1 nm 2 nm 3 nm
4 nm

Figure 3.4: Truncated octahedra with
(from left to right) 38, 201, 586 and 1289
atoms. These atomic numbers are called
magic, because they correspond to clusters
having only closed shells of atoms. The
approximate diameters of these clusters
are 1, 2, 3 and 4 nm.

For larger clusters the electronic shell closure
effect is superimposed by the closure of atomic
shells, a prominent example again being sodium
clusters that exhibit icosahedral shell closures [113].
In sodium clusters with a few tens of atoms, elec-
tronic and ionic shell closure effects work together
in determining the structure of the clusters, while
for larger clusters, starting with Na55, ionic shell
closure effects win over electronic ones resulting in
near-ly spherical clusters [114]. However, I want to
stress that truncated octahedral structures might
not be a structural motif found in smaller Au clus-
ters. The important point is that they are faceted
and fcc-bulk-like, which makes them a valuable model for the catalysts observed experimen-
tally.

A second approach to catalysis on Au-Pt NP is to model them as periodic surface slabs.
The motivation for this is twofold: Firstly, much of the catalytic activity of NP can be
attributed to their high surface to volume ratio. Secondly, a synergistic effect of Au and Pt
has also been observed for bimetallic surfaces [115]. Au-Pt surfaces are studied in Sec. 3.4.

In summary, the following Au-Pt structures are used in the present thesis to determine
structural and electronic properties of Au-Pt systems: 20-atom tetrahedral and amorphous
low-energy isomers, 40-atom and 60-atom structures based on empirical potentials and fully
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optimized using DFT, truncated octahedral model structures with 38, 201, 586 and 1289
atoms for which different arrangements of Au and Pt, e.g., in core-shell and random mixing
patterns can be constructed, and finally bimetallic surface slabs.

3.3 Au-Pt alloys and Vegard’s law on the nanoscale

All results of this section are published in Ref. [116]. In the previous two sections I discussed
that first-principles DFT calculations confirm that low-energy structures of free Au-Pt
clusters indeed exhibit an AushellPtcore mixing pattern and thus confirm the results of
semi-empirical MD simulations mentioned in Sec. 3.1. The seeming discrepancy between
theory (core-shell) and experiment (solid solution) must thus be searched for elsewhere.

Figure 3.5: A sketch of the first two
Bragg peaks as typically observed in
XRD measurements on Au-Pt NP.
From these diffraction patterns it can
presumably be inferred that the sys-
tem under study (blue line) is a true
solid solution. The arrows indicate
the position of the first Bragg peak.
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The next step is to understand the assumptions that underlie the experimental charac-
terization of Au-Pt NP. A prominent characterization method is the use of x-ray diffraction
(XRD) techniques. The resulting diffraction patterns are typically analyzed as sketched
in Fig. 3.5. The orange and black lines indicate the first two Bragg peaks of pure Au and
pure Pt NP as observed in small angle x-ray scattering experiments. These peaks can
be indexed into an fcc-type lattice. For each set of Miller indices (hkl) one can then use
Bragg’s equation a = λ

√
h2+k2+l2
2 sin θ to determine a lattice parameter a from the scattering

angle θ. Here, λ is the wave length of the incoming x-rays.
The same can be done for the diffraction pattern of the bimetallic NP. Additionally,

depending on the experimental resolution, one can use the peak shape to determine, whether
the system of interest shows any sign of demixing of Au and Pt (in which case one would
expect distinct peaks for the Au- and the Pt-phase) or whether it forms a real alloy (only
one clear peak). The blue line in Fig. 3.5 would, following this reasoning, belong to a
randomly mixed Au-Pt NP.

Bulk alloys often obey Vegard’s law [117], which states that the lattice parameter of
a two-component alloy can be determined by linearly interpolating between the lattice
parameters of the two components that form the alloy. Hence in an alloy that consists
of 50% of both elements, the average lattice parameter would be just the average of the
lattice parameters of both pure crystals. XRD characterization now reveals that the lattice
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parameter of Au-Pt NP goes linearly with the Au-Pt ratio as well. This finding is taken as
evidence that Au-Pt NP form true alloys (see, e.g., Ref. [80, 93]).

The ”Vegard-analysis” thus assumes firstly that a phase separation must be visible in
the diffraction pattern, secondly that Vegard’s law is valid and can be used to determine
the composition of the alloy and thirdly that Vegard’s law is only valid for randomly mixed
alloys. By simulating the XRD patterns of pure Au and Pt, as well as of randomly mixed
and core-shell NP one can thus test the validity of these assumptions.

The scattering intensity I of an ensemble of atoms is given by Debye’s equation

I =
∑
m

∑
n

fmfn
sin kRmn
kRmn

, (3.1)

where fn and fm are the form factors of atoms n and m, Rmn = |Rm −Rn| is the distance
of two atoms at positions Rm and Rn and k = 4π sin θ/λ is the wave number.

Rmn

2θ

Figure 3.6: A sketch of the scat-
tering of light at an ensemble of
randomly oriented atoms, where
the difference vector Rmn =
Rm −Rn is allowed to take all
orientations in space, i.e., all po-
sitions on the black circle with
equal probability (adapted from
[118]).

The general scattering equation (3.1) for atoms which are
randomly oriented in space is easily derived by considering
that one obtains the scattered x-ray intensity by summing
over the scattering amplitudes of x-rays scattered by different
atoms

I =
∑
m

fme
(2πi/λ)(s−s0)Rm

∑
n

fne
(−2πi/λ)(s−s0)Rn (3.2)

=
∑
m

∑
n

fmfne
(2πi/λ)(s−s0)Rmn ,

where s and s0 are the directions of incoming and outgoing
x-rays, as sketched in Fig. 3.6.

Eq. (3.2) is of course valid for scattering on any ensemble
of atoms. We now assume that this ensemble takes all
orientations in space with equal probability, i.e., that Rmn

ends at all points of the sphere sketched in Fig. 3.6 (in 2d)
with equal probability. The spatial average of the exponential
term 〈e2πi/λ(s−s0)Rmn〉 can with k = 4π sin θ/λ and (s −
s0)Rmn = 2 sin θRmn cosφ be written as

〈eikRmn cosφ〉 = 1
4πR2

mn

∫
dAeikRmn cosφ

= 1
4πR2

mn

∫ 2π

0
dϕ

∫ π

0
dφR2

mn sinφeikRmn cosφ

= sin kRmn
kRmn

,

and leads to Debye’s scattering equation 3.1.
Additionally, temperature effects that cause atomic vibrations independent from each

other could be taken into account by including a Debye-Waller factor [119, 120] in the Debye
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Table 3.1: Average bond lengths and
their standard deviations for core-shell
and random Au22Pt38 (37% Au) as
obtained from DFT and MD optimiza-
tion.

DFT Au-Au [Å] Au-Pt [Å] Pt-Pt [Å]
core-shell 2.88 ± 0.03 2.85 ± 0.03 2.76 ± 0.05
random 2.90 ± 0.05 2.82 ± 0.06 2.72 ± 0.06

MD Au-Au [Å] Au-Pt [Å] Pt-Pt [Å]
core-shell 2.74 ± 0.03 2.70 ± 0.04 2.69± 0.04
random 2.73 ± 0.04 2.70 ± 0.04 2.67 ± 0.04

equation (3.1). We do not include this factor here, as we will explicitly take temperature
into account by performing MD simulations at elevated temperatures.

A reasonable simulation of XRD patterns requires two important conditions to be
met. Firstly, the size of the NP needs to be between 3 and 4 nm to conform with the
experimental size range. Secondly, the interatomic bond lengths need to be realistic, as
they are the decisive input to Eq. (3.1). As already mentioned, these requirements pose
severe difficulties to DFT, as computational effort forbids to treat NP of such size, i.e.,
with more than 1000 Au and Pt atoms. On the other hand, the reliability of bond length
estimates is best if a first-principles method is used for geometry optimization. We assess
this problem in the following way. The 1289-atom truncated octahedron as shown on the
right hand side of Fig. 3.4 is used as a starting point for geometry optimization. A pure Au
and Pt, a AushellPtcore with one and two Au-shells (corresponding to the NP Au484Pt805
and Au830Pt459 respectively) and finally a randomly mixed NP with exactly the same
Au-Pt ratio as the core-shell particle Au484Pt805 were constructed based on the truncated
octahedral geometry. The geometry optimization of these systems was carried out using MD
simulations, in which the potential energy was modelled by the many-body Sutton-Chen
potential [121], that has been employed successfully in simulations of a variety of nanoalloys
[100, 122–124]. The Sutton-Chen parameters for the Au-Pt interaction were obtained from
the parameters for the Au-Au and Pt-Pt interaction using a combination rule [100]. Each
system was first relaxed at 1 K and subsequently propagated for 500 ps at a temperature
of 300 K in a canonical ensemble using Evans’ thermostat [125] and vacuum boundary
conditions. Every 20 ps a structure ”snapshot”, yielding a set of atomic positions {Rm},
was taken. These structures were then optimized with a conjugate gradient procedure. For
each system the optimized geometry with the lowest energy was taken as the final structure
for further analysis. All MD simulations in this and Sec. 3.4.3 were carried out by Rodrigo
Q. Albuquerque using the DL-POLY program package [126].

The second part of our strategy consists of determining the Au-Au, Pt-Pt and Au-Pt
bond lengths of DFT-optimized core-shell and random geometries. We do not expect the
bond lengths resuling from MD simulations to equal the DFT bond length, because the
Sutton-Chen parameters are fitted to bulk properties and bulk bond lengths are typically
slightly different from NP bond lengths. However, what is decisive here is, that the relative
differences between the Au-Au, Pt-Pt and Au-Pt bond lengths resulting from MD and DFT
optimization, respectively, are similar.

As one of the larger systems where structure optimization with DFT is still possible
we chose the 60-atom cluster Au22Pt38. Its Au content of about 37% is similar to that of
the 4 nm cluster Au459Pt830 that is the main focus of our study. We generated starting
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Au content method Au-Au [Å] Au-Pt [Å] Pt-Pt [Å]
87 % DFT 2.87 ± 0.02 2.83 ± 0.03 2.72 ± 0.02

MD 2.75 ± 0.01 2.71 ± 0.02 2.73 ± 0.06
50 % DFT 2.87 ± 0.08 2.83 ± 0.05 2.65 ± 0.05

MD 2.73 ± 0.06 2.68 ± 0.05 2.65 ± 0.03
13 % DFT none 2.84 ± 0.04 2.72 ± 0.04

MD none 2.68 ± 0.04 2.65 ± 0.02

Table 3.2: Average bond
lengths and standard de-
viations obtained from
DFT and MD optimiza-
tion of randomly mixed
38-atomic clusters with
different Au-Pt mixing
ratios.

structures by taking the coordinates from the 60-atomic cluster in Ref. [102] and distributed
Au and Pt atoms once randomly and once in a Pt-core Au-shell fashion to these positions.
The structures were then relaxed with DFT and MD separately. In the DFT calculations
the relaxation was carried out without any symmetry constraints using a split valence basis
set augmented by one polarization function (SVP). The use of larger basis sets changes the
bond length by less than 2% [94] and does not affect the relative distribution of the lengths
of Au-Au, Au-Pt and Pt-Pt bonds.

For the optimized structures we calculated the distance of every atom to its five nearest
neighbors, at the same time determining whether these bonds were Au-Au, Au-Pt or Pt-Pt
bonds. The average Au-Au bond length was then defined by the arithmetic mean of all
resulting Au-Au distances. In the same way, Au-Pt and Pt-Pt bond lengths were calculated.
The results stay qualitatively the same if one somewhat changes the averaging procedure,
e.g., using four instead of five nearest neighbors.

Tab. 3.1 shows the average bond lengths thus obtained from DFT and MD for core-shell
and for randomly mixed variants of Au22Pt38. The MD bond lengths are found to be
consistently smaller than the DFT bond lengths. However, the trends with respect to
bond length differences are similar. For both DFT and MD calculations the differences
between the average length of Au-Au bonds, Au-Pt bonds and Pt-Pt bonds that one finds
in randomly mixed and core-shell particles are small. In all cases Au-Au bonds are longest
and Pt-Pt bonds are shortest, with Au-Pt falling in between.

In order to also test the MD bond length distribution for a faceted particle we chose
the smallest truncated octahedron built from 38 atoms. Alloy particles with Au contents of
87 % (Au33Pt5), 50 % (Au19Pt19) and 13 % (Au5Pt33) were generated by distributing Au
and Pt atoms randomly over the cluster. The structures were energetically optimized as
described previously. Tab. 3.2 shows the resulting average bond lengths. We observe again
that the MD and DFT average bond lengths are not identical, with the MD bonds generally
being shorter than the DFT ones. Yet, again the trends are the same in both DFT and
MD: Au-Au bonds are the longest and Pt-Pt bonds are the shortest, with Au-Pt bonds
falling in between. The one exception that we found is shown in Tab. 3.2 for 87 % Au,
where Au-Pt and Pt-Pt bonds in the MD are quite similar. We attribute this to the low Pt
concentration and small particle size. We also performed the same type of analysis for the
20-atom tetrahedral and amorphous structures that are described in Ref. [94]. The results
are in line with the conclusions drawn for the 38-atom and 60-atom structures shown above
and are therefore not reported in detail here.

We can now analyze the average bond lengths of the Au459Pt830 core-shell and randomly
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mixed truncated octahedron. In the core-shell cluster the large Pt core dominates the bond
length distribution, with an average Pt-Pt distance of 2.77 Å. The mean Au-Au distance in
the single Au shell is the same as the mean Pt-Pt bond length. This finding is reminiscent
of the lattice deformation and matching that one encounters when growing single layers
of one material on a substrate with a different lattice parameter. The Au-Pt distance of
2.78 Å is slightly larger, allowing the shell to wrap around the core. The bond length most
often encountered in the randomly mixed NP is one that falls in between the Au-Au and
the Pt-Pt bond length, with Au-Pt bonds on average being 2.76 Å, Au-Au bonds 2.79 Å,
and Pt-Pt bonds 2.74 Å.
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Figure 3.7: Atomic form factors for Au and
Pt taken from Ref. [127] and polynomial least
square fits to the data.

After these preliminary considerations we
turn to simulating the XRD patterns of the
NP using Eq. (3.1) with the incoming x-rays
having a wave length of λ=1.5 Å. The form
factors of Au and Pt are tabulated in Ref. [127]
and fitted using a polynomial least squares fit
to allow continuous representation of the data
(see Fig. 3.7).

The top left panel in Fig. 3.8 shows the pat-
tern that one obtains from pure Au or Pt NP
with 1289 atoms in orange and black, respec-
tively. The red line shows the x-ray pattern
for the core-shell NP. As laid out above the
expectation so far has been to find separate

peaks for this type of structure, as the Au and Pt component are separated. Yet, no
double-peak structure is observed at all; the peak shapes for the different NP are nearly
identical. Our first important conclusion therefore is that a core-shell structure in NP does
not necessarily lead to separate x-ray peaks for the different components. The lower left
panel shows the second important result: The x-ray pattern for the core-shell NP (as above)
and the one for the randomly mixed NP are very similar. Core-shell structures may thus
be hard to identify via x-ray scattering.

Figure 3.8: Left: Calcu-
lated XRD pattern of pure
Au, Pt, and core-shell NP
(top) and core-shell and ran-
domly mixed NP (bottom).
Right: View of the core-
shell (top) and randomly
mixed (bottom) NP (out-
side and cross section).
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However, we now take the analysis one step further and go through the Vegard’s-law-
based analysis of the x-ray data as explained above. For pure NP the x-ray analysis leads
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to a lattice parameter of 4.06 Å for Au and 3.90 Å for pure Pt. These are very close to the
respective bulk values, i.e., the Vegard’s-law-based analysis correctly identifies the NP as
pure ones. This result also confirms the validity of our procedure for building the particles
and calculating the x-ray patterns. The decisive question now is how well the procedure
works when we translate the x-ray pattern obtained for the bimetallic NP into lattice
parameters and the relative Au and Pt content using Vegard’s law as explained above and
in Fig. 3.5. If this interpretation is valid, then it should yield exactly 38% of Au and 62%
of Pt, corresponding to the Au484Pt805 particles that we constructed. Yet, for the core-shell
particle the value of a deduced from the x-ray pattern is 3.94 Å, and the Vegard’s-law-based
analysis translates this into an Au content of ca. 19%. Thus, it underestimates the Au
content by a factor of 2. This is a serious misprediction. For the randomly mixed particle
the situation is better, yet not perfect, with an a of 3.95 Å being translated into an Au
content of 31%.
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Figure 3.9: Calculated x-
ray scattering patterns (left)
and visualization (right) of
a core-shell NP with two
shells of Au.

In order to further elucidate the situation we also calculated the diffraction pattern of
the core-shell NP with two layers of Au (see Fig. 3.9). This particle, Au830Pt459, has an Au
content of 64%. A Vegard’s-law-based analysis of the x-ray pattern is again far off the mark.
It predicts a3.97 Å, corresponding to 44% of Au. Thus, instead of showing that the particle
contains more Au than Pt, the x-ray analysis leads one to believe that the NP contains
more Pt than Au.

In judging the significance of these results one should recall that our analysis so
far has been conducted under ideal conditions, as our calculated x-ray patterns stem
from monodisperse, zero-temperature particles. In actual experiments the uncertainties
in determining the NP’ Au and Pt content from Vegard’s law can be larger than the
discrepancies that we find here. One can thus imagine that an Au-Pt core-shell particle
with roughly one shell of Au might be classified as almost-pure Pt. It may thus appear
less puzzling that AushellPtcore NP have rarely been found in experimental x-ray analysis
despite theoretical prediction of their existence.

In order to estimate the effects that temperature may have and to explicitly check
what influence the presence of different structures has on the x-ray pattern, we performed
constant temperature MD simulations as described above, in each case starting from the
lowest energy configuration and thermalizing the particle for 1 ns at 1, 50, 100, 200, 250,
300, 600, and 1400 K, respectively. From the last 400 000 steps of each simulation we took
10 structures, each one being 40 000 time steps 1 fs distant from the previous one. For each
of the structures we calculated the x-ray pattern and then averaged the patterns of a given
temperature.

Fig. 3.10 shows these finite temperature diffraction patterns. A first, expected obser-
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Figure 3.10: Average NP x-
ray scattering patterns at
temperatures of 1, 50, 100,
150, 200, 250, 300, 600, and
1400 K. Inset: NP cross sec-
tions at 1, 600, and 1400 K.
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vation is that the peak heights are reduced. At 1400 K the pattern is also considerably
broadened, corresponding to a much wider bond length distribution compared to that
at lower temperatures. As the melting point of the core-shell particle lies at ca. 1200 K,
we observe randomly mixed structures at 1400 K, whereas for the lower temperatures the
core-shell mixing pattern is retained, though with an increasingly softening surface. A
further observation to be made in Fig. 3.10 is that the peaks for elevated temperatures are
shifted, and while some shift is expected due to thermal expansion, the magnitude of the
shift is much larger than one would expect based on the bulk expansion coefficient. It has
been noted that thermal expansion in small metal clusters is considerably larger than in
the bulk [128]. Therefore, we calculated the linear thermal expansion coefficient

β = 1
L

∂L

∂T
(3.3)

by evaluating the temperature dependence of the mean interatomic distance

L = 1
M(M − 1)

M∑
i,j=1
|Ri −Rj |, (3.4)

where Ri denotes the position of atom i. The average thermal expansion coefficient that we
obtain in this way up to 600 K is about 19 · 10−6K−1, i.e., considerably larger than that of
bulk Au (ca. 14 · 10−6K−1) and bulk Pt (ca. 9 · 10−6K−1). We also see that the surface
atoms contribute the most strongly to the expansion. Thus, NP at finite temperatures
are likely to have a ”diffuse” surface, and this may contribute to their special catalytic
properties.

Finally, having demonstrated the limits of traditional x-ray analysis for Au-Pt NP,
we exploit the strength of theoretical simulations to offer direct access to bond length
distributions. Thus, we can take a yet closer look at Vegard’s law. Fig. 3.11 shows the
average bond length as obtained from DFT-based geometry optimizations for 20-atom,
38-atom and 60-atom particles as a function of the Au content. The striking observation
in Fig. 3.11 is that for all particles, independent of the size and of whether the atoms
are core-shell or randomly distributed, the average bond length increases linearly with
increasing Au content. Thus, one might say that for small particles Vegard’s law is valid not
only for randomly distributed alloys, but also for other types of bimetallic Au-Pt particles,
independently of the specific way in which the atoms are arranged.
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Figure 3.11: Average nearest-neighbor bond length
of 20-, 38-, and 60-atom core-shell-like clusters with
varying Au contents.

In summary, we have shown that Ve-
gard’s law is ambiguous on the nanoscale,
as it may hold not only for random al-
loys. However, more importantly, we have
shown that Vegard’s law does not trans-
late into x-ray peaks in the way that has
so far been assumed. Even under the ideal
conditions that can theoretically be real-
ized an Au-shell in core-shell NP is poorly
visible in x-ray scattering. The Au con-
tent of core-shell particles is greatly un-
derestimated when analyzing XRD pat-
terns based on Vegard’s law. Finite-tem-
perature simulations showed that thermal
expansion in 3.5 nm Au-Pt NP is much
greater than in the bulk and affects surface atoms most strongly.

The fact that the low energy structures theoretically predicted for free Au-Pt NP
undoubtedly are core-shell structures still does not exclude the possibility that true Au-Pt
nanoalloys form in experiments. True Au-Pt nanoalloys have, e.g., recently been observed
using element-specific XRD in conjunction with theoretical modeling [129]. However, the
theoretical findings suggest that the existence of Au-Pt nanoalloys may be linked to effects
beyond the ones present in free particles. These may be external influences such as solvents,
supports, and special preparation procedures, possibly in combination with entropical
contributions which, at finite temperatures, can limit the probability of observing the lowest
energy configuration. First results on the effect of a support interacting with the NP are
presented in Appendix A.

3.4 The interplay between fluxionality and electronic structure

Finding an answer to the question why Au-Pt and Au-Pd nanoalloys show synergistic
behavior first requires another question to be asked: Which properties does a ”good”
catalyst have to have? On the one hand, catalysis requires the breaking and the formation
of bonds, i.e., interaction between the catalyst and an adsorbate should have an adequate
strength. On the other hand, the catalyst should not be consumed during the reaction,
i.e., it should have the ability to regenerate itself after the reaction. A property of this
type could also be beneficial for the formation of active and element-specific binding sites,
e.g., via thermal expansion or surface corrugation. This optimal combination of properties
has been recognized as early as 1911 by Sabatier [130], who proposed that the interaction
strength between a catalyst and the reactants had to be “just right”, i.e., neither too strong
nor too weak. Sabatier’s principle is often reflected in so called volcano plots in which
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the turnover rate of a reaction is plotted as a function of some catalytic ”descriptor” for
different catalysts called el1, el2, etc. in Fig. 3.12.

CO dissociation energy
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el2
el3

el4

etc.

Figure 3.12: Schematic of volcano plot.
The ”optimal” catalyst corresponds to
an optimal dissociation energy and high
turnover rates as explained in the text.

Take, e.g., the methanation reaction CO + 3H2
→ CH4 + H2O. Here, the CO activation barrier and
the stability of C and O on the catalyst’s surface
are closely related. The more strongly C and O are
bound to the surface, the lower is the barrier for CO
dissociation. At the same time this results in a higher
barrier for CH4 and H2O formation [131]. An optimal
catalyst is thus one for which the CO dissociation
energy, the catalytic descriptor in this example, is
neither too high nor too low, i.e., it sits at the top
of the volcano in Fig. 3.12. In our case, the situation
is more complex. The NP not only interacts with
possible reactands, but also with support molecules
and the solvent. Furthermore, typical reactions are
carried out at room or even higher temperature. A
meaningful simulation of one specific reaction would
have to take these effects into account, an at present nearly impossible task for non-empirical
DFT. Yet, the volcano picture can elucidate the bimetallic effect seen in Au-Pt (and Au-Pd
nanoalloys). By assuming that the Au-Pt ratio can be seen as the catalytic descriptor here,
a possible explanation for the finding that Au-Pt nanoalloys show high catalytic activity
under many different conditions and for many different reactions could be that there are
rather fundamental, basic properties that are not specific to certain reactions and which
quite generally can optimize the catalytic behavior of Au-Pt nanoalloys. I will show in
Sec. 3.4.4 that the density of states (DOS) at the Fermi level, contributed by Pt, and the
atomic mobility or structural flexibility, contributed by Au, are such properties. The Au-Pt
ratio then determines how much DOS at the Fermi level and structural flexibility are, in
terms of Sabatier’s principle, ”optimal” for a specific reaction. The results of Sec. 3.4.1 and
3.4.2 are published in Ref. [94] and [132]. Parts of Sec. 3.4.1 already appear in Ref. [109]
and will therefore only briefly be treated here.

3.4.1 Electronic structure of Au-Pt nanoalloys

The first electronic property that springs to mind when one deals with metal clusters, is the
static electric dipole polarizability α, defined as one third of the trace of the polarizability
tensor α. This quantity measures the linear response of the electric dipole moment of
a system to an applied electric field p = αE. The static electric dipole polarizability
of sodium clusters has been studied intensively both experimentally, e.g., in Ref. [133]
and [134], and theoretically, e.g., in Ref. [128] and [135], because of sodium’s prototypical
metallic properties. The electronic shell closure effects that lead to particularly stable
cluster sizes in small sodium clusters (as already mentioned in Sec. 3.2), coincide with
”dips” of the static electric dipole polarizability. It is therefore a close-lying assumption that
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”special” electronic properties of Au-Pt NP, i.e., properties that could be connected to high
catalytic activities at a certain ratio of Au and Pt, could also show up in this quantity.
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Figure 3.13: The static electric dipole
polarizability α per electron for 20-atom
tetrahedral and amorphous as well as 40-
atom Sutton-Chen potential clusters.

Fig. 3.13 shows α normalized to the number of
electrons as a function of the Au content for the
20-atom tetrahedral and amorphous clusters, as
well as for the 40-atom Gupta-clusters. For these
systems α does not exhibit any special features at
a certain Au-Pt ratio, but is nearly constant.

Another property, that has long been known to
be directly related to the reactivity of a material is
its DOS. The first model that was able to explain
the reactivity of a variety of simple and transition
metal surfaces towards hydrogen chemisorption was
developed by Newns in 19692 and is essentially sim-
ilar to the model Hamiltonian suggested by Ander-
son to describe the interaction of a single magnetic

impurity with a free electron gas [136, 137]. The Newns-Anderson model was subsequently
simplified to what became known as the d-band-model [105, 138]. In this model the
adsorbate-surface interaction is formally separated into the interaction of the adsorbate with
the metal s- and p-states and the metal d-states. As the former are assumed to be similar
for all transition metals, the chemisorption energy finally only depends on the energetic
position of the d-band center.
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Figure 3.14: Illustration of the d-band
model adapted from Ref. [105]. The two-
step mechanism of an adsorbate interac-
tion with a metal surface is explained in
the main text.

Consider, as a simple example, the chemisorp-
tion of H2 on four metal surfaces of very different
reactivity (Ni, Pt, Cu and Au). First, the hydrogen
1s state interacts with the metal 4s (Ni, Cu) or 6s
(Au, Pt) band3 leading to a broadening and lower-
ing of the adsorbate-induced level. This part of the
interaction should essentially be the same for all
four metal surfaces. The adsorbate induced level, in
the second step, interacts with the metal-d-states.

As the latter are assumed to be tightly localized,
they are modeled as a single level. Thus the inter-
action between the adsorbate induced level and the
d-band can be seen as a simple two-level interaction.
This results in an energetically deep-lying bonding state and an antibonding state. Fig. 3.14
illustrates that the filling of the antibonding state and thus the chemisorption energy to
zeroth order depend on the energetic position of the metal d-band with respect to the Fermi
energy, because if the metal-d-band is close to the Fermi energy, the antibonding state can

2Noteworthy here is, that Newns even suggests an explanation for the catalytic conversion of para- to
ortho-hydrogen on Au-Pd alloy surfaces.

3The terms s-band and d-band are rooted in the tight binding approach to the solid state. An s-band,
e.g., arises from weakly interacting atomic s-states localized at the lattice points.
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be shifted right above it and will therefore be empty. For Pt and Ni this is the case leading
to a net attractive interaction between adsorbate and surface, while Au and Cu have filled
antibonding states. This finding rationalizes the high inertness of Au, but it has also been
used to explain the high catalytic activity of small Au NP [9] as well as that of many other
systems (see Ref. [131] and references therein).

Considering the complete d-band of Au-Pt nanoalloys requires two assumptions that do
not necessarily have to be valid in our case. Firstly, the d-band also comprises of unoccupied
states above the Fermi energy. The physical interpretability of KS eigenvalues, however,
can only safely be assumed for the upper occupied part of the eigenvalue spectrum [48].
Secondly, in small transition metal clusters the definition of a metal-d-band in the spirit
of the tight binding approach is not per se clear. What is typically done in cases like this
is, that the atomic-d-character of the KS eigenstates is tested by projecting them onto
atomic-d-orbitals. The DOS is defined as

g(ε) =
∑
i

〈ϕi|ϕi〉δ(ε− εi). (3.5)

If the KS orbitals |ϕi〉 are expanded in an orthogonal basis of localized atomic functions |φµ〉,
i.e., |ϕi〉 = ∑

µ c
(i)
µ |φµ〉, then the definition of the projected DOS (PDOS) is straightforward:

gµ(ε) =
∑
i

|c(i)
µ |2δ(ε− εi) =

∑
i

|〈φµ|ϕi〉|2δ(ε− εi). (3.6)
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Figure 3.15: The DOS and PDOS for Au38 and
Au33Pt5.

Here,4 this is not the case. An over-
lap matrix element Sµν = 〈φµ|φν〉 enters
the definition of gµ. There are several
ways how to treat these overlap terms,
one prominent example being the Mulliken
population analysis [139]. As results can
differ significantly, depending on which
method is chosen, the interpretation of
PDOS requires special care and is often
only meaningful in comparison with a ref-
erence system. We therefore concentrate
here on the total DOS close to the Fermi

level, which we define as the DOS integrated from the Fermi level down to 1 eV below the
Fermi level. The results reported in the following are robust toward changing the integration
threshold to slightly smaller or larger values. Reassuringly, Fig. 3.15 illustrates for the
truncated octahedral clusters Au38 and Au33Pt5 that an increase of the DOS at the Fermi
level (indicated by the green shaded area) coincides with an upshift of the center of gravity
(vertical blue line) of the d-PDOS for Au-Pt nanoalloys.

4Using the TURBOMOLE program package for all calculations in which basis functions do not form an
orthogonal set.
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Figure 3.16: The DOS at the Fermi level (integration
threshold defined as -1 eV) as a function of the Au
content of 20-atom tetrahedral and amorphous, 38-
atom truncated octahedral and 40- and 60-atom
Gupta-potential clusters.

We can now analyze the DOS at the
Fermi level for a variety of Au-Pt NP with
different overall geometries and mixing
patterns. Fig. 3.16 shows that it increases
with increasing Pt content for 20-atom
tetrahedral5 and amorphous clusters (core-
shell), for 38-atom truncated octahedra
(random) and for 40- and 60-atom Gupta-
potential clusters (core-shell). Important-
ly, this trend is independent of the specific
way in which Au and Pt atoms are ar-
ranged in the cluster, i.e., the DOS at the
Fermi level increases both for core-shell
and randomly mixed Au-Pt nanoalloys
with increasing Pt content. This finding
suggests that the binding energy between
Au-Pt nanoalloys and an adsorbate should

increase with increasing Pt content and that a pure Pt NP should bind adsorbates most
strongly to its surface. From this perspective, a certain Au-Pt ratio could correspond to an
optimal binding energy in a specific reaction in terms of Sabatier’s principle.

core-shell layered

20 atoms

40 atoms

Figure 3.17: Plots of the highest occupied
molecular orbital at ± 0.04 a

−3/2
0 . Top:

for two just slightly different Au10Pt10
clusters. Bottom: Au20Pt20 with core-
shell and layered mixing pattern, respec-
tively.

A closer look at the local electronic structure
reveals that the addition of Pt is beneficial from
yet another perspective. Fig. 3.17 shows isosurface
plots of the highest occupied KS orbital (HOMO)
of several Au-Pt NP. The HOMO has physical rel-
evance as it asymptotically dominates the density
and its exponential decay is governed by the first
ionization potential, i.e., it represents the spatial
distribution of the energetically highest lying part
of the density. Fig. 3.17 reveals that the spatial
location of the HOMO is closely related to that of
the Pt atoms. The two Au10Pt10 clusters at the
top of Fig. 3.17 differ only in the position of one Pt
atom that sits within the bottom facet on the left
side and is moved to the top corner on the right
side of Fig. 3.17. This slight rearrangement results
in a marked change of the spatial distribution of
the HOMO density. The same effect can be seen
for the two Au20Pt20 homotops at the bottom of Fig. 3.17 and all other systems that we
studied. This has two important consequences: Firstly, as the Pt content increases, more
Pt atoms are located at the surface of the cluster, so that the HOMO can extend away

5Note, that the Au20 tetrahedron is the only exception that we found for this observation. We attribute
this deviation to the unusual electronic structure of Au20 [68].
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from the surface. Secondly, the known importance of the surface for catalytic processes is
enhanced in Au-Pt nanoalloys, not only due to the increased surface-to-volume ratio on the
nanoscale, but also because of the presence of Pt, the many possible distributions of Au
and Pt on the surface and the resulting implications for the local electronic structure of the
system.

3.4.2 Electronic structure of Au-Pd nanoalloys

Au-Pd nanoalloys show an electronic structure very similar to that of Au-Pt nanoalloys.
There is but one point requiring special attention in small Au-Pd nanoalloys that can be
neglected in Au-Pt NP: their spin polarization. Bulk Au and Pd are not magnetic, but
high magnetic moments have been reported for small Pd clusters [140]. We start from
the bilayered ground state of Pd13 taken from Ref. [140], step-by-step replacing lowly-
coordinated Pd atoms by Au as suggested in Ref. [141, 142]. The resulting AunPd13−n
(n=0-13) structures were then locally relaxed.
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Figure 3.18: The DOS close to the Fermi level as
a function of the Au content for Au/Pd particles.
For all three sizes (13-atom, 20-atom and 38-atom)
the DOS decreases with increasing Au content. For
the 38 atomic clusters the DOS for two different
structure types is shown. The trend is the same for
both types.

We allowed and checked for spin po-
larization, evaluating the total energy for
different multiplicities. We found that for
the purposes of this study the magneti-
zation is not decisive, as the DOS at the
Fermi level depends only very little on
the spin polarization in the cases that we
studied. The integrated DOS typically
changes by less than 1% for most struc-
tures as a function of magnetization, and
a few percent at most. For the sake of
completeness, some magnetizations are,
however, reported in the following. The
resulting magnetic moments are 6µB for
Pd13, 3µB for Pd12Au1, 4µB for Pd11Au2
and 2µB for Pd9Au4. Clusters with larger
Au contents are either singlets or triplets
depending on whether their electron num-
ber is odd or even. The DOS at the Fermi

level is then defined as for Au-Pt NP and shown in Fig. 3.18 as a function of the particles’
composition (red diamonds). The red inset depicts the structure of Au3Pd10 as an example.
From the figure one can clearly draw the conclusion that again the DOS at the Fermi edge
decreases with increasing Au amount.

In order to check whether this behavior of the DOS is general we repeated the procedure
for larger clusters. Our choice of further test systems was motivated by similar considerations
as in the case of Au-Pt NP. The experimental studies are concerned with relatively large
particles that show a bulk-like structure [132]. Therefore, we also theoretically focus on
investigating systems where a bulk-like geometry is a reasonable starting point. Furthermore,
as bulk Pd and Au are not magnetic, and as the experimentally observed particles are
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bulk-like in their structure, it is a plausible assumption that magnetic effects are not
important for explaining the catalytic properties. In addition, our study of the 13-atom
clusters has shown that the total DOS is not very sensitive to the magnetization. Therefore,
we choose for our following investigations always the electronic configuration that has the
lowest spin polarization (under the condition that the aufbau principle is respected). From
the just described points of view the Au20 tetrahedron is again a good starting point for
the theoretical investigation. We replaced Au by Pd as explained in Sec. 3.2 with Pt, again
observing the rule that high-coordination number sites are energetically favorable for Pd.
The orange inset of Fig. 3.18 shows the structure of Au16Pd4 as an example and the DOS at
the Fermi level as a function of the Au content. Also in this case an increase with increasing
amount of Pd is observed for all mixed Au/Pd particles. This observation does not depend
on the specific structural motif.
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Figure 3.19: Right: geometric structure and iso-
surface plot of the HOMO of 38-atom particles.
From top to bottom: (a) Au19Pd19, (b)-(d) 3
different structures for Au28Pd10, (e) Au30Pd8,
(f) Au32Pd6. White and blue areas represent
negative and positive isosurface values of 0.04
a

−3/2
0 . Left: the DOS of each of the clusters.

To demonstrate this explicitly and to check
another cluster size we repeated the procedure
for the truncated octahedral 38-atom clusters.
We studied two lines of structures with 38
atoms. In both of them 6 Pd atoms form
the core (see black inset of Fig. 3.18), as this
is an energetically favored arrangement. How-
ever, the two lines differ in the position of the
remaining “surface” Pd atoms. The structures
labeled “type 1” in Fig. 3.18 were obtained by
randomly replacing surface Au by Pd atoms.
In the structures labeled “type 2” the surface
Pd atoms were placed such that they occupy
the interior parts of the facets. In the litera-
ture [141] these latter configurations have been
reported as being energetically favorable. Our
calculations confirm this finding as structures
of type 2 are lower by 0.08 eV for Au30Pd8 and
0.83 eV for Au28Pd10 than the corresponding
structures of type 1. We observe that all struc-
tures have rather small HOMO-LUMO gaps,
which may be an indication for further symme-
try breaking being energetically favorable. The
important finding is that also in the 38-atom
faceted cases both types of structures show
the same trend: the DOS at the Fermi level
increases with increasing Pd content. Again
this finding could imply that, in terms of Sabatier’s principle, a certain Au-Pd ratio might
correspond to optimal adsorbate binding energies in a certain reaction.

In the next step, following the same reasoning as before, we investigate the relation
between the clusters’ geometry and their electronic structure. To this end we take a closer
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look at several of the faceted 38-atom particles. The right side of Fig. 3.19 shows from top
to bottom structures and HOMO densities of Au19Pd19, three different Au28Pd10 homotops,
Au30Pd8 and Au32Pd6. The left column depicts the occupied DOS with the respective
Fermi levels aligned at 0 eV. The vertical line at -1 eV indicates the previously mentioned
integration range.

The conclusions that can be drawn from Fig. 3.19 are rather similar to the Au-Pt NP
case: First, the HOMO in each case is closely associated with the Pd atoms. Second, an
increasing amount of Pd brings an increasing number of Pd atoms to the surface and thus
leads to a HOMO that is dominantly located at the surface of the cluster. This is clearly
seen, e.g., when comparing the HOMO representation of Au32Pd6 to the one of Au19Pd19
and it indicates that Pd atoms at the surface are likely to be favorable in terms of the
particles’ activity. Third, we carefully inspect three homotops of Au28Pd10. Structure (b)
as suggested in the literature [141] has the lowest total energy, (d) is higher by 0.83 eV and
(c) by 1.64 eV. Independent of these energetic differences, there is an important observation
to be made in comparing structures (b)-(d): although the three geometries are overall
rather similar, the differences between the HOMOs are quite noticeable. A moderate change
in the geometry leads to a significant change of the energetically high-lying part of the
density. Thus, a specific arrangement of Au and Pd atoms at the surface can lead to special
electronic and thus chemical properties.

3.4.3 The role of Au in Au-Pt nanoalloys

In the spirit of Ref. [131] and as explained in the introductory paragraphs of Sec. 3.4 one
could speculate that a synergistic effect in Au-Pt nanoalloys for a specific reaction could
in principle be explained by linking a catalytic descriptor of this reaction to the DOS at
the Fermi level. One could then argue that the binding energy between Au-Pt NP and the
specific reactants must neither be too strong nor too weak for the reaction to take place, in
compliance with Sabatier’s principle. An optimal Au-Pt mixing ratio would then emerge
from these considerations. Even though this point of view is perfectly legitimate and has
led to valuable insights into gas-phase catalysis on surfaces under well-controlled conditions,
it is not easily applicable in our case as mentioned before. However, as a synergistic effect
is observed in many different reactions with different matrices and solvents, we suggest that
fundamental properties of Au-Pt NP that are independent of the reaction lead to the special
properties of Au-Pt NP. With the DOS at the Fermi level and the spatial arrangement of
the HOMO density being determined by Pt as discussed earlier, we now want to ask the
question which fundamental catalysis-favorable property is associated to Au.

Here, I want to argue that this property is the mobility of atoms in the Au-Pt systems,
or the NP fluxionality. Fluxionality has been recognized to be of crucial importance for
the catalytic activity of clusters and surfaces [143]. It can be a primer for the ability to
structurally adjust to reactants, form active sites [144] and directly influences turnover rates
by affecting the catalysts’ ability to regenerate after the reaction. In order to determine
how easy it is for atoms to rearrange in Au-Pt systems we performed two types of studies.

In the first one we take the perspective that with respect to catalytic activity, the surface
of the NP, which for faceted NP is similar to a bulk surface, is likely their most important
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Figure 3.20: Sketch of the setup used for the
study of Au and Pt adatom self-diffusion from
a fcc (ini) to a hcp (fin) hollow position. The
systems we studied were: I. Pt adatom on pure
Pt(111) surface, II. Pt adatom on Pt(111) sur-
face with single Au atom in top surface layer,
III. Au adatom on pure Pt(111), IV. Au adatom
on Pt(111) doped with Au, V. Pt adatom on
Au(111) and VI. Au adatom on Au(111).

part. When reactants approach the surface, the surface may structurally react to form
active sites. The induction time, i.e., the time that goes by before the reaction starts, seen
in NP catalysis can be an indication for such processes [80, 132, 145]. A canonical step in
surface restructuring is the movement (diffusion) of atoms on the surface. Therefore, we
chose the height of the barriers for the diffusion of Au and Pt adatoms on pure and doped
Pt- and Au-surfaces as a measure for the surfaces’ ability to restructure. As an aside we
note that this line of thinking is also supported by the observation that bimetallic effects as
well play a role in Au-Pt surfaces [115] as mentioned before.

system Eads fcc Eads hcp Ebarrier

Pt/Pt 4.60 4.82 312
Pt/Pt+Au 4.61 4.76 287

Au/Pt 2.77 2.87 177
Au/Pt+Au 2.79 2.86 165

Pt/Au 4.05 4.15 143
Au/Au 2.50 2.56 115

Table 3.3: Adsorption energies (in eV) of Pt-
and Au-adatoms in pure and doped Pt- and Au
surfaces for the start and the end position of
each NEB calculation. For a definition of the
diffusion barrier (in meV) see text.

For calculating these diffusion barriers we rely on the NEB method (see Sec. 2.5). It
allows to determine the minimum energy path between a given initial and final state. If this
minimum energy path goes through one or several maxima as a function of the reaction
coordinate the largest of these barriers can be regarded the rate-determining step of the
reaction. Calculations were carried out with VASP using the PBE GGA [24] and employing
the PAW method to describe the electron-ion interaction [64, 67] (see Sec. 2.4). Technical
details regarding these calculations can be found in Appendix C. The cutoff-energy for the
plane wave basis set was set to 450 eV. Pure and doped Pt and Au fcc(111) surfaces were
modeled by 4-layer slabs containing 4x4 atoms in each layer and being separated by 20 Å of
vacuum. The bottom two layers were held fixed at the Pt (Au) bulk equilibrium distance
of 3.977 (4.174) Å, while the other layers were allowed to fully relax. The Brillouin-zone
integrations were performed using Monkhorst-Pack k-point meshes of 5x5x1 size. We
considered a diffusion step from a fcc to a hcp hollow site for different combinations of
surfaces and adatoms, as depicted in Fig. 3.20. In all cases the diffusion barrier was defined
as the energetic difference between the transition state and the hcp adsorption site, this
being the largest energy difference and thus determining the rate of this particular diffusion
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step. In addition to the diffusion barriers we determined the adsorption energies (see
Tab. 3.3) of the adatoms at the fcc and hcp hollow site as

Eads = Eslab + Eadatom − Eslab+adatom (3.7)
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Figure 3.21: Barrier for Pt- and Au-
adatom diffusion on Pt-surfaces with and
without Au doping and on a pure Au-
surface. An explanation of the notation
can be found in Fig. 3.20.

Fig. 3.21 shows that diffusion of a Pt adatom
on a pure Pt surface has the highest barrier of all
considered systems. This is in line with the Pt
adatom being most strongly adsorbed to the pure
Pt surface. Yet, the insertion of one Au atom into
the Pt surface lowers the diffusion barrier by about
25 meV. A similar effect can be seen by comparing
the diffusion barrier of an Au adatom on a pure Pt
surface and on a Pt surface with one Au dopant. It
is particularly interesting that the diffusion barrier
decreases even more for a Pt adatom on a Au sur-
face. In this case the adsorption energy is almost
as high as that of Pt on Pt(111) leading one to
expect an equally high diffusion barrier. The facil-
itated surface diffusion on surfaces with a higher
Au content can therefore not only be explained by
Au adatoms being more weakly bound to the sur-
face than Pt adatoms. We interpret this finding
as an increased ability of Au-alloyed Pt-surfaces to
undergo structural changes and thus as a higher
surface fluxionality with increasing Au-content.

In the second type of study that we did in order to show that increasing amounts of Au
increase the atomic mobility in Au-Pt NP we moved away from the surface perspective and
regarded the NP as finite clusters. The fluxionality of small Au clusters has recently been
shown by extensive scans of their potential energy surfaces [146]. This method, however, is
not feasible for Au-Pt nanoalloys in the experimentally relevant size range. Therefore, we
performed one nanosecond long MD simulations for randomly mixed truncated octahedral
clusters (38, 201 and 586 atoms) and for 60-atom and 100-atom Gupta potential based
core-shell clusters to obtain a measure of the mobility of the cluster atoms in terms of their
mean square displacement (MSD)

〈r̂2〉 =
〈

1
M

M∑
i=1

(Ri(t)−Ri(t = 0))2
〉
, (3.8)

where M is the number of atoms in the cluster and Ri(t) is the position of atom i at
time t. The angle brackets indicate a time average. The MD simulations were done using
the DL POLY program [126] and the NVT Evans ensemble with the same many-body
Sutton-Chen potential as in Sec. 3.3 to describe the potential energy of the system.

Randomly mixed Au-Pt NP segregate to AushellPtcore structures even at comparably
modest temperatures and short simulation times. As our aim was to retain the homogenous
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mixing pattern of the truncated octahedra all simulations were carried out at 300 K. This
lies well below the melting point of most of these systems 6, meaning that the MSD averaged
over the whole simulation time is approximately zero. However, at shorter timescales of
1000 fs a diffusive motion of Au and Pt atoms takes place. The time average in Eq. 3.8 was
therefore computed for subsequent time windows of 1000 fs. For each Au-Pt mixing ratio
three simulations were carried out to minimize statistical uncertainties. Note that even
though this method yields only an approximation to the diffusion of cluster atoms, it can be
used to compare the short-time atomic mobility of nanoalloys with varying mixing ratios.
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Figure 3.22: Top: MSD from MD simulations
of truncated octahedral clusters that are solid
solutions of Au and Pt with 38, 201 and 586
atoms. Bottom: MSDs of 60-atom and 100-
atom core-shell particles.

For NP in the size regime that we are con-
cerned with the high surface-to-volume ratio
can have significant impact on the average
MSD of the NP. Atoms at lowly coordinated po-
sitions, e.g., at kinks or edges can show MSDs
that are considerably larger than those of high-
ly coordinated volume atoms or atoms in a
surface plane. For irregular NP like the 60-
atom and the 100-atom NP this effect is more
pronounced than it is for the regular truncated
octahedra with their magic atom numbers of
38, 210 and 586. To obtain comparable MSD
values it is therefore necessary to keep the ge-
ometries of NP with the same number of atoms
but different Au-Pt ratios as close as possible.
For the irregular 60-atom and 100-atom clus-
ters this makes a full geometry optimization
prior to MD simulations necessary. Neverthe-
less, the MSDs of these NP show large statis-
tical variations as compared to the MSDs of
the truncated octahedra. For this reason we
want to stress that we are not concerned with
evaluating the exact value of the MSD in our
NP. In contrast, we want to study the trend
that the MSD shows with increasing Au content.

The resulting MSDs are depicted in Fig. 3.22: the truncated octahedra at the top and
the 60-atom and 100-atom core-shell particles at the bottom. It can clearly be seen that
the composition-dependent trend is the same for all clusters: The MSD increases with
increasing Au-content. This is again independent of particular geometric configurations or
mixing patterns. Thus, although being of very different nature, the MD study confirms
the conclusions drawn from the surface diffusion barrier calculations: structural flexibility
increases with an increasing amount of Au.

6The melting point of the 60-atom clusters lies below 300 K. Therefore in this case MD simulations were
carried out at a temperature of 200 K.
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3.4.4 Combining electronic structure and fluxionality
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Figure 3.23: Product of a polynomial least
squares fit to the DOS at the Fermi level
(FL) and MSD for 38-atom and 60-atom
Au-Pt clusters as a function of Au content.
Quantities are scaled so that for 0 and
100% Au content the curves intersect the
y-axis at 0 and have a maximum value of
1.

We can now put together all the findings. The
DOS of Au-Pt NP develops properties that one
naturally associates with being favorable for catal-
ysis with increasing Pt content, whereas the struc-
tural flexibility increases with increasing Au content.
Therefore, for each reaction there can be an ideal
ratio of Au and Pt that yields overall optimal prop-
erties. This is visualized in Fig. 3.23. It shows
the volcano-like plot that one obtains by multiply-
ing a polynomial least squares fit to the DOS at
the Fermi level and the MSD. This has here been
done for the 38-atom and 60-atom clusters, as for
these systems we could access both quantities (see
Fig. 3.24).

An ideal Au-Pt mixing ratio emerges as a con-
sequence of the interplay between structural flux-
ionality provided by Au and a favorable electronic
structure contributed by Pt. Of course what this ideal mixing ratio is will sensitively depend
on the reaction, experimental conditions, as well as on the exact structure and mixing
pattern of the catalysts. Yet, the point that Fig. 3.23 emphasizes is that synergistic effects

Figure 3.24: Left: MSD
and linear fit to MSD of 38-
atom (black triangles) and
60-atom (red triangles) clus-
ters. Right: DOS at the
Fermi level for 38-atom and
60-atom clusters. For con-
structing the ”volcano” plot
the data was fitted with a
cubic polynomial.
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in Au-Pt NP are expected on rather general grounds and regardless of the specific chemical
reaction and environment. Additionally, Fig. 3.23 illustrates another point. We do not
expect ”the whole to be greater than the sum of its part”. The synergistic or rather bimetal-
lic effect in Au-Pt nanoalloys emerges as a consequence of adding up catalysis-favorable
fundamental physical properties of Au and Pt. The effect of the combined properties might
be amplified by the high surface to volume ratio in NP, the presence of steps and kinks that
act as active sites in catalysis [144] and the elongated average bond lengths resulting from
thermal expansion (see Sec. 3.3) or NP-matrix interactions (see Appendix A). Different to
what the buzzword ”synergy” suggests, Au-Pt nanoalloys might not possess special catalytic
properties that go beyond a combination of the properties of pure Au and Pt NP.





4

Magnetic-to-nonmagnetic transition
in Mn-doped Si-clusters

4.1 Dilute magnetic semiconductors

Semiconductors doped with few impurities that carry a magnetic moment are called dilute
magnetic semiconductors. During the last decades they have been subject of intense study,
after it had been observed that the introduction of a small fraction of magnetic impurities
would leave the favorable transport and optical properties of the semiconductors unchanged,
at the same time being accompanied by large magnetic moments and many interesting
magnetic order phenomena. To name only one example, it has been shown by Ohno et
al., that (Ga,Mn)As exhibits ferromagnetic order up to temperatures as high as 110 K
[147]. Later theoretical work provided a model for the origin of this ferromagnetic ordering
and predicted materials with Curie temperatures even exceeding room temperature. Even
though it is believed today that dilute magnetic semiconductors with such high Curie
temperatures may not be realizable, the field nevertheless bears plenty of fundamental
questions, many of which are still unanswered.

The seemingly simplest of these questions is how a single magnetic impurity interacts
with the semiconducting host, i.e., whether the impurity’s magnetic moment is quenched or
survives. Pioneering studies have been conducted by Ludwig and Woodbury in the 1960s
using electron-paramagnetic resonance spectroscopy to investigate magnetic properties of
Si doped with a range of 3d transition metal impurities at substitutional and interstitial
positions [148]. Furthermore, Ludwig and Woodbury provided a simple and descriptive
model to predict quenching or survival of the magnetic moment of the transition metal
impurity.
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Figure 4.1: Sketch of the Ludwig-
Woodbury model for a Mn+ impurity in
bulk Si at an interstitial (top) and a substi-
tutional (bottom position. The 3d levels
are filled according to Hund’s rules with all
valence electrons that do not participate
in binding, resulting in a total magnetic
moment of 4µB for interstitial and 2µB
for substitutional Mn+.

The model (illustrated in Fig. 4.1) assumes that
the degenerate atomic 3d states of the transition
metal impurity are split into three tg and two eg lev-
els under the influence of the crystal field of the host
material. These levels are then filled according to
Hund’s rules with all valence electrons that do not
participate in bonding. A Mn+ impurity, e.g., with
6 valence electrons would give rise to a magnetic
moment of 4µB in an interstitial position (top),
but only 2µB in a substitutional position (bottom),
where 4 of its 6 valence electrons participate in
bonding to the Si host. This simple model has been
widely accepted and its microscopic justification
and validity range have been tested [149]. Yet, it
relies, despite it seeming simplicity, on some ad hoc
assumptions that might not be justified in general,
such as the validity of the crystal field model and
the filling of the energy levels according to Hund’s
rules.

In recent years, a wealth of experimental and
theoretical studies have been devoted to transition
metal doped semiconductors [150–154], nanocrys-
tals [155–157] and clusters [158–162]. While the
results of these studies for bulk Si and Si nanocrystals are mostly consistent with each
other1, cluster studies partly arrive at contradictory conclusions. Ngan et al., e.g., predict
high magnetic moments for endohedrally doped MnSi+n (n = 12− 14) [161], while Palagin et
al. show that the magnetic moment of Mn encapsulated in Si cages of the same size range
is quenched and can only be restored by considerably increasing the size of the surrounding
cages by hydrogen passivation [162]. These inconsistencies are most likely rooted in the
notoriously difficult theoretical description of systems containing transition metal elements,
as will be explained in Sec. 4.2.

The realization of an experiment which allows to study the local electronic and magnetic
properties of a single magnetic impurity with a nonmagnetic host material is complicated
by possible inhomogeneities in the host, coalescence of the impurity atoms and long-
range interactions between single impurities. One way to overcome these difficulties is to
study, instead of bulk samples, size-selected gas-phase clusters with single transition metal
impurities as a model system. Furthermore, this approach allows excellent comparability
with theoretical predictions, as small clusters, despite difficulties that can arise in conjunction
with finding their global minimum structure, are particularly well-defined systems. Our
study of the magnetic-to-nonmagnetic transition in Mn-doped Si clusters, that has been
carried out in collaboration with experiment, is presented in Sec. 4.3.

1Although the prediction of the exact size of the impurity’s magnetic moment differs depending on the
level of theory and the exact type of system that is studied.



4.2. Strong correlation in Density Functional Theory 49

4.2 Strong correlation in Density Functional Theory

From a theoretical point of view dilute magnetic semiconductors belong to a class of
systems often dubbed strongly correlated. (Strong) correlation between electrons is a
problem for most quantum chemistry methods. It is, however, particularly DFT that has
become infamous for notoriously yielding wrong results when it comes to strongly correlated
materials. While it does not warrant further explanation that an exact DFT treatment
would in principle yield exact ground state energies and densities also for strongly correlated
systems, the bad reputation of DFT in the ”strong correlation community” needs some
comment: Firstly, DFT owes its rise and widespread popularity to the overall satisfying
results and comparably low computational cost of standard (semi)local functionals for many
interesting systems. The very same xc functionals, however, are the ones that fail the most
badly for strongly correlated materials. Secondly, also more sophisticated functionals have
so far not been able to yield consistently accurate results for different systems in which
correlation plays a major role and in fact it is not obvious, why the physics buried in such
systems should be exactly representable in terms of an auxiliary system of noninteracting
electrons [163].

In quantum chemistry correlation is defined as the difference between the exact total
energy and the Hartree-Fock energy of a system Ec = Eexact − EHF. A caveat to this
definition is that the single Slater determinant of Hartree-Fock theory of course does
include correlations between electrons in the sense that a Slater determinant is a correctly
antisymmetrized product wavefunction, and thus obeys the Pauli exclusion principle.
Two electrons having the same spin avoid each other and can in this sense be regarded
as correlated. From a wavefunction perspective, electron correlation (apart from Pauli
exclusion) refers to all many-body effects which make more than a single Slater determinant
necessary to capture the system’s electronic structure correctly.

Qualitatively these effects can be divided into two groups called dynamical and static
correlation. One speaks of dynamical correlation in situations where a linear combination
of many Slater determinants is necessary to describe the Coulomb repulsion between
electrons. As this interaction is screened by all other electrons in the system, dynamical
correlation is a short-range effect. Static correlation on the other hand arises when only
a few degenerate or nearly degenerate Slater determinants cover the electronic structure
correctly. A prototypical example is the dissociation of H2 and other molecules, but also
the triple bonds in N2. This long-range correlation effect is not covered by (semi)local
correlation functionals 2.

To gain deeper insight into the failure of many xc functionals in describing strongly
correlated systems, we have to get back to a concept already introduced in Sec. 2.5: the

2Static correlation can however be mimicked by semilocal exchange functionals [164]. This observation
also rationalizes a linear combination of semilocal and exact exchange in one-parameter hybrid functionals
as introduced in Sec. 2.5.
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SIE. It was mentioned before that the SIE is trivially defined in an one-electron system
and that the effective one-electron form of the KS equations suggests a route to remove the
one-electron SIE in an orbital-by-orbital fashion (Perdew-Zunger SIC [21]). Yet, despite its
success in curing many troublesome features of the underlying xc functional, Perdew-Zunger
SIC is by no means able to correctly describe the electronic structure and properties of all
systems. In fact, some of its failures can be related to the before mentioned importance of
static correlation effects and their modeling by semilocal exchange.
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Figure 4.2: Sketch of the to-
tal energy of a system as a
function of the fractional par-
ticle number. For the exact
energy functional this has to
be a series of straight line seg-
ments with kinks at integer
particle numbers giving rise
to a derivative discontinuity
of the chemical potential.

It has therefore been attempted to define a many-electron
SIE [165]. The ground for this definition was laid in a seminal
work of Perdew et al. [166], in which a system of two initially
neutral atoms A and B at large distance was considered. When
a fraction of charge δ is transferred from atom A to atom B,
the total energy of the system must vary linearly with δ and
have a discontinuity at integer particle numbers as illustrated
in Fig. 4.2. Otherwise the system could minimize its energy
by distributing fractional charges on each of the atoms A and
B thereby violating the principle of integer particle preference.
This means that

E(N + δ) = (1− δ)E(N) + δE(N + 1), (4.1)

where N + δ is the fractional particle number and 0 ≤ δ ≤ 13.
The derivative of E with respect to the particle number can be
associated with a chemical potential µ. The discontinuity of
E implies that µ can jump at integer particle numbers. This
behavior is known as the derivative discontinuity and it has
together with the straight-line condition for fractional particle

numbers important consequences for the correct description especially of strongly correlated
systems within KS DFT.

The first consequence is related to the so called band gap problem of DFT. The fun-
damental gap is defined via the difference of the ionization potential and the electron
affinity of the N electron system and can be expressed by virtue of the highest occupied
KS eigenvalues of the N and the N + 1 electron system

Egap = I(N)−A(N) = εHOMO(N + 1)− εHOMO(N). (4.2)

The energetic difference between the HOMO and the LUMO of the N electron system,
the KS-gap, EKS differs from Egap by the derivative discontinuity ∆xc which can hence be
expressed as

∆xc = εHOMO(N + 1)− εLUMO(N). (4.3)

The ionization potential and the electron affinity can be related to the derivative of the
energy to the left and the right of the discontinuity at N by using the definition of the

3Fractional particles numbers can arise as time averages in open systems that can be treated as statistical
ensembles.
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chemical potential µ = ∂E/∂N and the Euler equation of DFT, µ = δE[n]/δn(r):

−A(N) = E(N + 1)− E(N) = lim
δ→0

∂E

∂N

∣∣∣∣
N+δ

= lim
δ→0

δE[n]
δn(r)

∣∣∣∣
N+δ

(4.4)

−I(N) = E(N)− E(N − 1) = lim
δ→0

∂E

∂N

∣∣∣∣
N−δ

= lim
δ→0

δE[n]
δn(r)

∣∣∣∣
N−δ

. (4.5)

From the definition of the fundamental gap Eq. (4.2) and using that only the non-interacting
kinetic energy Ts[n] and the xc energy are discontinuous it follows that

Egap = lim
δ→0

[[
δTs[n]
δn(r) + δExc[n]

δn(r)

]
N+δ
−
[
δTs[n]
δn(r) + δExc[n]

δn(r)

]
N−δ

]
. (4.6)

Similarly, one obtains for the KS-gap

EKS = lim
δ→0

[
δTs[n]
δn(r)

∣∣∣∣
N+δ
− δTs[n]
δn(r)

∣∣∣∣
N−δ

]
. (4.7)

Hence,

Egap = εHOMO(N)− εLUMO(N) + lim
δ→0

[
vxc(r)|N+δ − vxc(r)|N−δ

]
(4.8)

= EKS + ∆xc.

Eq. (4.8) has important implications. As the exact ∆xc can only be evaluated from two
different ground state calculations of the N and the N + 1 electron system4, the KS gap
EKS will differ from the fundamental gap even if the exact xc functional is employed. This
feature of KS DFT is particularly severe for systems in which EKS is very small or even
zero, so that Egap ≈ ∆xc as it is the case for Mott insulators.

The second consequence is directly related to the approximate nature of xc functionals.
It has been shown that none of the xc functionals employed today exhibits the exact straight
line behavior of the total energy with respect to the fractional particle number for a wide
variety of systems. Even more strikingly, the failure of existing xc functionals to correctly
describe strongly correlated systems has been illustrated in Ref. [165] by pointing out
that these functionals do not correctly describe the dissociation behavior of the seemingly
simplest systems of the chemical universe, H+

2 and H2. In stretched H+
2 , functionals that

do not conform to the straight line condition of Eq. (4.1) energetically favor unphysical
situations in which a fraction of the charge is localized at each of the nuclei as pointed out
before. The tendency of many approximate functionals to delocalize charge is relevant to
strongly correlated systems in which localized electrons play a significant role in determining
the electronic and magnetic properties.

In stretched H2 the already mentioned static correlation plays a decisive role. The
true ground state of H2 should be a singlet with equal spin up and spin down density
at all distances. From a wavefunction perspective, there are two wavefunctions that are

4Recently, attempts have been made to approximately evaluate ∆xc from a single KS calculation [167].
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orthogonal and degenerate in energy, that describe the electronic structure of H2: One with
a spin-up electron at hydrogen atom 1 and a spin-down electron at hydrogen atom 2 and
one with spin-up electron at atom 2 and a spin-down electron at atom 1. Furthermore,
every linear combination of these two wavefunctions has to be degenerate in energy too,
such as a solution with half a spin-up and half a spin-down electron at each atom. Most
existing xc functionals, however, lift this degeneracy and massively overestimate the energy
of the ”fractional” hydrogen atom. This error can produce qualitatively wrong density
distributions just as violations of the straight line condition. These considerations give rise
to a so-called constancy condition for fractional spins, similar to the straight line condition
for fractional particle numbers and it has been argued that only xc functionals fulfilling
both the straight line condition and the constancy condition for fractional spins might be
able to describe all sorts of strongly correlated systems correctly [168].

4.3 A DFT-study of the magnetic-to-nonmagnetic transition in
Mn-doped Si-clusters

magnetic field
x-rays
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Figure 4.3: Sketch of the experimental setup for
XMCD and XAS on free, size-selected MnSi+n clus-
ters [169].

The experimental study of Si cluster
singly doped with a Mn impurity was car-
ried out at the synchroton radiation facil-
ity BESSY II. Readers interested in the
experimental details are referred to Refs
[170] and [13]. The results discussed in this
section arose from a collaboration with ex-
periment. The following paragraphs, that
intend to give a short overview about the
experimental findings, contain results that
will also be published shortly in Ref. [171].

Fig. 4.3 illustrates the experimental
setup. Mn-doped Si clusters are produced by co-sputtering of a Mn and a Si target. An ion
guide leads the clusters into a mass filter, which allows to accumulate clusters of chosen
size inside an ion trap, where they are thermalized to 10-20 K. There, x-ray absorption
(XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy probe local 2p→ 3d
transitions at the Mn dopant. Upon x-ray absorption the clusters fragment into Mn+ and
Si+2 photoions, which are then detected by a reflectron time-of-flight mass spectrometer.
Photoion yield spectra are recorded as a function of the incident photon energy yielding a
measure for the x-ray absorption cross section. For XMCD spectroscopy additionally a 5 T
magnetic field is produced by a superconducting solenoid in order to align the magnetic
moments of MnSi+n . Photoion yield spectra are then obtained for parallel and antiparallel
alignment of magnetic field and photon helicity. The resulting XMCD spectrum represents
the difference of the photoion yield spectra for parallel and antiparallel alignment of magnetic
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field and photon helicity and in principal allows to extract information about spin and
orbital magnetic moments of the transition metal dopant using the so called XMCD sum
rules [172, 173]. For Mn these sum rules cannot be applied, because the L2 and the L3
edges (see Fig. 4.4) are not well separated in energy.

Additionally, the setup allows to extract structural information about MnSi+n . As Mn
and Si have very different reactivities towards oxygen, the depletion of the respective clusters
from the cluster beam upon reaction with O2 can serve as a measure for a change from
exohedral to endohedral doping. This is monitored by introducing ≈ 10−3 mbar partial
pressure of O2 reactant gas into the ion guide. Exohedrally doped clusters react strongly
with O2 and are consequently removed from the cluster beam, while endohedrally doped
ones are inert towards O2, since Mn is surrounded by the less reactive Si atoms in these
cases.
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Figure 4.4: Mn 2p x-ray absorption (left) and XMCD
(center) spectra of MnSi+n (n = 7−14) clusters, indicating
quenched magnetic moments for n ≥ 11; depletion of
singly doped clusters in the presence of O2 as a measure
of the exohedral-to-endohedral transition (right).

In Fig. 4.4 the XAS (left panel)
and XMCD (center) spectra of MnSi+n
(n = 7− 14) are shown together with
the depletion upon reaction with O2
as a function of cluster size (right).
Both the spectra and the depletion
study clearly show two size regimes.
The depletion of the clusters drops
from 89-94 % for n = 7− 10 to 0-15 %
for n ≥ 11, pointing to a transition
from exohedral to endohedral doping
from 10 to 11 Si atoms. Likewise, the
electronic structure changes consid-
erably between exohedral and endo-
hedral size regime. The very similar
absorption spectra of clusters with
n = 7−10 indicate a similar electronic
structure of the Mn dopant, while it

is more complex and varies strongly for the endohedrally doped clusters. The XMCD
spectra show this transition in electronic structure even more strikingly: the strong XMCD
signal of the exohedrally doped clusters, that corresponds to a large magnetic moment of
the Mn dopant, is completely quenched upon encapsulation of Mn in the cluster.

Knowledge of the ground state structure of MnSi+n (n = 7−14) is a prerequisite for an in-
depth understanding of the magnetic-to-nonmagnetic transition observed in the experiment.
To this end, a global geometry optimization was carried out using the simulated annealing
and modified big-bang approach introduced in Sec. 2.5. In both cases SPV basis sets were
employed. The spin degree of freedom was not held fixed during the simulations. No
symmetry constraints were imposed on the structures. All calculations were performed
within the TURBOMOLE program suite using the Perdew-Burke-Ernzerhof one parameter
hybrid PBE0 [39] in a GKS framework [45] to partly cancel the SIE already at the stage of
geometry optimization.
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MnSi7
+ MnSi8

+ MnSi9
+ MnSi10

+

MnSi11
+ MnSi12

+ MnSi13
+ MnSi14

+

Figure 4.5: Energetically most favorable structures
for MnSi+n (n = 7− 14) as predicted by PBE0. Con-
trary to experiment MnSi+11 is exohedrally doped.

For the simulated annealing simula-
tions different starting structures were hea-
ted to temperatures between 3500 and
4500 K and propagated at this tempera-
ture for 3 ps. Subsequently, the tempera-
ture of the system was reduced by a factor
of 0.9 every 0.2 ps until it fell below 300 K.
At this point the structure usually was
trapped in a stiff local minimum. It is
therefore of great importance to start sim-
ulations from a large number of different
geometries to scan as much of the poten-
tial energy surface as possible. The lowest

energy isomers from these simulations were then locally relaxed using a quasi-Newton method
and larger TZVPP basis sets until the total energy changed by less than 10−8 Hartree and
the forces acting upon the ionic cores were smaller than 0.001 a.u.. The modified big bang
approach consisted of randomly generating different sets of starting coordinates with bond
lengths compressed by about 10% of the equilibrium bond length and propagating these
coordinates at a fixed temperature of 300 K for a short time span of 1.5 ps. Again, lowest
energy geometries were locally relaxed as described before.

Figure 4.6: Structure
of the energetically
lowest lying endohe-
drally doped MnSi+11
as predicted by the
PBE0 xc functional.

The energetically lowest lying structures that PBE0 predicts are
shown in Fig. 4.5. Consistent with experiment clusters with n = 7−10
are exohedrally and clusters with n = 12− 14 are endohedrally doped.
Similarly, in perfect agreement with the XMCD spectra of Fig. 4.4
clusters with n = 7−10 exhibit a large magnetic moment of 4µB, while
the magnetic moment of those with n = 12−14 is completely quenched.
MnSi+11 is, contrary to the experimentally predicted exohedral-to-
endohedral transition, exohedrally doped. Furthermore, the calculated
structure carries a magnetic moment of 2µB in contradiction to the
vanishing XMCD signal of MnSi+11 in Fig. 4.4. The energetically
lowest lying endohedral structure, although 1.1 eV higher in energy
than the PBE0 ground state, (shown in Fig.4.6) would however agree
with experiment.

As the experimentally observed structures are expected to be the
ground state structures, a closer look at the theoretical results reveals that the failure of
PBE0 for MnSi+11 can indeed be explained in terms of the effect of self-interaction on the
eigenvalue spectrum of both isomers. To clarify the situation we calculated the orbital-
SIE, Eq. (2.14), as introduced in Sec. 2.2. To determine eiσ a local developers version
of the program package PARSEC [59] was used to calculate the electronic structure of
MnSi+n (n = 7−14). We employed Troullier-Martins pseudopotentials in Kleinman-Bylander
form constructed within the PBE GGA [24] with a non-linear core correction as discussed
in Sec. 2.4. The pseudopotentials were based on the electronic configuration 4s1.754p0.253d5

with s/p/d cut-off radii of 1.884/2.573/1.980 a.u. for Mn and 3s23p2 with s/p cut-off radii of
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2.493/2.390 a.u. for Si. It was tested that the influence of the used pseudopotentials on the
eigenvalue spectrum was negligible by comparing them with our all-electron TURBOMOLE
calculations. A grid spacing of 0.3 a.u. was used. eiσ was evaluated using the PBE GGA
xc functional. Following Perdew and Zunger and neglecting the difference between self-
interaction corrected and uncorrected orbitals, the self-interaction corrected eigenvalues can
be estimated as

εiσ ≈ εapprox
iσ − eiσ, (4.9)

where εapprox
iσ results from a self-consistent calculation using vapprox

xc , which is PBE in our
case [21]. We can now compare these approximately self-interaction corrected eigenvalues
with those that PBE0 yields. The smaller the difference ∆εiσ = εiσ − εPBE0

iσ , the more
reliable the PBE0 eigenvalues εPBE0

iσ are.

Figure 4.7: Eigenvalue spectrum
(bars), total DOS (dotted line), and
Mn-projected local DOS (solid line) of
endohedral MnSi+11 (top) and the exo-
hedral PBE0 ground state (bottom).
∆εi is a measure for how much the
PBE0 eigenvalues are affected by the
SIE.
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Fig. 4.7 shows the occupied eigenvalue spectrum interpreted as a DOS and the respective
∆εi for both MnSi+11 isomers, the endohedrally doped at the top and the exohedrally doped
PBE0 ground state at the bottom. While for the endohedrally doped isomer ∆εi ≈ 0 for
all upper orbitals, the situation is considerably different for the exohedrally doped isomer.
Here, the PBE0 eigenvalues are strongly affected by the SIE. This is not only true for the
orbitals 4-5 eV below the Fermi level, that can be associated with the Mn dopant5, but also
for higher lying states that participate in bonding. All in all, Fig. 4.7 illustrates that the
energetic ordering of MnSi+11 isomers as predicted by PBE0 is unreliable.

In a second step we used a completely different approach to further elucidate the
situation. Using the RSH xc functional ωPBE [43] (see Sec. 2.2) as implemented in the
QChem program package [174], we checked the energetic ordering of the exohedral and the
endohedral MnSi+11 isomers as a function of the range-separation parameter ω. For values of
ω = 0.2− 0.4 a.u. the ωPBE functional predicts the energetic ordering that is in agreement
with experiment. This finding highlights the delicate balance of exchange and correlation
effects that determines the energetic ordering in MnSi+11.

I will explain in the following, why the SIE, although also plaguing the other exohedral
systems, only becomes decisive for the energetic ordering in case of MnSi+11. To this end

5This can be done by projecting the KS eigenvalues onto atomic orbitals via a Mulliken population
analysis as explained in Sec.3.4.1.
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Fig. 4.8 shows the total DOS, the DOS projected onto the Mn-d-orbitals and ∆εi for MnSi+7
(top) and MnSi+14 (bottom). These two systems are exemplary for the exohedral and the
endohedral size regime, respectively. Additionally, isosurface plots of the orbitals with the
largest Mn-3d character and of the HOMO are shown.
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Figure 4.8: Eigenvalue spectrum
(bars), total (dotted line), and local
Mn 3d-projected (solid line) DOS with
isosurface plots (at ± 0.04 a.u.) of the
Mn 3d orbitals and the highest occu-
pied orbital for MnSi+7 and MnSi+14.
Positive (negative) values represent
the spin-up (spin-down) channel. The
d-like orbitals are localized on the Mn
atom in MnSi+7 , whereas they are delo-
calized in MnSi+14. Also shown is ∆εiσ,
the effect of the SIE on the PBE0
eigenvalues.

Fig. 4.8 illustrates several points. First, for the endohedral size regime, as represented by
MnSi+14, PBE0 faithfully predicts the electronic structure, while in the exohedral size regime
this is not the case for all relevant states. However, the eigenvalues most severely affected
by the SIE (4-5 eV below the Fermi level) are energetically well separated from the Si-states.
It is to be expected that the shift of these orbitals in a fully self-interaction corrected
calculation would hardly increase the hybridization between the Mn- and the Si-states and
therefore the electronic and magnetic properties of these clusters are expected to be only
slightly affected. Furthermore, the relative shift between delocalized and localized orbitals
that results from the SIE is less critical when structures with localized and delocalized
orbitals are energetically well separated [52]. Here, this is the case for all structures except
MnSi+11. The latter is the only cluster for which the global geometry optimization resulted in
both exohedral and endohedral isomers close in energy. For MnSi+n (n = 7− 10) exohedral
isomers are consistently lower in energy than endohedral ones.

We checked, however, that the energetic ordering of exohedrally and endohedrally doped
isomers remains the same for cluster sizes at the structural transition, i.e., for MnSi+10 and
for MnSi+12. To this end we calculated the total energy of the ground state geometry as
predicted by PBE0 and the energetically lowest lying endohedral (exohedral) isomer for
MnSi+10 (MnSi+12) using ωPBE as before with a range separation parameter of ω=0.2 a.u.
as this ω leads to the correct energetic ordering for MnSi+11. Tab. 4.1 shows the energetic
difference between exohedrally and endohedrally doped isomers calculated with PBE0 and
ωPBE energies for MnSi+n (n=10-12) and independently supports the view that the SIE
only affects MnSi+11 in such a way as to change the energetic ordering of exohedrally and
endohedrally doped isomers. For MnSi+10 and MnSi+12 the energetic ordering as well as the



4.3. A DFT-study of the magnetic-to-nonmagnetic transition in Mn-doped Si-clusters 57

Table 4.1: Total energies differences of MnSi+n
(n=10-12) exohedral and endohedral isomers
∆E = Eexo − Eendo calculated using PBE0 and
ωPBE with a range separation parameter of
ω = 0.2 a.u. Positive numbers mean that the
endohedral isomer is energetically more favorable.

system ∆EωPBE in eV ∆EPBE0 in eV
MnSi+10 -0.67 -1.09
MnSi+11 1.67 -1.13
MnSi+12 2.05 1.05

relative energy difference between the exohedral and the endohedral isomer roughly stay
the same for PBE0 and ωPBE. Consequently, only MnSi+11 needs special consideration and
the endohedral structure shown in Fig. 4.6 can in agreement with experiment considered to
be the ground state structure of MnSi+11.

The second point that Fig. 4.8 emphasizes is that the change in local electronic structure
of the Mn dopant that was observed in the x-ray absorption spectra (Fig. 4.4) is reflected
in the occupied eigenvalue spectrum and also by the shape of the KS orbitals.
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Figure 4.9: Eigenvalue spectrum (bars) and DOS of
atomic Mn+ with 4 unpaired electrons. Note that the
ground state of Mn+ has a spin moment of 6µB .

For MnSi+7 , the occupied states of
Mn 3d character are mostly isolated
at ≈ 4− 5 eV below the Fermi level
and are tightly localized at the Mn
dopant, i.e., they largely preserve a
(perturbed) atomic character and only
weakly interact with Si states, as can
be seen from the DOS and the isosur-
face plots. Note also the similarity
between the eigenvalue spectrum of
atomic Mn+ with 4µB as shown in
Fig. 4.9 with the Mn-3d-PDOS of MnSi+7 . Because of this weak interaction, the localized
orbitals of Mn 3d character are qualitatively very similar for all exohedral MnSi+n clusters
and lead to the nearly identical x-ray absorption spectra in Fig. 4.4.

This notion of, at least partly, atomic Mn 3d states is lost in the endohedral size regime,
represented by MnSi+14 in Fig. 4.8. Here, orbitals with partial Mn 3d character are strongly
hybridized with Si states and are shifted to ≈ 0.5− 2 eV below the Fermi level, i.e., they
participate strongly in bonding and are delocalized over the Si frame. Consequently, the Mn
3d derived PDOS sensitively depends on the structure of the Si cage, which is reflected in the
variation of the x-ray absorption spectra of endohedral MnSi+n for different n (n = 11− 14)
in Fig. 4.4. The strong spd hybridization with the participation of all Mn valence orbitals
explains the complete quenching of the magnetic moment from 4µB in exohedrally to 0µB
in endohedrally doped clusters, which is again in accordance with the experimental XMCD
spectra.

Thirdly, Fig. 4.8 is exemplary for the well-known connection between the SIE and the
orbital localization [51]. The tightly localized, nearly atomic 3d-orbitals of MnSi+7 are more
strongly affected by the SIE than the rather delocalized orbitals of MnSi+14, despite the
partial Mn-3d-character of the latter. For a thorough discussion of orbital localization and
self-interaction, the reader is referred to Ref. [51].
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The structural change at the exohedral-to-endohedral transition of MnSi+n can be
quantified by the coordination number Nc of Mn, i.e., the number of Si atoms in the first
coordination sphere as exemplified for MnSi+8 in the inset of Fig. 4.11. In exohedral clusters,
Mn adopts a minimal coordination number of Nc = 2−4, while in endohedral clusters Nc is
maximized to 11−14, i.e., all Si atoms are within the first coordination sphere of Mn.

2.3
5

Figure 4.10: Lowest endohedral
isomer of MnSi+10. The Mn-Si
bond length is compressed to
only 2.35 Å in this cluster.

The average Mn-Si bond length a elucidates why encap-
sulation of the Mn dopant becomes energetically favorable
only for n ≥ 11: In the ground state structures, the Mn-Si
nearest neighbor distance expands from a = 2.43 − 2.58 Å
in exohedral to a = 2.53 − 2.67 Å in endohedral clusters.
In contrast, it would be compressed to a = 2.35 Å in the
energetically most favorable endohedral isomer of MnSi+10
(as illustrated in Fig 4.10). Even though Mn favors high
coordination in Si [175], this strain, which becomes even
more pronounced in smaller clusters, precludes endohedral
ground states for n ≤ 10.

The abrupt change in coordination at the structural
transition is interrelated with the quenching of the magnetic
moment as illustrated in Fig. 4.11: Here, the calculated magnetic moments of MnSi+n are
plotted versus the weighted coordination number d0Nc/a, which takes into account both
the number of Si nearest neighbors Nc as well as their average distance a to the Mn atom,
normalized to the nearest neighbor distance d0 in bulk Si. Low-coordinated exohedral
clusters with d0Nc/a = 1.9− 3.7 (Nc = 2− 4) carry a magnetic moment of 4 µB, which is
quenched to 0 µB in high-coordinated species with d0Nc/a = 10.2− 12.3 (Nc = 11− 14).
This relation of magnetic moment and weighted coordination also holds for higher-energy
isomers that are included in Fig. 4.11 and mark the transition from magnetic to nonmagnetic
impurities around d0Nc/a ≈ 4.
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Figure 4.11: Magnetic moment ver-
sus weighted coordination d0Nc/a
for ground state (open circles) and
higher energy (solid circles) isomers
of MnSi+n (n = 7− 14), isolated neu-
tral Mn impurities in bulk ([151], solid
squares) and amorphous Si ([154],
open triangles), and in a Si nanocrys-
tal ([156], solid diamond). Inset:
bond length distribution of MnSi+8
with first coordination sphere (dotted
line).

Fig. 4.11 shows that this observation can be generalized to extended systems, i.e., to a
neutral Mn impurity at a substitutional site in crystalline Si [151] or in hydrogen-passivated
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Si nanocrystals [156]. It also applies to very low concentrations of Mn in amorphous Si, for
which a possible relation between magnetic moment and coordination has been pointed
out [154]. Yet, although Nc is the leading term, it does not account for the dependence of
the local magnetic moment on the nearest-neighbor distance [151] that becomes important
around Nc = 4 and is included in d0Nc/a. As can be seen in Fig. 4.11, Mn-doped bulk Si is
just at the transition from high-spin to low-spin states and therefore reacts very sensitively
to changes in d0Nc/a. This might explain the large scatter in experimental results on
Mn-doped Si and indicates that high-spin states could be stabilized by an appropriate
expansion of the lattice parameter, e.g., in ultra-thin films or passivated nanocrystals.

In summary, the magnetic moment of Mn-doped Si has been investigated over a wide
range of structural parameters, including extreme coordination numbers from 2 - 14. The
study of singly doped, size-selected MnSi+n clusters avoids impurity-band formation or
interaction between impurities that might be present in experiments on bulk samples, but
also in calculations with periodic boundary conditions. Thus the observed quenching of
the magnetic moment is not a result of impurity band formation but of the electronic
interaction with the Si host. While the SIE strongly affects tightly localized orbitals with
Mn-3d character and is thus persistent in exohedrally doped clusters in which the dopant
only weakly interacts with the Si host, it only perturbs the energetic ordering of exohedral
and endohedral isomers for MnSi+11. Finally, we found an universal correlation of the
magnetic moment and the weighted coordination number. Bulk Si doped with Mn lies at
the transition from high to low magnetic moments and therefore is particularly sensitive to
the nearest neighbor bond lengths of the Mn dopant.





5

Summary and outlook

5.1 Summary

In the present thesis structural and electronic properties of Au-Pt, Au-Pd nanoalloys and
Mn-doped Si clusters were studied using non-empirical DFT and MD simulations employing
empirical Sutton-Chen potentials. Au-Pt and Au-Pd nanoalloys show a bimetallic effect, i.e.,
increased activity and selectivity in many different catalytic reactions. This work contributes
to the long-standing debate between theory and experiment on the mixing pattern of Au-Pt
nanoalloys. We were able to show that a prominent characterization technique based on a
combination of XRD and Vegard’s law relies on questionable assumptions. AushellPtcore
and homogeneously mixed NP in the experimentally relevant size range of ≈ 4 nm are
indistinguishable in a typical XRD experiment. Furthermore, it was shown that Vegard’s
law is valid for both types of mixing patterns. Theory consistently predicts core-shell
structures as energetically most favorable, but homogeneously mixed Au-Pt nanoalloys are
observed in experiment using element-specific characterization techniques. Our findings
show that the formation of mixing patterns other than the core-shell one must be linked to
effects such as interactions with the support material or the synthesis procedure.

The study of the electronic structure of Au-Pt and Au-Pt nanoalloys showed that the
DOS at the Fermi level depends on the Pt and Pd content of the NP, respectively. The
DOS at the Fermi level is related to the binding energy between the catalyst and possible
adsorbates and it increases with increasing Pt (Pd) content. Additionally, the spatial
distribution of the HOMO is connected to the position of the Pt (Pd) atoms. Empirical MD
simulations were used to extract the MSD of the atoms in an Au-Pt NP. The MSD is related
to the atomic mobility or structural flexibility of the NP. The latter can be beneficial in that
it allows the catalyst to structurally adjust to reactants, form element-specific binding sites
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and regenerate after a reaction has taken place. It was shown that the MSD increases with
increasing Au content. This result could be supported by modeling the NP as surface slabs
and studying the diffusion of a single Au or Pt adatom on these surfaces. The activation
barrier for adatom diffusion, the simplest type of surface reconstruction, was shown to
decrease with increasing Au content.

A combination of the fundamental properties DOS at the Fermi level and atomic mobility
might explain why a bimetallic effect is observed for Au-Pt nanoalloys under very varying
experimental conditions. A specific Au-Pt ratio could amount to an optimal interaction
between catalyst and reactants mediated by an optimal DOS at the Fermi level and an
optimal amount of structural flexibility.

In the second part of this thesis the magnetic properties of Mn-doped Si clusters were
studied. These systems can be seen as well-defined models for a semiconducting host that
interacts with a single magnetic impurity. A global geometry optimization was carried out
to identify the ground state structures of MnSi+n (n=7-14). In agreement with experiment,
it could be shown that a structural transition from exohedral to endohedral doping from
MnSi+10 to MnSi+11 is accompanied by complete quenching of the magnetic moment. The
size of the magnetic moment is correlated with the coordination number of the Mn dopant
weighted with its average nearest neighbor distance. This relation holds also for Mn in
amorphous and crystalline Si and suggests ways to stabilize the magnetic moment of a Mn
impurity by appropriate lattice expansion.

Systems for which the interaction between strongly localized and delocalized orbitals
plays a major role pose serious difficulties to existing approximations of DFT because of the
well-known self-interaction problem. By evaluating its orbital-SIE we found that MnSi+11
suffers particularly severely from self-interaction. The one-parameter hybrid xc functional
PBE0 which correctly predicted structures and magnetic moments of all other clusters
therefore yields a wrong, exohedrally doped ground state structure in this case. By using
a RSH functional we saw that the correct energetic ordering of the endohedral and the
exohedral isomer is obtained for certain values of the range separation parameter. Together
with the orbital-SIE this finding highlights how delicately exchange and correlation effects
determine the energetic ordering in MnSi+11.

5.2 An outlook to Ni-Pd nanoalloys

The search for bimetallic catalysts that perform efficiently in large-scale catalysis is frequently
guided by the simple principle to find the combination of materials that yields the highest
turnover rates and is as cheap as possible. Ni-Pd nanoalloys are in this sense optimal.
Additionally, they constitute a system covering a variety of enticing fundamental questions.
Firstly, small Ni and Pd clusters are known to exhibit high magnetic moments [11, 140]. The
size- and composition-dependent magnetic moment of Ni-Pd nanoalloys is therefore expected
to exhibit interesting features. However, Chap. 4.3 showed that the correct description of
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Table 5.1: Adsorption energies (in eV) of Pd-
and Ni-adatoms on pure and doped Pd- and Ni
surfaces for the start (ini) and the end (fin) po-
sition of each NEB calculation. The diffusion
barrier (in meV) is defined as the energetic differ-
ence between the inital position and the saddle
point of the minimum energy path.

system Eads ini Eads fin Ebarrier

Pd/Pd 2.70 2.70 70
Pd/Pd+Ni 2.72 2.69 76

Ni/Pd 3.48 3.38 296
Pd/Ni 3.14 3.14 65

Ni/Ni+Pd 3.63 3.69 380
Ni/Ni 3.63 3.63 80

the geometrical and electronic structure even of allegedly simple magnetic transition metal
compounds is a huge challenge for theory. DFT studies of small Ni-Pd clusters have up to
now only been carried out using standard semilocal xc functionals [176, 177] and global
geometry optimizations are rare [178] for these systems. Attempts to construct a reliable
pseudopotential for Ni that could be used in conjunction with orbital-dependent functionals
have so far proved challenging as well [179].

ini
fin

ini
fin

(a) (b)

Figure 5.1: Setup for Pd/Ni adatom diffusion on
Ni/Pd surface (a) without and (b) with a single
Pd/Ni atom in the upper surface layer. The diffusion
step takes place from one hcp hollow to another hcp
hollow site.

Secondly, a bimetallic effect in cataly-
sis has recently been observed for Ni-Pd
nanoalloys immobilized in so-called me-
tal-organic frameworks [180] as well as in
other reactions [78]. A close lying question
is therefore whether the general concepts
that apply for Au-Pt nanoalloys, are also
suited to explain the special properties of
Ni-Pd particles. This would again require
a faithful description of their electronic
structure, at least close to the Fermi level.
Furthermore, the atomic mobility or fluxionality of Ni-Pd systems has to be tested. Initial
steps into this direction have been taken following a similar line of argument as described
in Sec. 3.4.3. Pure and doped Ni- and Pd-surfaces have been modeled by 4x4x4-layer slabs
with equilibrium lattice parameters of 3.520 Å for Ni and 3.939 Å for Pd. A surface diffusion
step between two equivalent hcp hollow sites as depicted in Fig. 5.1 has been considered.

CI-NEB calculations were carried out in order to determine the activation energy of
this diffusion step (see Sec. 2.5). Furthermore, the adsorption energies of the adatom at the
inital and the final position have been determined using Eq. (3.7). The resulting barriers
and adsorption energies are listed in Tab. 5.1. Note that both the adsorption energies and
the barriers are considerably smaller than for Au-Pt surfaces (cf. Tab. 3.3). This finding is
in line with the recent observation that large Ni-Pd clusters (with diameters of ≈ 4 nm)
preferably form solid solutions and that their surface is corrugated due to the large lattice
mismatch of Ni and Pd [180]. The strong tendency for segregation of the two components
found in Au-Pt NP thus seems not to be present in Ni-Pd NP. Furthermore, no specific
trend of the diffusion barriers can be seen in Tab. 5.1. Exceptions to the overall small
barriers of between 65 and 80 meV are found for the diffusion of a Ni adatom on Pd with
a barrier of almost 300 meV and diffusion of a Ni adatom on a Ni surface doped with a
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Pd impurity with 380 meV. The reason might again lie in the large size difference between
Ni and Pd. Whether these unusually high diffusion barriers are only an artifact of the
inadequate description of the systems’ electronic structure by the PBE GGA should be
tested by re-calculating the diffusion barriers of Tab. 5.1 using the one-parameter hybrid
functional PBE0.

It has been shown that the inherent strain in decahedral Au NP results in a significant
shift of their d-band center in the direction of the Fermi level. By virtue of the d-band
model (see Sec. 3.4.1) this finding was used to explain the high catalytic activity of these
NP [9]. It could be speculated whether a similar effect also plays a role in Ni-Pd NP as a
result of Ni and Pd’s considerable lattice mismatch. Similarly, the atomic mobility from a
finite cluster perspective, i.e., along the lines of the mobility study presented in Sec. 3.4.3,
seems worthwhile to explore.

There is a yet different perspective that makes Ni-Pd clusters a particularly interesting
model system. It has been debated that heterogeneous liquid-phase catalysis might not take
place at the surface of clusters themselves, but rather on ultra-small cluster fragments or
even single atoms that are leached out the parent cluster in solution [181]. This fundamental
question of liquid-phase catalysis could be studied using Ni-Pd catalysts, as for very small
clusters or single ions high magnetic moments are expected, which could be detected (in
liquid phase) using Xenon-NMR (nuclear magnetic resonance). Yet again, a meaningful
comparison of this enticing experimental idea with theoretical results, requires a reliable
theoretical description of small, magnetic systems. Further studies should therefore focus on
the latter, e.g., by using advanced xc functionals such as RSHs or the SIC. The transition
metal all-rounder Ni-Pd promises insights into the theoretical description of magnetic
transition metal compounds as well as into fundamental questions of heterogeneous liquid-
phase catalysis.
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A

Temperature and support effects

In Sec. 3.4, two fundamental properties of Au-Pt NP were established, a combination of
which might result in superior chemical and catalytic features as compared to pure Au and
Pt NP: a high DOS at the Fermi level, associated with Pt, and a high atomic mobility or
structural fluxionality, associated with Au. However, the experimental conditions under
which Au-Pt nanoalloys are applied as catalysts are complex and are expected to have
significant impact on the catalysts’ properties. NP are usually stabilized by a support
that prevents coagulation of individual NP, facilitates the handling of the catalysts and is
beneficial to their re-usability. The use of highly active NP allows reactions to take place
at mild experimental conditions, i.e., at room temperature and in aqueous solution. Still,
interactions between NP and the corresponding support as well as a finite temperature
render understanding liquid phase heterogeneous catalysis a complex, dynamical process.
In the following two sections, I want to discuss the influence of a specific finite temperature
effect, namely thermal expansion, on the DOS at the Fermi level. Additionally, first results
on how small Au and Au-Pt NP interact with support molecules, are presented.

A.1 Temperature dependence of the electronic structure

In Sec. 3.3 it was shown that thermal expansion in Au-Pt NP is considerably larger than in
the respective bulk systems. The linear thermal expansion coefficient is defined via Eq. (3.3)
and 3.4 in Sec. 3.3. While β is 9 · 10−6K−1 for bulk Pt and 14 · 10−6K−1 for bulk Au,
it is ca. 19 · 10−6K−1 up to 600 K for Au-Pt nanoalloys as has been shown in Sec. 3.3.
The importance of the DOS at the Fermi level for the catalytic activity of Au-Pt NP was
discussed in Sec. 3.4.1. Here, we will evaluate how it changes upon thermal expansion of
the cluster.
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Figure A.1: DOS of bulk Au (top) and
Pt (bottom) for the respective equilibrium
(black) and a considerably increased lat-
tice parameter (orange). The black dotted
line indicates the integration threshold of
1 eV.

To answer this question, consider first the Au
and Pt bulk DOS, as depicted in Fig. A.1. The elec-
tronic structure was calculated using the PBE GGA
as implemented in VASP. The electron-ion interac-
tion was treated within the PAW framework. Fur-
ther computational details can be found in App. C.
The black curves in Fig. A.1 are the DOS of the
respective bulk system at its equilibrium lattice
parameter, while the orange curves represent the
DOS for a considerably expanded lattice. Two main
points can immediately be seen in Fig. A.1. Firstly,
the DOS at the Fermi level (integration threshold
defined as -1 eV as in Sec. 3.4.1) of Au is much
smaller than that of Pt. Secondly, upon increasing
the lattice parameter, the DOS at the Fermi level
hardly changes for Au, while a considerable increase
of ≈ 22% can be seen for Pt.

Bulk Au can be considered a good 6s free elec-
tron metal [2]. Using the dispersion relation of the
free electron gas

ε(k) = h̄2k2

2m , (A.1)

in which k is the wave vector and m the electron
mass, the DOS per unit volume of a three-dimensional free electron gas can be written as

g(ε) = m

h̄2π2

√
2mε
h̄2 ∝

√
ε. (A.2)
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Figure A.2: Upon lattice expansion the
Fermi energy of the free electron gas de-
creases. The integrated DOS at the Fermi
level changes only slightly, because of the
flatness of g(ε).

The Fermi energy εF up to which all energy
levels are occupied at zero temperature, corresponds
to the Fermi wavenumber via εF = h̄2k2

F /2m. kF
in turn is determined by the electron density by
n = k3

F /3π2. Hence, the Fermi energy can be
expressed as a function of the electron density

εF = h̄2

2m(3π2n)
2
3 . (A.3)

An increasing lattice parameter results in a decrease
of the electron density which gives rise to a decrease
of the Fermi energy. Fig. A.2 illustrates how thermal expansion of the lattice affects the
DOS at the Fermi level of a free electron gas. As g(ε) is very flat close to the Fermi energy,
a shift of the latter only slightly changes the integrated DOS close to the Fermi energy.
This explains why it barely changes for bulk Au upon thermal expansion.
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Figure A.3: Schematic of energy levels of
a periodic lattice of N atoms as a function
of the lattice parameter. The larger the in-
teratomic distance becomes, the narrower
become the energy bands. In the limit
of infinite separation, the atomic energy
levels are completely degenerate.

On the contrary, bulk Pt cannot be described
as a free electron gas. To understand the drastic
increase of the DOS at the Fermi level of Pt consider
the tight binding model of solid state physics in
which it is assumed that close to the lattice points
the Hamiltonian of the crystal can be represented
by the atomic Hamiltonian of atoms localized at the
lattice points. The bound eigenstates of the atomic
Hamiltonian are assumed to be strongly localized at
the atomic sites. Consider a periodic arrangement
of M atoms on a lattice with lattice parameter a. If
the lattice parameter is sufficiently large, the atomic
energy levels are nearly degenerate as illustrated in
Fig. A.3. With decreasing interatomic distance, the
overlap integrals between single atomic sites become
larger and thus the degenerate atomic energy levels
are broadened and form energy bands. Thus, one
can rationalize the increase of the DOS at the Fermi
level for bulk Pt with increasing lattice parameter
by noting that a narrowing of the energy bands is
followed by an increase of the number of states per

energy unit. Additionally, similar to bulk Au, Pt’s Fermi level decreases with increasing
lattice parameter.

We will now determine, how large the effect of thermal expansion on the DOS at the
Fermi level is, by assuming realistic linear thermal expansion coefficients both for the
bulk metals, as well as for Au-Pt clusters. For a temperature difference of ∆T = 600K
and a linear thermal expansion coefficient of βPt = 9 · 10−6K−1, the relative change in
the mean interatomic distance ∆L/L corresponds to an increased lattice parameter of
a600K = 3.998 Å. For bulk Au one similarly obtains a600K = 4.212 Å. The corresponding
increase of the DOS at the Fermi level is 3% for Pt and negligibly small for Au.

For the clusters, a temperature change of 600 K corresponds to an increase of the mean
interatomic distance by ≈ 1%. Exemplary, 20-atom, 38-atom and 60-atom clusters each
with 0%, 100% and 80–90% Au content were considered. The electronic structure of these
clusters with accordingly increased interatomic distances was computed using the PBE
GGA and a TZVPP basis set. With the exception of Au60, the relative DOS increase is
larger, the higher the Pt content of the system is and ranges between 0.5 and 7%. This is
consistent with what one would expect from the above mentioned considerations for the
respective bulk systems and also with the d-band model, introduced in Sec. 3.4.1.

The slightly larger increase of the clusters’ DOS at the Fermi level as compared to bulk
Au and Pt can be attributed to the larger linear thermal expansion coefficient. Fig. A.4
illustrates that the DOS at the Fermi level increases linearly with increasing lattice parameter
for bulk Au and Pt. If the increase of the DOS at the Fermi level is now evaluated using
the cluster thermal expansion coefficient of 19 · 10−6 K−1 for the bulk, similar values are
obtained as for the small clusters. In conclusion, it should be mentioned that even the
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Figure A.4: DOS at the Fermi level with increasing lattice parameter for bulk Au (left) and Pt
(right). Different integration thresholds are shown, that demonstrate that the Au bulk DOS increases
more rapidly, as soon as the 5d-derived DOS is taken into account.
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substitution of one Au atom in, e.g., Au38 by a Pt atom (upon which the mean interatomic
distance even decreases, as shown in Sec. 3.3), leads to a relative increase of the DOS at
the Fermi level of nearly 100%, while the position of the Fermi level remains approximately
constant. The effect of thermal expansion on the electronic structure of Au-Pt NP is
therefore negligibly small as compared to the increase that is observed for alloying Au
clusters with Pt atoms.

A.2 Influence of the nanoparticle support

The practical usefulness of catalytic NP is often dictated by how successfully they can be
stabilized against coagulation, by their handling and their re-usability. Stabilization by
end groups that strongly interact with the NP’s surface can severely alter and even limit
the catalytic activity. Recently, it has been shown that highly catalytically active Au-Pt
nanoalloys with a diameter of ≈ 3-4 nm can be synthesized and immobilized in so-called
spherical polyelectrolyte brushes (SPBs) [80]. SPBs consist of a solid polystyrene core
onto which long cationic polyelectrolyte chains are densely grafted as sketched in Fig. A.5.
The polyelectrolyte is 2-amino-ethyl methacrylate (AEMH) which is positively charged in
aqueous solution. Cl− anions represent the counterions which are mostly confined to the
surface layer of the SPB, that is indicated in light gray in Fig. A.5. The Cl− counterions can
be replaced by metal ions like [AuCl4]− and [PtCl6]−2. These are then reduced to elemental
Au and Pt using NaBH2. During the process of Au-Pt nanoalloy formation the surface
layer considerably decreases from about 70 nm to only 20 nm. This can be attributed to the
nanoalloys carrying a negative surface charge and therefore strongly interacting with the
cationic polyelectrolyte chains. However, this interaction seems to be weak enough not to
obstruct the catalytic activity of the Au-Pt nanoalloys [80].
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Figure A.5: Au-Pt nanoalloys
can be synthesized within the
dense polyelectrolyte layer of a
spherical polyelectrolyte brush.
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In this section, I want to present first results on how the interaction between the NP
and the SPB support affects the fundamental structural and electronic properties of the
Au-Pt nanoalloys that have been established in the main part of this thesis. As the simplest
possible model setup we assume that the metal NP interact with monomeric AEMH units
and that the combined system consisting of NP and AEMH units is neutral. The polystyrene
core is assumed to be inert and will not be considered here. Furthermore, we disregard the
aqueous solution in which the reaction takes place, as we want to concentrate on the effect
of the NP-AEMH interaction.

pure Au random core-shell

Figure A.6: Two AEMH monomer units are placed
close to the surface of an Au20, a randomly mixed
Au10Pt10 and a core-shell Au10Pt10 cluster.

Our first model setup is shown in Fig.
A.6. Two AEMH monomer units are plac-
ed close to the surface of an Au20, a ran-
domly mixed Au10Pt10 and a core-shell
like Au10Pt10 cluster1. The dynamical
evolution of these systems is simulated us-
ing constant temperature MD simulations
via a Nosé-Hoover thermostat of 300 K
temperature.

In the original formulation of Nosé,
a canonical ensemble is achieved by aug-

menting the classical Hamiltonian by a time scale variable s, its conjugate momentum ps
and a parameter Q

HNosé =
M∑
i=1

p2
i

2mis2 + U(q1, ..., qM ) + ps
2Q + (Nf + 1)kBT ln s. (A.4)

The time scale variable s fluctuates which amounts to a coupling to a heat bath of
temperature T. Nf is the number of degrees of freedom. It can be shown that the
microcanonical distribution in the augmented set of variables is equivalent to a canonical
distribution of the variables {q1, ..., qM}, {p′1, ..., p′M}, where p′i = pi/s [182]. As it is
inconvenient to work with fluctuating time intervals in practical simulations, one often
uses the formulation of Hoover, in which ps/Q is replaced by a thermodynamic friction

1Similar to Sec. 3.2, the label ”core-shell” indicates that all Pt atoms are as highly coordinated and all
Au atoms are as lowly coordinated as possible.
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coefficient η, which can be expressed via a phenomenological relaxation time τ [183]

η = ps
NfkBTτ2 , (A.5)

which is here chosen four times as large as the simulation time step ∆t = 80 a.u. =̂ 1.9 fs.
All systems were propagated for about 16 ps. The electronic structure in each timestep

was calculated using the PBE GGA and a SVP basis set augmented as implemented in the
TURBOMOLE program package [184]. As van-der-Waals forces are expected to play a role
in the interaction between the Au-Pt nanoalloys and the AEMH molecules, the empirical
dispersion correction of Grimme was employed [185], which adds a term

Edisp = −s6

M−1∑
i=1

M∑
j=i+1

Cij6
R6
ij

fdamp(Rij) (A.6)

to the total energy of the system. Here, s6 is a global scaling parameter, which depends on
the xc functional employed, Cij6 are empirical dispersion coefficients of atom pair i and j,
Rij = |Ri −Rj |, fdamp is a damping function that avoids singularities at small interatomic
distances Rij and M denotes the number of atoms. To differentiate between the effects of
temperature and those of the AEMH monomer units, a second set of MD simulations of
just the bare systems without AEMH molecules was carried out.

randompure Au core-shell

Figure A.7: Structure snapshot taken at the
end of each simulation, showing that consider-
able structural changes have severely distorted
the tetrahedral geometry of all three systems.

Fig. A.7 provides a visual impression of the
first important result of these simulations. It
shows an exemplary structure snapshot taken
at the end of the simulation. The geometry
of all three systems is considerably different
from the tetrahedral structure we started with.
That this is not only an effect of temperature
can be seen by comparison with the structures
of the bare Au20 and Au10Pt10 systems that
overall retain their tetrahedral shape. The
structure of the bare system is even stable
up to temperatures of 600 K, as mentioned in
Sec. 3.2 and Ref. [94]. In fact, during the whole
simulation strong structural changes take place in the combined NP-AEMH system, while
in the bare systems mainly vibrations of the atoms about their equilibrium positions can
be seen.

To quantify these effects we calculated the average nearest neighbor bond length for
the NP with and without AEMH monomers for every timestep. Fig. A.8 shows the nearest
neighbor bond length of Au20 (left), randomly mixed Au10Pt10 (middle) and core-shell
Au10Pt10 (right). The nearest neighbor bond length was defined as the average distance
of every atom to its four nearest neighbors. Note that the relaxed core-shell Au10Pt10
was taken as the initial geometry for all NP. For Au20 all Pt atoms in this NP were then
replaced by Au atoms. For the randomly mixed cluster, the Pt atoms were redistributed
over the cluster as depicted in Fig. A.6. This means, that one has to compare the nearest
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Figure A.8: Average nearest neighbor bond length for every time step of the simulation for the Au20
(left), the Au10Pt10 randomly mixed (middle) and the Au10Pt10 core-shell system with (top) and
without (bottom) AEMH monomers. The yellow line, a moving window average, is a guide to the
eye.
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neighbor bond length of the NP-AEMH system with the equilibrium bond length of the
bare NP, after all transient processes have decayed. On average, the nearest neighbor
bond length increases from 2.84 Å to 2.85 Å in Au20, from 2.78 Å to 2.79 Å in the randomly
mixed Au10Pt10 cluster and from 2.78 Å to 2.80 Å in the core-shell Au10Pt10 cluster. More
significant than this slight increase of the average bond length by less than 1% is that the
nearest neighbor bond length fluctuates much more strongly in the NP-AEMH systems
than in the bare clusters. This is consistent with the larger structural changes in the former.

Additionally, we counted the number of Au-Au, Au-Pt and Pt-Pt bonds of the two
Au10Pt10 systems in each simulation step. A bond is here defined as every interatomic
distance ≤ 2.9 Å. For the bare NP these numbers are constant during the whole simulation.
For the combined NP-AEMH systems one has to distinguish two time domains, similarly as
for the nearest neighbor bond length. The transient time domain from 0 to ≈ 6000 fs and
the steady state until the end of the simulation. Of course, transient effects are also present
for the bare clusters, but they do not affect the number of Au-Au, Au-Pt and Pt-Pt bonds
here. Tab. A.1 shows the average steady state number of bonds and the respective standard
deviations for Au10Pt10 with and without AEMH monomers. Again, we compare the average
number of bonds of the combined NP-AEMH system with the number of bonds of the bare
NP. For both Au10Pt10+AEMH systems the number of Au-Au bonds decreases as compared
to their bare counterparts. For the randomly mixed cluster also the number of Au-Pt bonds
decreases, while the number of Pt-Pt bonds increases. For the core-shell cluster the number
of Au-Pt bonds slightly increases and the number of Pt-Pt bonds decreases. I want to stress
that the overall number of Au-Au, Au-Pt and Pt-Pt bonds is too small to allow conclusive
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without AEMH random core-shell
Au-Au 4 ± 1 8 ± 1
Au-Pt 22 ± 2 13 ± 2
Pt-Pt 12 ± 1 19 ± 1

with AEMH random core-shell
Au-Au 2 ± 1 5 ± 2
Au-Pt 20 ± 2 14 ± 2
Pt-Pt 14 ± 1 16 ± 1

Table A.1: Number of Au-Au, Au-Pt and Pt-
Pt bonds ≤ 2.9 Å of randomly mixed and core-
shell clusters without and with two AEMH
monomers. The averages for the bare system
is taken over the complete simulation time.
For the combined system the average was
computed from 6000 to 16 000 fs.

statements here. A first cautious interpretation of these results, however, indicates that the
core-shell cluster partly looses its clear Pt-core/Au-shell characteristics, while the randomly
mixed cluster undergoes structural changes making it more core-shell like. In other words, in
the combined NP-AEMH system the differentiation between randomly mixed and core-shell
clusters is not meaningful anymore. Firstly, because on average clusters will exhibit an
intermediate mixing pattern in between core-shell and a random distribution of Au and
Pt. Secondly, at realistic experimental conditions, i.e., at finite temperature and embedded
in a supporting matrix, Au-Pt nanoalloys cannot be described in a static, monostructure
fashion anymore [146]. Indeed, in our case at 300 K interaction with the AEMH monomers
seems to be the dominant factor that induces structural fluxionality.

Figure A.9: Total energy of randomly mixed and core-shell Au10Pt10 in the MD simulation of the
combined NP-AEMH system and the bare NP system.
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These conclusions are further supported by considering the total energy of the two
Au10Pt10 systems with and without AEMH support as depicted in Fig. A.9. For the bare
system the total energy of the core-shell cluster is consistently lower than that of the
randomly mixed particles. This result is not surprising considering that structure and
mixing pattern in these simulations remain largely undisturbed. The situation is completely
different for the combined NP-AEMH system. Here the core-shell cluster-AEMH system
is energetically more favorable at the beginning of the simulation. From ≈ 6000 fs on the
total energies of the two systems are nearly identical.

Finally, we will take a closer look at the electronic structure of our model system. To
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this end, we took 11 structure snapshots of each system, being 194 fs apart from each
other (=̂ 100 MD steps) starting at 13 545 fs. The electronic structure of these systems was
calculated using a TZVPP basis set. No structural relaxation was carried out, as we are
interested in the electronic structure of each particular snapshot here. For each structure
snapshot we calculated the total DOS and the metal DOS of the combined NP-AEMH
system (in the following called metal-PDOS), which is obtained by projecting the total
DOS onto the Au and Pt atoms.

Fig. A.10 shows the total DOS of the bare Au20 and Au10Pt10 systems and the respective
metal-PDOS of the combined NP-AEMH systems. The depicted DOS’s represent the
arithmetic mean of the DOS’s of each of the 11 structure snapshots of each system. The
metal-PDOS of the combined system is interesting, because we assume that possible
reactants in a catalytic process are adsorbed to the NP and react at its surface. Thus,
following the considerations of Sec. 3.4.1, the interaction strength between the catalysts
and the adsorbates is governed by the metal-PDOS at the Fermi level.

Figure A.10: Total DOS of bare NP (black) and DOS projected onto the metal atoms of the combined
NP-AEMH system (yellow) averaged over 11 structure snapshots each, as explained in the text.
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The left panel of Fig. A.10 again demonstrates the special electronic structure of the
bare Au20 tetrahedron [68]. It’s DOS exhibits discrete features and is high close to the
Fermi level as compared to other Au clusters (see Sec. 3.4.1). In contrast, the DOS of
the bare Au10Pt10 clusters, is more continuous and band-like. Note that contrary to the
visual impression the DOS at the Fermi level of Au10Pt10 is significantly higher than that
of Au20 in accordance with the results of Sec. 3.4.1. Noticeably, Fig. A.10 shows that the
metal-PDOS at the Fermi level is considerably reduced as compared to the bare NP case.
This is most pronounced for Au20. Here, the metal-PDOS is more continuous than that of
the bare NP. More importantly, the metal-PDOS at the Fermi level is reduced by 60% as
compared to the total DOS of the bare NP. The same effect, though less distinct, is seen for
Au10Pt10. The metal-PDOS at the Fermi level is reduced by 16% for the randomly mixed
and by 30% for the core-shell cluster. The large deviations between the DOS reduction
of the two Au10Pt10 systems can be ascribed to the overall small number of structural
snapshots for which the DOS was evaluated. A reduction of the DOS at the Fermi level
is expected to lead to weaker interactions with possible adsorbates. Whether it results in
an increased or decreased catalytic activity, however, depends on the specific reaction one
is interested in. Quite generally the results of this section indicate that the interaction of



76 Appendix A — Temperature and support effects

our 20-atom Au and Au-Pt NP with AEMH monomer units leads to a marked increase
of the fluxionality of the clusters on the one hand. On the other hand the DOS at the
Fermi level decreases in the combined NP-AEMH system. In terms of the volcano picture
introduced in Sec. 3.4.4, this might correspond to a shift of the volcano peak as compared
to the bare NP case. Our findings support the notion that liquid-phase catalysis cannot be
modeled using the same concepts that have successfully been applied to gas-phase catalysis
on surfaces [131]. Under realistic experimental conditions the description of supported
Au-Pt nanoalloys as static entities being governed by their (vacuum and zero-temperature)
ground state properties is likely to be flawed.

Yet, even though the results presented in this section allow valuable first insights into the
interaction between support molecules and Au-Pt NP further simulations have to be carried
out to achieve conclusive results and to judge the significance of the findings presented
above. First, simulations have to be done for larger NP, e.g., 40-atom Au-Pt nanoalloys,
possibly with a less ”special” geometry than the tetrahedron, which has only surface and
no volume atoms and is therefore expected to be particularly reactive. Second, it has to be
clarified how significant the type of NP support in terms of the reported effects is. Typical
supports that could be modeled with reasonable computational effort are, e.g., carbon [87]
or silica [79] supports.



B

Optical properties of Au-Pt
nanoalloys

The use of finely dispersed Au particles in ruby glass and the colorful stained-glass windows
of European’s medieval cathedrals shows that their special optical properties have been
known for centuries. The first scientific examination of the subject is attributed to Michael
Faraday, who studied the interaction of light with colloidal Au particles, as well as thin
Au films and leaves as early as 1857 [186]. Today it is well understood that the beautiful
color of suspensions of colloidal Au is a result of collective excitations of the conduction
electrons that dominate the absorption spectrum, accumulating in a so called Mie resonance
or surface plasma resonance1. The position of the Mie resonance depends on the size of
the Au colloids, but the optical material functions that describe the linear response of
the clusters to electromagnetic waves, are largely size-independent and similar to the bulk
values. With these optical material functions one can determine the optical response of
(rather large) NP using classical electrodynamics and the so called Mie theory [188].

For NP smaller than ≈ 10 nm, that are still too large to assess them with quantum
chemical methods such as time-dependent DFT, the situation is more difficult. The optical
response functions become size dependent and can deviate substantially from the bulk. A
comprehensive account on optical properties of metal clusters is given in Ref. [187] and
pertinent references therein. Here, the focus will be on spherical clusters of 10 nm diameter
(R = 5 nm) interacting with visible light of wavelength λ, i.e., R� λ. The optical response
of clusters in this size range can be determined by virtue of Mie theory. For R � λ
(quasi-static case) phase retardation effects and higher multipole orders can be neglected
and the absorption cross section in the dipolar limit is

σ(ω) = 4πω
c
√
εm
=[α(ω)], (B.1)

1The term surface plasma resonance refers to the surface polarization being the main restorative force in
clusters. This surface polarization is due to charges within the electronic screening length [187].
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where =[α(ω)] is the imaginary part of the polarizability of the cluster, which for a
homogeneous sphere is

αhomogeneous(ω) = ε− εm
ε+ 2εm

εmR
3. (B.2)
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Figure B.1: Real and imaginary part of
the dielectric function of bulk Au and Pt,
taken from Ref. [189] and [190].

In Eq. (B.1) and (B.2), ε is the (complex and
ω-dependent) dielectric function of the cluster. We
will here assume that ε is similar to its bulk value.
The validity of this assumption will be discussed
below. The real and imaginary part of the dielectric
function ε = ε1 + iε2 describe polarization and
energy dissipation of matter, respectively, and are
related by the famous Kramers-Kronig relations.
Fig. B.1 shows ε1 and ε2 for bulk Au and Pt as
tabulated in Ref. [189] and [190]. Furthermore,
Eq.(B.1) and B.2 contain the relative permittivity
εm of the matrix in which the particle is embedded.
For all following calculations εm = 2.7 was used,
which corresponds to the relative permittivity of
polystyrene, one of the major ingredients of the
polyelectrolyte matrices used for Au-Pt nanoalloys
stabilization in Ref. [80]. Finally, c is the vacuum
speed of light.

Fig. B.2 depicts the optical absorption spectra
of a pure Au and a pure Pt NP of 10 nm diameter.
The Mie resonance of the Au NP can clearly be
seen at around 2.25 eV. The Pt NP exhibits no Mie
resonance in the visible energy range.
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trum calculated using Mie theory in
the dipolar limit for spherical metal
spheres of 10 nm diameter. Contrary
to Pt, Au NP show a pronounced Mie
resonance.
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At this point the question arises how the optical response of an Au-Pt nanoalloy will
evolve as a function of the Au/Pt ratio and how the mixing pattern of Au and Pt influences
the optical absorption spectrum of the NP. The optical properties of Au-Pt NP have
been studied experimentally [191, 192] and for core-shell clusters also theoretically using
Mie-theory as will be explained in the following [192]. Our approach follows a study of
Ni-Ag clusters by Gaudry et al. [193].

Mie theory can be extended to the scattering of an electromagnetic wave by two
concentric spheres [194]. In the dipolar limit one then obtains for the polarizability

αcore-shell(ω) = (εshell − εm)(εcore + 2εshell) + fv(εcore − εshell)(εm + 2εshell)
(εshell + 2εm)(εcore + 2εshell) + 2fv(εshell − εm)(εcore − εshell)

εmR
3, (B.3)

where εcore and εshell are the dielectric functions of the core and the shell, respectively. Here,
fv = Rc/R and Rc is the radius of the core, that one can estimate using the Au-Pt ratio
(1− x)/x and the atomic radii of Au and Pt for a AushellPtcore cluster

Vcore = 4
3πR

3
c (B.4)

Vshell = 4
3π(R3 −R3

c). (B.5)

Assuming the cluster to consist of MAu Au and MPt Pt atoms

MAu = Vshell
VAu

(B.6)

MPt = Vcore
VPt

, (B.7)

where VAu,Pt = 4
3πr

3
Au,Pt is the volume occupied by a single Au or Pt atom, one obtains

MAu
MPt

= 1− x
x

= r3
Pt
r3

Au

R3 −R3
c

R3
c

. (B.8)

With this, the core radius is determined to be approximately

Rc = R 3

√
xr3

Pt
(1− x)r3

Au + xr3
Pt
. (B.9)

For εcore and εshell we take the bulk dielectric functions for Pt and Au. This might not
be justified, notably for the shell region and only small percentages of Au. However, for
the case of Ni-Ag NP (R=1–2.5 nm) this approximation reproduced the experimentally
observed Mie resonance and its blueshift with increasing Ni-content qualitatively well [193].

For a Au-Pt solid solution, the optical absorption can be determined using Eq. (B.1)
and (B.2) with an averaged dielectric function [187]

ε = εPtx′ Au1−x′ (ω) = x′εPt(ω) + (1− x′)εAu(ω), (B.10)
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in which the volumic proportion x′ is defined as

x′ = xr3
Pt

xr3
Pt + (1− x)r3

Au
. (B.11)

The resulting spectra for clusters with varying Pt content x are presented in Fig. B.3. Clearly,
it can be seen that the pronounced Mie resonance of the pure Au cluster is considerably
damped even for rather low Pt concentrations both for the homogeneously mixed and the
core-shell cluster.

Figure B.3: Optical absorption spectrum calculated using (extended) Mie theory in the dipolar limit
for spherical metal spheres of 10 nm diameter. The Pt-content of the nanoalloys is denoted by x.
Left: Core-shell particle. Right: Solid solution of Au and Pt using an averaged dielectric function
ε(ω) (see text).

AushellPtcore solid solution

5nm

0 1 2 3 4 5

energy [eV]

x=0.0

x=0.1

x=0.2

x=0.4

x=0.6

x=0.8

x=1.0

0 1 2 3 4 5

ab
so

rp
ti
on

cr
os

s
se

ct
io

n
[a

rb
.u

ni
ts
]

energy [eV]

x=0.0

x=0.1

x=0.2

x=0.4

x=0.6

x=0.8

x=1.0

However, the height of the resonance in Fig. B.3 indicates that this damping is much
more pronounced for the core-shell cluster. This visual impression is confirmed by integrating
the optical absorption over the entire spectral range (up to 5 eV) as shown in Fig. B.4 for
NP with varying Pt content.
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Figure B.4: The optical absorption of a core-
shell (hollow triangles) and a homogeneously
mixed (filled triangles) NP integrated over the
entire spectral range shown in Fig. B.3. Ab-
sorption of the core-shell NP is more strongly
damped than that of the homogeneously mixed
NP. The dashed lines are a guide to the eye.
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For a qualitative understanding of this result, consider the polarizabilities Eq. (B.2)
and (B.3). Using R3

c = R3x′, one can establish =[α] in both cases as a function of the
core radius, which for the homogeneously mixed NP is of course only a fictitious quantity
corresponding to a certain volumic proportion x′. Fig. B.5 depicts =[α]/R3εm which is
proportional to the absorption cross section σ at the Mie resonance (bottom) and for a
representative off-resonant case (top).
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Figure B.5: Imaginary part of the electric dipole
polarizablity of a homogeneously mixed and a core-
shell NP off-resonance (top) and at the Mie reso-
nance (bottom).

It can be seen that =[α]/R3εm is sma-
ller for the core-shell cluster for all possible
Rc at the resonance. For all other excita-
tion energies, =[α]/R3εm of the core-shell
NP can exceed =[α]/R3εm of the homoge-
neously mixed particle, but only for small
volumic proportions of Pt, corresponding
to Pt ratios of as little as ≈ 1%. Thus,
the NP volume can be considered to con-
tribute more strongly to the NP’s optical
absorption than the surface. In the ho-
mogeneously mixed case a fraction of the
dielectric function of Au is assumed to be
”smeared out” over the complete NP vol-
ume, while for a AushellPtcore NP the full
dielectric function of Au is assumed for
only a very small volume fraction of the
NP: its shell. A stronger damping of the
Mie resonance with increasing Pt content
in the latter case seems therefore reason-
able also from general considerations.

Note, however, that as with decreasing
Au content the use of the Au bulk dielec-
tric function becomes increasingly
questionable, the results of this chapter
should be taken with care. To characterize
experimentally observed Au-Pt nanoalloys based on a comparison of experimental and
simulated optical absorption spectra, a more advanced treatment of the dielectric functions
seems necessary. Additionally, a first principles based approach for clusters consisting of a
few tens of atoms could be interesting.





C

Surface slab calculations with VASP

In Sec. 3.2 is was explained that surface slab models can be used to study certain properties
of Au-Pt nanoalloys. They are particularly useful for studying properties related to
catalytic processes, as reactions take place at the surface of Au-Pt nanoalloys and the high
surface/volume ratio of NP contributes to their high catalytic activities in many reactions.
In Sec. 3.4.3 a surface slab model was used to determine the activation energy of a simple
diffusion step as an indicator for how easily surface rearrangement processes take place in
Au-Pt nanoalloys. However, these calculations require some preliminary considerations in
order to gain physically meaningful results. Firstly, calculations for the respective bulk
material have to be performed to determine the bulk equilibrium lattice parameter and
sensible values for the plane wave expansion energy cutoff and the k-points mesh. Secondly,
the desired surface has to be constructed and thirdly, the surface slab size (number of
surface layers, vacuum height between adjacent unit cells) has to be determined. The
following sections give an outline of technical and computational details regarding these
issues. A Pt(111) surface slab was chosen as an example.

C.1 Bulk calculations

The prerequisite for a quantitatively reliable slab calculation with VASP is a well-converged
bulk calculation. Next to finding an appropriate k-point mesh and cutoff energy for the
plane wave expansion, one has to determine the equilibrium lattice parameter, as the slab
is supposed to model the bulk far away from the surface. The parameters that primarily
determine speed and accuracy of the calculation are the number of k-points used to sample
the Brillouin zone and the energy cutoff of the plane wave expansion. The free energy of
the bulk should be well-converged for these quantities. In the present thesis the optimal
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parameters for ENCUT (energy cutoff) and the k-point mesh for Au and Pt were determined
as follows: First, the cutoff energy of the plane wave basis was fixed at a high value (here:
450 eV) and the free energy was converged with respect to the k-point mesh (see left panel of
Fig. C.1). Second, the number of k-points was kept fix at a high value (here: 15x15x15. The
free energy was converged with respect to the energy-cutoff (see middle panel of Fig. C.1
middle). Third, both the k-points mesh and the energy-cutoff were set to their final values.
The lattice parameter is most easily determined by simply computing the free energy as a
function of different lattice parameters as depicted in the right panel of Fig. C.1.

Using the PBE GGA this gives an energy-cutoff of 450 eV, a 15x15x15 k-point mesh and
a lattice parameter of 3.977 Å for Pt and 4.174 Å for Au as optimal parameters. Note, that
electronic structure calculations, e.g., of the DOS or the band structure should be done
using an even larger k-point mesh to ensure high accuracy. The DOS of bulk Au and Pt
shown in Fig. A.1 were, e.g., calculated using a 21x21x21 k-point mesh.

Figure C.1: Convergence tests for bulk calculations with VASP illustrated for Pt. Left: free energy
as a function of k-points (in one dimension). Middle: free energy as a function of energy cutoff of
plane wave expansion. Right: free energy as a function of the lattice parameter.
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C.2 Slab construction

B
C

A

Figure C.2: Left: fcc unit cell with layer A of
fcc(111) surface marked in light grey. Atoms
in layer A are drawn in yellow, while all other
atoms (in layers B and C) are black. Right:
Topview on the fcc(111) A layer that shows the
surface lattice vectors â1 and â2. The stacking
sequence of the three symmetry inequivalent
layers is ABCABC.

In the following, I will outline how to construct a fcc(111) surface slab. The left hand
side of Fig. C.2 shows a fcc unit cell with lattice parameter a. There are three symmetry
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inequivalent layers as indicated in the right hand side of Fig. C.2. The first fcc(111) surface
layer (A) is marked in light grey. Lattice positions lying within this first surface layer are
occupied by yellow atoms in this sketch. The surface lattice vectors â1 and â2 are

â1 =
(
a√
2
, 0, 0

)
and â2 =

(
a√
8
,

√
3
8a, 0

)
(C.1)

as one can determine from Fig. C.2. The distance between the layers is a/
√

3. That means
one can first construct all layers A using â1 and â2. For layer B these atomic positions have
to be moved by (

0, 2
3

√
3
8a,

a√
3

)

and finally for layer C they have to be moved by(
1√
8
a,

1
3

√
3
8a,

2a√
3

)
. (C.2)

A VASP coordinate file (POSCAR) for a 4x4x4 surface slab (showing explicitly only the
bottom layer) looks, e.g., like

Pt(111) slab #1 comment line
3.977 #2 universal scaling factor
+1.4142135624 +0.0000000000 +0.0000000000 #3
+0.7071067812 +1.2247448714 +0.0000000000 #4 definition of unit cell
+0.0000000000 +0.0000000000 +8.4930162690 #5

Pt #6 atomic species
64 #7 number of atoms
Cartesian #8 Cartesian or Direct
Selective Dynamics #9 flag T or F
+0.0000000000 +0.0000000000 +0.0000000000 T T T
+0.3535500000 +0.6123700000 +0.0000000000 T T T
+0.7071100000 +1.2247400000 +0.0000000000 T T T
+1.0606600000 +1.8371200000 +0.0000000000 T T T
+0.7071100000 +0.0000000000 +0.0000000000 T T T
+1.0606600000 +0.6123700000 +0.0000000000 T T T
+1.4142100000 +1.2247400000 +0.0000000000 T T T
+1.7677700000 +1.8371200000 +0.0000000000 T T T
+1.4142100000 +0.0000000000 +0.0000000000 T T T
+1.7677700000 +0.6123700000 +0.0000000000 T T T
+2.1213200000 +1.2247400000 +0.0000000000 T T T
+2.4748700000 +1.8371200000 +0.0000000000 T T T
+2.1213200000 +0.0000000000 +0.0000000000 T T T
+2.4748700000 +0.6123700000 +0.0000000000 F F F
+2.8284300000 +1.2247400000 +0.0000000000 F F F
+3.1819800000 +1.8371200000 +0.0000000000 F F F
...
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The selective dynamics flag allows to determine which atomic positions are supposed to
be kept fixed during a geometry optimization or a transition state search using the NEB
method (see Sec. 2.5). Fixing, e.g., the bottom few layers of the surface slab at the bulk
equilibrium lattice constant can reduce computational cost considerably and simultaneously
improve the convergence performance. This, however, has to be tested carefully, as will be
explained in the following section. Similarly, the number of atoms per surface layer depends
on the specifics of the problem one is interested in. In the present work 4x4 atoms per layer
were necessary to avoid interactions between adatoms in adjacent unit cells.

C.3 Slab calculations

Prior to any slab calculation one has to determine the number of k-points that yield accurate
results at reasonable computational cost. In the direction normal to the surface one k-point
is usually sufficient1. In the two other directions one can start with the bulk values and then
test convergence of the free energy when decreasing the value along these two directions. For
the 4x4x4 atoms surface slabs a 5x5x1 k-point mesh was used throughout all calculations.
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Figure C.3: Surface energy per atom of a 2x2 atoms
per layer Pt(111) slab as a function of the number
of layers.

One then has to determine how many
layers of bulk are necessary to get con-
verged results for the surface energy

σ = 1
2(Eslab −MEbulk), (C.3)

where Eslab is the free energy of the slab,
Ebulk is the free energy per atom of the
bulk system and M is the number of atoms
used for construction of the surface slab.
The factor 1/2 arises as a consequence
of the surface slab having two surfaces.
Fig. C.3 depicts σ per atom as a function
of the number of layers (using 4 atoms
per layer) of a Pt(111) surface slab. As

16 atoms per layer were used for the final calculations, a minimum number of 4 layers is
chosen. Note, that even this seemingly small setup yields unit cells containing 64 atoms
which in the case of a pure Pt slab, using the PAW method to describe the electron-ion
interaction (see Sec. 2.4), corresponds to a total of 640 electrons. The computational cost
can be reduced by fixing the bottom two layers at the equilibrium lattice parameter of the
bulk using VASP’s selective dynamics flag. It was tested that reaction barriers change only
insignificantly as compared to a full relaxation of the slab.

1Using more than one k-point in this direction only improves the description of the interaction between
adjacent unit cells that has to be minimized anyway by choosing an adequate amount of vacuum space in
between neighboring slabs.
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Finally, the convergence with respect to
the vacuum height in between neighboring
slabs has to be tested. Fig. C.4 shows the
free energy of a 2x2x7 layer Pt(111) slab as
a function of vacuum height. For the final
calculations a vacuum height of 20 Å was
chosen.

The initial and final configuration be-
tween which the NEB algorithm is supposed
to find a transition state, have to be relaxed
prior to setting up the NEB calculation. The
initial guess for the elastic band can be a
linear interpolation between start and end
configuration. If one is interested in the en-
ergy of the saddle point it is recommended
to use the CI-NEB together with a mini-
mum amount of elastic band images. For the simple diffusion step considered in case of
the Au-Pt surfaces one single image was sufficient to determine the reaction barrier. Using
three instead of one image did not change the height of the barrier significantly. However,
if a truthful map of the MEP is required, more images might be necessary depending on
the particulars of the system one is interested in. A typical input file used for the NEB
calculations presented in Sec. 3.4 is

SYSTEM = Pt/Pt(111) #insert system name
ENCUT = 450 #plane wave cutoff
ISTART = 0 #start calculation from scratch
ISPIN = 2 #allow spin polarized solution
PREC = accurate #controls several precision parameters
#relax
NSW = 100 #maximum of 100 ionic steps
IBRION = 2 #conjugate gradient algorithm
EDIFFG = -0.02 #relax tolerance
SPRING = -5 #turns on NEB
IMAGES = 1 #number of images
LCLIMB = .TRUE. #turn on CI-NEB
IALGO=48 #algorithm for electronic relaxation
LREAL=auto #projection operators evaluated in real space
LCHARG=.TRUE. #write electronic density
LWAVE=.TRUE. #write wavefunctions

#these can be turned off if memory is an issue





List of abbreviations

AEMH 2-amino-ethyl-methacrylate

Au Gold

(CI)-NEB (Climbing-image)-Nudged Elastic Band

DFT Density Functional Theory

GGA Generalized gradient approximation

(G)KS (Generalized) Kohn-Sham

HOMO Highest occupied (generalized) Kohn-Sham orbital

LDA Local density approximation

LUMO Lowest unoccupied (generalized) Kohn-Sham orbital

MEP Minimum energy path

Mn Manganese

MD Molecular dynamics

Ni Nickel

NP Nanoparticle(s)

OEP Optimized effective potential

PAW Projector augmented waves

PBE xc functional of Perdew, Burke and Ernzerhof

Pd Palladium

Pt Platinum

RSH Range-separated hybrid

SIC Self-interaction correction

SIE Self-interaction error

Si Silicon

SVP Split valence basis set



TZVPP Triple-ζ basis set

VASP Vienna-Ab-initio-Simulation Package

XAS X-ray absorption spectroscopy

xc exchange-correlation

XMCD X-ray magnetic circular dichroism

XRD X-ray diffraction
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electronic structure and atomic mobility in nanoalloys of Au and Pt. J. Phys. Chem.
C 117, 17268 (2013).

3. L. Leppert, R. Q. Albuquerque, and S. Kümmel. Gold-platinum alloys and Vegard’s
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H to Pu”, Phys. Rev. B 26, 4199 (1982).
[58] N. Troullier and J. L. Martins, “Efficient pseudopotentials for plane-wave calcula-

tions”, Phys. Rev. B 43, 1993 (1991).
[59] L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany, M. Jain, X. Huang, Y.

Saad, and J. R. Chelikowsky, “PARSEC – the pseudopotential algorithm for real-
space electronic structure calculations: recent advances and novel applications to
nano-structures”, Phys. Stat. Sol. B 243, 1063 (2006).

[60] S. G. Louie, S. Froyen, and M. L. Cohen, “Nonlinear ionic pseudopotentials in
spin-density-functional calculations”, Phys. Rev. B 26, 1738 (1982).
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[64] P. E. Blöchl, “Projector augmented wave method”, Phys. Rev. B 50, 17953 (1994).
[65] N. A. W. Holzwarth, G. E. Matthews, R. B. Dunning, a. R. Tackett, and Y. Zeng,

“Comparison of the projector augmented-wave, pseudopotential, and linearized aug-
mented-plane-wave formalisms for density-functional calculations of solids”, Phys.
Rev. B 55, 2005 (1997).

[66] G. Kresse, “From ultrasoft pseudopotentials to the projector augmented-wave
method”, Phys. Rev. B 59, 1758 (1999).

[67] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set.”, Phys. Rev. B 54, 11169 (1996).

[68] J. Li, X. Li, H.-J. Zhai, and L.-S. Wang, “Au20: a tetrahedral cluster.”, Science 299,
864 (2003).

[69] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated anneal-
ing.”, Science 220, 671 (1983).
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[119] P. Debye, “Zerstreuung von Röntgenstrahlen”, Ann. Phys. 351, 809 (1915).
[120] I. Waller, “Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von
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