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1. Introduction 
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1.1. Temperature – a key environmental factor 
 

Temperature exerts important influences on all aspects of an individual’s ecology and 

evolution (e.g. Hoffmann et al. 2003, Sinclair et al. 2003) and affects biological 

organization directly and indirectly on nearly all spatial and temporal scales. For 

instance, temperature may impact on immune function (Mondal and Rai 2001), 

sensory input (Stevenson et al. 1985), foraging ability (Carrière and Boivin 1997) and 

locomotion (Berwaerts and Van Dyck 2004), courtship behaviour (Geister and 

Fischer 2007), reproduction (Fischer et al. 2003) and rates of feeding and growth 

(Kingsolver and Woods 1997). Temperature is also a significant source of mortality in 

nature (Willmer et al. 2000) and therefore an important selective agent (Clarke 2003, 

Hoffmann et al. 2003). Consequently, temperature is considered to be one of the 

most important ecological factors for ectothermic organisms (Johnston and Bennett 

1996, Angilletta and Dunham 2003, Clarke 2003, 2006, Sinclair et al. 2003).  

 

In nature, most organisms face variable thermal environments, posing substantial 

challenges for key elements of fitness (Dahlhoff and Rank 2007). Hence, given the 

typically wide range of temperatures in space (along geographical ranges) and time 

(i.e. daily and seasonal cycles), organisms will have to adapt to such conditions or, if 

not, will risk extinction (Angilletta et al. 2002, Helmuth 2002, Dahlhoff and Rank 

2007). Facing rapidly changing climatic conditions at the global scale (e.g. Parmesan 

et al. 1999, Hitch and Leberg 2007), the evolution of the thermal sensitivity of 

performance in ectotherms has become a major focus of research programs in 

evolutionary study (Angilletta et al. 2002). Such questions , i.e. how organisms adapt 

to complex and changing environments, lie at the very heart of ecology and 

evolutionary biology.  

 

 

1.2. Adaptation to temperature – plastically and/or 

genetically? 
 

To cope with environmental change, organisms need to adjust phenotypic values to 

environmental needs. Such an adjustment can be achieved on the one hand via 

phenotypic plasticity (i.e. direct environmental effects on the phenotype as an 
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adaptive strategy to cope with short-term environmental variation; Bradshaw 1965, 

Pigliucci 2001), or on the other hand via genetic differentiation (i.e. long-term genetic 

adaptation). Phenotypic plasticity refers to the phenomenon of a genotype producing 

different phenotypes in response to different environmental conditions. It is a 

ubiquitous aspect of organisms (Travis 1994, West-Eberhard 2003) and is a property 

that may be adaptive, maladaptive or neutral with regard to an individual’s fitness. 

Thus, phenotypic plasticity is not necessarily an adaptation to variable environments, 

but may alternatively be merely a biochemical or physiological interaction of an 

organism with its environment (Bradshaw 1965). Long-term exposure to a 

homogeneous environment, in contrast, may lead to a fixation of alleles being 

favourable in that environment, while the same alleles may be disadvantageous in 

novel environments (Via and Hawthorne 2002). Thus, the genetic variation necessary 

to adapt to novel environments may be exhausted after long periods of evolution in a 

constant environment (Barrett and Bell 2006). However, although both sources of 

variation typically contribute jointly to adaptation, the relative importance of genetic 

adaptation versus phenotypic plasticity in shaping adaptive evolution is still a matter 

of a controversial discussion (e.g. Ayrinhac et al. 2004, Samietz et al. 2005). To 

understand adaptive aspects of the evolution of developmental plasticity, the 

relationship between environmental change and morphological or physiological 

plasticity, its functional significance and hence fitness implications, are crucial 

(Atkinson et al. 2006).  

 

In this context, one of the most widespread patterns of phenotypic plasticity is the 

relationship between adult (final) size and environmental temperature. In most 

ectotherms, a higher temperature during development increases growth and 

development rates, but decreases adult size at maturity. This pattern, known as the 

temperature–size rule (TSR), has been observed in more than 80% of ectothermic 

species studied, and occurs in diverse organisms including animals, plants, protozoa 

and bacteria (Atkinson 1994; but see also Walters and Hassall 2006, Kingsolver et al. 

2007). Such plasticity may be driven by several mechanisms: behavioral (e.g. food 

uptake; Arendt 1997) and/or physiological mechanisms (e.g. through changes in the 

efficiency of converting ingested food into body mass; see Arendt 1997, Van 

Doorslaer and Stoks 2005), but also mechanisms at the cellular or intracellular level 



Introduction                                                                                                                  4     

 

might be responsible (Partridge et al. 1994, Van der Have and de Jong 1996, Pörtner 

2002, Blanckenhorn and Llaurens 2005, Walters and Hassall 2006).  

 

However, despite much effort over recent years (e.g. Blanckenhorn 1997, Gotthard et 

al. 2000, Frazier et al. 2001, Atkinson et al. 2006, Cabanita and Atkinson 2006, 

Walters and Hassall 2006), the role of physiological constraints in causing the TSR is 

currently unclear. Although recent (theoretical) approaches seem to suggest that the 

TSR might be adaptive, it seems that body size per se is not the target of selection. 

As body size generally is one of the most significant features of organisms, which 

influences many ecological, physiological and life -history traits (Roff 1992, Stearns 

1992, Blackburn and Gaston 2001, Chown and Klok 2003, Davidowitz et al. 2003, 

Teuschl et al. 2007), the TSR is called a puzzle for life historians (Berrigan and 

Charnov 1994). 

 

In addition to disentangling the potential adaptive nature of phenotypic plasticity, 

estimating genetic variation in such plasticity, measured as genotype by environment 

interactions, and analysing geographical variation in fitness-relevant traits is crucial 

for understanding the mechanisms of adaptive evolution in relation to temperature. 

Because of a strong covariance between temperature and geographic clines, clinal 

variation along climatic gradients may indicate a possible contribution of directional 

selection to differences among populations (Bubliy and Loeschcke 2005). Thus, 

given the typically wide range of temperatures in space and time, organisms are 

expected to show both, plastic and genetic adaptations (e.g. along geographic clines) 

to different temperatures (Arnett and Gotelli 1999, Robinson and Partridge 2001, 

Chown and Klok 2003, Van Doorslaer and Stoks 2005).  

 

Indeed, many species show genetically determined geographical variation in traits 

being under thermal selection (ranging from life-history, stress resistance and 

morphology through to behaviour), and such population-specific differences are 

thought to be the result of adaptive evolution (Hoffmann et al. 2002, Castañeda et al. 

2005, Collinge et al. 2006, Sambucetti et al. 2006). However, although high altitudes 

and latitudes share similarly extreme environmental conditions, recent studies mainly 

investigated latitudinal patterns that are arguably related to changes in temperature 

or related factors (Addo-Bediako et al. 2000, Loeschcke et al. 2000, Schmidt et al. 
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2005, Van Doorslaer and Stoks 2005), while altitudinal patterns have been studied 

much less frequently (Bubliy and Loeschcke 2005, Sørensen et al. 2005).  

 

Either way, if variation in physiological responses is found over short geographical 

distances such as altitudes, patterns strongly suggest adaptive evolution via 

directional thermal selection (Dahlgaard et al. 2001). However, while a contribution of 

directional selection to the differentiation among populations is often supposed 

(Chown and Klok 2003, Van Doorslaer and Stoks 2005), in the majority of cases the 

selective forces underpinning such variation and its associated consequences at the 

genetic level were not explicitly investigated. Only relatively few studies, based on 

allozymes or DNA sequences, have revealed associations between gene frequencies 

and clinal variation in environmental factors, such as temperature or salinity 

(reviewed in Eanes 1999, Watt 2000). As for several ectotherms correlations 

between allozyme variation and an array of fitness-related traits including 

morphological and physiological ones could be shown (e.g. Watt 1992, Neargarder 

et. al. 2003, McMillan et al. 2005, Dahlhoff and Rank 2007, Saastamoinen 2007), 

such studies are important for understanding the genetic basis of thermal selection. 

 

 

1.3. Study organism – the butterfly Lycaena tityrus 
 

Lycaena tityrus (Poda, 1761) is a widespread temperate zone butterfly, ranging from 

Western Europe to central Asia (Ebert and Rennwald 1991). The species is bivoltine 

with two discrete generations per year in most parts of its range, although 

populations with one or three generations per year occur (Ebert and Rennwald 1991, 

Tolman and Lewington 1998). Butterflies used in this study belonged to several 

lowland populations from Germany and to the alpine subspecies Lycaena tityrus 

subalpinus (Speyer, 1851), caught between 1350 and 2020m in the Italian and 

Austrian Alps. In these high-altitude regions, Lycaena tityrus is generally monovoltine 

with adults being on the wing from mid-July through late August (Scheuringer 1972). 

However, as shown by several rearing experiments, even those alpine populations 

are potentially multivoltine (Fischer and Fiedler 2000). Central European low-altitude 

populations, in contrast, are typically bivoltine.  
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Lycaena tityrus colonizes different types of unimproved grassland and wetland as 

well as natural grassland such as swampy clearings or mountainous canyons and 

ridges. Adult butterflies predominantly suck on composite plants (Compositae). This 

species exhibits a distinct sexual dichroism, with female wings showing more orange 

colouration compared to males. However, in the Lycaena tityrus subalpinus 

subspecies, this sexual dichroism is only weak, being much more pronounced in low-

altitude populations. Larvae of the last brood enter diapause, overwintering half-

grown in the third instar (Descimon 1980). Pupation occurs after completion of four 

larval instars. The principal larval host-plant is Rumex acetosa L., but some 

congeneric plant species such as R. acetosella L. and R. scutatus L. are utilised as 

well (SBN 1987, Ebert and Rennwald 1991, Tolman and Lewington 1998). Although 

this species is still relatively widespread in most parts of Europe, the intensification of 

agriculture caused a clear decline in population numbers associated with local and 

regional extinctions in most parts of its range. Thus, in many parts of Europe, this 

species is considered to be vulnerable (Van Swaay and Warren 1999).  

 

 

1.4. Objective and key elements of this thesis 
 

Using Lycaena tityrus as a model organism, this study focuses on the patterns, 

significance and mechanisms of thermal adaptation in ectotherms. As outlined above, 

understanding how organisms adapt to complex environments through plastic and/or 

genetic adjustment is crucial in the face of rapidly changing climatic conditions at the 

global scale (e.g. Parmesan et al. 1999, Hitch and Leberg 2007), and thus of special 

concern. Regarding the TSR both, adaptive and mechanistic models have been 

proposed to explain its prevalence, but a single general explanation remained elusive 

(Angilletta and Dunham 2003). Thus, there is a pressing need to better understand 

the effects of temperature on body size in ectotherms (Atkinson and Sibly 1997). 

Accordingly, chapter 5 of this thesis investigates some mechanisms potentially 

underlying the TSR, namely the effects temperature on life-history traits (e.g. larval 

time and body mass), behaviour (e.g. food intake), and physiology (e.g. body 

composition, growth rate, conversion efficiency) in the Copper butterfly Lycaena 

tityrus, in order to disentangle the mechanistic basis of plastic responses of body size 

to temperature: 
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1) What is the relative impact of behavioural and physiological mechanisms on 

the plastic increase in body size at cooler developmental temperatures?  

Chapter 5 

 

Next, clinal variation in fitness-related traits, which has become a key element in 

investigating adaptive evolution (Sambucetti et al. 2006), was examined. While most 

frequently only variation in life -history traits was analyzed, thermal performance (i.e. 

temperature stress resistance) and the expression of stress-inducible heat-shock 

proteins (HSPs) probably play a much more important ecological and evolutionary 

role in thermal adaptation (Sørensen et al. 2003), and may ultimately limit the 

distribution and abundance of organisms along steep ecological (e.g. thermal) 

gradients in nature (Dahlhoff et al. 2001). Therefore, chapters 6.1 and 6.2 focus on 

altitudinal patterns in traits potentially related to thermal performance, addressing the 

following questions: 

 

2) Is there altitudinal variation in life-history traits and thermal stress 

resistance traits in Lycaena tityrus, and are these traits influenced by genotype 

x environment interactions?  

Chapter 6.1 

 

3) Does the expression of stress-inducible heat-shock proteins vary across 

populations from different altitudes and do they depend on ambient 

temperature? 

Chapter 6.2 

 

Finally, as the ability to adapt to different environments throughout a given species’ 

range depends on the existence of variation in ecologically relevant genes (Veliz et 

al. 2004), and because identifying the precise molecular changes that contribute to 

adaptation remains a principal challenge (Hoekstra and Coyne 2007), this thesis also 

investigates the genetic differentiation across altitudes, potentially underlying 

variation in life -history and temperature stress resistance traits, thus trying to detect 

specific enzymes that are likely under thermal selection (chapters 7.1 and 7.2):  
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4) Is there a genetic differentiation between alpine and lowland populations of 

Lycaena tityrus and if yes, is the pattern caused by specific enzymes? 

Chapter 7.1 

 

5) Is there a direct link between specific (allo-)enzymes and variation in life 

history traits and temperature stress resistance in Lycaena tityrus? 

Chapter 7.2



     

 

 

 

 

 

 

 

 

 

 

2. Synopsis 
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2.1. The mechanistic basis of the temperature-size-rule 

 

The temperature-size rule (Bergmann’s rule extended to ectotherms: TSR), which 

states that body size increases at lower developmental temperatures, appears to be 

a near universal law for ectotherms (e.g. Atkinson 1994, French et al. 1998, Stelzer 

2002, Angilletta and Dunham 2003, Cabanita and Atkinson 2006). As expected and 

as was previously found in Lycaena tityrus (Fischer and Fiedler 2000), this species 

conforms to this widespread pattern of phenotypic plasticity. However, although 

recent studies seem to suggest that the temperature-size rule might be adaptive, the 

underlying developmental mechanisms are still largely unknown (see above). Thus, 

by analyzing a broad spectrum of temperature effects on several life-history traits 

(e.g. larval time and body mass), behaviour (e.g. food intake), and physiology (e.g. 

body composition, growth rate, conversion efficiency), I tried to  disentangle the 

mechanistic basis of the temperature-size rule. 

 

Owing to higher growth rates, development time was much shorter at the higher 

compared to the lower rearing temperature (e.g. Atkinson 1994, Berrigan and 

Charnov 1994, Fischer and Fiedler 2000, 2001, 2002, Gibert and de Jong 2001, 

Bochdanovits and de Jong 2003, Fischer et al. 2003, Clarke and Fraser 2004). 

Rearing at different temperatures additionally affected body composition of adult 

butterflies (see also Hoffmann 1973, 1974, Woods et al. 2003). While water content 

was not influenced by temperature regime, fat, the most efficient and most commonly 

used energy source in insects, and protein, which serves multiple functions including 

a prominent role in reproduction and which is not readily available from the butterflies’ 

adult diet (Fischer et al. 2004, Bauerfeind and Fischer 2005), increased in butterflies 

reared at the higher temperature (see also Fischer et al. 2003). These findings 

suggest an advantage of developing at higher temperatures, and caution against 

using measures of body mass as the sole indicator of condition or energy content (cf. 

Angilletta and Dunham 2003).  

 

Caused by protandry selection (Fagerström and Wiklund 1982), males showed 

generally shorter development times than females with concomitantly higher growth 

rates. Females were larger than males in the adult stage (see also Fischer and 

Fiedler 2000, 2001, 2002), but not in preadult stages. This difference is caused by 
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males showing a higher mass loss during metamorphosis than females, which has 

been interpreted as a potential cost of the males’ accelerated development (Fischer 

et al. 2004). Moreover, a higher protein content was found in females compared to 

males, which may reflect the females’ higher need of protein for egg production. 

Increased fat reserves in males, in contrast, may serve as flight fuel during mate 

location (e.g. Zera et al. 1998). 

 

In Lycaena tityrus a higher body mass at the lower temperature was proximately due 

to a higher mass increment, which was in turn caused by both behavioural and 

physiological mechanisms: a much-increased food intake and, despite a lower 

assimilation (AD, see Fig. 1a), a higher efficiency in converting ingested food into 

body matter at the lower temperature (ECD, see Fig. 1b). Similar patterns could be 

shown in Drosophila melanogaster, were individuals reared at a lower temperature 

used limited food more efficiently than those reared at a higher temperature (Neat et 

al. 1995, Robinson and Partridge 2001). The seeming discrepancy between 

assimilation and conversion efficiency is most likely related to higher metabolic 

losses at the higher temperature (Kingsolver and Woods 1997, Renault et al. 2002).  

 

 
Fig. 1. Assimilation (AD; a) and efficiency of converting food into biomass (ECD; b) of 

Lycaena tityrus  males (black symbols) and females (white symbols) reared at two different 

temperatures. Group means ± 1 SE are shown.  

 

In contrast, sexual differences in body mass were caused by another mechanism. 

The males’ higher growth rates are evidently facilitated by a higher daily food 

consumption, while total food consumption (due to the females’ longer developmental 

period) and assimilation was higher in females. In contrast to temperature-induced 
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variation in body size, sexes did not differ in the efficiency of converting ingested food 

into body matter (for further details see also chapter 5). 

 

The results obtained support the theoretical model developed by von Bertalanffy 

(1960) and Perrin (1995), assuming that the TSR arises as a consequence of 

differential effects of temperature on anabolism and catabolism. Growth efficiency 

(including anabolic and catabolic processes) should be negatively, but growth rate 

positively related to temperature (Angilletta and Dunham 2003). In other words, the 

temperature that maximizes growth efficiency is predicted to be lower than the 

temperature maximizing growth rate. Given the fact that a large body size is generally 

advantageous but that the costs of achieving large size increase with increasing 

temperature (due to a reduction in growth efficiency at higher temperatures), a 

negative relation based on diminishing returns should be optimal and thus adaptive. 

 

 

 

2.2. Altitudinal variation in traits potentially related to 

thermal performance 

 

2.2.1. Altitudinal variation in life-history traits and thermal stress resistance 

 

Clinal variation in traits related to fitness suggests a contribution of directional 

selection, and analyzing such variation has consequently become a key element in 

investigating adaptive evolution. Presumably due to genetic differentiation, most life-

history traits investigated in replicated populations of Lycaena tityrus from low-, (mid-) 

and high-altitudes, each reared at two different temperatures, showed variation 

across altitudes. High- compared to low-altitude populations showed a longer 

development time accompanied by reduced larval growth rates, increased cold- but 

decreased heat-stress resistance (see Fig. 2), and increased flight duration across a 

range of ambient temperatures. The increased development time for high-altitude 

butterflies contrasts with the general prediction of intrinsically higher growth rates 

and/or shorter development times at higher altitudes as an adaptation to the shorter 

season length (Atkinson 1994, Abrams et al. 1996). However, as high-altitude 

populations of this species are monovoltine and low-altitude ones are bivoltine 
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(Tolman and Lewington 1998), the pattern found here can be easily explained by this 

change in voltinism. It seems that the time stress imposed by fitting in an additional 

generation a year is more severe than the one imposed by the shorter growing 

season length in higher altitudes (Roff 1980).  

 
 

 
Fig. 2. Means (+ 1 SE) for larval time (a), larval growth rate (b), chill-coma recovery time (c) 

and heat knock-down time (d) for Lycaena tityrus from low- (black bars) and high-altitude 

populations (white bars) across two rearing temperatures (18°C and 27°C) Data were pooled 

across sexes and two replicates each.  

 

Decreased chill-coma recovery times with increasing altitude refers to an enhanced 

cold stress resistance of higher-altitude animals which may facilitate earlier activity in 

the morning and later activity in the evening, allow for generally higher levels of 

activity under colder conditions due to a lower thermal threshold, and potentially 

enhance over-winter survival (Gibert et. al. 2001, Watt et al. 2003, Haag et al. 2005). 

Conversely, decreased heat knock-down resistance with increasing altitude in this 

species indicates a lower heat stress resistance of high-altitude animals, while 

butterflies from warmer habitats at low altitudes exhibited a much increased heat 
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tolerance. Similar patterns in knock-down resistance were for example also detected 

along a latitudinal cline for Drosophila melanogaster in Australia (Hoffmann et al. 

2005). Thus, my results support the notion that chill-coma recovery and heat knock-

down time are ecologically relevant traits reflecting adaptive variation (Sørensen et 

al. 2001; for review see Hoffmann et al. 2003). Adaptive variation across altitudes is 

also suggested by the results obtained from flight performance experiments, with 

high-altitude butterflies showing a better performance at lower temperatures as 

compared to low-altitude butterflies. The ability to fly even under sub-optimal 

conditions like low temperatures or strong winds is likely to be closely related to 

fitness in flying organisms such as butterflies (Barnes and Laurieahlberg 1986, 

Merckx et al. 2006), and should be particularly advantageous in mountainous areas 

(Norry et al. 2001, Hodkinson 2005). 

 

In contrast, differences in morphological traits such as pupal mass, thorax mass, 

thorax/abdomen-ratio, wing length, wing area, wing loading or wing aspect ratio 

across altitudes across different altitudes were negligible. Recent studies show that 

the associations between temperature or environmental clines and body size are 

complex ranging from positive to negative (Chown and Klok 2003, Blanckenhorn and 

Demont 2004). The results shown here are likely attributable to differences in 

voltinism. They suggest that not only temperature regime but also its interactions with 

generation time, voltinism, and season length are likely to have strong impacts on 

insect body size (Roff 1980, Blanckenhorn 1997, Chown and Gaston 1999). 

Differences in flight performance across altitudes (see above) without morphological 

differentiation strongly suggest variation in physiological traits. Accordingly, a higher 

amount of fat stored in butterflies from low- as compared to higher-altitudes in 

Lycaena tityrus was found. However, as the reverse pattern with high-altitude 

butterflies showing an increased fat content as an adaptation to the harsher 

environmental conditions was expected, fat stores do not seem to play a decisive role 

for the differences in flight performance.  

 

In addition to the population differences discussed above, plastic responses to 

different rearing temperatures resulted, as expected, in reduced larval and pupal 

development times at higher temperatures accompanied by higher growth rates. 

Interactions between temperature and altitude for larval and pupal time reflect some 
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marginal variation in the responses to temperature, with differences in larval time 

being less but differences in pupal time being more pronounced in low-altitude 

populations. However, based on their rather small size these effects are probably of 

marginal relevance only. Further, also as expected (cf. Fischer and Fiedler 2000), 

Lycaena tityrus conforms to the temperature-size rule: the lower developmental 

temperature caused a plastic increase in body size (e.g. Angilletta and Dunham 

2003, Atkinson 1994; but see Kingsolver et al. 2007). Potential mechanisms resulting 

in this pattern may include an increase in food intake as well as an increase in the 

efficiency in converting ingested food into body matter, in combination with 

temperature-mediated changes in cell size and/or number (Partridge et al. 1994, 

Blanckenhorn and Llaurens 2005, Atkinson et al. 2006).  

 

Thermal stress resistance was also influenced by prevailing environmental 

conditions. A lower developmental and early adult temperature caused shorter chill-

coma recovery times (cf. Zeilstra and Fischer 2005), and a reduction in heat knock-

down resistance. Similar results were obtained in studies on Drosophila (Chen and 

Walker 1994, Ayrinhac at al. 2004, Hoffmann et al. 2005). There was no evidence for 

an interaction between genotype (populations from different altitudes) and 

environment (rearing temperature) for chill-coma recovery, but for heat knock-down 

time. Butterflies from low-altitude populations showed a much more pronounced 

plastic response to temperature than high-altitude ones. The latter leaves substantial 

potential to quickly adjust heat stress resistance under heat spells for low-altitude 

butterflies, which is apparently not needed in populations from higher altitudes.  

 

In summary, this study demonstrates local adaptations to regional climates, and that 

environmentally-induced plasticity can be as important as genetic factors in mediating 

adaptive responses. Consequently both sources of variation need to be considered 

when trying to predict responses to short- (such as particularly hot or cold days / 

nights) or long-term temperature variation (such as global warming). Exploring the 

limits within such mechanisms can help to buffer predictable changes in global 

temperatures remains an important task for future research (e.g. Van Doorslaer et al. 

2007). Results are also given in more detail in chapter 6.1. 
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2.2.2. Altitudinal variation in the expression of heat-shock proteins 

 

The expression of heat-shock proteins under thermal stress is an essential 

mechanism for ectotherms to cope with unfavourable conditions. Here, differences in 

HSP expression were investigated in Copper butterfly populations originating from 

different altitudes and / or being exposed to different rearing and induction 

temperatures. Although differentiation in HSP70 expression across altitudinal and 

latitudinal clines can be expected (Garbuz et al. 2003, Sørensen et al. 2005), there 

was no overall effect of altitude in the butterfly populations investigated. However, 

while high-altitude butterflies responded only marginally to differences in rearing 

temperature, HSP70 expression increased substantially at the higher compared to 

the lower rearing temperature in low-altitude butterflies, which might represent an 

adaptation to occasionally occurring heat spells (Fig. 3a). In this context it should be 

mentioned that the higher rearing temperature (27°C) used is relatively high for a 

temperate-zone butterfly, and that such conditions may amplify otherwise obscured 

phenotypic differences between genotypes (Hoffmann and Parsons 1991, Hoffmann 

and Merilä 1999, Blanckenhorn and Heyland 2004). As high-altitude butterflies 

showed only little plasticity in response to prevailing temperatures, they seem to rely 

more on genetically fixed stress resistance. Such reduced plasticity in high-altitude 

animals is likely related to a chronic exposure to thermal stress (cf. Sørensen et al. 

1999, Lansing et al. 2000, Sørensen et al. 2001). Due to the lack of plasticity, high-

altitude populations appear more vulnerable to rapid human-induced climatic change 

than low-altitude ones. 

 

 
Fig. 3. Means (± 1 SE) of HSP70 expression for Lycaena tityrus across rearing temperatures 

(20°C: white symbols; 27°C: black symbols) and altitude (A) or induction temperature (B).  
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Generally, environmentally-induced plasticity (through different rearing or induction 

temperatures, see Fig. 3b) had a stronger effect on HSP70 expression than genetic 

factors (across populations). First, HSP70 expression in Lycaena tityrus was higher 

at the higher rearing temperature (indicating that a temperature of 27°C imposes 

mildly stressful conditions), similarly to an increase in HSP expression during warm 

seasons in other ectotherms (Fader et al. 1994, Roberts et al. 1997). Second, 

although often only high temperatures are used for HSP induction (e.g. Dahlgaard et 

al. 1998, Sørensen et al. 2001, 2005), HSP70 expression in Lycaena tityrus 

increased not only with warmer, but also with colder induc tion temperatures, like in 

other species were colder temperatures are also known to upregulate HSPs (Yocum 

2001, Hoffmann et al. 2003, Michaud and Denlinger 2005). Finally, and most 

interestingly, in accordance to the beneficial acclimation hypothesis (Huey et al. 

1999, Woods and Harrison 2002), lowest expression levels were found at the same 

temperature the respective individuals were reared at (i.e. for individuals reared at 

27°C at an induction temperature of 27°C; and for individuals reared at 20°C at 

20°C), thus indicating that a change in the thermal environment generally induces 

some stress (for results in more detail see also chapter 6.2). 

 

Thus, as most of our knowledge on patterns of HSP expression stems from studies 

using Drosophila as a model organism, this is the first study on HSP70 expression in 

a Copper butterfly and laying the fundament within a comparative context, future 

investigations may deliver more insight in stress responses also in non-model 

organisms. 

 

 

 

2.3. The genetic background of altitudinal variation in life-

history and temperature stress resistance traits 

 

2.3.1. Genetic differentiation between alpine and lowland populations 

 

As for the Copper butterfly Lycaena tityrus altitudinal differences in life-history traits, 

flight performance, temperature stress resistance and the expression of stress-

inducible heat-shock proteins could be demonstrated (see above and chapters 6.1 
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and 6.2), understanding the ecological process of population differentiation and 

identifying the molecular changes that contribute to adaptation is of special interest. 

By analyzing geographic variation in allozyme allele frequencies (based on 15 

enzyme systems representing 18 loci) across 18 populations of the butterfly Lycaena 

tityrus from different altitudes, I tried to detect enzymes that are likely under natural 

selection.  

 

In the analysed Lycaena tityrus populations, intrapopulational genetic diversity, 

namely the mean number of alleles per loci and the expected heterozygosity, was 

comparable to the values typically found in the Lepidoptera (Graur 1985). However, 

for lycaenids genetic diversity is known to be high (Marchi et al. 1996, Schmitt and 

Seitz 2001, Schmitt et al. 2002), and in particular the mean number of alleles per 

locus (1.74) is lower than in other common lycaenids (e.g. Polyommatus icarus: 2.98, 

Schmitt et al. 2003; Polyommatus coridon: 2.72, Schmitt et al. 2002). The populations 

of Lycaena tityrus investigated showed a remarkable genetic differentiation (FST: 

0.065), being within the range of other strongly differentiated species like Euphydryas 

gilettii (Debinski 1994) or Polyommatus coridon (Schmitt and Seitz 2001). 

Populations were clearly separated into an alpine (high-altitude) and a non-alpine 

(low-altitude) cluster (Fig. 4). 

 

 
 

Fig. 4. Schematic neighbour joining dendrogram based on the genetic distances (Nei 1972) 

of 18 populations of Lycaena tityrus, revealing a clear distinction of populations into two main 

clusters, an alpine (high-altitude) and a non-alpine (low-altitude) one. 

 

Alpine populations Non-alpine populations 
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This geographic differentiation in the Lycaena tityrus populations analysed is 

primarily caused by variation at the PGI locus, an enzyme involved in important 

glycolytic pathways, being thus at the central point of all ATP-based energy supplies 

(Watt 1985). Based on the general assumption that low heterozygosity is associated 

with fitness costs (Ochando and Ayala 1999, Hotz and Semlitsch 2000), a positive 

relation between heterozygosity and altitude, with the harsher environmental 

conditions of higher altitudes warranting high individual fitness, was expected. 

However, results showed a negative rather than a positive correlation between 

heterozygosity and altitude, both, with regard to expected and observed 

heterozygosity. This pattern found in Lycaena tityrus seems to be related to variation 

at the PGI locus, with one homozygote genotype, PGI-2-2, dominating in all alpine 

populations, while low-altitude populations showed much more heterogeneous 

distributions with many heterozygotes (for further details see also chapter 7.1).  

 

In summary, although the involvement of historical events cannot be ruled out, 

several lines of evidence strongly suggest that the specific pattern of allozyme (PGI) 

variation found in Lycaena tityrus is caused by thermal selection. First, effects of 

natural selection are generally locus-specific, whereas effects of migration, drift or 

inbreeding are expected to have relatively uniform effects across the entire genome 

(Storz and Nachmann 2003). The latter, however, is clearly not the case in Lycaena 

tityrus, as differentiation is mainly caused by variation only at the PGI locus. Second 

and more importantly, the PGI 2-2 genotype dominating in alpine (in contrast to 

lowland) populations is known to exhibit increased cold stress resistance and other 

features typical of alpine populations (see 2.3.2.). Thus, these findings suggest that 

PGI is an obvious target for thermal selection in Lycaena tityrus and probably a 

variety of other insects (e.g. Dahlhoff and Rank 2000). 

 

 

2.3.2. Effects of genetic variation at the PGI locus on life history traits and 

temperature stress resistance 

 

As evidence accumulated that the phosphoglucose isomerase (PGI) locus might be 

under thermal selection in the Copper butterfly Lycaena tityrus (see above), I 

investigated variation in life-history traits and temperature stress resistance across 
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PGI genotypes in Lycaena tityrus from different lowland populations reared at two 

temperatures (19°C and 24°C). As shown in chapter 2.3.1, PGI allele frequencies 

show altitudinal variation, with a single genotype occurring in ca. 90 % of all high-

altitude animals. In low-altitude populations variation at this locus is much higher. 

Thus, if patterns caused by variation in PGI genotype are in broad agreement with 

those across high- and low-altitude populations, this strongly supports the notion that 

the PGI locus is involved in thermal adaptation (Neargarder et al. 2003, McMillan et 

al. 2005). 

In Lycaena tityrus, seven different PGI genotypes could be detected. The two most 

common genotypes, PGI 1-2 and PGI 2-2 represent 79.1 % of all individuals. They 

were followed by PGI 2-3 (9 %), PGI 1-1 (6 %) and the very rare genotypes PGI 1-3 

(4 %), PGI 1-4 (2 %), and PGI 3-3 (0.5 %). Because of the high variation in 

frequency, variation in life-history traits and stress resistance was investigated only 

across the four most common genotypes.  

Concerning thermal stress resistance, most interestingly, the genotype dominating in 

high-altitude populations (PGI 2-2) exhibited the shortest chill-coma recovery times 

(see Fig. 5), consistent with an increased cold stress resistance in high-altitude 

Lycaena tityrus populations, suggesting that the PGI locus is indeed under thermal 

selection (see also Watt 1994, Dahlhoff and Rank 2000, McMillan et al. 2005). 
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Fig. 5. Means (+1 SE) for chill-coma recovery time for Lycaena tityrus reared at 19°C (white 

symbols) and 24°C (black symbols) across four PGI genotypes. Data are pooled across 

sexes. 
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In contrast, despite variation in heat stress resistance across high- and low-altitude 

Lycaena tityrus populations, no significant variation across PGI genotypes in heat 

stress resistance was detected. This suggests on the one hand that heat and cold 

stress resistance are based on differential mechanisms, and on the other hand that 

PGI is not the only locus under thermal selection, but other yet unknown loci may 

also contribute to thermal adaptation, some of which may cause the reduced heat 

resistance in high-altitude populations (more details in chapter 7.2). 

 

PGI genotype also affected larval and pupal development time, growth rate, and 

pupal mass in Lycaena tityrus. The ‘high-altitude’ genotype (PGI 2-2) showed 

intermediate to long development times in agreement with differences across 

populations. Growth rates in PGI 1-1 and PGI 2-3 butterflies, having comparatively 

low frequencies, were clearly higher than in PGI 1-2 and PGI 2-2 butterflies. It is a 

common belief that “faster is better” in ecology and evolutionary biology, and 

accumulating evidence suggests that growth rate in itself is a target of natural 

selection (Arendt 1997, Nylin and Gotthard 1998, Munch and Conover 2003). Thus, it 

is interesting to note that in Lycaena tityrus growth rates were highest for rare 

genotypes, which may suggest, that selection is not favoring genotypes promoting 

fastest development. In this context, another interesting pattern is that there was no 

trade-off between fast growth and body size across genotypes, i.e. slow-growing 

individuals did not become large, and fast-growing ones not small (cf. Blanckenhorn 

1999, Davidowitz et al. 2004). For instance, PGI 2-3 individuals with the highest 

growth rates also showed the highest pupal masses, while PGI 1-2 butterflies with 

the lowest growth rates were smallest. It remains unclear though why the obviously 

highly efficient genotype PGI 2-3 is relatively rare (9 %) in nature. However, as the 

two most common genotypes were smaller, these findings suggest that the costs 

associated with achieving and / or maintaining large body size largely outweigh any 

potential benefit such as increased fecundity or mating success (Roff 1992, 

Blanckenhorn 2000).  

 

Thus, because of the large variation in several life-history and stress resistance traits 

associated with variation at the PGI locus, PGI can be considered a pleiotropic gene 

of large effect (although genes linked to the PGI locus may also contribute to the 

variation found). Patterns caused by variation in PGI genotype are in broad 
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agreement with those across high- and low-altitude populations and support the 

notion that the PGI locus is heavily involved in thermal adaptation in arthropods 

(Neargarder et al. 2003, McMillan et al. 2005). 



 

 

 

 

 

 

 

 

 

 

 

3. Summary (English and 
German) 
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3.1. Summary 

 

Temperature is one of the most important ecological factors affecting biological 

organization directly and indirectly on nearly all spatial and temporal scales. As in 

nature organisms are often faced with variation in mean temperatures as well as in 

temperature extremes, they have to adapt plastically and/or genetically to their 

respective environmental conditions or will otherwise risk extinction. Using the 

Copper butterfly Lycaena tityrus as model organism, this study focuses on the 

patterns, significance and mechanisms of thermal adaptation in ectotherms on three 

main issues: (1) the mechanistic basis of the temperature-size rule (TSR), (2) 

altitudinal patterns potentially related to thermal performance and (3) the genetic 

background of such variation. 

Following the TSR (being bigger at colder rearing temperatures) in L. tityrus is mainly 

caused by two different components: a behavioural and a physiological one. During 

the prolonged development at colder temperatures, larvae showed an increased food 

intake, a lower assimilation, but a higher efficiency in converting the ingested food 

into body matter (chapter 5 ). Sexual differences in body mass, however, were caused 

by another mechanism. The males’ higher growth rates are evidently combined by a 

higher daily food consumption, while total food consumption and assimilation was 

higher in females. And, in contrast to temperature-induced variation in body size, 

sexes did not differ in the efficiency of converting ingested food into body matter. 

In addition to such phenotypic patterns, a contribution of directional selection on traits 

related to fitness is inferred from clinal variation in such traits, and analyzing such 

variation has consequently become a key element in investigating adaptive evolution.  

In L. tityrus, altitudinal variation in life-history traits, temperature-stress resistance and 

flight performance (chapter 6.1), but also in the expression of heat-shock proteins 

(chapter 6.2), is present. While longer developmental times in high-altitude 

populations can be explained by a change in voltinism, reduced heat resistance and 

plasticity in the expression of heat-shock proteins, but increased cold resistance and 

flight duration across a range of ambient temperatures demonstrate local adaptations 

to regional climates. Furthermore, by rearing butterflies in both studies at different 

temperatures, environmentally-induced plasticity is demonstrated to be as important 

as genetic factors in mediating adaptive responses. Consequently both sources of 

variation need to be considered when trying to predict responses to short- (such as 
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particularly hot or cold days / nights) or long-term temperature variation (such as 

global warming). 

Finally, this thesis also deals with answering the genetic background of such 

altitudinal variation. Butterflies from L. tityrus populations varying in altitude are 

clearly separated into an alpine (high-altitude) and a non-alpine (low-altitude) cluster 

(chapter 7.1). This geographic differentiation is primarily caused by variation at one 

single locus, the PGI locus, with one homozygote genotype, PGI-2-2, dominating in 

all alpine populations, while low-altitude populations show much more heterogeneous 

distributions with many heterozygotes. Interestingly, the genotype dominating in high-

altitude populations (PGI 2-2) exhibited the shortest chill-coma recovery times 

compared to all other genotypes, and also shows intermediate to long development 

times, thus showing characters typical of high-altitude populations (chapter 7.2). 

These findings support the notion that the PGI locus is involved in thermal adaptation 

in L. tityrus and possibly other arthropods. 
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3.2. Zusammenfassung 

 

Temperatur ist einer der wichtigsten ökologischen Faktoren, der sowohl direkt als 

auch indirekt die biologische Organisation auf beinahe allen räumlichen und 

zeitlichen Ebenen beeinflusst. Da in der Natur Organismen häufig mit Variation 

sowohl von Durchschnittstemperaturen aber auch mit Temperaturextremen 

konfrontiert werden, müssen sie sich plastisch und/oder genetisch den 

entsprechenden Umweltbedingen anpassen oder andernfalls ihr Aussterben 

riskieren. Die vorliegende Studie, in welcher der Feuerfalter Lycaena tityrus als 

Modelorganismus verwendet wurde, richtet ihr Augenmerk auf die Muster, die 

Signifikanz und die Mechanismen thermaler Anpassung, wobei insbesondere auf 

folgende drei Schwerpunkte eingegangen wird: (1) die mechanistischen Grundlagen 

der Temperatur -Größen-Regel, (2) höhenabhängige Variation in Eigenschaften, die 

potenziell mit thermaler Anpassung in Zusammenhang stehen und (3) den 

genetischen Grundlagen solcher Variation.  

Bei Lycaena tityrus ist ein größeres Endgewicht bei kühleren Zuchttemperaturen 

(entsprechend der Temperatur-Größen-Regel) auf zwei unterschiedliche Faktoren, 

einem verhaltensgesteuerten und einem physiologischen, zurückzuführen. Während 

der verlängerten Entwicklungsdauer bei niedrigeren Temperaturen nehmen die 

Larven mehr Futter zu sich, während gleichzeitig, trotz geringerer Assimilation, eine 

erhöhte Effizienz in der Umwandlung aufgenommenen Futters in Körpermasse 

gezeigt wird (Kapitel 5). Unterschiede in der Körpergröße zwischen den 

Geschlechtern dagegen wird durch andere Mechanismen verursacht. Die höheren 

Wachstumsraten bei den Männchen sind offensichtlich mit einer höheren täglichen 

Futtermenge kombiniert, während die Gesamtfuttermenge und Assimilation bei den 

Weibchen höher ist. Und im Gegensatz zu der temperaturinduzierten Variation in 

Körpergröße unterscheiden sich die Geschlechter nicht in ihrer Effizienz in der 

Umwandlung aufgenommenen Futters in Körpermasse. 

Zusätzlich zu solchen phänotypischen Mustern wird als Ursache klinaler Variation in 

fitnessbezogenen Merkmalen ein Einfluss von direkter Selektion vermutet, und in 

Folge dessen wurde die Analyse solcher Variationen zu einem Schlüsselelement in 

der Erforschung adaptiver Evolution. Bei L. tityrus sind altitudinale Variationen in 

Elementen der Lebensgeschichte, Temperaturresistenz und Flugleistung (Kapitel 

6.1), aber auch in der Expression von Hitzeschockproteinen (Kapitel 6.2) 
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gegenwärtig. Während längere Entwicklungszeiten in Hochlagenpopulationen durch 

Unterschiede in der Anzahl der Generationen erklärt werden können, stellen eine 

verringerte Resistenz gegenüber Hitze und eine geringere Plastizität in der 

Expression von Hitzeschockproteinen, bei gleichzeitig erhöhter Resistenz gegen 

Kälte und höheren Flugleistungen bei unterschiedlichen Umgebungstemperaturen 

lokale Anpassungen an regionales Klima dar. Zudem konnte in beiden Studien durch 

Zucht der Schmetterlinge bei je zwei unterschiedlichen Temperaturen gezeigt 

werden, dass umweltbedingte Plastizität ebenso wichtig wie genetische Faktoren in 

der Vermittlung adaptiver Antworten ist. Daher müssen beide Möglichkeiten 

berücksichtigt werden wenn versucht werden soll, Reaktionen auf kurzzeitige (wie 

einzelne heiße oder kalte Tage/Nächte) oder längerfristige Variation in der 

Temperaturen (wie globale Erwärmung) vorherzusagen.  

Schließlich befasst sich diese Studie auch mit der Analyse der genetischen 

Architektur solcher höhenabhängigen Variation. Populationen verschiedener 

Höhelagen zeigten eine klare Unterteilung in zwei Cluster, einem alpinen 

(Hochlagen) und einem außeralpinen (Tieflagen; Kapitel 7.1). Diese geographische 

Differenzierung ist im Wesentlichen durch Variation an einem einzigen Locus, dem 

PGI Locus, verursacht, wobei ein homozygoter Genotyp, der PGI 2-2 Genotyp, in 

allen alpinen Populationen vorherrscht, während in Tieflagenpopulationen eine viel 

heterogenere Verteilung bei gleichzeitig höherer Heterozygosität vorliegt. 

Interessanterweise weisen Individuen des in den Hochlagenpopulationen 

vorherrschenden PGI 2-2 Genotyps die kürzesten Erholungszeiten nach Kältestarre 

im Vergleich zu den anderen Genotypen auf, wie auch mittlere bis lange 

Entwicklungszeiten, welche für Hochlagen-Populationen typisch sind (Kapitel 7.2). 

Diese Ergebnisse unterstützen die Hypothese, dass der PGI Locus stark in die 

thermale Anpassung von L. tityrus wie auch möglicherweise anderer Arthropoden 

involviert ist.  
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Abstract 

The temperature-size rule (TSR), which states that in body size increases at lower 

developmental temperatures, appears to be a near universal law for ectotherms. 

Although recent studies seem to suggest that the temperature-size rule might be 

adaptive, the underlying developmental mechanisms are thus far largely unknown. 

Here, we investigate temperature effects on life -history traits, behaviour and 

physiology in the copper butterfly Lycaena tityrus in order to disentangle the 

mechanistic basis of the above rule. In Lycaena tityrus, a larger body size produced 

at a lower temperature was proximately due to a higher increase in mass, which was 

caused by both behavioural and physiological mechanisms: a much-increased food 

intake and a higher efficiency in converting ingested food into body matter. These 

mechanisms, combined with temperature-induced changes at the cellular level, may 

provide general explanations for the TSR. Body fat and protein content increased in 

butterflies reared at the higher temperature, indicating favourable growth conditions.  

As predicted from protandry theory, males showed reduced development times, 

caused by higher growth rates compared to females. The latter was itself related to a 

higher daily food consumption, while the total food consumption (due to the females’ 

longer developmental period) and assimilation was higher in females and may 

underly the sexual size dimorphism in body size.  

 

 

Introduction 

Temperature affects biological organization directly and indirectly on all spatial and 

temporal scales and levels, and is considered one of the most important ecological 

factors (Johnston and Bennett 1996, Angilletta and Dunham 2003, Clarke 2003, 

2006, Sinclair et al. 2003). Consequently, the study of temperature effects has 

received considerable attention in recent decades. While there has been remarkable 

progress in some aspects of thermal biology (e.g. the role of heat shock proteins; see 

Yahara 1999, Sørensen et al. 2003), others remain poorly understood. In particular, 

the negative relationship between developmental temperature and adult size in 

ectotherms, often referred to as temperature-size rule (TSR), have remained 

enigmatic despite much effort over recent years (e.g. Blanckenhorn 1997, Partridge 

and Coyne 1997, Arnett and Gotelli 1999, Gotthard et al. 2000, Frazier et al. 2001, 
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Gibert and de Jong 2001, Angilletta et al. 2004, Weetman and Atkinson 2004, 

Atkinson et al. 2006, Cabanita and Atkinson 2006, Santos et al. 2006, Walters and 

Hassall 2006). Importantly, there is hardly any direct support for an adaptive 

explanation involving the demonstration of fitness advantages of being larger or 

maturing later at lower temperatures, and the underlying developmental mechanisms 

are largely unknown. Therefore, the role of physiological constraints is currently 

unclear, and consequently the TSR has been called a puzzle for life historians 

(Berrigan and Charnov 1994).  

 

However, there is a pressing need to better understand the effects of temperature on 

body size in ectotherms (Atkinson and Sibly 1997). First, the TSR seems to be near 

universal across a wide variety of taxa: Atkinson (1994) showed that more than 80% 

of 109 studies on temperature effects in ectotherms observed an increase in body 

size with decreasing temperature (but see Walters and Hassall 2006, Kingsolver et 

al. 2007). Second, body size is one of the most significant features of organisms, 

which impacts on many ecological, physiological and life-history traits (Roff 1992, 

Stearns 1992, Blackburn and Gaston 2001, Chown and Klok 2003, Davidowitz et al. 

2003, Teuschl et al. 2007).  

 

Along with body size, growth rate is also strongly affected by temperature. It has long 

been known that lower temperatures generally reduce metabolic rates and thereby 

the rate of growth in ectotherms, which may impact on patterns in body size (Berrigan 

1997, Yamahira and Conover 2002, Clarke and Fraser 2004, Van Doorslaer and 

Stoks 2005). However, knowing rates of growth and differentiation is not sufficient to 

fully understand variation in body size. Slow-growing individuals may become very 

large given enough time while fast-growing ones may be small if growth period is 

truncated (Blanckenhorn 1999, Davidowitz et al. 2004). Therefore, understanding 

body size variation requires also an understanding of the (endocrine) mechanisms 

regulating the termination of the growth period (Davidowitz et al. 2004). Further, 

plasticity in growth trajectories may be driven by behavioral (e.g. food uptake; Arendt 

1997) and/or physiological mechanisms (e.g. through changes in the efficiency of 

converting ingested food into body mass; see Arendt 1997, Van Doorslaer and Stoks 

2005).  
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Much of our current knowledge on the interrelations between temperature, feeding 

and growth comes from studies on fish (e.g. Elliot and Hurley 1997, 1999, 2000, 

Koskela et al. 1997, Jonsson et al. 2001, Angilletta and Dunham 2003). In the Arctic 

Charr, for instance, a plastic response to temperature was found with growth 

efficiency decreasing linearly with increasing temperature (Larsson and Berglund 

2005; see also Present and Conover 1992 for the Atlantic silverside). Comparati vely 

little, in contrast, is known on the temperature dependence of growth efficiency in 

arthropods (Robinson and Partridge 2001, Angilletta and Dunham 2003).  

 

Both, adaptive and mechanistic models have been proposed to explain the TSR, but 

a single general explanation for the rule and its exceptions remains elusive (Angilletta 

and Dunham 2003). Recent (theoretical) approaches seem to suggest that the TSR 

might be adaptive, but that body size per se is not the target of selection. Rather, 

mechanisms at the cellular or intracellular level might be responsible. The models 

seem to agree that growth should become less efficient at higher temperatures, 

either as the result of oxygen limitation of thermal tolerance (Pörtner 2002), of 

differential temperature coefficients of growth versus differentiation (Van der Have 

and de Jong 1996, Walters and Hassall 2006), or of variation in cell size and/or cell 

number (Partridge et al. 1994, Blanckenhorn and Llaurens 2005; but see Atkinson et 

al. 2006), with smaller cells being more beneficial at higher temperature, while larger 

ones being favored in the cold (Kozlowski et al. 2004). A recent study by Davidowitz 

et al. (2004) suggests that plasticity of body size in relation to temperature is 

regulated by variation in growth rate and the time interval between the attainment of 

the critical weight (the size at which juvenile hormone synthesis ceases) and entry 

into the prepupal wandering stage in Manduca sexta.  

 

A particularly appealing attempt to explain the TSR is the von Bertalanffy-Perrin 

model, as it provides a relatively simple yet potentially general explanation for 

temperature-body size relationships (von Bertalanffy 1960, Berrigan and Charnov 

1994, Perrin 1995, Atkinson and Sibly 1997, Angilletta and Dunham 2003). Based on 

differential effects of temperature on anabolism and catabolism, this model predicts 

that organisms should grow larger in colder environments whenever growth efficiency 

decreases, while growth rate increases with increasing temperature (Angilletta and 

Dunham 2003). However, a recent review by Angilletta and Dunham (2003) revealed 



The mechanistic basis of the TSR                                                                           45 

 

that the required condition of reduced growth efficiency at higher temperatures was 

met in 6 out of 20 species only. Potential reasons for the lack of support for the 

model may include: (i) the species included in the review comprise exceptions from 

the TSR; or (ii) some of the underlying assumptions regarding thermal physiology are 

invalid for most ectotherms.  

 

Against this background, here we investigate temperature effects on life-history traits 

(e.g. larval time and body mass), behaviour (e.g. food intake), and physiology (e.g. 

body composition, growth rate, conversion efficiency) in the Copper butterfly Lycaena 

tityrus. This approach enables us to test for the contributions of such factors in 

mediating plastic responses in body size, and thus to disentangle potential 

mechanisms underlying the TSR. As sexes commonly differ in growth trajectories, we 

also investigate the mechanisms underlying sexual dimorphisms in development time 

and body size.  

 

 

Material and methods 

Study organism 

Lycaena tityrus (Poda, 1761) is a widespread temperate zone butterfly, ranging from 

Western Europe to central Asia (Ebert and Rennwald 1991). The species is bivoltine 

with two discrete generations per year in most parts of its range, although 

populations with one or three generations per year also occur (Ebert and Rennwald 

1991, Tolman and Lewington 1998). Lycaena tityrus hibernates as half-grown larva. 

The principal larval host-plant is Rumex acetosa L., but some congeneric plant 

species such as R. acetosella L. and R. scutatus L. are utilised as well (SBN 1987, 

Ebert and Rennwald 1991, Tolman and Lewington 1998). The butterflies used in this 

study belong to a Bavarian, bivoltine lowland population. Nine freshly eclosed, mated 

females were caught in June 2006 in the field and transferred to Bayreuth University. 

 

Experimental design 

Oviposition and butterfly rearing 

Captured females were kept in a climate chamber at 27°C and L18:D6 (24h light 

cycle). For oviposition they were placed individually in translucent plastic pots (1 L) 
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covered with gauze, and were provided with R. acetosa (oviposition substrate), fresh 

flowers (Crepis sp., Achillea millefolium, Polygonum bistorta, Leucanthemum vulgare) 

and a highly concentrated sucrose solution (for adult feeding). Eggs were collected 

each day, pooled across females and transferred to small glass vials. After hatching, 

larvae were randomly divided among two climate chambers differing in rearing 

temperature (set at 18°C and 27°C, respectively). Both climate chambers used are 

located within the same building next to each other. They are identical in terms of 

construction, lightning and air conditioning. Throughout, the photoperiod was set at 

L18:D6, relative humidity at 70 %. Larvae were placed individually in translucent 

plastic boxes (125 ml), containing moistened filter paper and fresh cuttings of R. 

acetosa in ample supply. Boxes were checked daily and supplied with new food 

when necessary until the beginning of data acquisition. 

 

Data acquisition 

Data acquisition started when larvae had reached the last (fourth) instar. After 

ecdysis larvae were weighed to the nearest 0.01 mg (Sartorius microscale MC 210 P) 

and transferred to a new, clean plastic box. Fresh food sufficient for > 24 h was 

weighed to the nearest 0.01 mg and added to the boxes. 24 ± 2 h later, the remaining 

food and the frass produced were removed, the larvae were weighed and they were 

then transferred to new boxes supplied with fresh, preweighed food. This procedure 

was repeated daily for each larva until pupation. To control for variation in water loss, 

dry mass of the remaining food and the frass was measured after drying samples for 

24 h at 70°C to constant weight. The resulting dry masses were converted into fresh 

masses using calibration equations (dry against fresh food: N = 45, r2 = 0.89, t = 

18.6, P < 0.0001; dry against fresh frass: N = 50, r2 = 0.98, t = 48.3, P < 0.0001). 

Calibrations are based on additional samples weighed before and after drying. The 

daily amount of food ingested was calculated as the difference between the fresh 

mass of food prior to feeding and the estimated fresh mass of the remnant.  

 

Following eclosion, the sex of each butterfly was determined, after which they were 

frozen at -20°C for 30 min. Thereafter, heads, legs and wings were removed and 

body fresh mass was determined, while body dry mass was taken after drying the 

butterflies for 24 h at 70°C. Thus, we obtained for all individuals data on larval mass 

and mass increment, frass production and food ingestion on a daily basis throughout 
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the last larval instar, in which the bulk of the total weight gain is achieved. 

Additionally, duration of the last larval instar, pupal development time, prepupal 

mass, pupal mass, adult fresh and dry body mass, adult water content and adult 

relative fat content were recorded. The latter was determined as the mass difference 

between the adult dry mass and the remaining dry mass after two fat extractions. In 

each extraction, fat was extracted for 48 hours using 2 ml of dichloromethane 

(CH2Cl2) / methanol (CH3OH) (2:1) solution for each butterfly (cf. Fischer et al. 2003). 

The above body mass data were used to compute the efficiency of mass conversion 

prior to and upon metamorphosis, using the following ratios: maximal larval mass to 

prepupal mass (MP), prepupal mass to pupal mass (PP), and pupal mass to adult 

fresh (PF) and dry mass (PD).  

 

Additionally, 46 individuals (18°C: N = 20, 27°C: N = 26) were reared at both 

temperatures for measuring the protein content of adult butterflies. After eclosion, 

adult fresh mass was determined and total protein content was measured (EL 808 

Ultra Microplate Reader Bio-Tek Instruments, Inc. Winooski, VT, USA) using the 

RotiQuant Universal assay (Roth, Karlsruhe, Germany) and bovine serum albumin as 

a standard (cf. Lorenz 2003). 

 

Nutritional indices 

The following indices were calculated in order to characterize growth patterns (1-4 

modified after Zera et al. 1998; 5 -6 according to Lindgren and Laurila 2005):  

1. Growth increment (hereafter GI; in (mg) = maximum larval mass (note that mass 

drops considerably prior to pupation) in mg) – initial larval mass, i.e. at the 

beginning of last instar; in mg)  

2. Consumption (CON; in mg) = fresh mass of food ingested during the feeding 

trial (here summed across the total feeding period; in mg)  

3. Approximate digestibility (assimilation, AD) = [CON (in mg) – fresh mass of frass 

produced (in mg)] / CON (mg)  

4. Efficiency of converting digested food into body matter (ECD) = GI (mg) / [CON 

(mg) – fresh mass of frass produced (mg)]  

5. Mean daily growth rate (DGR; in mg / d) = GI (mg) / larval time (day)  

6. Mean daily food consumption (DFC; in mg / day) = CON (mg) / larval time (day) 
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7. Relative growth rate (RGR) = slope of regression of larval mass against time 

during the active feeding period.  

 

Statistical analyses 

All statistical tests were performed by using JMP (4.0.0) or Statistica 6.1. Life-history 

data were analysed using analyses of variance (ANOVAs) with temperature and sex 

as fixed effects. As suggested by Raubenheimer and Simpson (1992), the nutritional 

indices AD and ECD (see above) were analyzed by ANCOVA, including the 

numerator of the respective ratio as the independent variable and the denominator as 

the covariate. Further, all nutritional indices were analyzed by ANCOVAs with initial 

mass added as a covariate to control for differences in larval mass at the beginning 

of the last instar. To test for effects of ECD and CON on mass, data were additionally 

analysed by ANCOVAs with ECD, CON or both added as covariate. Variation in 

mass conversion upon metamorphosis was controlled for differences in body mass 

by using ANCOVAs with maximal larval mass (in MP), prepupal mass (in PP) and 

pupal mass (in PF and PD) added as covariates. Throughout, minimum adequate 

models were constructed by removing non-significant interaction terms. Pair-wise 

comparisons were performed employing Tukey’s HSD. Calibration equations and 

correlations were computed by using Pearson’s product moment correlations. 

Throughout the text only significant interactions terms are presented; all means are 

given ± 1 SE.  

 

 

Results 

Variation in life-history traits 

The duration of the last larval instar varied significantly across temperatures (F1,168 = 

1325.3, P < 0.0001) and sexes (F1,168 = 75.3, P < 0.0001). Development time was 

much reduced at the higher temperature, and was shorter in males compared to 

females (Table 1). The latter difference was less pronounced at 27°C than at 18°C 

(temperature by sex interaction: F1,168 = 7.2, P = 0.0082).  

 

At the beginning of the last larval instar, larvae reared at 27°C were significantly 

heavier than those reared at 18°C (F1,168 = 82.7, P < 0.0001), and males were
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Table 1. Life-history data (means ± 1 SE) for male and female Lycaena tityrus at two rearing temperatures. The last four lines represent the 

efficiency of mass conversion upon metamorphosis in per cent (with PM = prepupal mass / max. larval mass, PP = pupal mass / prepupal mass, 

PF (adult fresh mass / pupal mass) PD (adult dry mass / pupal mass). 

Trait 18°C 27°C 

 Males N Females N Males N Females N 

Larval time [days] 8.5 ± 0.2 34 10.1 ± 0.2 43 3.8 ± 0.1 49 4.7 ± 0.1 45 

Initial larval mass [mg] 34.2 ± 1.2 34 32.4 ± 1.0 43 59.9 ± 3.2 49 51.6 ± 2.8 45 

Maximal larval mass [mg] 139.3 ± 1.5 34 137.7 ± 2.1 43 126.6 ± 1.5 49 124.8 ± 1.3 45 

Final larval mass [mg] 128.0 ± 1.9 34 127.5 ± 2.2 43 120.7 ± 2.0 49 114.9 ± 1.4 45 

Prepupal mass [mg] 120.9 ± 1.3 34 121.6 ± 2.1 43 110.4 ± 1.4 49 106.4 ± 1.1 45 

Pupal mass [mg] 112.8 ± 1.2 34 111.2 ± 2.0 43 105.2 ± 1.5 49 101.6 ± 1.0 45 

Adult fresh mass [mg] 35.8 ± 0.8 33 40.5 ± 1.6 43 31.8 ± 0.6 48 34.3 ± 0.7 45 

Adult dry mass [mg] 9.1 ± 0.1 33 11.8 ± 0.3 41 8.5 ± 0.2 45 10.2 ± 0.2 43 

PM [%] 86.9 ± 0.6 34 88.3 ± 0.6 43 87.3 ± 0.6 49 85.3 ± 0.6 45 

PP  [%] 93.4 ± 0.7 34 91.5 ± 0.4 43 95.3 ± 0.4 49 95.5 ± 0.2 45 

PF [%] 31.90 ± 0.90 33 36.06 ± 0.92 43 30.42 ± 0.40 48 33.76 ± 0.55 45 

PD [%] 8.12 ± 0.09 33 10.54 ± 0.15 41 8.18 ± 0.09 45 10.03 ± 0.16 43 
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significantly heavier than females (F1,168 = 4.8, P = 0.0294; Table 12). In contrast to 

these initial patterns, individuals reared at the lower temperature reached significantly 

higher maximal larval masses (F1,168 = 61.7, P < 0.0001), final larval masses (i.e. on 

the last day before becoming a prepupa; F1,168 = 27.1, P < 0.0001), prepupal masses 

(F1,168 = 69.3, P < 0.0001), pupal masses (F1,168 = 33.8, P < 0.0001), adult fresh 

(F1,168 = 25.1, P < 0.0001) and adult dry masses (F1,168 = 22.6, P < 0.0001; Table 1, 

Fig. 1 a, b) than those reared at the higher temperature. ANCOVA analyses with 

larval time as covariate revealed qualitatively identical patterns, and confirm that 

mass differences cannot be explained by differences in development time (all P-

values > 0.3294, except final larval masses: P = 0.0178).  

 

Sexes did not differ significantly in maximal larval mass (F1,168 = 1.1, P = 0.3055), 

final larval mass (F1,168 = 3.2, P = 0.0758), prepupal (F1,168 = 1.5, P = 0.2226) or pupal 

mass (F1,168 = 3.3, P = 0.0717), though there were some tendencies towards males 

being heavier. Regarding adults, however, females showed significantly higher fresh 

(F1,168 = 11.8, P = 0.0007) and dry masses (F1,168 = 90.7, P < 0.0001) compared to 

males (Table 1). A significant temperature by sex interaction for adult dry mass (F1,158 

= 4.44, P = 0.0367) indicates that the sexual size dimorphism was less pronounced 

at the higher (females 16.4 % heavier than males) than at the lower temperature 

(females 22.4 % heavier).  

 

The contrasting results regarding the sexual differences in pre-adult versus adult 

masses are obviously caused by sex-specific differences in the mass conversion 

across the metamorphic boundary. While there is no difference between the sexes in 

MP (F1,166 = 0.5, P = 0.4935; maximal larval mass as covariate n.s.) and PP (F1,166 = 

4.4, P = 0.0671; prepupal mass n.s.), females showed a higher PF (F1,164 = 31.5, P < 

0.0001; pupal mass F1,164 = 4.2, P = 0.0415) and PD (F1,166 = 276.6, P < 0.0001; 

pupal mass F1,157 = 6.9, P = 0.0093; Table 1). Significant temperature effects on 

conversion rates were only found for MP (F1,166 = 6.6, P = 0.0109) and PP (F1,166 = 

28.2, P < 0.0001), with proportional mass loss being lower at the higher temperature 

in MP, but higher at the higher temperature in PP. A significant temperature by sex 

interaction in MP (F1,166 = 7.0, P = 0.0089) indicates that conversion rates in females 

were higher at 18°C but lower at 27°C compared to males, while the opposite pattern 

was observed in PP (interaction term F1,166 = 6.1, P = 0.0143). Another significant
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Table 2. Results of two-way AN(C)OVAs for the effects of temperature and sex on growth 

increment (GI), daily growth rate (DGR), consumption (CON), daily food consumption (DFC), 

relative growth rate (RGR), assimilation (AD), and efficiency of converting food into biomass 

(ECD) in Lycaena tityrus (for definitions see text). Throughout, initial mass was added as 

covariate. For AD and ECD (ratios) additionally ‘CON’ and ‘CON-frass’ were added as 

covariates. Minimum adequate models were constructed by removing non-significant 

interaction terms. Significant P-values are given in bold. 

Trait and Source DF MS F P 

GI [mg]     
   temperature  1,167 5459.3 48.9 < 0.0001 
   sex 1,167 80.5 0.7 0.3970 
   Initial mass 1,167 38285.6 343.2 < 0.0001 
     
DGR [mg/day]     
   temperature  1,167 1827.9 233.2 < 0.0001 
   sex 1,167 260.7 33.3 < 0.0001 
   Initial mass 1,167 811.6 103.5 < 0.0001 
     
CON [mg]     
   temperature  1,166 359569.6 15.1 0.0002 
   sex 1,166 338580.3 14.2 0.0002 
   Initial mass 1,166 1216602.6 50.9 < 0.0001 
     
DFC [mg/day]     
   temperature  1.166 210386.8 181.6 < 0.0001 
   sex 1,166 4677.9 4.0 0.0461 
   Initial mass 1,166 2449.9 2.1 0.1478 
     
RGR     
   temperature  1,167 6924.1 262.8 < 0.0001 
   sex 1,167 492.3 18.7 < 0.0001 
   Initial mass 1,167 1106.5 42.0 < 0.0001 
     
AD     
   temperature  1,165 94185.5 31.6 < 0.0001 
   sex 1,165 20088.5 6.7 0.0103 
   Initial mass 1,165 647163.3 216.9 < 0.0001 
   CON 1,165 2771528.2 928.9 < 0.0001 
     
ECD     
   temperature  1,165 171331.0 47.3 < 0.0001 
   sex 1,165 3445.2 1.0 0.3310 
   initial mass 1,165 1210968.3 334.1 < 0.0001 
   CON-frass 1,165 3367077.8 928.9 < 0.0001 
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temperature by sex interaction suggests that the sex difference in PD was smaller at 

27°C than at 18°C (F1,157 = 4.5, P = 0.0361).  

 

Body composition 

High and low temperature butterflies differed significantly in relative protein (F1,168 = 

9.6, P = 0.0035) and fat content (F1,159 = 135.1, P < 0.0001), both of which increased 

at the higher rearing temperature, but did not differ in water content (F1,159 = 1.8, P = 

0.1724; Fig. 1 c-e). Sexes, though, differed significantly in protein (F1,168 = 20.8, P < 

0.0001), fat (F1,159 = 52.0, P < 0.0001), and water content (F1,159 = 44.5, P < 0.0001). 

Protein content was higher in females, while fat and water content were higher in 

males (Fig. 1 c-e). A significant temperature by sex interaction for protein content 

(F1,168 = 7.9, P = 0.0074) indicates a less pronounced sex difference at 27°C 

compared to 18°C (protein content by 14.7 or 48.1 % higher in females).  

 

Nutritional indices 

Temperature significantly affected GI, DGR, CON, DFC, RGR, AD and ECD, while 

only DGR, CON, DFC, RGR and AD differed significantly across sexes (Table 2). 

Mass increment (GI), consumption (CON), and conversion efficiency (ECD) were 

significantly higher at 18°C compared to 27°C, while the opposite pattern was 

observed for growth rates (DGR, RGR), daily food consumption (DFC), and 

assimilation (AD; Fig. 1 f-l). Regarding sex differences, growth rates (DGR, RGR) 

and daily food consumption (DFC) were higher in males than in females, while the 

opposite was true for total consumption (CON) and assimilation (AD, Fig. 1). With the 

exception of DFC, all nutritional indices were significantly affected by the covariate 

initial mass (Table 2). Further, while growth efficiency (ECD) was not affected by the 

covariate CON, the term ‘CON-frass’ had a significant impact on assimilation (AD; 

Table 2; positive correlation between AD and ‘CON-frass’: r = 0.66, P < 0.0001). 

Finally, adding ECD as a covariate when analyzing variation in body masses 

revealed that ECD had a significant positive effect on maximal larval mass (F1,166 = 

9.0, P = 0.0031) and final larval mass (F1,165 = 5.2, P = 0.0239), but not on PM, pupal 

mass, adult fresh and dry mass (all P > 0.0711). Adding CON as a covariate revealed 

significant effects on all body masses (all P < 0.0001), but only adding CON and ECD 

together as covariates removed the temperature effects on most measures of body 

size (all P > 0.0575), except for maximal larval mass (F1,164 = 10.5, P = 0.0015) and
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Fig. 1. Pupal mass (a), adult fresh mass (b), relative water (c), fat (d) and protein content (e), 

growth increment (GI; f), consumption (CON; g), daily food consumption (DFC; h), daily 

growth rate (DGR; i), relative growth rate (RGR; j), assimilation (AD; k) and efficiency of 

converting food into biomass (ECD; l) of Lycaena tityrus males (black bars) and females 

(white bars) reared at two different temperatures. Group means + 1 SE are shown. For 

definitions of nutritional indices see text.  

92

96

100

104

108

112

116

18 27

Temperature [°C]

P
u

p
al

 m
as

s 
[m

g
]

25

28

31

34

37

40

43

18 27

Temperature [°C]

A
d

u
lt

 fr
es

h
 m

as
s 

[m
g

]

66

68

70

72

74

76

18 27

Temperature [°C]

W
at

er
 c

o
n

te
n

t 
[%

]

9

11

13

15

17

19

18 27

Temperature [°C]

F
at

 c
o

n
te

n
t 

[%
]

0.5

1.0

1.5

2.0

2.5

3.0

18 27

Temperature [°C]

P
ro

te
in

 c
o

n
te

n
t 

[%
]

50

60

70
80

90
100

110
120

18 27

Temperature [°C]

G
I [

m
g]

600

700

800

900

1000

1100

1200

18 27

Temperature [°C]

C
O

N
 [m

g
]

50

80

110

140

170

200

230

18 27

Temperature [°C]

D
F

C
 [m

g
/d

ay
]

4

6

8

10
12

14

16
18

18 27

Temperature [°C]

D
G

R
 [

m
g

/d
ay

]

5

10

15

20

25

30

35

18 27

Temperature [°C]

R
G

R
 

0.30

0.35

0.40

0.45

0.50

0.55

18 27

Temperature [°C]

A
D

0.16

0.18

0.20

0.22

0.24

0.26

18 27

Temperature [°C]

E
C

D

a b c 

d e f 

g h i 

j k l 



The mechanistic basis of the TSR                                                                           54 

 

prepupal mass (F1,163 = 15.3, P = 0.0001). In these analyses, CON had quantitatively 

a larger impact than ECD throughout (being 0.3 times larger for maximal and final 

larval mass, 0.6 times larger for prepupal mass, 0.5 times larger for pupal mass, and 

2-3 times larger for adult fresh and dry mass; as per effect sizes in ANCOVAs). 

Correlation analyses yielded qualitatively similar results (CON – body size: rP = 

0.363-0.531; ECD – body size: rP = -0.011-0.318). 

 

 

Discussion 

Temperature and sex effects on life-history traits 

As expected and as was previously found in Lycaena tityrus (Fischer and Fiedler 

2000), this species conforms to the TSR (Bergmann’s rule extended to ectotherms): 

lower developmental temperature caused a plastic increase in body size (e.g. 

Atkinson 1994, French et al. 1998, Stelzer 2002, Angilletta and Dunham 2003, 

Cabanita and Atkinson 2006; but see Kingsolver et al. 2007). The fact that larvae 

were actually heavier at the beginning of the last larval instar when reared at the 

higher temperature is considered an experimental artefact: at 27ºC larvae molt and 

then grow quickly, and not all larvae could be weighed directly after ecdysis, thereby 

biasing body mass data towards higher values. Whether similar considerations also 

account for the sex difference at this stage or whether such patterns are caused by 

e.g. protandry selection, remains to be tested. Anyway, all later mass measurements 

showed the expected pattern of a larger body size at the lower temperature. The 

growth and feeding patterns underlying this rule, which are not merely byproducts of 

differences in development time (as per ANCOVA), will be analyzed in detail below.  

 

Further as expected, larval development time was much shorter at the higher 

temperature and males showed generally shorter development times than females, 

both caused by higher growth rates at higher temperatures and in males, respectively 

(e.g. Atkinson 1994, Berrigan and Charnov 1994, Fischer and Fiedler 2000, 2001, 

2002, Gibert and de Jong 2001, Fischer et al. 2003, Bochdanovits and de Jong 2003, 

Clarke and Fraser 2004). The latter is ultimately caused by protandry selection, 

thereby maximizing male mating opportunities (Fagerström and Wiklund 1982). The 

males’ higher growth rates are evidently facilitated by a higher DFC, while total food 
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consumption (due to the females’ longer developmental period) and assimilation was 

higher in females.  

 

Other studies showed that males may take less time to grow to the same size as 

females (Gunnarsson and Johnsson 1990, Wiklund et al. 1991, Nylin 1992, Nylin et 

al. 1993). Such compensatory growth despite shorter development time was also 

observed here regarding preadult body mass, but not in adult body mass. Here, 

females were larger than males (see also Fischer and Fiedler 2000, 2001, 2002). The 

differential patterns in preadult and adult body size are caused by a higher mass loss 

in males during metamorphosis, which has been interpreted as a potential cost of the 

males’ accelerated development (Fischer et al. 2004). In contrast to the sexual 

differences in conversion rates, temperature yielded only minor and inconsistent 

effects. While the temperature by sex interaction for development time basically 

reflects a smaller absolute sex difference at the higher temperature (see also 

Blanckenhorn et al. 2006), the one for adult dry mass suggests that the sexual size 

dimorphism is less pronounced at the higher temperature, challenging earlier results 

(Fischer and Fiedler 2000).  

 

Temperature and sex effects on body composition 

In Lycaena tityrus, rearing at different temperatures substantially affected body 

composition in adult butterflies (see also Hoffmann 1973, 1974, Woods et al. 2003). 

While water content was not influenced by temperature regime, fat and protein 

content increased in butterflies reared at the higher temperature (see also Fischer et 

al. 2003). Fat is the most efficient and most commonly used energy source in insects 

and is therefore indicative of condition (for example highly correlated with starvation 

resistance; Zwaan et al. 1991). Further, protein, which is not readily available from 

the butterflies’ adult diet (Fischer et al. 2004, Bauerfeind and Fischer 2005), serves 

multiple functions including a prominent role in reproduction. The higher values found 

at 27°C suggests an advantage of developing at higher temperatures. These findings 

caution against using measures of body mass as the sole indicator of condition or 

energy content (cf. Angilletta and Dunham 2003). Regarding sex-related differences 

in body composition, water and fat content was higher, but protein content lower in 

males than in females. The higher protein content in females might be related to their 

high need for egg production, while enhanced fat reserves in males may serve as 



The mechanistic basis of the TSR                                                                           56 

 

flight fuel during mate location (e.g. Zera et al. 1998). Why males had a much lower 

protein content at 18°C compared to 27°C is unknown and difficult to interpret.  

 

Getting big in the cold: how and why?  

While the TSR as such is well documented, the mechanisms underlying this near-

universal pattern as well as its potential adaptive significance are thus far largely 

unknown (e.g. Partridge and Coyne 1997, Arnett and Gotelli 1999, Gotthard et al. 

2000, Frazier et al. 2001, Gibert and de Jong 2001, Angilletta et al. 2004, Weetman 

and Atkinson 2004, Atkinson et al. 2006, Cabanita and Atkinson 2006, Santos et al. 

2006, Walters and Hassall 2006; but e.g. Moed et al. 1999). Here, we show that a 

larger body size at the lower temperature in Lycaena tityrus is proximately caused by 

a much higher weight gain within the last instar in larvae reared at the lower 

temperature (see also Kingsolver and Woods 1997, Petersen et al. 2000). Why this 

should be so, however, is not obvious upon first sight. Due to a detailed analysis of a 

variety of nutritional indices we can show that the increased weight gain is caused by 

contributions of different mechanisms, including a behavioral and a physiological 

component. The behavioural component involves a much increased food intake (i.e. 

consumption), the physiological one an increased efficiency in converting ingested 

food into body matter, despite a lower assimilation.  

 

In line with results on the damselfly Coenagrion hastulatum (Van Doorslaer and 

Stoks 2005), we also found an increase in DFC at higher temperatures in order to 

maintain high growth rates (see also Kingsolver and Woods 1998 in a short-period 

experiment). Nevertheless, total food consumption (i.e. pooled across the last larval 

instar) was much higher at the lower temperature (cf. Neat et al. 1995, Lindgren and 

Laurila 2005), obviously caused by the prolonged development time. These results 

stress the notion that understanding variation in body size requires knowledge of 

both growth rates and development times. Interestingly though, assimilation was 

higher but growth efficiency lower at the higher temperature. This means that, on the 

one hand, a higher percentage of the food ingested was actually stored in the 

larvae’s body, but that nevertheless a relatively smaller fraction of digested food 

could actually be converted into body matter. This seeming discrepancy is most likely 

related to higher metabolic losses at the higher temperature (Kingsolver and Woods 

1997, Renault et al. 2002). Similarly, it could be shown in Drosophila melanogaster 
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that individuals reared at a lower temperature used limited food more efficiently than 

those reared at a higher temperature (Neat et al. 1995, Robinson and Partridge 

2001). A causal relationship between growth efficiency / consumption and body mass 

was confirmed here by adding ECD and CON as covariates. Such factors fully 

explained the mass differences between temperatures, except for maximal larval 

mass and prepupal mass differences. 

 

In a recent study it was shown that temperature-mediated changes in Manduca body 

size depend on temperature-sensitive endocrine control mechanisms (Davidowitz et 

al. 2004). Such processes regulate patterns of food intake and the timing of 

metamorphosis. We here investigated how such putatively hormonally-controlled 

differences in food intake (and growth efficiency) may directly affect differences in 

body size across temperatures. Interestingly, Davidowitz et al. (2004) found evidence 

that at 20°C fewer degree-days were required for development as compared to 25 

and 30°C. The as-yet unknown mechanism behind this phenomenon may well be 

found in the differences in growth efficiency (efficiency in converting ingested food 

into body matter) reported here.  

 

Our results do support the theoretical model developed by von Bertalanffy (1960) and 

Perrin (1995), assuming that the TSR arises as a consequence of differential effects 

of temperature on anabolism and catabolism (specifically, the Q10 of catabolism must 

be greater than the Q10 of anabolism). While those effects are difficult to measure 

directly, testable predictions can be derived, namely that growth efficiency (including 

anabolic and catabolic processes) should be negatively, but growth rate positively 

related to temperature (Angilletta and Dunham 2003). In other words, the 

temperature that maximizes growth efficiency is predicted to be lower than the 

temperature maximizing growth rate. Evidently, this is indeed the case in Lycaena 

tityrus. Unfortunately, however, a recent review failed to reveal conclusive support for 

the von Bertalanffy-Perrin model, as it only applied to a minority of the ectotherms 

studied so far (Angilletta and Dunham 2003).  

 

These findings are currently based on a rather limited number of species, with a quite 

severe bias towards aquatic animals, mainly fish (Angilletta and Dunham 2003). 

Further, it is not actually known for most species included in the review whether they 
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actually follow the TSR or not (Angilletta and Dunham 2003). Therefore, it still seems 

possible that, at least for terrestrial arthropods, the von Bertalanffy-Perrin model does 

provide a suitable explanatory framework (see also Neat et al. 1995, Robinson and 

Partridge 2001). However, there are alternative explanations for the lack of support, 

for instance that the model may include some critical assumptions about thermal 

physiology that are invalid for most ectotherms, including neglect of acclimation 

through which growth efficiency may be adjusted to environmental needs (Angilletta 

and Dunham 2003). Atkinson (1997) proposed that the TSR could arise from a 

constraint on growth that arises late in ontogeny, i.e. from a decrease in the thermal 

optimum for growth efficiency with increasing body size. This may cause a smaller 

body size at higher temperatures independent of the Bertalanffy-Perrin model, and 

there is indeed some support in favour of this notion (Angilletta and Dunham 2003).  

 

Another, yet closely related issue is whether the reaction norm represented by the 

TSR (i.e. is a negative relationship between temperature and body size) might be 

favoured by natural selection. A strong point of the von Bertalanffy-Perrin model, 

especially as it seems to apply to Lycaena tityrus, is that it provides not only a 

proximate mechanism, but also an adaptive explanation for the TSR. Given that a 

large body size is generally advantageous but that the costs of achieving large size 

increase with increasing temperature (due to a reduction in growth efficiency at 

higher temperatures), a negative relation based on diminishing returns should be 

optimal and thus adaptive.  

 

Additional support for the notion that the TSR might, at least in some cases (and in 

particular in Lycaena butterflies), be adaptive stems from the observation of genetic 

variation in temperature reaction norms (Fischer and Fiedler 2000, 2001, 2002, 

Kingsolver et al. 2007), suggesting that such variation has been shaped by natural 

selection. In Lycaena butterflies, for instance, temperature reaction norms for body 

size differ across sexes and populations, being steeper in males than in females and 

in multi- compared to monovoltine populations (Fischer and Fiedler 2000, 2001, 

2002). Both phenomena can be readily interpreted within an adaptive framework. 

The latter difference, for example, has been interpreted as resulting from multivoltine 

populations with short generation times gaining high compound interest benefits from 

reproducing early at high temperatures, indicating potential for extra generations, 
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even at the expense of being smaller. This should not apply for obligatorily 

monovoltine populations, showing shallow reaction norms (Fischer and Fiedler 2002). 

Thus, the compound interest hypothesis may also yield an adaptive explanation for 

the relationship between temperature and insect size at maturity, but has been poorly 

investigated thus far.  

 

In summary, we here demonstrate that the butterfly Lycaena tityrus conforms to the 

TSR by getting bigger at lower temperatures. The higher mass increment in the last 

larval instar at the lower temperature was related to a higher food intake and an 

increased efficiency in converting ingested food into body matter. These findings do 

support the von Bertalanffy-Perrin model, but as yet it is rather unclear whether this 

comprises a rule or exception. In any case, such processes, in combination with 

temperature-mediated changes in cell size and number (Partridge et al. 1994, 

Blanckenhorn and Llaurens 2005, Atkinson et al. 2006), may explain the often 

reported increase in body size at lower developmental temperatures in at least some 

species, including Drosophila. However, based on the contradicting evidence 

summarized above, it seems most likely that the TSR may arise for different 

proximate as well as ultimate reasons in different organisms. It has long been known 

in life history studies that the same pattern of variation can be generated via different 

mechanisms (Partridge and French 1996). We suggest that our understanding of the 

factors underlying the TSR will greatly improve by performing detailed comparative 

case studies spanning a wide variety of taxa. The outcome may well be that there is 

no general explanation for the TSR, neither mechanistically nor ultimately. Clearly, 

much more empirical data is needed before any general conclusions can be drawn, 

and consequently this life-history puzzle will be solved.  
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6.1. Altitudinal life-history variation and thermal adaptation 

in the copper butterfly Lycaena tityrus 
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Abstract 

Understanding how organisms adapt to complex environments lies at the very heart 

of ecology and evolutionary biology. Clinal variation in traits related to fitness 

suggests a contribution of directional selection, and analyzing such variation has 

consequently become a key element in investigating adaptive evolution. In this study 

we examine climatic adaptation in the temperate-zone butterfly Lycaena tityrus 

across replicated populations from low-, (mid-) and high-altitudes, each reared at two 

different temperatures. In common garden experiments, high- compared to low-

altitude populations showed a longer development time accompanied by reduced 

larval growth rates, increased cold- but decreased heat-stress resistance, and 

increased flight duration across a range of ambient temperatures. In contrast, 

differences in morphological traits such as pupal mass or wing size were negligible, 

suggesting that morphology is not necessarily indicative of flight performance. While 

patterns in stress resistance traits suggest adaptation to local temperatures, 

development times between populations were associated with differences in season 

length (enabling a second generation at lower altitudes, while high-altitude 

populations are monovoltine) rather than with temperature per se. Mid-altitude 

populations showed either intermediate patterns or patterns resembling low-altitude 

populations. Plastic responses to different rearing temperatures resulted, as 

expected, in reduced larval and pupal development times at higher temperatures 

accompanied by higher growth rates and decreased pupal mass. Further, butterflies 

reared at a lower temperature showed reduced chill-coma recovery times and 

decreased heat knock-down resistance as compared to those reared at a higher 

temperature. In summary, this study demonstrates local adaptations to regional 

climates, and that environmentally-induced plasticity can be as important as genetic 

factors in mediating adaptive responses.  

 

 

Introduction 

Facing a more or less wide range of environmental conditions through space and 

time, all organisms rely on the capability to adjust the expression of phenotypic 

values to environmental needs. Adjustment of phenotypic expression can be 

achieved via genetic differentiation (i.e. long-term genetic adaptation) or phenotypic 

plasticity (i.e. direct environmental effects on the phenotype as an adaptive strategy 
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to cope with short-term environmental variation; Bradshaw 1965, Pigliucci 2001). The 

latter is not necessarily an adaptation to variable environments, but may alternatively 

be merely a biochemical or physiological interaction of an organism with its 

environment (Bradshaw 1965). The question of how organisms adapt to complex 

environments (both genetically and plastically) lies at the very heart of ecology and 

evolutionary biology, and is of special concern in the face of rapidly changing climatic 

conditions at the global scale (e.g. Parmesan et al. 1999, Hitch and Leberg 2007).  

 

Many species show genetically determined geographical variation in traits related to 

fitness (such as life history, stress resistance or behavioural traits). Such population-

specific differences are thought to be the result of adaptive evolution (Hoffmann et al. 

2002, Castañeda et al. 2005, Hoffmann et al. 2005, Collinge et al. 2006, Sambucetti 

et al. 2006). Particularly strong support for this notion comes from clinal variation, 

suggesting a contribution of directional selection to the differentiation among 

populations (Arnett and Gotelli 1999, Robinson and Partridge 2001, Chown and Klok 

2003, Van Doorslaer and Stoks 2005). Consequently, analyzing clinal patterns in 

fitness-related traits has become a key element in investigating adaptive evolution 

(Bubliy and Loeschcke 2005, Sambucetti et al. 2006). Additionally, pronounced 

environmentally-induced variation in life-history traits is almost ubiquitous (Fischer 

and Fiedler 2000, Angilletta and Dunham 2003, Cabanita and Atkinson 2006). 

Though both sources of variation typically contribute jointly to adaptation, the relative 

importance of genetic adaptation versus phenotypic plasticity in shaping adaptive 

evolution is still a matter of a controversial discussion (e.g. Ayrinhac et al. 2004, 

Samietz et al. 2005).  

 

To study climatic adaptation, geographic gradients along which climate strongly 

varies are of particular interest. Although several environmental factors may impact 

on the physiology of individuals and do vary geographically, temperature is thought to 

be one of the most important selective agents (Loeschcke et al. 2000). This is 

because of the strong covariance between temperature and geographic clines, and 

the fact that temperature is a key environmental factor for basically all terrestrial 

ectotherms, influencing virtually all aspects of their ecology and evolution (e.g. 

Hoffmann et al. 2003, Sinclair et al. 2003). Given the typically wide range of 

temperatures in space (along geographical ranges) and time (i.e. daily and seasonal 
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cycles) organisms are faced with, they are consequently expected to adapt 

genetically and/or plastically to different temperatures.  

 

Studies on geographic gradients revealed some clear latitudinal patterns that are 

arguably related to changes in temperature or related factors, such as increased 

body size (e.g. Arnett and Gotelli 1999, Chown and Klok 2003), reduced 

developmental time (e.g. Robinson and Partridge 2001) and increased growth rates 

(e.g. Van Doorslaer and Stoks 2005) with increasing latitude. Despite much effort in 

investigating latitudinal variation particularly in insects, altitudinal patterns have been 

studied much less frequently, although high altitudes and latitudes share similarly 

extreme environmental conditions (Berner et al. 2004, Bubliy and Loeschcke 2005, 

Sørensen et al. 2005). This might be because altitudinal clines involve relatively short 

distances and thus represent very steep ecological gradients, with gene flow likely 

being important. Thus, for any differentiation being detectable one has to assume 

strong directional selection.  

 

In this study, we investigate climatic adaptation of replicated populations in the 

temperate-zone butterfly Lycaena tityrus from low-, mid- and high-altitudes. We ran 

two similar experiments, one with populations from 2 altitudes reared at 2 

temperatures, and one with populations from 3 altitudes reared at a single 

temperature. We focus on a variety of traits likely to be under thermal selection, 

ranging from life-history, stress resistance, morphology through to behaviour. For 

investigating thermal stress resistance, chill-coma recovery (i.e. the time until 

regaining mobility following chill-coma) and heat knock-down assays (i.e. the time 

until being knocked down when exposed to high temperatures) are used. Both 

indices are considered to be reliable proxies of climatic cold and heat adaptation, 

respectively (e.g. Hoffmann et. al. 2002, Ayrinhac et al. 2004, Castañeda et al. 2005, 

Sørensen et al. 2005). As actively flying organisms such as butterflies benefit from 

being able to track resources and escape from predators, and because butterflies 

initiate flight voluntarily only if body temperature is high (> 30°C, Shreeve 1984), we 

also investigated flight performance under suboptimal temperature conditions. The 

ability to fly even under such conditions should be highly relevant in terms of fitness 

(Barnes and Laurieahlberg 1986, Merckx et al. 2006). Presumed differences in flight 
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performance across populations may also be detectable at the morphological level 

(Berwaerts and van Dyck 2004), which is consequently also considered.  

 

Based on the cooler and probably also less predictable environmental conditions 

found at higher altitudes, we predict climatic cold adaptation to result in shorter 

development times, increased growth rate, larger body size in combination with 

higher amounts of storage reserves, quicker recovery after a chill-coma but sooner 

knock-down under heat stress, better flight performance (at least at low 

temperatures) and possibly a lower wing loading, a higher wing aspect ratio and a 

higher investment into flight muscles facilitating better flight performance in high 

altitude animals (Dahlgaard et al. 2001, Norry et al. 2001, Berwaerts et al. 2002). By 

rearing the populations used at two different temperatures, we were also able to 

investigate plastic responses to temperature. This combination of approaches allows 

us to draw upon the following general questions: (1) Does climatic variation along an 

altitudinal gradient cause genetic differentiation in traits likely to be under thermal 

selection? (2) What is the relative importance of genetic as opposed to environmental 

factors in shaping adaptive reaction norms? (3) Do genotype and environment 

(rearing temperature) interact for certain traits? (4) How do our results on altitudinal 

variation relate to known latitudinal patterns?  

 

 

Material and methods 

Study organism and egg sampling 

Lycaena tityrus (Poda, 1761) is a widespread temperate-zone butterfly, ranging from 

Western Europe to central Asia (Ebert and Rennwald 1991). The species is bivoltine 

with two discrete generations per year in most parts of its range, although 

populations with one or three generations per year occur (Ebert and Rennwald 1991, 

Tolman and Lewington 1998). The principal larval host-plant is Rumex acetosa L., 

but some congeneric plant species such as R. acetosella L. and R. scutatus L. are 

utilised as well (Ebert and Rennwald 1991, Tolman and Lewington 1998).  

 

Mated females from replicated low-, mid- and high-altitude Lycaena tityrus 

populations (see further below) were captured in 2005 (experiment 1) and 2006 

(experiment 2) in Rhineland-Palatinate (Germany), in Bavaria (Germany), and at 
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different localities in the  Austrian and Italian Alps, respectively, and were transferred 

to Bayreuth University for egg laying. Butterflies were kept in a climate chamber at 

27°C, high humidity (ca. 70%), and Light 18h: Dark 6h (24 h light cycles). For 

oviposition, females were placed individually in translucent plastic pots (1 L) covered 

with gauze, and were provided with R. acetosa (oviposition substrate), fresh flowers 

(Crepis spec., Achillea millefolium , Polygonum bistorta, Leucanthemum vulgare) and 

a highly concentrated sucrose solution (for adult feeding). Eggs were collected daily, 

then pooled across females and kept, separated by population, in small glass vials 

until hatching. Two experiments were carried out as detailed below.  

 

Experimental design 

Experiment 1 

In the first experiment four populations of Lycaena tityrus were used, with two 

replicates originating from lowland populations [Bavaria I, Germany: 450 above see 

level, a.s.l. (49° 53' N, 11° 37' E); Bavaria II, Germany: 500 a.s.l. (49° 57' N, 11° 46' 

E)] and two from highland populations [South Tyrol, Italy: 2010 a.s.l. (46° 43' N, 10° 

52' E); Tyrol, Austria: 2050 a.s.l. (46° 52' N, 11° 01' E)]. Caught females were allowed 

to deposit eggs as described above. After hatching, larvae were randomly divided 

among two rearing temperatures (18°C and 27°C, L18:D6 throughout). They were 

placed individually in translucent plastic boxes (125 ml), containing moistened filter 

paper and fresh cuttings of R. acetosa in ample supply. Boxes were checked daily 

and supplied with new food when necessary. For all larvae development time (from 

hatching to pupation), pupal mass (to the nearest 0.01 mg; Sartorius microscale MC 

210 P), pupal development time and growth rate (calculated as the ratio of pupal 

mass and larval developmental time) were recorded.  

 

Following adult eclosion, butterflies were kept individually in translucent plastic pots 

(1 L) covered with gauze at their respective rearing temperature, and were provided 

with fresh flowers (Crepis spec., Achillea millefolium , Polygonum bistorta, 

Leucanthemum vulgare) and a highly concentrated sucrose solution. On day two 

after eclosion, chill-coma recovery times were recorded. For testing, the butterflies 

from the different temperature groups and populations were placed individually in 

small translucent plastic cups (125 ml), which were arranged on a tray in a 

randomized block design. The tray was then exposed for 6 min to -20°C. Six minutes 
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were selected because preliminary studies showed that longer cold exposure 

induced significant mortality, and shorter exposure lead to very quick recovery. The 

trays were then transferred to an environmental cabinet with a constant temperature 

of 20°C. Recovery time was defined as the time elapsed between taking the tray out 

of the freezer until a butterfly was able to stand on its legs.  

 

After having recovered from the cold (mortality: 15 out of 419 individuals = 3.6 %), 

butterflies were transferred back to their respective rearing temperature. The 

following day heat stress resistance was determined by using a knock-down assay 

(mortality between assays was random across populations). Butterflies were placed 

in small, sealed glass vials, which were submerged in a water bath kept at a constant 

temperature of 47°C, again in a randomized block design. Butterflies were 

continuously monitored and heat knock-down time (defined as the time until a 

butterfly was no longer able to stand upright) for each individual was recorded.  

 

Experiment 2 

Experiment 2 used two low- [Bavaria, Germany: 600 a.s.l. (47° 42' N, 11° 24' E); 

Rhineland-Palatinate, Germany: 250 a.s.l., (50° 30' N, 7° 58' E)]; two mid- [Tyrol, 

Austria: 1500 a.s.l. (47° 13' N, 10° 56' E); South Tyrol, Italy: 1350 a.s.l., (46° 58' N, 

11° 20' E)], and two high-altitude Lycaena tityrus populations[South Tyrol, Italy: 2010 

a.s.l. (46° 43' N, 10° 52' E); Tyrol, Austria: 2050 a.s.l. (46° 52' N, 11° 01' E)]. Mean 

July temperatures are ca. 19-20°C (or higher) for the low-, ca. 13-15°C for the mid-, 

and ca. 10°C (or below) for the high-altitude populations (also for experiment 1). As 

in experiment 1 population by temperature interactions were either non-significant or 

had very little effect on overall patterns, all larvae were reared at a single temperature 

of 27°C (L18:D6) to reduce work load. For all individuals larval development time, 

pupal mass, pupal development time and larval growth rate were recorded as 

detailed above. Further, chill-coma recovery and heat knock-down times were 

determined as above, however, butterflies were randomly assigned to either the cold 

or heat stress treatment, not both.  

 

While heat-stressed butterflies were not used any further (note that heat stress 

induces significant mortality), cold-stressed butterflies (though exclusively from the 

low and high altitudes to reduce work load) were used further for investigating flight 
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duration and morphological traits. Flight duration was measured for males and 

females in relation to population and ambient temperatures (i.e. at 5, 12, 19 and 

26°C) on day 3 of adult life (i.e. on the day following the cold stress). Prior to the 

experiments, butterflies were allowed to acclimate at the respective test temperature 

for 30 min (Van Dyck and Matthysen 1998). Each individual was tested at all 4 

temperatures within one day. For testing, a butterfly sitti ng with closed wings was 

picked up with a pair of tweezers and was released from a standard height of 2 m. 

Flight duration was timed from the release of the butterfly until it alighted (Merckx et 

al. 2006). Only flights of at least 2 m in length were considered (thus excluding 

occasions when a butterfly alighted on the testing person). Each individual was 

tested three times at each temperature, and the corresponding means were used for 

further analyses.  

 

For morphological analyses all butterflies were frozen on day 3 of adult life following 

the above experiments. Later, they were dried to a constant mass for 24 h at 70°C. 

Wings, heads and legs were removed, and thorax and abdomen mass were 

determined separately to the nearest 0.01 mg (Sartorius microscale MC 210 P). 

Relative fat content was determined as the mass difference between adult dry mass 

and the remaining dry mass after two fat extractions. In each extraction, fat was 

extracted for 48 hours using 2 ml of dichloromethane (CH2Cl2) / methanol (CH3OH) 

(2:1) solution for each butterfly (cf. Fischer et al. 2003). Forewing area and length 

(from basis to apex) was measured using digital images of left forewings (captured 

from ventral with a digital camera, Leica DC300, mounted on a stereo microscope, 

Leica MZ 7.5) and Scion Image software (release Beta 4.0.2). Wing loading was 

calculated as total dry body mass divided by forewing area, and wing aspect ratio as 

4 x forewing length2 divided by forewing area (Berwaerts et al. 2002). Wing loading is 

closely related to flight performance (lower wing loading means better flight 

performance, Berwaerts et al. 2002), while a higher aspect ratio specifies a narrower 

wing, resulting in an enhanced acceleration capacity (Norry et al. 2001).  

 

Statistical analyses 

Life history, morphology and stress resistance data were analysed using nested 

analyses of (co-)variance (AN(C)OVAs) with replicate population nested within 

altitude. Replicates were treated as random effects, whilst altitude, sex and 
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temperature (the latter in experiment 1 only) were considered fixed effects. Pupal 

mass was added as covariate when appropriate. Throughout, minimum adequate 

models were constructed by removing non-significant interaction terms. Prior to 

analyses, data on flight duration, body dry mass, total fat content, forewing area, wing 

loading, and wing length were transformed as appropriate to meet ANOVA 

requirements. Pair-wise comparisons were performed employing Tukey’s HSD. All 

statistical tests were performed by using JMP (4.0.0) or Statistica (6.1). Unless 

otherwise stated, least square means ± 1 SE are given in text.  

 

 

Results 

Experiment 1 

Altitudinal and temperature-related variation in life-history traits 

Larval development time varied significantly between altitudes (high: 23.5 ± 0.3 days 

> low: 21.7 ± 0.3 days), replicates, sexes (males: 21.8 ± 0.1 days < females: 23.4 ± 

0.2 days) and temperatures (18°C: 30.0 ± 0.2 days > 27°C: 15.2 ± 0.1 days; Table 1, 

Fig. 1a). The absolute difference between altitudes was higher at 18 (high: 31.5 ± 0.3 

days vs. low: 28.7 ± 0.2 days) compared to 27°C (high: 15.9 ± 0.2 days vs. low: 14.5 

± 0.2 days), causing a significant altitude by temperature interaction. Results for 

growth rates showed qualitatively a very similar pattern (though there was no 

significant variation across replicates), being significantly higher in the low- versus 

high-altitude populations (low: 6.0 ± 0.1 mg/day > high: 5.2 ± 0.1 mg/day), in males 

versus females (males: 5.9 ± 0.1 mg/day > females: 5.4 ± 0.1 mg/day), and at the 

higher versus the lower temperature (27°C: 7.4 ± 0.1 mg/day > 18°C: 3.8 ± 0.1 

mg/day; Fig. 1b). For pupal time no difference was detected between altitudes and 

replicates, but development was significantly shorter at the higher (7.4 ± 0.03 days) 

than at the lower (13.9 ± 0.05 days) rearing temperature, and was shorter in males 

(10.5 ± 0.04 days) than females (10.8 ± 0.05 days). A significant altitude by 

temperature interaction indicates that the temperature effect was slightly less 

pronounced in high- than in low-altitude butterflies (being by 45.7 % compared to 

47.3 % shorter in individuals reared at 27°C; Fig. 1c). Pupal mass was significantly 

higher at the lower (114.7 ± 1.1 mg) compared to the higher (110.5 ± 0.7 mg) rearing 

temperature and also varied across replicate populations, but did not differ between 

altitudes or sexes (Fig. 1d). 
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Table 1. Nested AN(C)OVAs for the effects of altitude, replicate population (nested within 

altitude), sex and temperature on life-history and stress-resistance traits in Lycaena tityrus . 

Pupal mass (covariate) was added as appropriate. Minimum adequate models were 

constructed by removing non-significant interaction terms. Sign. P-values are given in bold. 

Trait and source DF MS F P 

Larval time [days]     
Altitude 1,2 387.7 22.8 0.0340 
Replicate [Altitude] 2,448 19.5 4.0 0.0183 
Sex 1,448 286.7 59.5 < 0.0001 
Temperature 1,448 20262.3 4204.4 < 0.0001 
Altitude x Temperature 1,448 47.6 9.9 0.0018 
Error 448 4.8   

Growth rate [mg/day]     
Altitude 1,3 52.3 31.8 0.0168 
Replicate [Altitude] 2,448 1.7 1.5 0.2150 
Sex 1,448 23.3 20.6 < 0.0001 
Temperature 1,448 1166.1 1029.9 < 0.0001 
Altitude x Temperature 1,448 6.7 5.9 0.0155 
Error 448 1.1   

Pupal time [days]     
Altitude 1,2 3.4 4.0 0.1637 
Replicate [Altitude] 2,448 0.9 2.5 0.0816 
Sex 1,448 11.4 30.5 < 0.0001 
Temperature 1,448 3834.8 10252.4 < 0.0001 
Altitude x Temperature 1,448 3.8 10.2 0.0015 
Error 448 0.4   

Pupal mass [mg]     
Altitude 1,2 2924.2 2.1 0.2882 
Replicate [Altitude] 2,449 1440.9 8.9 0.0002 
Sex 1,449 438.7 2.7 0.1004 
Temperature 1,449 1494.4 9.2 0.0025 
Error 449 161.9   

Chill-coma recovery time [sec]     
Altitude 1,2 1165252 88.6 0.0055 
Replicate [Altitude] 2,409 12186.4 0.3 0.7787 
Sex 1,409 467.3 0.01 0.9220 
Temperature 1,409 958735 19.7 < 0.0001 
Pupal mass 1,409 274.9 0.01 0.9401 
Error 409 48699   

Heat knock-down time [sec]     
Altitude 1,3 797360 13.2 0.0430 
Replicate [Altitude] 2,393 63231.4 1.3 0.2658 
Sex 1,393 227112 4.8 0.0295 
Temperature 1,393 1733202 36.4 < 0.0001 
Altitude x Temperature 1,393 700543 14.7 0.0001 
Pupal mass 1,393 81605.6 1.7 0.1910 
Error 393 47556   
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Fig. 1. Means (+ 1 SE) for larval time (a), larval growth rate (b), pupal time (c), pupal mass 

(d), chill-coma recovery time (e) and heat knock-down time (f) for Lycaena tityrus males 

(black bars) and females (white bars) across two rearing temperatures (18°C and 27°C) and 

altitudes (low- and high-altitude). Data were pooled across two replicates each. Group 

sample sizes range between 20 and 83 individuals. 
 

 

Altitudinal and temperature-related variation in thermal stress resistance 

Chill-coma recovery time varied significantly between altitudes and temperatures, but 

was not affected by replicate, sex or the covariate pupal mass (Fig. 1e, Table 1). 

High-altitude animals (374.1 ± 11.9 sec) showed faster recovery compared to low-
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altitude ones (475.8 ± 10.8 sec), as did animals reared at the lower (372.0 ± 20.9 

sec) compared to the higher (477.9 ± 13.0 sec) temperature.  

 

Heat knock-down time was significantly shorter in high- (243.6 ± 18.2 sec) than in 

low-altitude butterflies (350.2 ± 16.5 sec), in males than in females (271.5 ± 15.5 sec 

vs. 322.3 ± 17.6 sec), and in animals reared at the lower (224.4 ± 20.7 sec) versus 

the higher rearing temperature (369.3 ± 13.2 sec; Fig. 1f), while there was no 

significant impact of replicates or the covariate pupal mass. Low-altitude butterflies 

showed a bigger difference in heat knock-down time across temperatures than high-

altitude butterflies, as evidenced by a significant altitude by temperature interaction 

(knock-down time increased by 51.2 % at 27°C compared to 20°C in low-, but only by 

18.1 % in high-altitude butterflies). Heat knock-down time and chill-coma recovery 

time were marginally correlated (R = 0.12, P = 0.02, N = 404).  

 

Experiment 2 

Altitudinal variation in life-history traits 

Altitude significantly affected larval (high: 15.0 ± 0.07 days = mid: 14.8 ± 0.07 days > 

low: 14.0 ± 0.07 days) and pupal development time (low: 7.29 ± 0.02 days = mid: 

7.36 ± 0.02 days > high: 6.76 ± 0.02 days), but not growth rate or pupal mass (Fig. 2 

a-d; Table 2), although pupal mass tended to increase in the higher-altitude 

populations. Sexes differed significantly in larval time (males: 13.9 ± 0.07 days < 

females: 15.3 ± 0.08 days), pupal development time (males: 7.0 ± 0.03 days < 

females: 7.3 ± 0.03 days) and growth rate (males: 8.2 ± 0.07 mg/day > females: 7.6 ± 

0.07 mg/day), but not in pupal mass (Fig. 2 a-d). A significant altitude by sex 

interaction for pupal mass indicates some variation in sexual size dimorphism, with 

females being by about 1.7 % and 3.9 % heavier in mid- and high-altitude 

populations, but by about 2.4 % lighter in the low-altitude populations as compared to 

males (Fig. 2d). Further, sexual differences in growth rates were most pronounced in 

low- (13.3 % higher in males) followed by mid- (8.0 % higher) and high-altitude 

populations (4.5 % higher in males; significant altitude-by-sex interaction; Fig. 2b). 

Throughout, there was no significant variation between replicates. 
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Table 2. Nested AN(C)OVAs for the effects of altitude, replicate population (nested within 

altitude) and sex on life-history and stress-resistance traits in Lycaena tityrus . Pupal mass 

(covariate) was added as appropriate. Minimum adequate models were constructed by 

removing non-significant interaction terms. Significant P-values are given in bold. 

Trait and source DF MS F P 

Larval time [days]     
Altitude 2,3 59.6 50.2 0.0045 
Replicate [Altitude] 3,678 1.2 0.6 0.6207 
Sex 1,678 333.9 167.4 < 0.0001 
Error 678 2.0   

Growth rate [mg/day]     
Altitude 2,3 5.8 1.9 0.2850 
Replicate [Altitude] 3,676 3.0 1.8 0.1447 
Sex 1,676 69.6 41.6 < 0.0001 
Altitude x Sex 2,676 5.7 3.4 0.0341 
Error 676 1.7   

Pupal time [days]     
Altitude 2,3 21.9 195.9 0.0005 
Replicate [Altitude] 3,678 0.1 0.4 0.7575 
Sex 1,678 18.7 66.4 < 0.0001 
Error 678 0.3   

Pupal mass [mg]     
Altitude 2,3 3805.4 8.7 0.0551 
Replicate [Altitude] 3,676 442.1 2.4 0.0690 
Sex 1,676 277.8 1.5 0.2222 
Altitude x Sex 2,676 705.9 3.8 0.0230 
Error 676 186.2   

Chill-coma recovery time [sec]      
Altitude 2,3 1786980 17.4 0.0216 
Replicate [Altitude] 3,274 104895 4.0 0.0078 
Sex 1,274 2350 0.1 0.7638 
Pupal mass 1,274 39321 1.5 0.2197 
Error 274 7120073   

Heat knock-down time [sec]     
Altitude 2,5 3969545 246.9 < 0.0001 
Replicate [Altitude] 3,276 12580 0.2 0.9188 
Sex 1,276 1665873 22.1 < 0.0001 
Pupal mass 1,276 98.9 0.0001 0.9712 
Error 276 20831702   
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Fig. 2. Means (+ 1 SE) for larval time (a), larval growth rate (b), pupal time (c), pupal mass 

(d), chill-coma recovery time (e) and heat knock-down time (f) of Lycaena tityrus males 

(black bars) and females (white bars) from three different altitudes (low-, mid- and high-

altitude) at 27°C. Data were pooled across two replicates each. Group sample sizes range 

between 96 and 146 individuals for life-history traits and between 33 and 72 individuals for 

stress resistance traits. 

 

 

Altitudinal variation in thermal stress resistance 

Chill-coma recovery time varied significantly across altitudes (low: 621.2 ± 32.1 sec > 

mid: 464.4 ± 35.6 sec > high: 349.5 ± 33.4 sec; Fig. 2e; Table 2) and replicates, but 

not between the sexes. Heat knock-down time also differed significantly across 
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altitudes (low: 686.9 ± 12.3 sec = mid: 665.5 ± 13.5 sec > high: 282.3 ± 15.3 sec; Fig. 

2f) and between the sexes (females: 623.5 ± 25.0 sec > males: 466.2 ± 22.6 sec), 

but not among replicates. Pupal mass did not significantly affect either stress 

resistance trait. 

 

Altitudinal variation in morphology 

Butterflies from high- versus low-altitude differed significantly in thorax, abdomen and 

total fat content, but not in total dry mass, thorax-abdomen ratio, wing length, wing 

area, wing loading and wing aspect ratio (see Table 3). Thoracic (low: 14.2 ± 0.02 % 

> high: 13.9 ± 0.02 %), abdomen (low: 28.4 ± 0.9 % > high: 22.8 ± 0.9 %) and total 

fat content (low: 21.3 ± 0.3 % > high: 18.5 ± 0.3 %; Table 4) were higher in low- 

compared to high-altitude butterflies. Differences across replicates were present for 

thorax-abdomen ratio and wing area, but not for any other trait. Sexes differed 

significantly in total dry mass, thorax-abdomen ratio, abdomen fat content, wing area, 

wing loading and wing aspect ratio, but not in thorax fat content, total fat content and 

wing length (Table 3). Males showed a higher thorax-abdomen ratio (males: 1.53 ± 

0.03 > females: 0.59 ± 0.03), wing aspect ratio (males: 9.2 ± 0.2 > females: 8.1 ± 0.2) 

and abdomen fat content (males: 28.7 ± 0.8 % > females: 22.4 ± 0.8 %), but a lower 

total body mass (males: 8.8 ± 0.3 mg < females: 12.7 ± 0.3 mg), a smaller wing area 

(males: 1.05 ± 0.02 cm² < females: 1.19 ± 0.02 cm²) and a lower wing loading 

(males: 8.9 ± 0.3 mg/cm² < females: 11.2 ± 0.3 mg/cm²; Table 4) compared to 

females. All interactions were non-significant.  

 

Altitudinal and temperature-related variation in flight capacity 

Flight duration varied significantly across altitudes at 5°C (F1,2 = 37.1, P = 0.0246; 

high: 0.89 ± 0.003 sec > low: 0.86 ± 0.003 sec) and 12°C (F1,2 = 25.0, P = 0.0377; 

high: 1.59 ± 0.04 sec > low: 1.31 ± 0.04 sec), but not at 19°C (F1,2 = 3.4, P = 0.2061) 

and 26°C (F1,2 = 15.9, P = 0.0567), though the tendency for high-altitude butterflies to 

fly longer remained (see Table 4). Males flew significantly longer than females at 5°C 

(F1,212 = 76.8, P < 0.0001), 12°C (F1,212 = 5.7, P = 0.0175) and 19°C (F1,212 = 13.3, P = 

0.0003), but not at 26°C (F1,212 = 3.1, P = 0.0797; Table 4). Further, sex differences at 

12°C were more pronounced in the high- than in the low-altitude populations (altitude 

by sex interaction: F1,211 = 3.9, P = 0.0495; for all other interactions P > 0.18). 



Altitudinal patterns                                                                                                    83 

 

Table 3. Nested AN(C)OVAs for the effects of altitude, replicate population (nested within 

altitude) and sex on morphological traits in Lycaena tityrus . Minimum adequate models were 

constructed by removing non-significant interaction terms. Sign. P-values are given in bold. 

Trait and source DF MS F P 

Total dry mass [mg]     
Altitude 1,2 < 0.1 < 0.1 0.9506 
Replicate [Altitude] 2,228 0.4 2.1 0.1250 
Sex 1,228 20.0 114.4 < 0.0001 
Error 228 39.8   

Thorax fat content [%]         
Altitude 1,3 5.3 107.7 0.0031 
Replicate [Altitude] 2,218 < 0.1 < 0.1 0.9966 
Sex 1,218 15.2 1.2 0.2758 
Error 218 2772.9   

Abdomen fat content [%]         
Altitude 1,2 1745.7 20.4 0.0457 
Replicate [Altitude] 2,218 85.8 1.3 0.2679 
Sex 1,218 2245.1 34.7 < 0.0001 
Error 218 14111.3   

Total fat content [%]         
Altitude 1,2 0.33 22.5 0.0414 
Replicate [Altitude] 2,218 0.01 < 0.1 0.5436 
Sex 1,218 0.01 0.3 0.5737 
Error 218 5.12     

Thorax-abdomen ratio     
Altitude 1,2 0.2 0.5 0.5704 
Replicate [Altitude] 2,218 0.5 4.3 0.0144 
Sex 1,218 48.7 418.2 < 0.0001 
Error 218 25.4     

Wing length [cm]     
Altitude 1,2 0.13 1.7 0.3216 
Replicate [Altitude] 2,217 0.08 1.9 0.1579 
Sex 1,217 0.08 1.8 0.1830 
Error 217 9.14     

Wing area [cm²]     
Altitude 1,2 0.07 1.2 0.3746 
Replicate [Altitude] 2,217 0.05 3.9 0.0198 
Sex 1,217 0.14 10.9 0.0011 
Error 217 2.79     

Wing loading [mg/cm²]     
Altitude 1,2 0.08 3.6 0.1964 
Replicate [Altitude] 2,217 0.02 1.1 0.3255 
Sex 1,217 0.54 28.9 < 0.0001 
Error 217 4.09     

Aspect ratio     
Altitude 1,2 13.0 1.1 0.4027 
Replicate [Altitude] 2,217 11.7 2.3 0.0978 
Sex 1,217 75.2 15.1 0.0001 
Error 217 1080.5   
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Throughout, neither replicate population (all P > 0.1853) nor pupal mass significantly 

affected flight duration (all P > 0.0550). 

 

Altitudinal and temperature-related variation in flight capacity 

Flight duration varied significantly across altitudes at 5°C (F1,2 = 37.1, P = 0.0246; 

high: 0.89 ± 0.003 sec > low: 0.86 ± 0.003 sec) and 12°C (F1,2 = 25.0, P = 0.0377; 

high: 1.59 ± 0.04 sec > low: 1.31 ± 0.04 sec), but not at 19°C (F1,2 = 3.4, P = 0.2061) 

and 26°C (F1,2 = 15.9, P = 0.0567), though the tendency for high-altitude butterflies to 

fly longer remained (see Table 4). Males flew significantly longer than females at 5°C 

(F1,212 = 76.8, P < 0.0001), 12°C (F1,212 = 5.7, P = 0.0175) and 19°C (F1,212 = 13.3, P = 

0.0003), but not at 26°C (F1,212 = 3.1, P = 0.0797; Table 4). Further, sex differences at 

12°C were more pronounced in the high- than in the low-altitude populations (altitude 

by sex interaction: F1,211 = 3.9, P = 0.0495; for all other interactions P > 0.18). 

Throughout, neither replicate population (all P > 0.1853) nor pupal mass significantly 

affected flight duration (all P > 0.0550).  

 

 

Discussion 

Altitudinal and temperature-related variation in life-history traits 

As expected, most of the life-history traits investigated varied across Lycaena tityrus 

populations from different altitudes, presumably due to genetic differentiation. Note, 

however, that these differences may include maternal effects, as all animals were 

reared from wild-caught females. Unfortunately, Lycaena tityrus does not mate in 

captivity, and consequently we could not rear the paternal generation under 

standardized laboratory conditions to control for such effects. However, usually 

maternal effects are particularly pronounced early in life (e.g. affecting egg size and 

early larval development), but typically play an ever-smaller role as individuals 

mature (Blanckenhorn 1997; but see Räsänen and Kruuk 2007). Further, population 

genetic analyses proved substantial genetic differentiation, especially between the 

low- and the higher-altitude populations (Karl et al. in prep.). While interpreting the 

following results it should be kept in mind that low- and mid-altitude populations are 

geographically much closer to each other than the low-altitude to any of the other 

populations (cf. Methods).  
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In Lycaena tityrus altitudinal variation was found in larval and pupal development 

time, both being longer at higher altitudes (accompanied by reduced growth rates). 

This contrasts with the prediction of intrinsically higher growth rates and/or shorter 

development times at higher altitudes as an adaptation to the shorter season 

(Atkinson 1994, Abrams et al. 1996). The pattern can be easily explained by a 

change in voltinism: while high-altitude populations are monovoltine, low-altitude 

ones are bivoltine (Tolman and Lewington 1998). Obviously, the time stress imposed 

by fitting in an additional generation a year is more severe than that imposed by the 

shorter growing season length in higher altitudes (Roff 1980). In accordance, 

prolonged development times in monovoltine as compared to bivoltine populations 

have been reported for other butterfly species as well (L. hippothoe, Fischer and 

Fiedler 2002, Aricia agestis, Burke et al. 2005).  

 

There was virtually no evidence for altitudinal variation in pupal mass in Lycaena 

tityrus, except for a slight tendency towards higher pupal masses in high-altitude 

populations in Experiment 2. Recent studies show that the associations between 

temperature or environmental clines and body size are complex ranging from positive 

to negative (Blanckenhorn and Demont 2004, Chown and Klok 2003). Again, our 

results are likely attributable to differences in voltinism, suggesting that not only 

temperature regime but also its interactions with generation time, voltinism, and 

season length are likely to have strong impacts on insect body size (Roff 1980, 

Blanckenhorn 1997, Chown and Gaston 1999). In studies involving latitudinal 

variation in Drosophila individuals were frequently found to be larger and to grow 

faster at higher latitudes (James and Partridge 1995, James et al. 1995, Van’t Land 

et al. 1999).  

 

Males generally showed shorter larval and pupal development times accompanied by 

higher larval growth rates than females (e.g. Fischer and Fiedler 2001, 2002). This is 

likely to be ultimately caused by protandry selection (i.e. an earlier emergence of 

males), thereby maximizing male mating opportunities (Fagerström and Wiklund 

1982). The variation in sex-related differences in growth rates across altitudes is 

striking, especially as the same trend can be found in both experiments (though 

attaining significance in experiment 2 only). The pattern of decreased differences in



 

 

Table 4. Fat content, morphological traits and flight duration at different temperatures (means ± 1 SE) for male and female Lycaena tityrus from 

low- and high-altitude populations. Data were pooled across two replicates each. Note that, as only two altitudes were considered here (in contrast 

to the traits analysed in Table 2), statistical results are presented in the text.  

Trait Low altitude High altitude 

 Males (N = 55-60) Females (N = 54-55) Males (N = 55-59) Females (N = 59) 

Total dry mass [mg] 9.19 ± 0.25 12.40 ± 0.45 8.58 ± 0.29 13.08 ± 0.45 

Thorax fat content [%] 13.75 ± 0.55 14.58 ± 0.48 13.75 ± 0.51 13.98 ± 0.35 

Abdomen fat content [%] 32.34 ± 1.26 24.47 ± 1.01 25.15 ± 1.15 20.34 ± 0.87 

Total fat content [%] 21.56 ± 0.81 20.98 ± 0.70 18.87 ± 0.78 18.21 ± 0.63 

Thorax-abdomen ratio 1.57 ± 0.07 0.62 ± 0.02 1.48 ± 0.06 0.51 ± 0.01 

Wing length [cm] 1.51 ± 0.01 1.49 ± 0.01 1.52 ± 0.01 1.51 ± 0.01 

Wing area [cm²] 1.01 ± 0.03 1.14 ± 0.05 1.10 ± 0.04 1.24 ± 0.04 

Wing loading [mg/cm²] 9.57 ± 0.40 11.38 ± 0.50 8.29 ± 0.36 11.04 ± 0.48 

Aspect ratio 9.45 ± 0.31 8.34 ± 0.32 9.04 ± 0.33 7.79 ± 0.25 

Flight duration at 5°C [sec] 0.90 ± 0.01 0.83 ± 0.01 0.93 ± 0.01 0.85 ± 0.01 

Flight duration at 12°C [sec] 1.30 ± 0.05 1.32 ± 0.05 1.73 ± 0.05 1.46 ± 0.05 

Flight duration at 19°C [sec] 3.82 ± 0.24 3.40 ± 0.25 4.76 ± 0.24 3.59 ± 0.24 

Flight duration at 26°C [sec] 5.04 ± 0.24 4.93 ± 0.25 6.18 ± 0.24 5.45 ± 0.24 

 



Altitudinal patterns                                                                                                    87 

 

higher-altitude populations might be related to their monovoltine lifecycle, potentially 

resulting in relaxed selection for faster growth in males due to a decoupling of growth 

rate and development time (as males may slightly later enter/terminate diapause; 

Nylin et al. 1993). An alternative explanation would be that in monovoltine 

populations there is a higher selection pressure on synchronized adult emergence to 

maximize mating opportunities. Although females are typically the larger sex in 

insects (Roff 2002), we were not able to detect a consistent sex difference in pupal 

mass. On the contrary, in the low-altitude populations females even tended to be 

lighter than males. However, in the adult stage we found the expected sexual size 

dimorphism with females being larger than males (see also Fischer and Fiedler 2000, 

2001, 2002). These different patterns in preadult and adult body size are caused by a 

greater mass loss in males during metamorphosis, which has been interpreted as a 

potential cost of the males’ accelerated development (Fischer et al. 2004).  

 

As expected for an ectothermic organism, growth and development depended 

strongly on temperature (Fischer and Fiedler 2000, Van Doorslaer and Stoks 2005). 

Larval and pupal development times were considerably shorter at the higher 

temperature, accompanied by increased growth rates (see also Blanckenhorn 1997, 

Burke et al. 2005). Interactions between temperature and altitude for larval and pupal 

time reflect some marginal variation in the responses to temperature, with differences 

in larval time being less but differences in pupal time being more pronounced in low-

altitude populations. However, based on their rather small effect these effects are 

probably of marginal relevance.  

 

Also as expected, and as was previously found (Fischer and Fiedler 2000), Lycaena 

tityrus conforms to the temperature-size rule (Bergmann’s rule extended to 

ectotherms): the lower developmental temperature caused a plastic increase in body 

size (e.g. Atkinson 1994, Angilletta and Dunham 2003; but see Kingsolver et al. 

2007). Though the ultimate factors underlying this almost universal pattern are not 

understood, potential mechanisms may include an increase in food intake as well as 

an increase in the efficiency in converting ingested food into body matter (Karl and 

Fischer 2008), in combination with temperature-mediated changes in cell size and/or 

number (Partridge et al. 1994, Blanckenhorn and Llaurens 2005, Atkinson et al. 

2006).  
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Altitudinal and temperature-dependent variation in thermal stress resistance 

Chill-coma recovery and heat knock-down time are both considered reliable 

indicators of climatic adaptation, the former being related to cold, the latter to heat 

stress tolerance (Sørensen et al. 2001, Hallas et. al. 2002, Hoffmann et. al. 2002, 

David et al. 2003, Castañeda et al. 2005). Our results show rather large variation in 

these stress resistance traits along an altitudinal gradient, indicating genetic 

differentiation across populations. The decrease in chill-coma recovery time with 

increasing altitude suggests an enhanced cold stress resistance of higher-altitude 

animals. This may facilitate earlier activity in the morning and later activity in the 

evening, allow for generally higher levels of activity under colder conditions due to a 

lower thermal threshold, and potentially enhance over-winter survival (Gibert et. al. 

2001, Watt et al. 2003, Haag et al. 2005). Similar results along latitudinal and 

altitudinal clines obtained in e.g. the common woodlouse Porcellio laevis (Castañeda 

et al. 2005), Drosophila serrata (Hallas et al. 2002) and Drosophila melanogaster 

(Hoffmann et al. 2002, Hoffmann et al. 2005, Collinge et al. 2006).  

 

Conversely, and consistent with the chill-coma results, heat knock-down resistance 

decreased with increasing altitude, indicating lower heat stress resistance of high-

altitude animals. Low heat tolerance has been suggested to be a common feature in 

high-altitude populations of Drosophila (Kimura and Beppu 1993, Sørensen et al. 

2005), reflecting that such animals may rarely be exposed to exceedingly high 

temperatures. Butterflies from warmer habitats at low altitudes, in contrast, exhibited 

a much increased heat tolerance. A similar pattern in knock-down resistance along a 

latitudinal cline was detected for Drosophila melanogaster in Australia (Hoffmann et 

al. 2005). Our results thus support the notion that heat knock-down time is an 

ecologically relevant trait reflecting adaptive variation (Sørensen et al. 2001, for 

review see Hoffmann et al. 2003).  

 

Thermal stress resistance was additionally influenced by prevailing environmental 

conditions. A lower developmental and early adult temperature (note the butterflies 

were tested on day 2 of adult life) caused reduced chill-coma recovery times (cf. 

Zeilstra and Fischer 2005) and a decrease in heat knock-down resistance at the 

higher temperature. Similar results were obtained in studies on Drosophila (Chen and 

Walker 1994, Ayrinhac at al. 2004, Hoffmann et al. 2005). The lack of evidence for an 
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interaction between genotype (populations from different altitudes) and environment 

(rearing temperature) for chill-coma recovery time means that the plastic response to 

temperature was similar across populations, that is,  clina l patterns were independent 

of rearing temperatures (see also Hoffmann et al. 2005). In contrast, such an 

interaction could be observed with regard to heat knock-down time: Butterflies from 

low-altitude populations showed a much more pronounced plastic response to 

temperature than high-altitude ones. The latter leaves substantial potential to quickly 

adjust heat stress resistance under hot conditions for low-altitude butterflies, which is 

apparently not needed in populations from higher altitudes.  

 

The sexes did not differ in chill-coma recovery times, a result also being reported for 

Drosophila (Chen and Walker 1994, Gilchrist et al. 1997, Jensen et al. 2007). This 

might be related to the importance of cold tolerance for over-winter survival (Gibert 

et. al. 2001), which should be equally relevant to both males and females. In contrast, 

there was a sex difference in heat tolerance, being reduced in males compared to 

females (see also Sørensen et al. 2001, Folk et al. 2006, Jensen et al. 2007 for 

Drosophila). Whether this pattern might be related to a higher expression of heat 

shock proteins in females (Sørensen et al. 2001) remains to be tested. The pattern 

itself might be related to the fact that males are generally more stressed than females 

due to sexual selection being usually more intense than is fecundity selection on 

females, potentially resulting in lower stress resistance in males (Reim et al. 2006). In 

any case, the females’ enhanced heat stress resistance is unlikely to be related to 

their larger body size frequently assumed to promote temperature resistance, as we 

have generally found no impact of pupal mass on stress resistance in Lycaena 

tityrus. 

 

Altitudinal variation in morphology and flight performance 

The ability to fly even under sub-optimal conditions like low temperatures or strong 

winds is likely to be closely related to fitness in flying organisms such as butterflies 

(Barnes and Laurieahlberg 1986, Merckx et al. 2006). Additionally, better flight 

performance can be beneficial in mountainous areas (Norry et al. 2001, Hodkinson 

2005). Accordingly, Lycaena tityrus from high-altitude populations exhibited generally 

increased flight durations compared to butterflies from lower altitudes. Differences 

were most pronounced at the lowest temperatures tested (5°C and 12°C), suggesting 
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an adaptation to the generally cooler conditions in the high–altitude populations. 

Similarly, Merckx et al. (2006) showed stronger selection for flight ability in cool-

adapted woodland populations of Pararge aegeria as compared to populations from 

warmer, agricultural landscapes.  

 

In butterflies, differences in flight performance have often been inferred from 

morphological variation (Berwaerts and van Dyck 2004). For instance, higher relative 

thorax (and hence flight muscle) masses were found to be related to greater flight 

capacity (e.g. Berwaerts et al. 2002), and differences in wing shape have been 

interpreted to reflect divergent demands on aerodynamic performance (Wickman 

1992, Van Dyck and Wiklund 2002). Further, a higher wing loading in highland 

Drosophila buzzatii populations is believed to be caused by a stronger selection on 

flight performance (Norry et al. 2001). Interestingly though, in Lycaena tityrus we 

found no differences in thorax mass, thorax/abdomen-ratio, wing length, wing area, 

wing loading or wing aspect ratio across altitudes, despite pronounced differences in 

flight performance. These findings contrast with studies on Drosophila buzzatii 

showing both higher wing loadings and increased wing lengths at higher altitudes 

(Dahlgaard et al. 2001, Norry et al. 2001). However, in Drosophila birchii variation in 

wing shape components along a latitudinal cline were also lacking (Griffiths et al. 

2005). 

 

Flight performance without morphological differentiation across altitudes strongly 

suggests that low- and high-altitude populations differ in physiological traits. 

Accordingly, we found a higher amount of fat stored in butterflies from low- as 

compared to higher-altitudes in Lycaena tityrus. Previous studies on butterflies have 

shown that fat content increases at higher rearing temperatures (Fischer et al. 2003, 

Karl and Fischer 2008). These results are somewhat counter-intuitive. Based on the 

fact that fat is the most efficient and most commonly used energy source in insects 

and therefore indicative of condition (as it is, for example, highly correlated with 

starvation resistance in Drosophila, Zwaan et al. 1991), the reverse pattern with high-

altitude butterflies showing an increased fat content as an adaptation to the harsher 

environmental conditions was expected. Apparently, fat stores do not seem to play a 

decisive role for the differences in flight performance described above. One plausible, 

though currently speculative explanation would be a better flight performance in high-
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altitude butterflies caused by changes in allele frequencies, e.g. at the PGI 

(phosphoglucose isomerase) locus. This enzyme is known to profoundly affect flight 

metabolic rate in butterflies, enabling higher levels of activity under cooler conditions 

(Watt et al. 2003, Haag et al. 2005). Of course this needs to be tested in Lycaena 

tityrus, but population genetic analyses showed substantial change in allele 

frequencies at the locus in question in the populations considered here (Karl et al. in 

prep).  

 

Finally, flight duration also differed between males and females, with males showing 

generally increased flight performance. In contrast to clinal patterns, these 

differences can be easily linked to differences in morphology. Males showed a higher 

thorax/abdomen-ratio, wing aspect ratio and abdomen fat content, and a reduced 

wing area and wing loading than females. Similarly, in Pararge aegeria sexual 

differences in several aspects of their flight morphology have been shown, such as 

an increased wing loading in females, likely reflecting divergent selective pressures 

on male and female flight performance (Van Dyck et al. 1998, Berwaerts et al. 2002, 

Van Dyck and Wiklund 2002). As male butterflies spend most of their active time 

locating mates, a higher level of acceleration capacity is of particular significance, 

while female butterflies perform longer and more persistent flights in search for 

oviposition sites. 

 

Conclusions 

Most efforts to understanding temperature stress tolerance so far have focussed on 

Drosophila as the model organism. We have investigated genetic differentiation and 

environmentally-induced plasticity in the Copper butterfly Lycaena tityrus, by 

comparing an array of traits across populations from different altitudes, each reared 

at two different temperatures. We found clear evidence for genetic differentiation 

(supported by molecular data; Karl et. in prep.), at least some of which can be easily 

interpreted within an adaptive evolutionary framework. Likely adaptations to the low-

temperature environment experienced by high-altitude butterfly populations include 

an increased cold but decreased heat stress resistance as well as enhanced flight 

performance, particularly at lower temperatures. Morphological traits, on the other 

hand, showed weak if any variation across populations from different altitudes, 
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suggesting weak thermal selection on these traits. Development times, finally, were 

associated with seasonal time constraints rather than with temperature per se.  

 

Most importantly, however, stress resistance traits also showed strong plastic 

responses, likely reflecting adaptive phenotypic plasticity. Consequently both sources 

of variation need to be considered when trying to predict responses to short- (such as 

particularly hot or cold days/nights) or long-term temperature variation (such as 

global warming). Animals clearly do possess the ability to respond to temperature 

changes, both by means of genetic adaptation and short-term physiological 

adjustment (plasticity). To explore the limits within which such mechanisms can help 

buffer predictable changes in global temperatures remains an important task for 

future research (e.g. Van Doorslaer et al. 2007). In this respect the reduced heat 

resistance of high-altitude populations is striking, especially since this is associated 

with reduced flexibility (i.e. a comparably small plastic response). Whether this is a 

common feature in high-altitude populations remains to be tested.  
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Abstract 

The ability to express heat-shock proteins under thermal stress is an essential 

mechanism for ectotherms to cope with unfavourable conditions. In this study we 

investigate if Copper butterflies originating from different altitudes and / or being 

exposed to different rearing and induction temperatures show differences in HSP 

expression. HSP expression increased substantially at the higher rearing 

temperature in low-altitude butterflies, which might represent an adaptation to 

occasionally occurring heat spells. On the other hand, high-altitude butterflies 

showed little plasticity and seem to rely more on genetically fixed stress resistance. 

Therefore, high-altitude populations may be more vulnerable to global warming than 

low-altitude populations. Further, HSP70 expression was generally higher at the 

higher rearing temperature (indicating mildly stressful conditions), and increased with 

both colder and warmer induction temperatures, respectively.  

 

 

Introduction 

Variation in environmental conditions is a significant source of mortality in nature 

(Willmer et al. 2000), and in this context temperature is thought to be a key factor and 

consequently considered an important selective agent (Clarke 2003, Hoffmann et al. 

2003). Most organisms experience variable thermal environments, posing substantial 

challenges for key elements of fitness such as survival and reproduction (Dahlhoff 

and Rank 2007). Consequently, the evolution of behavioural, physiological and 

molecular mechanisms to cope with stressful conditions is expected and generally 

found (Hoffmann et al. 2003, Sørensen et al. 2003). Facing rapidly changing climatic 

conditions at the global scale (e.g. Parmesan et al. 1999, Hitch and Leberg 2007), 

organisms will have to adapt to the changing environment to avoid extinction 

(Angilletta et al. 2002, Helmuth 2002, Dahlhoff and Rank 2007). However, the ability 

to cope with temperature extremes rather than different mean temperatures is 

probably of much greater relevance for species survival and thermal adaptation 

(Anderson et al.  2003).  

 

One well-known mechanism to cope with extreme temperatures is the expression of 

stress-inducible heat-shock proteins (HSPs), which are thought to play an important 

ecological and evolutionary role in thermal adaptation (Sørensen et al. 2003). Most 
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HSPs function as molecular chaperones participating in protein folding and unfolding, 

and they are essential in the cell’s response to a variety of damaging conditions 

(Parsell and Lindquist 1994). However, with respect to terrestrial arthropods, our 

knowledge on the role of HSPs is almost entirely restricted to a few model organisms 

(mainly Drosophila; Krebs and Loeschcke 1994 a, b, Lansing et al. 2000, Krebs and 

Holbrook 2001 Sørensen et al. 2005). Studies using such model organisms have 

yielded much insight into the complex relationships between temperature stress 

resistance and particularly HSP70 expression (e.g. Sørensen et al. 2005, Dahlhoff 

and Rank 2007).  

 

Although the up-regulation of stress-inducible HSPs may help organisms to cope with 

stress thus enhancing survival (Sørensen et al. 2003, Dahlhoff 2004, Dahlhoff and 

Rank 2007), this may involve substantial costs. HSP expression consumes much 

cellular energy and competes with the housekeeping metabolism, causing reduced 

cell growth rates and a reduction in productivity (Krebs and Loeschcke 1994 a, b, 

Krebs and Holbrook 2001, Robertson 2004). Consequently, HSP induction may 

increase vulnerability to other stresses (Feder and Hofmann 1999, Morales et al. 

2006). Continuous or frequent exposure to stress may therefore reduce the 

expression of HSP70 through evolution, as the associated costs may outweigh its 

benefits (Sørensen et al. 1999, Lansing et al. 2000, Sørensen et al. 2001). Such 

variation in the expression of HSPs may limit the distribution and abundance of 

organisms along steep ecological (e.g. thermal) gradients in nature (Roberts et al. 

1997, Dahlhoff et al. 2001, Dahlhoff 2004, Hofmann 2005). If variation in 

physiological responses is found over short geographical distances such as altitudes, 

this strongly supports the notion of adaptive evolution via directional selection 

(Dahlgaard et al. 2001).  

 

Here, we transfer Drosophila expertise (expression of stress-inducible heat-shock 

proteins) to a non-model organism, the temperate-zone butterfly Lycaena tityrus. We 

compare expression patterns across replicated populations originating from different 

altitudes, and at the same time across different ambient temperatures. We 

specifically addressed the following questions: (1) Does the expression of HSP70 

vary across populations from different altitudes? In high-altitude populations, being 

exposed to harsher environmental conditions in their natural environment, a lower 
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level of HSP expression might be expected at any given stress level, being 

experienced as less of an emergency situation. (2) Does HSP70 expression vary 

across developmental/acclimation and induction temperatures (with the expectation 

that high as well as low temperatures induce increased HSP expression)? 

 

 

Material and methods 

Study organism and butterfly rearing 

Lycaena tityrus (Poda, 1761) is a widespread temperate-zone butterfly, ranging from 

Western Europe to central Asia (Ebert and Rennwald 1991). The species is bivoltine 

with two discrete generations per year in most parts of its range, although 

populations with one or three generations per year occur (Ebert and Rennwald 1991, 

Tolman and Lewington 1998). The principal larval host-plant is Rumex acetosa L., 

but some congeneric plant species such as R. acetosella L. and R. scutatus L. are 

utilised as well (Ebert and Rennwald 1991, Tolman and Lewington 1998). Mated 

females from replicated low- [Rhineland-Palatinate, Germany: 250 a.s.l., (50° 30' N, 

7° 58' E; N = 13); Bavaria, Germany: 600 a.s.l. (47° 42' N, 11° 24' E; N = 6)] and 

high-altitude [South Tyrol, Italy: 2010 a.s.l. (46° 43' N, 10° 52' E; N = 23); Tyrol, 

Austria: 2050 a.s.l. (46° 52' N, 11° 01' E; N = 21)] populations were caught in 

July/August 2007 in the field and transferred to Bayreuth University.  

 

For egg laying, butterflies were kept in a climate chamber at 27°C, high humidity (ca. 

70%), and a photoperiod of light 18h: dark 6h (24 h light cycle). Females were placed 

group-wise, separated by population, into translucent plastic boxes (15 L) and 

provided with R. acetosa (oviposition substrate), fresh flowers (Crepis spec., Achillea 

millefolium, Bistorta officinalis, Leucanthemum vulgare) and a highly concentrated 

sucrose solution (for adult feeding). Eggs were collected daily, pooled within 

populations, and transferred to small glass vials. After hatching, larvae were 

randomly divided among two rearing temperatures (20°C and 27°C; L18:D6 and 70% 

relative humidity throughout). Larvae were first reared in groups of ten individuals, but 

during the last two larval stages individually in translucent plastic boxes (125 ml), 

containing moistened filter paper and fresh cuttings of R. acetosa in ample supply. 

Boxes were checked daily and supplied with new food when necessary. Following 

adult eclosion, butterflies were separated by eclosion day and population and 
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transferred to cylindrical hanging cages kept at their respective rearing temperature. 

They were provided with fresh flowers (Crepis spec., Achillea millefolium, Polygonum 

bistorta, Leucanthemum vulgare) and a highly concentrated sucrose solution for adult 

feeding.  

 

Experimental design and sample preparation 

On day two after eclosion, the butterflies from both rearing temperatures and each 

population were randomly divided among five treatments, being either exposed for 1 

h to 1, 10, 20, 27 or 37°C. Thereafter, butterflies were back-transferred to their 

respective rearing temperature for 1 h to allow for the possible up-regulation of HSP, 

after which they were frozen at -78°C for later analysis. In total, 560 individuals in 40 

groups (2 altitudes x 2 replicates x 2 rearing temperatures x 5 test temperatures) 

were exposed to the different temperature treatments. Samples were prepared for 

measuring HSP expression by removing heads, legs, wings and abdomen. Thorax 

fresh mass was determined to the nearest 0.01 mg (Sartorius microscale MC 210 P). 

Thereafter, thoraxes were homogenized in 400 µl ice-cold phosphate-buffered saline 

(PBS), containing 200mM PEFAbloc and a 1 vol.% antiprotease cocktail (100 µl/ml 

pepstatin A, 50 µl/ml leupeptin, 10 mM benzamidine, 10mM sodium metabisulfite), 

and then centrifuged for 30 min at 13000 rpm at 4°C. The supernatant was divided 

into three replicate samples of 100 µl each, transferred to 0.5 ml Eppendorf tubes, 

and frozen again at -78°C. 

 

ELISA 

As for L. tityrus HSP expression patterns were never investigated before and 

consequently no specific antibodies were known, western blotting was used to 

confirm measuring a protein of the predicted size (70kDa) for the antibody used (Fig. 

1). HSP70 expression was measured by ELISA (Enzyme-Linked ImmunoSorbent 

Assay) following the protocol of Dahlgaard et al. (1998) with some modifications, i.e. 

by using an HSP70-specific monoclonal antibody (Clone 5A5, mouse-anti rabbit, 

1:750) and an HRP-conjugated secondary antibody (Polyclonal Rabbit Anti-Mouse 

IgG, DAKO A/S). The primary antibody detects both, the constitutive and induced 

HSP70 family members (referred to as HSP70 for simplicity here). Linearity was 

verified by testing signal responses with increasing HSP70 concentration (data not 

shown). On each plate all 80 groups (40 groups by 2 sexes) were represented, and 
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all samples were measured on four replicate plates. The resulting signal was 

measured by a spectrophotometric microplate reader (ELx 800, Bio-Tek instruments) 

at 562 nm. To standardize between plates, all data were adjusted to plate means. 

HSP70 expression is given as mean value of the four replicate plates relative to 

standardized protein content of 30 µl/ml [by means of BCA assays (Pierce 

Biochemicals) according to manufacturer’s instructions]. With the same method total 

protein content of thoraxes was determined. 

 

  
 

 

Fig. 1. Western blot showing bands 

of similar sizes around 70 kDa in 

Drosophila melanogaster (Dm) and 

Lycaena tityrus  (Lt). The antibody 

recognized Hsp70 in Lycaena tityrus 

with comparable affinity as in 

Drosophila melanogaster. 

 

Statistical analyses 

HSP70 expression were analysed using nested analyses of co-variance (ANCOVAs), 

with altitude, rearing temperature, induction temperature and sex as fixed effects, and 

replicate population (nested within altitude) as random effect. For analysis of HSP70 

expression thorax mass and total protein content (in % of thorax mass) were added 

as covariates. Throughout, minimum adequate models were constructed by removing 

non-significant interaction terms. Pair-wise comparisons were performed employing 

Tukey’s HSD. All statistical tests were performed by using JMP (4.0.0) or Statistica 

(6.1). Unless otherwise stated, least square means ± 1 SE are given in the text. 

 

 

Results 

Variation in HSP70 expression 

All factors except altitude significantly affected HSP70 expression in Lycaena tityrus 

(Table 1). HSP expression was higher for individuals reared at 27°C (0.486 ± 0.005) 

compared to 20°C (0.454 ± 0.004) and in females (0.477 ± 0.005) compared to males 

(0.463 ± 0.004). It was further highest at an induction temperature of 1°C and lowest 
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at 20°C (1°C: 0.504 ± 0.009 = 37°C: 0.484 ± 0.010 = 10°C: 0.467 ± 0.006 > 27°C: 

0.448 ± 0.006 = 20°C: 0.446 ± 0.005; Tukey HSD after ANCOVA; Fig. 2a).  

 

Table 1. Nested ANCOVAs for the effects of altitude, replicate population (nested within 

altitude), rearing temperature, induction temperature and sex on HSP70 expression. Thorax 

mass and thorax protein content (covariates) were added as appropriate. Minimum adequate 

models were constructed by removing non-significant interaction terms. Significant P-values 

are given in bold.  

Trait and source DF MS F P 

Hsp70 expression     

Altitude 1,2 0.08 0.5 0.5499 

Replicate [Altitude] 2,545 0.16 37.9 < 0.0001 

Rearing Temperature 1,545 0.14 33.6 < 0.0001 

Induction Temperature 4,545 0.06 15.4 < 0.0001 

Sex 1,545 0.02 6.4 0.0116 

Altitude x Rearing Temperature 1,545 0.05 11.2 0.0009 

Altitude x Sex 1,545 0.12 27.3 < 0.0001 

Rearing Temperature x Sex 1,545 0.04 9.6 0.0020 

Thorax mass 1,545 0.001 0.3 0.5904 

Protein content 1,545 0.002 0.4 0.5248 

Error 545 0.004   

 

 

A significant interaction between altitude and rearing temperature indicates that low-

altitude animals strongly responded to rearing temperature, while a comparable 

response in high-altitude animals was almost entirely absent (Fig. 2b). Further, low-

altitude females showed much higher levels of HSP70 expression compared to high-

altitude females and males in general (significant altitude by sex interaction; Fig. 3a; 

Table 1). The increase in expression at the higher rearing temperature was much 

more pronounced in females than in males (significant rearing temperature by sex 

interaction; Fig. 3b). Neither covariate significantly affected HSP70 expression. 
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Fig. 2. Means (± 1 SE) of HSP70 expression for Lycaena tityrus across rearing temperatures 

(20°C: white symbols; 27°C: black symbols) and induction temperatures (A) or altitudes (B). 

 

 

 
Fig. 3. Means (± 1 SE) of Hsp70 expression for Lycaena tityrus males (black symbols) and 

females (white symbols) across altitudes (A) and rearing temperatures (B).  

 

 

Discussion 

Facing rapid human-induced climate change, understanding the mechanisms by 

which organisms respond to environmental variation received increasing attention 

(Dahlhoff and Rank 2007). In this context interest in the molecular and physiological 

functions of heat-shock proteins increased over recent years (Parsell and Lindquist 

1993, Sørensen et al. 2003). However, very few data are presently available for non-

model organisms such as the butterfly species studied here. Such data, however, are 

needed for assessing the generality of findings on the role of the heat shock 

response for thermal adaptation obtained from model species.  
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The ability to express HSPs under thermal and other stresses is an essential 

mechanism to cope with unfavourable conditions for ectothermic organisms 

(Sørensen et al. 2003, Dahlhoff 2004, Dahlhoff and Rank 2007). Though 

differentiation in HSP expression across altitudinal and latitudinal clines can be 

expected (Garbuz et al. 2003, Sørensen et al. 2005), there were no overall effects of 

altitude in L. tityrus detectable. However, while high-altitude butterflies responded 

only marginally to differences in rearing temperature, HSP expression increased 

substantially at the higher temperature in low-altitude butterflies. Consequently, the 

latter genotype is considerably more plastic compared to the former. Note in this 

context that 27°C is a relatively high rearing temperature for a temperate-zone 

butterfly, and that such conditions may amplify otherwise obscured phenotypic 

differences between genotypes (Hoffmann and Parsons 1991, Hoffmann and Merilä  

1999, Blanckenhorn and Heyland 2004). Nevertheless, the high-altitude environment 

is certainly generally cooler and probably also less predictable than the low-altitude 

environment (Franz 1979). Thus, the reduced plasticity in high-altitude animals is 

likely to be related to a chronic exposure to thermal stress (cf. Sørensen et al. 1999, 

Lansing et al. 2000, Sørensen et al. 2001).  

 

Under such conditions, the heat shock response would consume a large amount of 

cellular energy, which may cause an energy dept (Gething and Sambrook 1992, 

Krebs and Loeschcke 1994 a, b, Rank and Dahlhoff 2007). Such energy losses may 

favour alternative mechanisms to cope with high-altitude conditions. In L. tityrus, one 

mechanisms seems to be allelic variation at the PGI locus, with a particular genotype, 

being associated with increased cold stress resistance, dominating in high-altitude 

populations (Karl et al. in prep.). Thus, these populations seem to rely in the first 

place on genetically fixed resistance helping to conserve energy under the harsher 

environmental conditions. Concomitantly and owing to their relative lack of plasticity 

(see above), high-altitude populations of L. tityrus might be more vulnerable to global 

warming than are low-altitude populations. The pronounced plastic response in low-

altitude populations, in contrast, might be related to occasionally occurring fast 

increases in daily temperatures, warranting a molecular system which is able to 

respond rapidly (Dahlgaard and Loeschcke 1997).  
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Overall, environmentally-induced plasticity (through different rearing temperatures) 

had a stronger effect on HSP70 expression than genetic factors (across populations). 

First, HSP expression was generally higher at the higher rearing (and adult) 

temperature, suggesting that a temperature of 27°C imposes already a mild stress to 

L. tityrus. This was expected as this butterfly will rarely encounter such a high 

temperature permanently in nature, though it is well within the range of daily highs in 

its natural habitats. Similarly, HSP expression increased during warm seasons in 

other ectotherms (Fader et al. 1994, Roberts et al. 1997).  

 

Second, butterflies clearly responded to the different induction temperatures used. 

Although often only high temperatures are used for HSP induction (e.g. Dahlgaard et 

al. 1998, Sørensen et al. 2001, Sørensen et al. 2005), low temperatures are also 

known to upregulate HSPs (Hoffmann et al. 2003, Michaud and Denlinger 2005, 

Yocum 2001). Accordingly, in L. tityrus the expression of HSP70 increased both 

towards high and low temperatures. Most interestingly, lowest expression levels were 

found at the same temperature the respective individuals were reared at (i.e. for 

individuals reared at 27°C at an induction temperature of 27°C; and for individuals 

reared at 20°C at 20°C). This may indicate that a change in the thermal environment 

generally induces some stress, supporting the beneficial acclimation hypothesis 

(Huey et al. 1999, Woods and Harrison 2002).  

 

In addition to the patterns discussed above, sexes differed in HSP expression with 

females showing higher values than males. Particularly high expression levels were 

found in females from low-altitudes or females reared at the higher temperature. 

Differences between sexes were also found in Drosophila species (Dahlgaard et al. 

1998, Sørensen et al. 2005). Contrary to our findings, it was shown that the level of 

HSP70 in Drosophila males exceeded that of females (Dahlgaard et al. 1998). 

However, HSP70 expression in our study was measured one hour after induction, 

and thus we have only data for one time point. This might be important as in 

Drosophila males the increase in HSP70 expression is less steep than for females, 

and highest values were found around two hours after hardening (Dahlgaard et al. 

1998, Sørensen et al. 2001). Nevertheless, as sexes also varied across rearing 

temperatures with females showing increased HSP expression (accompanied by an 

increased heat resistance; Karl et al. 2008), there might be a true difference in the 
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heat shock response across sexes. As for example in Drosophila ananassae heat 

stress strongly affected survival and reduced female fecundity (Sisodia and Singh 

2006), such differences in HSP expression may reflect the females’ higher need for 

protection against thermal stress.  

 

Conclusions 

As most of our knowledge on patterns of HSP expression stems from studies using 

Drosophila as a model organism, we here investigate genetic and environmental 

effects on HSP70 expression in the Copper butterfly L. tityrus. Environmental effects 

according to different rearing and induction temperatures were more pronounced 

than genetic effects. The latter were largely restricted to low-altitude butterflies reared 

at the higher temperature. These results suggest that high-altitude butterflies 

generally rely more on fixed resistance to environmental variation than lowland ones, 

while low-altitude animals showed much higher levels of plasticity. Consequently, 

high-altitude populations appear more vulnerable to rapid human-induced climatic 

change than low-altitude ones. HSP70 expression was generally higher at the higher 

rearing temperature (indicating mildly stressful conditions), and increased with 

increasingly colder and warmer induction temperatures, respectively. The latter 

finding gave some support for the beneficial acclimation hypothesis, as the lowest 

levels of HSP expression coincided with the respective rearing temperature. This is 

the first study on HSP70 expression in a Copper butterfly, laying the fundament for 

future investigations within a comparative context.  
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Abstract 

Understanding the ecological process of population differentiation and identifying the 

molecular changes that contributes to adaptation lies at the heart of evolutionary 

biology. In this study, analyzing geographic variation in allozyme allele frequencies 

(based on 15 enzyme systems representing 18 loci) across 18 populations of the 

butterfly Lycaena tityrus from different altitudes, we tried to detect enzymes that are 

likely under natural selection. Population genetic analyses showed that 

intrapopulational genetic diversity, namely the mean number of alleles per loci (1.8) 

and the expected heterozygosity (12 %), was within the range of values typical for 

the Lepidoptera. The populations of Lycaena tityrus investigated showed a 

remarkable genetic differentiation (FST: 0.065), being clearly divided into an alpine 

(highland) and a non-alpine (lowland) cluster. This differentiation was almost entirely 

caused by variation at a single locus, PGI. Although the involvement of historical 

events cannot be ruled out, several lines of evidence strongly suggest that the 

specific pattern of allozyme (PGI) variation found is caused by thermal selection. 

First, genetic variation was highly locus-specific rather than relatively uniform, as is 

expected for effects of natural selection. Second and more importantly, the PGI 2-2 

genotype dominating in alpine (in contrast to lowland) populations is known to exhibit 

increased cold stress resistance and other features typical of alpine populations. 

Thus, PGI is an obvious target for thermal selection in Lycaena tityrus and probably a 

variety of other insects.  

 

 

Introduction 

Geographic variation in traits related to fitness along latitudinal (Robinson et al. 2000, 

Van Doorslaer and Stoks 2005) and altitudinal clines (Chown and Klok 2003, Karl et 

al. 2008) is widespread. Given a genetic basis, such differences may be caused by 

adaptive evolution (i.e. adaptation to different climates; Hoffmann et al. 2005, 

Collinge et al. 2006, Sambucetti et al. 2006) and/or by random processes like genetic 

drift or isolation by distance (e.g. Endler 1977, Ibrahim et al. 1996). Though the 

selective forces underpinning such variation were not explicitly investigated in the 

majority of cases, a contribution of directional selection to the differentiation among 

populations is often supposed (e.g. Chown and Klok 2003, Van Doorslaer and Stoks 

2005). 
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The ability to adapt to different environments throughout a given species’ range 

depends on the existence of variation at ecologically relevant loci (Veliz et al. 2004). 

Understanding the ecological processes influencing the maintenance of such 

variation, thereby dissolving the genetic framework of adaptive evolution, is one of 

the major goals of evolutionary biology (Fry et al. 2007). Thus, adaptive phenotypes 

or traits are convenient starting points for investigating adaptation at the genetic or 

genome level (Bonin et al. 2006), and identifying the precise molecular changes that 

contribute to adaptation remains one of the principal challenges (Hoekstra and 

Coyne 2007). 

 

Several environmental factors impact on the physiology of individuals and pose 

selective pressures; however, temperature is thought to be one of the most important 

selective agents (Loeschcke et al. 2000). Clinal variation is of particular interest with 

respect to temperature adaptation as it provides an opportunity to disentangle the 

traits and genes associated with environmental conditions (Hoffmann and Weeks 

2007). Some studies based on allozymes or DNA sequences already revealed 

associations between gene frequencies and clinal variation in environmental factors, 

such as temperature and salinity (reviewed in Eanes 1999, Watt 2000). Examples 

include the worldwide cline for ADH in Drosophila melanogaster presumably caused 

by thermal selection (Berry and Kreitman 1993, McKenzie et al. 1994). As another 

example, a tendency towards a higher genetic diversity was found in the fly 

Scathophaga cynipsea at higher altitudes, caused mainly by variation at the MDH 

locus potentially involved in stress adaptation (Kraushaar et al. 2002).  

 

For the temperate-zone Copper butterfly Lycaena tityrus recent studies documented 

pronounced altitudinal differences in life-history traits, flight performance, 

temperature stress resistance and the expression of stress-inducible heat-shock 

proteins (Karl et al. 2008, in prep.), and associations between part of these traits and 

variation at the PGI locus (Karl et al. in press) above findings offer an outstanding 

opportunity to identify the molecular basis of thermal adaptation, by investigating the 

geographic distribution of PGI genotypes of known temperature stress resistance 

across a thermal gradient in nature.  
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We selected allozymes as molecular markers because the association between PGI 

variation and stress resistance is known in Lycaena tityrus (see above), because 

these markers are powerful tools for unravelling the molecular biogeography of 

butterflies (Schmitt and Seitz 2001a, Habel et al. 2005, Schmitt et al. 2005), and 

because there is evidence that at least some allozyme loci are under natural 

selection while other may be neutral (Berry and Kreitman 1993, Eanes 1999, Storz 

and Nachman 2003). We analysed 15 enzyme systems (representing 18 loci) in 18 

populations of Lycaena tityrus from different altitudes, trying to determine the genetic 

structure across populations and detecting enzymes that are likely to be under 

natural selection. Specifically we investigate whether (i) PGI genotypes of greater 

cold stress tolerance show higher frequencies with increasing altitude, whether (ii) 

variation at this locus exceeds variation at other loci and / or whether (iii) PGI shows 

clinal variation with altitude not found in other loci.  

 

 

Material and methods 

Study organism and sampling populations 

Lycaena tityrus (Poda, 1761) is a widespread temperate-zone butterfly ranging from 

Western Europe to central Asia (Ebert and Rennwald 1991). The species is bivoltine 

with two discrete generations per year in most parts of its range, although 

populations with one or three generations per year occur (Ebert and Rennwald 1991, 

Tolman and Lewington 1998). Lycaena tityrus hibernates as half-grown larva. The 

principal larval host-plant is Rumex acetosa L., but some congeneric plant species 

such as R. acetosella L. and R. scutatus L. are accepted as well (Ebert and 

Rennwald 1991, Tolman and Lewington 1998). For this study,  Lycaena tityrus males 

were collected between 2004 and 2006 at 18 localities varying in altitude (for details 

see Table 1), and were afterwards stored in liquid nitrogen until electrophoresis. 

Populations were sampled in Germany (populations 1-5), North Tyrol / Austria 

(populations 6-11) and South Tyrol / Italy (populations 12-18). Samples were defined 

as low- (1-5), mid- (6, 8, 9, 12-15, 17) and high-altitude populations (7, 10, 11, 16, 

18) according to altitude. 



 

  
 

Table 1. Name, location and altitude of 18 collection sites of Lycanea tityrus in Germany (G), North Tyrol / Austria (NT) and South Tyrol / Italy (ST).  
            

Population Country  Area Name Altitude [m a.s.l] Coordinates 

1 G Mecklenburg-Western Pomerania (MW) Greifswald 0 54°02'59''N – 13°21'06''E 

2 G Rhineland-Palatinate (RP) Salz 350 50°30'22''N – 07°57'39''E 

3 G Rhineland-Palatinate (RP) Pottum 420 50°35'32''N – 08°00'06''E 

4 G Bavaria (BY) Bayreuth 440 49°54'18''N – 11°37'26''E 

5 G Bavaria (BY) Benediktbeuern 600 47°42'58''N – 11°22'41''E 

      

6 NT Pitz Valley (PiV) Mittelberg 1730 46°57'29''N – 10°52'31''E 

7 NT Pitz Valley (PiV) Taschachtal 2020 46°57'22''N – 10°51'17''E 

8 NT Oetz Valley (OV) Kühtai  1500 47°13'43''N – 10°56'19''E 

9 NT Oetz Valley (OV) Winterstall 1710 46°53'52''N – 10°57'26''E 

10 NT Oetz Valley (OV) Vent 1930 46°51'29''N – 10°54'31''E 

11 NT Oetz Valley (OV) Obergurgl 2050 46°51'41''N – 11°01'21''E 

      

12 ST Pflersch Valley (PflV) Innerpflersch 1350 46°58'05''N – 11°19'46''E 

13 ST Pfossen Valley (PfoV) Jägerruh 1680 46°44'02''N – 10°55'37''E 

14 ST Pfossen Valley (PfoV) Central Valley 1780 46°44'27''N – 10°55'58''E 

15 ST Schnals Valley (SV) Gerstberger Hof 1750 46°43'75''N – 10°48'42''E 

16 ST Schnals Valley (SV) Kurzras 2010 46°45'13''N – 10°46'47''E 

17 ST Matsch Valley (MV) Glieshof 1780 46°43'26''N – 10°40'39''E 

18 ST Matsch Valley (MV) Matsch Alp 2010 46°44'35''N – 10°41'53''E 
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Electrophoresis 

A total of 602 individuals were analysed with sample sizes per population ranging 

from 16 to 45 individuals. Half of the abdomen of the imagos were homogenised in 

Pgm-buffer (Harris and Hopkinson 1978) by ultrasound and centrifuged at 8,000 g for 

5 min. Cellulose acetate plates were used for allozyme electrophoresis applying 

standard protocols (Hebert and Beaton 1993). We analysed 15 enzyme systems 

representing 18 loci (see Table 2 for loci studied and electrophoretic conditions). 

 

Table 2. Electrophoretic conditions for the enzyme systems analysed in Lycaena tityrus. TC: 

Tris-citrate pH 8.2 (Richardson et al. 1986), TG: Tris-glycine pH 8.5 (Hebert and Beaton 

1993), TM: Tris-maleic acid pH 7.0 (adjusted from TM pH 7.8; Richardson et al. 1986). All 

buffers were run at 200 V. 

Enzyme EC-No. Number of loci Buffer 
Homogenate 

applications 
Running time [min] 

GOT  2.6.1.1 2 TC 3 60 

FUM 4.2.1.2 1 TC 3 45 

GAPDH 1.2.1.12 1 TC 4 40 

ME 1.1.1.40 1 TC 3 40 

G6PDH 1.1.1.49 1 TC 3 60 

ACON 4.2.1.3 1 TC 3 45 

MDH  1.1.1.37 2 TC 3 40 

PK 2.7.1.40 1 TC 2 45 

PEPPhePro 3.4.11/13 1 TG 3 20 

HBDH 1.1.1.1 1 TG 4 30 

PGI 5.3.1.9 1 TG 1 40 

PGM 5.4.2.2 1 TG 1 40 

6PGDH 1.1.1.44 1 TM 3 60 

IDH 1.1.1.42 2 TM 3 60 

APK 2.7.3.3 1 TM 1 30 

 

 

Statistics 

The alleles were labelled according to their relative mobility, starting with "1" for the 

slowest. The allele frequencies were calculated with the package G-Stat (Siegismund 

1993). Hardy-Weinberg equilibrium (Louis and Dempster 1987), genetic 

disequilibrium (Weir 1991), locus by locus F-statistics and analyses of molecular 

variance (AMOVAs) were calculated with the package Arlequin 2.000 (Schneider et 
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al. 2000), with F IS representing the genetic variance component among individuals 

within populations, FST the genetic variance component among populations , FCT the 

genetic variance component among groups of populations, and FSC the genetic 

variance component among populations within groups of populations . The neighbour 

joining phenograms (Saitou and Nei 1987) were calculated from Nei’s (1972) genetic 

distances, using the package PHYLIP (Felsenstein 1993). Bootstraps based on 1000 

iterations were calculated with the same software. Differences in genetic parameters 

across population groups were analysed by Man-Whitney U-tests using Statistica 

6.1. Differences in PGI allele frequencies across different altitudes were analyzed 

using analyses of variance (ANOVAs; JMP 4.0.0) with altitude as fixed effect. If not 

otherwise stated, means are given ± 1 SD throughout the text.  

 

 

Results 

Thirteen of the analysed loci were polymorphic for allele frequencies (see Appendix), 

whilst 5 loci (IDH2, MDH1, GAPDH, FUM, APK) were monomorphic. No significant 

deviations from Hardy-Weinberg equilibrium were detected after Bonferroni 

correction, and no significant linkage disequilibrium was observed for any locus over 

more than two populations (results not shown). For all polymorphic loci across all 18 

populations the mean number of alleles per locus (A) was 1.76 ± 0.11 (ranging from 

1.61 to 2.11), the expected heterozygosity (He) was 12.3 ± 1.5 % (ranging from 9.7 % 

to 15.5 %), the percentage of observed heterozygosity (Ho) was 12.2 ± 1.8 % 

(ranging from 9.0 % to 15.0 %), the total percentage of polymorphic loci (Ptot) was 

49.7 ± 6.5 % (ranging from 33.3 % to 61.1 %), and the percentage of polymorphic 

loci with the most common allele not exceeding 95 % (P95) was 35.5 ± 5.1 % (ranging 

from 27.9 % to 44.4 %; see Table 3 for details).  

 

The total genetic variance was 1.1801, 93.3 % (1.0888) of which being found within 

individuals. Of the remaining among-individual genetic variance (0.0913), 83.8 % 

(0.0765) was found among populations, and 16.2 % (0.0148) within populations. The 

overall FST calculated across all 18 populations was 0.0648 (P < 0.0001), and the 

average F IS across all polymorphic loci was 0.0134 (P = 0.19).  
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Table 3. Expected heterozygosity (He), observed heterozygosity (Ho), mean number of alleles 

per locus (A), percentage of polymorphic loci (Ptot), percentage of loci with the most common 

allele not exceeding 95% (P95), and sample size (N) across 18 populations of Lycaena 

tityrus. For details on the populations analyzed see Table 1.  

Population   He [%] Ho [%] A Ptot [%] P95 [%] N 

1 13.5 14.5 1.8 50.0 38.9 35 

2 15.5 14.8 2.1 50.0 33.3 36 

3 13.7 13.2 1.7 50.0 33.3 34 

4 13.7 14.5 1.9 61.1 44.4 16 

5 14.7 15.0 1.6 33.3 33.3 38 

6 10.0 10.1 1.7 50.0 38.9 25     

7 11.4 11.3 1.8 55.6 27.8 34 

8 11.9 12.2 1.7 55.6 38.9 33 

9 12.7 12.3 1.7 55.6 44.4 34 

10 13.1 14.1 1.8 55.6 38.9 34 

11 9.7 9.0 1.7 38.9 33.3 45 

12 12.4 12.0 1.8 44.4 38.9 33 

13 10.6 10.1 1.7 50.0 33.3 34 

14 11.5 11.4 1.7 44.4 38.9 34 

15 12.4 11.5 1.7 50.0 27.8 34 

16 11.5 10.3 1.8 50.0 33.3 37 

17 11.2 11.5 1.7 50.0 33.3 34 

18 11.8 11.6 1.8 50.0 27.8 34 

Means ± SD 12.3 ± 1.5 12.2 ± 1.8 1.76 ± 0.11 49.7 ± 6.5 35.5 ± 5.1 34 ± 6 

 

 

A neighbour joining tree based on genetic distances (Nei 1972) showed a division 

into two main clusters, the alpine and the non-alpine populations (Fig. 1; FCT: 0.0841; 

FSC: 0.0297; both P < 0.0001). Expected heterozygosity (He) and observed 

heterozygosity (Ho) were significantly higher in non-alpine than in alpine populations, 

whilst A, Ptot and P95 did not differ across these two groups (Table 4). No significant 

differences in genetic parameters were found comparing north- (populations 6-11) 

and south-alpine populations  (populations 12-18), mid- (6, 8, 9, 12-15, 17) and high-

altitude populations (7, 10, 11, 16, 18), and different sample sites within valleys (all P 

> 0.05). 
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Fig. 1. Neighbour joining dendrogram based on the genetic distances (Nei 1972) of 18 

populations of Lycaena tityrus. Abbreviations: G: Germany, A: Austria, I: Italy, BY: Bavaria, 

RP: Rhineland-Palatinate, MV: Mecklemburg-Western Pomerania, OV: Oetz Valley, PflV: 

Pflersch Valley, PiV: Pitz Valley, MV: Matsch Valley, SV: Schnals Valley and PfoV: Pfossen 

Valley (cf. Table 1). Values at the nodes of the branches indicate bootstrap percentages from 

1000 iterations. Only values above 40% are given. 

 

The overall differentiation between alpine and non-alpine populations was strongly 

related to variation in one single locus (PGI; FCT: 0.4362, P < 0.0001). A neighbour 

joining tree based only on the genetic distances of PGI showed similar patterns to 

those obtained from all loci (see Fig. 1 and 2). Four PGI genotypes differed in their 

frequency significantly across low- (L), mid- (M) and high- (H) altitude populations, 

namely genotype 1-1 (L > M = H; Tukey HSD after ANOVA; F2,18 = 19.2, P < 0.0001), 

1-2 (L > M = H; F2,18 = 131.1, P < 0.0001), 1-3 (L > M = H; F2,18 = 14.3, P = 0.0003) 

and 2-2 (L < M = H; F2,18 = 84.2, P < 0.0001; Fig. 3), while PGI genotypes 3-3, 1-4, 2-

3, 2-4, 2-5 and 3-5 (all P > 0.05) did not. 
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Table 4. Means ± SD for genetic 

parameters across alpine and non-alpine 

populations of Lycanea tityrus. 

Differences were tested for significance 

with Mann-Whitney U-tests (significant P-

values in bold). Abbreviations: He: 

percentage of expected heterozygosity, 

Ho: percentage of observed 

heterozygosity, A: number of alleles per 

locus, Ptot: total percentage of 

polymorphic loci, P95: percentage of 

polymorphic loci with the most common 

allele not exceeding 95%, N: number of 

individuals. For definition alpine and non-

alpine populations see text. 
  

  
Alpine 

populations  

Non-alpine 

populations 
P 

He  11.6 ± 1.0 14.2 ± 0.9 0.0014 

Ho  11.3 ± 1.3 14.4 ± 0.7 0.0019 

Ptot  50.0 ± 5.1 48.9 ± 9.9 0.8825 

A  1.74 ± 0.05 1.87 ± 0.25 0.4902 

P95  35.0 ± 5.3 36.6 ± 5.0 0.6574 

N 34 ± 4 32 ± 9 0.5542 

 

 

Within the alpine populations we found an FST of 0.0198 (P < 0.0001) based on 

differences among populations in 6PGDH (0.0489, P < 0.0001), ACON (0.0443, P < 

0.0001) and PEP (0.0253, P = 0.0020). Within the non-alpine populations the FST was 

0.0558 (P < 0.0001), mostly due to differences in PGM (0.1030, P < 0.0001), IDH1 

(0.0753, P = 0.0010) and PGI (0.0506, P < 0.0001). We found no genetic 

differentiation between populations from the northern (North Tyrol) and southern Alps 

(South Tyrol; FCT: 0.052, P = 0.0518) or between mid- and high-altitude populations 

(FCT < 0.001, P = 0.6500). There was no significant differentiation within valleys (all P 

> 0.05), except from the Oetz Valley (FST: 0.0166, P = 0.0176).  

 

 

Discussion 

Genetic diversity and differentiation between populations 

In the analysed Lycaena tityrus populations intrapopulational genetic diversity, 

namely the mean number of alleles per loci and the expected heterozygosity, was 

comparable to the values typically found in the Lepidoptera (Graur 1985). However, 

for lycaenids genetic diversity is known to be high (Marchi et al. 1996, Schmitt and 

Seitz 2001a, Schmitt et al. 2002), and in particular the mean number of alleles per 

locus (1.74) is lower than in other common lycaenids (e.g. Polyommatus icarus: 2.98, 

Schmitt et al. 2003; Polyommatus coridon: 2.72, Schmitt et al. 2002). High levels of 

intra-populational diversity are characteristic of species having an open population 
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Fig. 2. Neighbour joining dendrogram based on the genetic distances (Nei 1972) of 18 

populations of Lycaena tityrus, using only the PGI locus. For abbreviations see Fig. 1. 
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Fig. 3. Frequencies of PGI genotypes for low-, mid- and high-altitude populations of Lycaena 

tityrus. Given are means ± 1 SE. Data were pooled across replicate populations. 
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structure (Vanderwoestijne et al. 1999) and / or high local population densities 

(Schmitt et al. 2002). On the other hand, extremely low diversities as e.g. found in 

Polyommatus coridon gennargentii (Marchi et al. 1996) are a common feature of 

peripheral and isolated populations. The values found for Lycaena tityrus in 

comparison with other butterflies allow no general conclusions concerning size and 

isolation of populations, except that they appear intermediate between the above 

mentioned extremes (thus broadly matching the species’ ecology; Ebert and 

Rennwald 1991, Tolman and Lewington 1998).  

 

Although not as high as for example in Erebia medusa throughout large parts of 

Europe (FST-value 0.149; Schmitt and Seitz 2001b), the genetic differentiation among 

the studied Lycaena tityrus populations (FST-value 0.0648) is relatively high and 

within the range of other strongly differentiated species like Euphydryas gilettii 

(Debinski 1994) or Polyommatus coridon (Schmitt and Seitz 2001a). The neighbour 

joining tree for Lycaena tityrus based on genetic distances (Fig. 1) revealed a clear 

distinction of populations into two main clusters, an alpine and a non-alpine (lowland) 

one. Although there is still a fairly high variability among populations within the 

lowland cluster, the division into those clusters is clearly defined (see further below).  

 

Interestingly, the expected and observed heterozygosity in Lycaena tityrus is lower in 

alpine than in lowland populations. Low heterozygosity is often associated with 

fitness costs (Ochando and Ayala 1999, Hotz and Semlitsch 2000). The results in 

Lycaena tityrus are in contrast with altitudinal patterns in the dung fly Scathophaga 

cynipsea showing a higher genetic diversity at higher altitudes (Kraushaar et al. 

2002), and also with the intuitive assumption of a positive rather than a negative 

correlation with altitude, based on the harsher environmental conditions warranting 

high individual fitness. However, the pattern found in Lycaena tityrus seems to be 

related to variation at the PGI locus, with one homozygote genotype, PGI-2-2, 

dominating in all alpine populations, while lowland populations showed much more 

heterogeneous distributions with many heterozygotes.  

 

Possible reasons for population differentiation in Lycaena tityrus 

Geographical variation in allele frequency is often taken as evidence for the action of 

natural selection; however such patterns can also arise from population processes 
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and historical factors (Hoffmann and Weeks 2007). Good evidence for an impact of 

selective forces can be obtained from studies investigating fitness effects of certain 

alleles in a range of environmental conditions (Huestis and Marshall 2006). One of 

the best such examples is clinal variation of ADH alleles in Drosophila melanogaster, 

paralleled on different continents (Fry et al. 2007, Hoffmann and Weeks 2007). 

Further, the frequencies of IDH1 alleles in the cricket Allonemobius socius follow a 

gradient in mean annual temperature, indicating a contribution of natural selection 

(Huestis and Marshall 2006). On the other hand, geographic clines in allele 

frequencies may be related to post-glacial expansions (Schmitt and Seitz 2001a), 

and the strong differentiation of three lineages in the alpine-endemic butterfly Erebia 

melampus indicates a discontinuous distribution during the last ice age (Haubrich 

and Schmitt 2007).  

 

Geographic differentiation in the Lycaena tityrus populations analysed is primarily 

caused by variation at the PGI locus. PGI is an enzyme involved in important 

glycolytic pathways being thus at the central point of all ATP-based energy supplies 

(Watt 1985). It has received much attention over the last decades and evidence for a 

covariance between environmental variables (especially temperature) and PGI allelic 

variation is accumulating (Watt 1992, Rank and Dahlhoff 2002, Watt et al. 2003, 

McMillan et al. 2005). As mentioned above, a recent study using Lycaena tityrus 

showed strong effects of PGI genotype on life-history traits and thermal tolerance 

(Karl et al. in press). Most importantly, the PGI 2-2 genotype, dominating in alpine in 

contrast to lowland populations, showed increased cold stress resistance and other 

features typical of high-altitude populations (Karl et al. in press), suggesting that PGI 

is under thermal selection in Lycaena tityrus.  

 

This notion is further supported by the fact that effects of natural selection are 

generally locus-specific, whereas effects of migration, drift or inbreeding are 

expected to have relatively uniform effects across the entire genome (Storz and 

Nachmann 2003). The latter, however, is clearly not the case in Lycaena tityrus. 

Additionally, a literature survey for over 75 species indicated strong selection on the 

PGI locus, with the alleles moving faster in the electrophoresis often being 

associated with more stressful conditions (Riddoch 1993). In accordance, the PGI 2-

2 genotype, containing the faster of the two most common alleles 1 and 2, increased 
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from 44 % in Lycaena tityrus lowland populations to up to 94 % in high-altitude 

populations. However, we found no significant differences in PGI genotypes between 

mid- and high-altitude populations within the Alps (range 1350-2050 m a.s.l.). Thus, 

given that geographic variation in PGI genotypes is caused by selection, a 

substantial change in selective forces is expected to occur between 600 m a.s.l. 

(highest lowland population) and 1350 m a.s.l. Anyway, investigating genetic 

differentiation without PGI does not reveal a division into an alpine and a lowland 

cluster anymore, and within the lowland populations there is a relatively high genetic 

differentiation, with no indication of continuous lineages. Thus, although our evidence 

is correlative in nature, there is quite strong support for the notion that the PGI locus 

is under thermal selection in Lycaena tityrus, and that this is the ultimate reason 

underlying the altitudinal genetic differentiation found. While such variation in allele 

frequencies may be caused by many ecological factors, temperature is a key 

environmental factor influencing virtually all aspects of the ecology and evolution of 

ectotherms, and is therefore thought to be one of the most important selective agents 

(e.g. Loeschcke et al. 2000, Hoffmann et al. 2003).  

 

Conclusions 

Understanding the ecological process of adaptation and population differentiation, in 

combination with unraveling the genes targeted by selection, lies at the heart of 

evolutionary biology (Fry et al. 2007). In the Copper butterfly Lycaena tityrus, we 

found a clear differentiation into two main clusters, a lowland and an alpine one, 

caused mainly by variation at a single locus, PGI. Consequently, it appears rather 

unlikely that the pattern found is caused by random processes (Hoffmann and Weeks 

2007). This, however, does not rule out the involvement of historical events, which 

have probably impacted on the patterns found and may be responsible for the lack of 

differentiation within the alpine cluster. Thus, there may well be a distinct alpine 

lineage having evolved in allopatry. To our mind, though, the specific pattern of 

variation with altitude at the PGI locus found in Lycaena tityrus can hardly be 

explained by factors others than natural selection. The PGI genotype dominating in 

alpine populations is known to exhibit increased cold tolerance and other features 

typical of alpine populations, such that the PGI locus is an obvious target for 

selection (Karl et al. in press).  
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Appendix: Allele frequencies for the 13 polymorphic (out of 18 analysed) loci across 18 populations of Lycaena tityrus . For further information on 

collection sites see text and Table 1. 

Population   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

                                        

6Pgdh                    

1  0 0 0 0 0 0 0.015 0.091 0 0 0 0 0 0 0 0 0 0 

2  1.000 0.941 1.000 0.969 1.000 1.000 0.985 0.909 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.986 1.000 0.985 

3  0 0 0 0.031 0 0 0 0 0 0 0 0 0 0 0 0.014 0 0.015 

4  0 0.059 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                    

IDH1                    

1  0 0 0 0 0 0.020 0 0 0 0.015 0 0 0.015 0 0 0 0 0 

2  0.200 0.147 0.306 0.219 0.474 0.320 0.368 0.303 0.338 0.221 0.200 0.318 0.485 0.368 0.426 0.378 0.294 0.456 

3  0.800 0.853 0.694 0.781 0.526 0.660 0.618 0.697 0.647 0.765 0.789 0.667 0.500 0.632 0.574 0.622 0.706 0.544 

4  0 0 0 0 0 0 0.015 0 0.015 0 0.011 0.015 0 0 0 0 0 0 

                    

MDH2                    

1  0.031 0 0 0 0.029 0 0 0 0 0 0 0 0.029 0.015 0.015 0.014 0.044 0.074 

2  0.969 1.000 0.972 0.938 0.943 0.935 0.956 0.953 0.956 1.000 1.000 0.924 0.971 0.941 0.956 0.865 0.941 0.882 

3  0 0 0.028 0.063 0.029 0.065 0.044 0.047 0.044 0 0 0.976 0 0.044 0.029 0.122 0.015 0.044 

                    

G6PDH                    

1  0.086 0.242 0.222 0.167 0.346 0.160 0.221 0.121 0.235 0.338 0.222 0.242 0.132 0.118 0.162 0.125 0.279 0.221 

2  0.914 0.758 0.750 0.833 0.654 0.840 0.779 0.879 0.765 0.662 0.778 0.758 0.868 0.882 0.838 0.875 0.721 0.779 

3  0 0 0.028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

PK2                    

1  0 0 0 0.031 0 0 0 0 0.015 0.015 0 0 0 0 0.015 0 0 0 

2  1.000 1.000 1.000 0.969 1.000 1.000 1.000 1.000 0.985 0.985 1.000 1.000 1.000 1.000 0.985 1.000 1.000 1.000 
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Population   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

                                        

Hbdh                    

1  0.029 0 0.014 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2  0.086 0 0.056 0 0 0 0 0 0 0.029 0 0 0 0 0 0 0 0 

3  0 0 0 0.031 0 0 0.015 0 0 0 0 0 0 0 0 0 0 0 

4  0.886 0.985 0.931 0.969 1.000 1.000 0.985 1.000 1.000 0.971 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5  0 0.015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                    

ACON1                    

1  1.000 1.000 1.000 1.000 1.000 0.980 1.000 0.909 0.926 0.882 1.000 1.000 0.882 0.912 0.838 1.000 0.971 0.971 

2  0 0 0 0 0 0.020 0 0.091 0.074 0.118 0 0 0.118 0.088 0.162 0 0.029 0.029 

                    

GOT1                    

1  0 0 0.014 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2  0.929 1.000 0.958 0.906 1.000 0.940 0.971 0.971 0.941 0.985 0.978 0.879 0.985 0.971 1.000 0.986 0.985 1.000 

3  0.071 0 0.014 0.094 0 0 0 0 0 0 0 0 0 0 0 0.014 0 0 

4  0 0 0.014 0 0 0 0 0 0 0 0.011 0.045 0 0 0 0 0 0 

5  0 0 0 0 0 0.060 0.029 0.029 0.059 0.015 0.011 0.076 0.015 0.029 0 0 0.015 0 

                    

GOT2                    

1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.014 0 0 

2  0 0 0 0 0 0.040 0.044 0.074 0.088 0.088 0.167 0.045 0.074 0.118 0.015 0.014 0 0.029 

3  0.957 0.985 0.958 0.906 1.000 0.960 0.956 0.926 0.912 0.912 0.833 0.939 0.912 0.868 0.985 0.959 0.956 0.956 

4  0 0 0 0.063 0 0 0 0 0 0 0 0.015 0.015 0 0 0 0.044 0 

5  0.043 0.015 0.042 0.031 0 0 0 0 0 0 0 0 0 0 0 0.014 0 0.015 
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Population   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

                                        

                    

ME                    

1  1.000 0.971 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2  0 0.029 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                    

Pep                    

1  0.141 0.106 0.375 0.133 0.237 0.060 0.162 0.172 0.221 0.206 0.078 0.273 0.044 0.206 0.242 0.108 0.106 0.103 

2  0.688 0.742 0.583 0.800 0.658 0.940 0.765 0.781 0.779 0.765 0.900 0.667 0.853 0.735 0.682 0.838 0.879 0.868 

3  0.172 0.152 0.042 0.067 0.105 0 0.074 0.047 0 0.029 0.022 0.061 0.103 0.059 0.076 0.054 0.015 0.029 

                    

PGI                    

1  0.443 0.353 0.556 0.313 0.208 0 0 0 0 0.088 0 0 0 0 0.015 0.041 0 0 

2  0.414 0.471 0.264 0.656 0.528 0.940 0.941 0.985 0.868 0.882 0.933 0.955 0.985 1.000 0.956 0.865 0.941 0.956 

3  0.143 0.176 0.153 0.031 0.208 0.060 0.059 0.015 0.132 0.029 0.067 0.045 0.015 0 0.029 0.095 0.059 0.044 

4  0 0 0.028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5  0 0 0 0 0.056 0 0 0 0 0 0 0 0 0 0 0 0 0 

                    

PGM                    

1  0 0 0.014 0.031 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2  0.061 0.059 0.069 0.031 0.231 0.040 0.015 0.088 0.118 0.191 0.122 0.091 0.029 0.029 0.059 0.056 0.088 0.118 

3  0.803 0.471 0.708 0.813 0.718 0.700 0.721 0.691 0.809 0.721 0.744 0.803 0.750 0.750 0.676 0.681 0.559 0.618 

4  0.015 0 0.014 0 0 0 0 0 0 0 0.011 0 0 0 0 0 0 0 

5  0.106 0.471 0.125 0.125 0.051 0.220 0.235 0.206 0.059 0.088 0.111 0.076 0.221 0.221 0.265 0.264 0.338 0.235 

6  0 0 0 0 0 0 0 0.015 0 0 0.011 0 0 0 0 0 0.015 0 

7  0.015 0 0.069 0 0 0.040 0.029 0 0.015 0 0 0.030 0 0 0 0 0 0.029 
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7.2. PGI genotype affects life history traits and cold stress 

resistance in a Copper butterfly  

 

 

 

 

Isabell Karl1, Thomas Schmitt2 and Klaus Fischer1,3 

 
1Department of Animal Ecology I, Bayreuth University, D-95440 Bayreuth, Germany 
2Department VI - Biogeography, Trier University, D-54296 Trier, Germany 
3Zoological Institute and Museum, Greifswald University, D-17489 Greifswald, 

Germany 

 

 

 

 

Corresponding author:  

Isabell Karl 

Department of Animal Ecology I 

Bayreuth University 

P.O. Box 101 251 

D-95440 Bayreuth, Germany 

 

Tel.: +49-921-553079 

Fax: +49-921-552784 

E-mail: isabell.karl@uni-bayreuth.de  

 

 

 

 

Published as: 

Karl, I., Schmitt, T. and Fischer, K. (in press). PGI genotype affects life history traits 

and cold stress resistance in a Copper butterfly. – Functional Ecology, 

doi:10.1111/j.1365-2435.2008.01438.x. 



The genetic background                                                                                         139 

 

Abstract 

Accumulating evidence suggests that the phosphoglucose isomerase (PGI) locus is 

under thermal selection. In the Copper butterfly Lycaena tityrus PGI allele 

frequencies show altitudinal variation, with a single genotype occurring in ca. 90 % of 

high-altitude animals. In low-altitude populations variation at this locus is much 

higher. Here, we investigate variation in life-history traits and temperature stress 

resistance across PGI genotypes in Lycaena tityrus from different lowland 

populations reared at two temperatures (19°C and 24°C). PGI genotype significantly 

affected larval and pupal development time, growth rate, pupal mass and chill-coma 

recovery time, but had no effect on heat knock-down resistance. The latter suggests 

that heat and cold stress resistance are based on differential mechanisms. As 

expected temperature also influenced all traits under investigation, its effect being 

more pronounced compared to that of PGI genotype (except for pupal mass). 

Patterns found for the PGI genotype dominating in high-altitude populations were 

consistent with those found for high-altitude animals. Therefore, and because of the 

direct link between PGI genotype and cold stress resistance, we conclude that PGI is 

likely to contribute to thermal adaptation in Lycaena tityrus. Genotypes promoting 

rapid development and largest body size were rather rare, suggesting weak selection 

on both traits and / or rather high associated costs.  
 

 

Introduction 

For several ectotherms it has been shown that allozyme variation correlates with 

variation in an array of fitness-related traits including morphological and physiological 

ones (e.g. Watt 1992, Neargarder et al. 2003, McMillan et al. 2005, Dahlhoff and 

Rank 2007, Saastamoinen 2007). Usually, those studies supposed the involvement 

of environmental variables as selective agents causing a given allozyme variation. 

Where alternative forms of enzymes exist (allelic products of a single locus), 

selection through temperature is particularly likely because of its effects on enzyme 

function and metabolic rates, in turn affecting fitness (Borrell et al. 2004, Ward et al. 

2004). In recent years, the importance of environmental effects on the phenotypic 

expression of individual genes became increasingly clear (DeWitt and Scheiner 

2004), and it is furthermore now generally accepted that genetic variation at single 
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loci may affect multiple phenotypic characters (Pigliucci 2004, Pigliucci and Preston 

2004). 

 

One possibility to detect interactions between the forces shaping phenotypic 

expression and those maintaining its underlying genetic variation is to look for 

variation at a specific gene locus and to identify its effects on the phenotype (Krause 

and Bricelj 1995). In this context, enzymes that are involved in important metabolic 

pathways, e.g. glycolytic enzymes, are of special interest, as glycolysis is the centre 

point of all ATP-based energy supplies (Watt 1985). One of these enzymes, 

phosphoglucose isomerase (PGI), has received much attention since the 1980s, and 

evidence for a covariance between environmental variables (especially temperature) 

and PGI is accumulating (Watt 1983, 1992, Rank and Dahlhoff 2002, Neargarder et 

al. 2003, McMillan et al. 2005). In Colias butterflies, for example, PGI genotypes 

differ dramatically in their enzyme-kinetic properties, thus affecting glycolytic fluxes 

and thereby flight performance (Watt 1983, 1992). Likewise, in the Glanville fritillary 

butterfly, PGI genotype has a significant effect on flight metabolic rate and 

concomitantly on dispersal rate (Haag et al. 2005). As another example, directional 

changes in PGI allele frequencies, coinciding with variation in HSP70 expression, 

temperature stress resistance, running speed, survival and fecundity were found in 

the leaf beetle Chrysomelia aeneicollis (Dahlhoff and Rank 2000, Rank and Dahlhoff 

2002, Neargarder et al. 2003, McMillan et al. 2005, Dahlhoff and Rank 2007, Rank et 

al. 2007). However, apart from these studies, our knowledge of the consequences of 

variation at the PGI locus on life history and stress resistance traits is still very 

limited. 

 

In the present study, we quantified variation in life-history and temperature stress 

resistance traits across different PGI genotypes in the butterfly Lycaena tityrus. For 

this species, we have found altitudinal variation in PGI allele frequencies, causing 

significant genetic differentiation between high- and low-altitude populations (Karl et 

al. unpublished). In the high-altitude populations, a single PGI genotype (PGI 2-2) 

was found in about 90 % of all animals, while low-altitude butterflies showed a much 

larger variation at the PGI locus (Karl et al. unpublished). Because of the strong 

covariance between temperature and geographic clines, temperature is generally 

believed to be one of the most important selective agents causing such clinal 
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variation (Loeschcke et al. 2000), which is supposedly also the case in Lycaena 

tityrus. Assuming that the dominance of the PGI 2-2 genotype in Lycaena tityrus 

high-altitude populations is causally related to thermal selection in these low-

temperature environments, we test here whether PGI 2-2 butterflies (from lowland 

populations) show features typical of high-altitude butterflies, namely whether they 

show shorter development times, increased growth rates (but see Karl et al. 2008), 

larger body size, increased cold stress resistance, but decreased heat stress 

resistance as compared to other genotypes. 

 

 

Material and methods 

Study organism 

Lycaena tityrus (Poda, 1761) is a widespread temperate zone butterfly, ranging from 

Western Europe to central Asia (Tolman and Lewington 1998). The species is 

bivoltine with two discrete generations per year in most parts of its range, although 

populations with one or three generations per year occur (Ebert and Rennwald 1991, 

Tolman and Lewington 1998). Lycaena tityrus hibernates as L3-larvae. The principal 

larval host-plant is Rumex acetosa L., but some congeneric plant species such as R. 

acetosella L. and R. scutatus L. are utilised as well, and may in some regions 

represent the main hosts (SBN 1987, Ebert and Rennwald 1991, Tolman and 

Lewington 1998). For this experiment, 18 freshly eclosed, mated females were 

caught in June 2007 in different bivoltine lowland populations in Germany (western 

Germany - ‘Westerwald’, north-eastern Germany - near the city of Greifswald, 

southern Germany – near Benediktbeuern) and transferred to Bayreuth University. 

Females from different populations were included to promote a high genetic diversity 

at the PGI locus in the offspring generation.  

 

Experimental design 

Oviposition and butterfly rearing 

Field-caught females were kept in a climate chamber at 24°C and L18:D6 (24h light 

cycle) throughout. For oviposition they were placed individually in translucent plastic 

pots (1 L) covered with gauze, and were provided with R. acetosa (oviposition 

substrate), fresh flowers (Crepis sp., Achillea millefolium, Bistorta officinalis, 

Leucanthemum vulgare) and a highly concentrated sucrose solution (for adult 
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feeding). Eggs were collected daily, pooled across females and transferred to small 

glass vials. After hatching, larvae were randomly divided among two climate 

chambers differing in rearing temperature (19°C and 24°C, respectively). Both 

climate chambers used are located within the same building next to each other. They 

are identical in terms of construction, lightning and air conditioning. Throughout, 

photoperiod was set at L18:D6, and relative humidity at 70 %. Larvae were reared in 

groups (10 individuals each) in translucent plastic boxes (500 ml), containing 

moistened filter paper and fresh cuttings of R. acetosa in ample supply. Boxes were 

checked daily and supplied with new food when necessary. Resulting pupae were 

weighed (to the nearest 0.01 mg; Sartorius microscale MC 210 P) and afterwards 

kept individually in numbered plastic pots (125 ml). Following adult eclosion, 

butterflies were kept individually in translucent plastic pots (250 ml) covered with 

gauze, and were provided with a highly concentrated sucrose solution for adult 

feeding until the start of stress tolerance assays (see below).  

 

Data acquisition  

Larval development time (from hatching to pupation), pupal mass, pupal 

development time and growth rate (calculated as quotient of pupal mass and larval 

developmental time) was recorded for all individuals. On day 2 after eclosion, 

butterflies were randomly assigned to either a cold or heat stress resistance assay. 

Cold stress resistance was determined as chill-coma recovery time (Hoffmann et al. 

2002, Ayrinhac et al. 2004, Castañeda et al. 2005). Butterflies were placed 

individually in small translucent plastic cups (125 ml), which were arranged on a tray 

in a randomized block design. The tray was then exposed for 6 min to -20°C. This 

period was selected as preliminary studies showed that longer cold exposure 

induced significant mortality, and a shorter one very quick recovery. After cold 

exposure the trays were transferred to an environmental cabinet with a constant 

temperature of 20°C. Recovery time was defined as the time elapsed between taking 

the tray out of the freezer until a butterfly was able to stand on its legs. Only 

butterflies that had recovered within one hour were included in further analyses, as 

mortality is very high for butterflies with longer recovery times. Following recovery, 

butterflies were frozen at -80°C for later allozyme analyses.  

 



The genetic background                                                                                         143 

 

Heat stress resistance was determined by using a knock-down assay (Sørensen et 

al. 2005). Butterflies were placed in small, sealed glass vials, which were submerged 

in a water bath kept at a constant temperature of 47°C (again in a randomized block 

design). Butterflies were continuously monitored and heat knock-down time (defined 

as the time until a butterfly was no longer able to stand upright) was recorded for 

each individual. To reduce mortality, knocked-down butterflies were immediately 

taken out of the water bath and, after a short recovery time (to be sure that the 

butterfly was still alive), they were frozen at -80°C for further analyses. 

 

Electrophoresis 

PGI genotype was analyzed for 1381 individuals. Therefore, half the butterflies’ 

abdomen was homogenised in Pgm-buffer (Harris and Hopkinson 1978) by 

ultrasound and centrifuged at 8,000 g for 5 min. Cellulose acetate plates were used 

for electrophoresis applying standard protocols (Hebert and Beaton 1993). Samples 

were run in TG-buffer (Tris-glycine pH 8.5; see Hebert and Beaton 1993) at 200 V. 

The alleles were labelled according to their relative mobility, starting with ‘1’ for the 

slowest. 

 

Statistical analyses 

Due to the presence of rare genotypes and concomitantly low sample sizes in some 

groups, life history and stress resistance data were only analyzed for the four most 

common PGI genotypes (1-1; 2-2; 1-2; 2-3). Despite this restriction, sample sizes 

were highly unbalanced owing to the differential frequency of genotypes. 

Nevertheless, all respective individuals were included in the statistical analyses, as 

analyses using similar group sizes (by drawing random samples from the two most 

frequent genotypes) yielded qualitatively identical results. Data were analysed using 

analyses of (co-)variance (AN(C)OVAs) with PGI genotype, temperature and sex as 

fixed effects. Pupal mass was added as covariate when analyzing stress resistance 

traits. Throughout, minimum adequate models were constructed by removing non-

significant interaction terms. Pair-wise comparisons were performed employing 

Tukey’s HSD. All statistcal tests were performed using JMP (4.0.0) or Statistica (6.1). 

Unless otherwise stated, least square means ± 1 SE are given throughout the text .  
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Results 

The butterflies analyzed (N = 1381) represent 7 different PGI genotypes. The two 

most common genotypes, PGI 1-2 (N = 606) and PGI 2-2 (N = 486), represent 79.1 

% of all individuals. They are followed by PGI 2-3 (N = 127), PGI 1-1 (N = 86), PGI 1-

3 (N = 49), PGI 1-4 (N = 21), and PGI 3-3 (N = 6; cf. S1 for sample sizes and trait 

values across all genotypes and treatment groups). All results below are based on N  

= 1306 representing the four most common genotypes.  

 

Effects of PGI genotype on life-history traits 

All four life-history traits investigated showed significant variation across genotypes, 

rearing temperatures, and sexes, the only exception being that there was no sex 

difference in pupal mass (Table 1). Larval development time varied significantly 

between genotypes (PGI 1-2: 22.7 ± 0.1 days = PGI 2-2: 22.5 ± 0.1 days > PGI 1-1: 

21.9 ± 0.2 days = PGI 2-3: 21.7 ± 0.1 days), rearing temperatures (19°C: 26.7 ± 0.1 

days > 24°C: 17.7 ± 0.1 days), and sexes (females: 23.3 ± 0.1 days > males: 21.1 ± 

0.1 days; Fig. 1a). The significant temperature by sex interaction for larval time 

indicates that the sex difference was slightly less pronounced at the higher (males 

2.0 days faster) than at the lower temperature (males 2.4 days faster).  

 

Patterns in growth rates were largely opposite to those found in larval time 

(genotypes - PGI 2-3: 6.40 ± 0.06 mg/day > PGI 1-1: 6.09 ± 0.08 mg/day = PGI 2-2: 

5.91 ± 0.03 mg/day > PGI 1-2: 5.76 ± 0.03 mg/day; temperatures - 24°C: 7.3 ± 0.03 

mg/day > 19°C: 4.8 ± 0.04 mg/day, sexes - males: 6.3 ± 0.03 mg/day > females: 5.7 

± 0.03 mg/day; Fig. 1b). The sex difference across temperatures was less 

pronounced at 19°C (males by 0.37 mg/day faster) than at 24°C (males by 0.80 

mg/day faster). Further, a significant interaction between genotype and temperature 

indicates a more pronounced effect of temperature on growth rate in PGI 2-3 

butterflies compared to other genotypes.  

 

Regarding pupal time, PGI 2-3 butterflies (11.6 ± 0.07 days) showed a significantly 

shorter development time compared to PGI 1-1 (12.0 ± 0.08 days) and PGI 1-2-

butterflies (11.9 ± 0.04 days), while PGI 2-2 butterflies (11.8 ± 0.04 days) did not 

differ from any other group. Further, development was significantly shorter at the 

higher (8.99 ± 0.04 days) than at the lower (14.68 ± 0.04 days) rearing temperature,
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Table 1. AN(C)OVAs for the effects of PGI genotype, temperature and sex on life-history and 

stress-resistance traits in Lycaena tityrus. Pupal mass (covariate) was added as appropriate. 

Significant P-values are given in bold. 

Traits and source DF MS F P 

Larval time     

Genotype 3 109.6 17.3 < 0.0001 
Temperature 1 13355.1 6321.1 < 0.0001 
Sex 1 789.6 373.7 < 0.0001 
Genotype x Temperature 3 3.3 0.5 0.6627 
Genotype x Sex 3 5.5 0.9 0.4569 
Temperature x Sex 1 8.2 3.9 0.0492 
Genotype x Temp. x Sex 3 3.6 0.6 0.6358 
Error 1289 2.1   

Growth rate     

Genotype 3 45.9 32.7 < 0.0001 
Temperature 1 1076.0 2296.2 < 0.0001 
Sex 1 56.2 119.9 < 0.0001 
Genotype x Temperature 3 7.0 4.9 0.0019 
Genotype x Sex 3 0.6 0.4 0.7186 
Temperature x Sex 1 7.3 15.7 < 0.0001 
Genotype x Temp. x Sex 3 1.6 1.1 0.3444 
Error 1289 0.5   

Pupal time     

Genotype 3 12.6 5.6 0.0009 
Temperature 1 5458.5 7202.3 < 0.0001 
Sex 1 34.7 45.8 < 0.0001 
Genotype x Temperature 3 3.9 1.7 0.1591 
Genotype x Sex 3 0.7 0.3 0.8228 
Temperature x Sex 1 3.2 4.2 0.0392 
Genotype x Temp. x Sex 3 4.8 2.1 0.0988 
Error 1289 0.8   

Pupal mass     

Genotype 3 5967.4 16.4 < 0.0001 
Temperature 1 720.6 5.9 0.0150 
Sex 1 105.7 0.9 0.3511 
Genotype x Temperature 3 254.0 0.7 0.5540 
Genotype x Sex 3 123.7 0.3 0.7968 
Temperature x Sex 1 23.2 0.2 0.6623 
Genotype x Temp. x Sex 3 237.6 0.7 0.5819 
Error 1289 121.5   
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Continuation Table 1 

Traits and source DF MS F P 

Chill-coma recovery time     

Genotype 3 909206.8 4.1 0.0070 
Temperature 1 237327.6 3.2 0.0399 
Sex 1 182290.0 2.5 0.1180 
Genotype x Temperature 3 167288.3 0.7 0.5229 
Genotype x Sex 3 41226.4 0.2 0.9068 
Temperature x Sex 1 106805.7 1.4 0.2313 
Genotype x Temp. x Sex 3 158236.8 0.7 0.5469 
Pupal mass 1 9563.1 0.1 0.7201 
Error 633 74399.0   

Heat knock-down time     

Genotype 3 88437.2 0.6 0.5919 
Temperature 1 126212.8 2.7 0.0494 
Sex 1 3848598.6 83.0 < 0.0001 
Genotype x Temperature 3 78752.2 0.6 0.6373 
Genotype x Sex 3 121983.1 0.9 0.4524 
Temperature x Sex 1 337502.8 7.3 0.0071 
Genotype x Temp. x Sex 3 99442.5 0.7 0.5431 
Pupal mass 1 942221.3 20.3 < 0.0001 
Error 638 46341.0   

 

 

and was shorter in males (11.63 ± 0.04 days) than in females (12.04 ± 0.04 days; 

Fig. 1c). Sex differences were slightly smaller at 19°C (males by 0.3 days faster) than 

at 24°C (males by 0.5 days faster; indicated by a significant temperature-by-sex 

interaction). Pupal mass finally was more than 5 % higher in PGI 2-3 than in PGI 1-2 

butterflies (PGI 2-3: 130.9 ± 0.9 mg > PGI 1-1: 128.2 ± 1.2 mg ≥ PGI 2-2: 126.2 ± 0.5 

mg > PGI 1-2: 123.9 ± 0.4 mg), was higher at 24°C than at 19°C (24°C: 128.4 ± 0.5 

mg > 19°C: 126.3 ± 0.5 mg), but did not differ between the sexes (Fig. 1d).  

 

Effects of PGI genotype on stress resistance 

Chill-coma recovery time varied significantly between genotypes and temperatures, 

but was not affected by sex or the covariate pupal mass (Fig. 2a, Table 1). PGI 2-2 

animals (406.8 ± 17.7 sec) showed by more than 15 % reduced recovery times 

compared to PGI 1-2 animals (484.6 ± 15.7 sec), while PGI 1-1 (508.7 ± 39.4 sec) 

and PGI 2-3 butterflies (489.7 ± 34.5 sec) did not differ significantly from any other  
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Fig. 1. Means (± 1 SE) for larval time (a), larval growth rate (b), pupal time (c) and pupal 

mass (d) for Lycaena tityrus males (black symbols) and females (white symbols) across four 

PGI genotypes and two rearing temperatures (19°C and 24°C). Note the partly different 

scales on the Y-axis. 
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group despite of having the longest mean recovery times (but note the substantial 

within-group variation, obviously caused by relatively low sample size; see S1). 

Further, the animals reared at the lower temperature (430.8 ± 17.6 sec) showed a 

reduced recovery time (> 15 %) compared to the ones reared at the higher 

temperature (514.0 ± 18.3 sec).  

 

 
Fig. 2. Means (± 1 SE) for chill-coma recovery time (a) and heat knock-down time (b) for 

Lycaena tityrus  males (black symbols) and females (white symbols) across four PGI 

genotypes and two rearing temperatures (19°C and 24°C). 

 

In contrast, heat knock-down time was not affected by PGI genotype, but was more 

than 10 % shorter in animals reared at the lower (393.0 ± 14.5 sec) versus the higher 

temperature (444.0 ± 14.9 sec; Fig. 2b), and nearly 40 % shorter in males than in 

females (315.9 ± 14.9 sec vs. 521.1 ± 14.5 sec). The latter difference was much 

more pronounced at the higher compared to the lower temperature, as evidenced by 

a significant temperature by sex interaction (knock-down time was 260.0 sec longer 

in females compared to males at the higher temperature, but only 151.3 sec longer at 

the lower temperature). Further, there was a significant impact of the covariate pupal 
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mass, with larger individuals being on average more resistant to heat stress than 

smaller ones (R = 0.186, P < 0.0001, N = 655).  

 

 

Discussion 

A wealth of studies shows correlations between variation in life history traits and 

individual fitness (e.g. Munch and Conover 2003, Fischer et al. 2004, Berger et al. 

2006), and at least some of such fitness-related traits vary with PGI genotype (e.g. 

Neargarder et al. 2003, McMillan et al. 2005, Dahlhoff and Rank 2007, Saastamoinen 

2007). If a single locus shows patterns of variation being discordant with other loci, 

natural selection is likely acting on that locus (Slatkin 1987). Here, we demonstrate a 

direct link between variation in life-history and stress resistance traits and PGI 

genotypes in the Copper butterfly Lycaena tityrus. Note in this context that hardly any 

data have been published to date on the potential association between 

developmental traits and PGI genotype.  

 

Effects of PGI genotype on life-history traits  

PGI genotype considerably affected larval and pupal development time, growth rate, 

and pupal mass in Lycaena tityrus. As PGI 2-2 is the dominant genotype found in 

high-altitude butterflies (Karl et al. unpublished), a reduced development time with 

concomitantly higher growth rates was expected for this compared to other 

genotypes. Such results were for instance obtained for Drosophila buzzatii 

populations from the coolest highland localities (Bubliy and Loeschcke 2005). Our 

results on Lycaena tityrus, however, show that the high-altitude genotype had 

intermediate to long development times. This can be explained by the fact that 

indeed high-altitude populations do exhibit longer development times in Lycaena 

tityrus, presumably caused by a change in voltinism (low-altitude populations are 

bivoltine, while high-altitude ones are monovoltine; Karl et al. 2008). Of course, 

developmental traits may be affected by a large number of different genes 

(Chippindale et al. 2003), but the trend towards relatively long development times in 

addition to the pronounced overall variation across genotypes clearly suggests that 

PGI does affect developmental pathways (including growth rates, see below). 

Similarly, variation in development time among PGI genotypes was shown in the leaf 

beetle Chrysomelia aeneicollis, though such differences were thought to be related to 
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differences in the expression of heat shock proteins rather than PGI genotype per se 

(McMillan et al. 2005).  

 

It is a common belief that “faster is better” in ecology and evolutionary biology, and 

accumulating evidence suggests that growth rate in itself is a target of natural 

selection (Arendt 1997, Nylin and Gotthard 1998, Munch and Conover 2003). 

Although it is intuitively appealing that consequently growth rates should be 

maximized, recent studies convincingly implicate that growth rates are optimized 

rather than maximized (Arendt 1997, Nylin and Gotthard 1998). This in turn implies 

that fast growth carries costs such as a lower viability (Chippindale et al. 1997), a 

higher weight loss during metamorphosis (Fischer et al. 2004), or a higher predation 

risk (Gotthard 2000, Munch and Conover 2003). Against this background it is 

interestingly to note that in Lycaena tityrus growth rates in PGI 1-1 and PGI 2-3 

butterflies, having low frequencies of 6 and 9 %, were clearly higher than in PGI 1-2 

(43 %) and PGI 2-2 butterflies (35 %). This may suggest, in line with the above 

considerations, that selection is not favoring genotypes promoting fast development.  

 

A large number of studies, many of which were concerned with clinal variation, 

suggest that ectotherms tend to be larger in colder environments (James and 

Partridge 1995, James et al. 1995). However, recent work indicates that this may not 

necessarily be the case, and that many different outcomes are possible 

(Blanckenhorn 1997, Blanckenhorn and Demont 2004). In Copper butterflies, 

different studies could not find an association between the temperature conditions at 

the place of population origin and body size (Karl et al. 2008). Accordingly, high-

altitude genotypes (PGI 2-2) were not of particularly large size in this study.  

 

Another interesting pattern is that there was no trade-off between fast growth and 

body size, i.e. slow-growing individuals did not become large, and fast-growing ones 

not small (cf. Blanckenhorn 1999, Davidowitz et al. 2004). In contrast, PGI 2-3 

individuals with the highest growth rates also showed the highest pupal masses, 

while PGI 1-2 butterflies with the lowest growth rates were smallest. It remains 

unclear though why the (under laboratory conditions) obviously highly efficient 

genotype PGI 2-3 is relatively rare (9 %) in nature. Furthermore, the two most 

common genotypes were smallest in size, suggesting that the costs associated with 
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achieving and/or maintaining large body size largely outweigh any potential benefit 

such as increased fecundity or mating success (Roff 1992, Blanckenhorn 2000).  

 

Effects of PGI genotype on temperature stress resistance 

In addition to life -history traits, PGI genotype also affected cold but not heat stress 

resistance. The genotype dominating in high-altitude populations (PGI 2-2) exhibited 

the shortest chill-coma recovery times. This is consistent with an increased cold 

stress resistance in high-altitude Lycaena tityrus populations (Karl et al. 2008), and 

suggests that the PGI locus is under thermal selection (see also Watt 1994, Dahlhoff 

and Rank 2000, McMillan et al. 2005). The mechanisms underlying the association 

between PGI variation and cold resistance are not yet known for Lycaena tityrus. In 

the willow leaf beetle, however, allelic variation at the PGI locus across a latitudinal 

gradient is linked to variation in the expression of HSP70 (Dahlhoff and Rank 2000). 

This may also apply to Lycaena tityrus, as significant differences in HSP70 

expression between high- and low-altitude individuals were recently found (Karl et al. 

unpublished).  

 

In contrast, despite variation in heat stress resistance across high- and low-altitude 

Lycaena tityrus populations (Karl et al. 2008), no significant variation across PGI 

genotypes in heat resistance were detected in this study. Thus far, however, there is 

no evidence for a causal link between knockdown resistance and chill-coma 

recovery, and further our findings corroborate the notion that the mechanisms 

underlying increased cold tolerance are at least partly uncoupled from the 

mechanisms increasing heat tolerance (see also Chown 2001, Klok and Chown 

2003, Sørensen et al. 2005). Certainly, PGI is not the only locus under thermal 

selection, but other yet unknown loci may also contribute to thermal adaptation, some 

of which may cause the reduced heat resistance in high-altitude populations. Finally,  

an association between PGI and heat resistance cannot be excluded, as different 

methods to assess thermo-tolerance may involve different genetic pathways (Folk et 

al. 2006). 
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Effects of rearing temperature and sex on life-history traits and temperature stress 

resistance 

The differences across sexes and rearing temperatures were largely consistent with 

previous results (Fischer and Fiedler 2000, Karl and Fischer 2008, Karl et al. 2008). 

As expected for an ectothermic organism, development times decreased with 

increasing temperature, accompanied by increased growth rates (see also 

Blanckenhorn 1997, Fischer et al. 2003, Burke et al. 2005, Van Doorslaer and Stoks 

2005). In contrast to earlier findings (Fischer and Fiedler 2000, Karl and Fischer 

2008, Karl et al. 2008), individuals reared at the lower temperature did not achieve a 

higher pupal mass, though this effect can be restricted to the adult phase due to 

differential weight losses during metamorphosis (Fischer et al. 2004). As predicted 

from protandry theory (Fagerström and Wiklund 1982), males showed generally 

shorter development times than females. Further, lower temperatures caused 

increased cold, but reduced heat stress tolerance. Such plastic responses to the 

prevailing temperature conditions were also found in a number of other studies (e.g. 

Ayrinhac et al. 2004, Hoffmann et al. 2005, Zeilstra and Fischer 2005, Karl and 

Fischer 2008). While there was no sex difference in chill-coma recovery time, heat 

tolerance was reduced in males as compared to females. Similar patterns, again 

indicating different underlying mechanisms, were also obtained in other studies (e.g. 

Chen and Walker 1994, Gilchrist et al. 1997, Sørensen et al. 2001, Folk et al. 2006, 

Jensen et al. 2007).  

 

Conclusions 

Our study adds to the accumulating evidence that PGI is a locus under thermal 

selection (Watt 1983, 1994, Dahlhoff and Rank 2000, McMillan et al. 2005). In 

extension to previous studies, we show that PGI not only affects cold tolerance, but 

also all life-history traits under investigation here (viz. development time, growth rate, 

pupal mass). Given the large variation in such traits associated with variation at the 

PGI locus, PGI can be considered a pleiotropic gene of large effect (although genes 

linked to the PGI locus may also contribute to the variation found). Most interestingly, 

the patterns caused by variation in PGI genotype are in broad agreement with those 

across high- and low-altitude populations, i.e. the PGI genotype dominating in high-

altitude populations showed increased cold tolerance and rather long development 

times associated with rather low growth rates (cf. Karl et al. 2008). This genotype is 
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also present in low-altitude populations (~ 35%). Its increase to ca. 90 % in the high-

altitude populations is, based on the current results, likely to be caused by thermal 

selection on the PGI (and possibly associated) locus (see also Rank and Dahlhoff 

2002). This strongly supports the notion that the PGI locus is heavily involved in 

thermal adaptation in arthropods (Neargarder et al. 2003, McMillan et al. 2005), 

although it is not related to heat stress tolerance in Lycaena tityrus. Future studies 

will focus on the mechanisms underlying the association between PGI genotypes and 

cold tolerance, involving the expression of stress-inducible heat shock proteins.  
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Supplementary material: 

Appendix S1: Means (± 1 SE) for life-history and stress resistance traits for Lycaena tityrus males and females across PGI genotypes 

and two rearing temperatures. PGI 3-3 is not shown because of low sample size.  
      24°C 19°C 

      Males Females Males Females 

  PGI   N Mean SE N mean SE N mean SE N mean SE 

                  

Larval time [days] 1-1  16 16.81 0.33 17 18.47 0.17 25 25.20 0.24 28 27.64 0.31 

  2-2  146 16.88 0.08 125 19.07 0.11 117 25.61 0.14 98 28.26 0.17 

  1-2  167 17.14 0.09 179 19.10 0.09 137 25.90 0.15 123 28.48 0.18 

  2-3  23 16.04 0.19 29 18.10 0.22 38 25.32 0.22 37 27.30 0.32 

  1-3  13 17.69 0.50 14 18.57 0.27 12 25.33 0.40 10 28.90 0.53 

  1-4   5 17.20 0.37 9 18.89 0.39 5 26.60 0.93 2 28.00 0.00 

Growth rate [mg/day] 1-1  16 7.62 0.27 17 7.01 0.12 25 5.09 0.07 28 4.63 0.08 

  2-2  146 7.59 0.07 125 6.66 0.07 117 4.89 0.05 98 4.49 0.05 

  1-2  167 7.34 0.06 179 6.58 0.05 137 4.76 0.05 123 4.34 0.05 

  2-3  23 8.31 0.15 29 7.42 0.17 38 5.04 0.07 37 4.83 0.10 

  1-3  13 7.10 0.27 14 6.94 0.19 12 5.07 0.11 10 4.54 0.14 

  1-4   5 7.28 0.42 9 6.38 0.17 5 4.32 0.20 2 4.10 0.32 

Pupal mass [mg] 1-1  16 127.06 3.04 17 129.36 1.74 25 128.23 1.79 28 127.36 1.57 

  2-2  146 127.48 1.01 125 126.34 0.99 117 124.67 0.99 98 126.32 1.20 

  1-2  167 125.27 0.82 179 125.20 0.78 137 122.63 0.94 123 122.76 1.11 

  2-3  23 132.85 1.48 29 133.48 2.18 38 127.26 1.53 37 131.05 1.93 

  1-3  13 124.38 2.94 14 128.28 1.85 12 128.15 2.32 10 130.64 2.46 

  1-4   5 124.75 5.73 9 120.16 2.44 5 114.42 4.52 2 114.81 5.93 
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    24°C 19°C 

      Males Females Males Females 

  PGI   N Mean SE N mean SE N mean SE N mean SE 

                  

Pupal time [days] 1-1  16 8.63 0.15 17 9.12 0.15 25 14.60 0.24 28 15.29 0.18 

  2-2  146 8.75 0.05 125 9.27 0.06 117 14.49 0.11 98 14.74 0.12 

  1-2  167 8.84 0.05 179 9.33 0.05 137 14.63 0.09 123 14.98 0.09 

  2-3  23 8.35 0.12 29 9.24 0.13 38 14.45 0.17 37 14.43 0.17 

  1-3  13 8.46 0.14 14 9.00 0.18 12 14.42 0.29 10 14.80 0.33 

  1-4   5 9.00 0.33 9 9.00 0.00 5 14.60 0.24 2 13.50 0.50 

Heat knock-down [sec] 1-1  6 255.0 80.6 9 725.0 139.0 12 337.1 53.5 11 502.7 77.3 

  2-2  77 318.5 19.5 64 576.7 33.4 61 300.0 16.8 48 467.4 30.9 

  1-2  88 300.5 22.8 85 556.2 33.0 66 298.8 15.2 64 417.7 27.2 

  2-3  8 317.5 98.0 19 529.7 41.2 16 330.6 24.4 21 528.6 48.9 

  1-3  6 284.2 41.2 9 583.3 121.7 7 260.0 62.5 4 367.5 82.5 

  1-4   2 100.0 10.0 3 736.7 270.7 1 90.0 0.0 2 550.0 285.0 

Chill-coma recovery [sec] 1-1  10 566.0 120.6 8 468.1 11.1 13 521.5 116.6 17 455.3 73.0 

  2-2  69 473.0 13.3 61 429.2 17.2 56 360.6 14.3 50 365.4 15.8 

  1-2  79 550.8 50.0 94 515.5 31.9 71 454.4 35.5 59 409.7 28.7 

  2-3  15 556.7 61.5 10 404.0 31.8 22 451.1 72.4 16 515.6 99.6 

  1-3  7 614.3 52.2 5 419.0 35.9 5 352.0 27.8 6 568.3 167.8 

  1-4   3 426.7 39.3 6 474.2 36.0 4 586.3 208.8 0     
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